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Abstract 

 

Crystallization is an important separation process, extensively used in most chemical industries 

and especially in pharmaceutical manufacturing, either as a method of production or as a 

method of purification or recovery of solids. Typically, crystallization can have a considerable 

impact on tuning the critical quality attributes (CQAs), such as crystal size and shape 

distribution (CSSD), purity and polymorphic form, that impact the final product quality 

performance indicators and inherent end-use properties, along with the downstream 

processability. Therefore, one of the critical targets in controlled crystallization processes, is to 

engineer specific properties of the final product. 

The purpose of this research is to develop systematic computer-aided methodologies for the 

design of batch and continuous mixed suspension mixed product removal (MSMPR) 

crystallization processes through the implementation of simulation models and optimization 

frameworks. By manipulating the critical process parameters (CPPs), the achievable range of 

CQAs and the feasible design space (FDS) can be identified. Paracetamol in water and 

potassium dihydrogen phosphate (KDP) in water are considered as the model chemical systems. 

The studied systems are modelled utilizing single and multi-dimensional population balance 

models (PBMs). For the batch crystallization systems, single and multi-objective optimization 

was carried out for the determination of optimal operating trajectories by considering mean 

crystal size, the distribution’s standard deviation and the aspect ratio of the population of 

crystals, as the CQAs represented in the objective functions. For the continuous crystallization 

systems, the attainable region theory is employed to identify the performance of multi-stage 

MSMPRs for various operating conditions and configurations. Multi-objective optimization is 

also applied to determine a Pareto optimal attainable region with respect to multiple CQAs. By 

identifying the FDS of a crystallization system, the manufacturing capabilities of the process 

can be explored, in terms of mode of operation, CPPs, and equipment configurations, that would 

lead to the selection of optimum operation strategies for the manufacturing of products with 

desired CQAs under certain manufacturing and supply chain constraints.  

Nevertheless, developing reliable first principle mathematical models for crystallization 

processes can be very challenging due to the complexity of the underlying phenomena, inherent 

to population balance models (PBMs). Therefore, a novel framework for parameter estimability 



x 

for guaranteed optimal model reliability is also proposed and implemented. Two estimability 

methods are combined and compared: the first is based on a sequential orthogonalization of the 

local sensitivity matrix and the second is Sobol, a variance-based global sensitivities technic. 

The framework provides a systematic way to assess the quality of two nominal sets of 

parameters: one obtained from prior knowledge and the second obtained by simultaneous 

identification using global optimization. A multi-dimensional population balance model that 

accounts for the combined effects of different crystal growth modifiers/ impurities on the crystal 

size and shape distribution of needle-like crystals was used to validate the methodology. A cut-

off value is identified from an incremental least square optimization procedure for both 

estimability methods, providing the required optimal subset of model parameters. In addition, 

a model-based design of experiments (MBDoE) methodology approach is also reported to 

determine the optimal experimental conditions yielding the most informative process data. The 

implemented methodology showed that, although noisy aspect ratio data were used, the eight 

most influential and least correlated parameters could be reliably identified out of twenty-three, 

leading to a crystallization model with enhanced prediction capability.  

A systematic model-based optimization methodology for the design of crystallization processes 

under the presence of multiple impurities is also investigated. Supersaturation control and 

impurity inclusion is combined to evaluate the effect on the product's CQAs. To this end, a 

morphological PBM is developed for the modelling of the cooling crystallization of pure KDP 

in aqueous solution, as a model system, under the presence of two competitive crystal growth 

modifiers/ additives: aluminum sulfate and sodium hexametaphosphate. The effect of the 

optimal temperature control with and without the additives on the CQAs is presented via 

utilizing multi-objective optimization. The results indicate that the attainable size and shape 

attributes, can be considerably enhanced due to advanced operation flexibility. Especially it is 

shown that the shape of the KDP crystals can be affected even by the presence of small quantity 

of additives and their morphology can be modified from needle-like to spherical, which is more 

favourable for processing. In addition, the multi-impurity PBM model is extended by the 

utilization of a high-resolution finite volume (HR-FV) scheme, instead of the standard method 

of moments (SMOM), in order for the full reconstruction and dynamic modelling of the crystal 

size and shape distribution to be enabled. The implemented methodology illustrated the 

capabilities of utilizing high-fidelity computational models for the investigation of 

crystallization processes in impure media for process and product design and optimization 

purposes.  
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respect to different additives’ (𝐶𝐶𝐺𝑀𝑖) concentration.: (a) XY cartesian plane, (b) XZ 

cartesian plane and (c) YZ cartesian plane. 
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1 INTRODUCTION 

1.1 Background 

The pharmaceutical industry has undergone through an unprecedented change over the past few 

years. Imminent patent expirations, low productivity, new regulatory incentives and the 

constantly increasing costs that outpace the development of new pharmaceuticals have 

increased the need for more efficient manufacturing processes (DiMasi et al, 2003; Basu et al., 

2008; Suresh et al., 2008; Price, 2014). Currently, the development of a drug can take from 10 

– 15 years with the cost of bringing the drug to market ranging between $0.8 and $2 billion, 

while it has only 20% chance of FDA approval (Kessel et al., 2011; Aksu et al., 2012; Benyahia 

et al., 2012). To this end, continuous manufacturing, process intensification and process 

systems engineering tools, such as model-based design, optimization and advanced process 

control, can be utilized in conjunction, or individually, to improve the efficiency of the 

manufacturing processes and the quality attributes of the product itself.  

Crystallization is an important separation process, extensively used in most chemical industries 

and especially in pharmaceutical manufacturing, either as a method of production or as a 

method of purification or recovery of solids (Mersmann, 2001). It can be utilized in challenging 

separations such as ultrapure powders or heat sensitive compounds combining particle 
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formation and purification in a single operation. Also, crystallization has proven to be more 

energy efficient than other separation processes, such as distillation since the heat of 

crystallization can be significantly lower – ranging from 1/5th to 1/10th – comparing to the heat 

of evaporation. Many substances of scientific, technological, and commercial importance are 

in crystalline form, ranging from large-tonnage commodity materials to high-value specialty 

chemicals, such as active pharmaceutical ingredients (APIs).  

In fact, the pharmaceutical industry relies heavily on crystallization as 70% of all the 

pharmaceuticals formulation and 90% of APIs involve at least one crystallization step during 

the manufacturing process (Alvarez et al., 2010; Pena and Nagy, 2015). Besides, crystallization 

is one of the key steps in the production of pharmaceutical tablets which are the most popular 

dosage form (see Figure 1.1). Hence, the crystallization step has a considerable impact on 

tuning the critical quality attributes (CQAs), such as crystal size and shape distribution (CSSD), 

purity and polymorphic form, that impact the final product quality performance indicators and 

inherent end-use properties (e.g. bioavailability, tablet stability, dissolution, dosage form etc.), 

along with the downstream processability (e.g. filtration, drying etc.) (Rawlings et al., 1993; 

Wibowo and Ng, 2001; Nagy et al., 2013; Rawlings et al., 1993). Therefore, one of the critical 

targets in controlled crystallization processes, is to engineer specific properties of the final 

product. Narrow and uniform crystal size distribution (CSD), high yield of the process, 

maximum crystal purity, acceptable crystal morphology, specific polymorphic form and 

consistent product are in most cases desirable, subjected to certain economic and operational 

constraints (Mersmann, 2001). Consequently, designing a process, which satisfies all the target 

specifications is a major challenge in industrial crystallization.  

 

Figure 1.1. Schematic of the integrated crystallization and product formulation process chain to enable 

end-to-end precision manufacturing (Adapted from Nagy et al. (2013)). 
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With the recent advances in online process analytical technology (PAT) tools, more reliable 

and real-time data can be made available for process understanding and manipulation (Nagy et 

al., 2013; Yu et al., 2004). Hence, improved monitoring in combination with systematic design 

and effective control of the crystallization processes can lead to more robust and efficient 

manufacturing processes and consequently to higher product quality (Nagy et al., 2009; Mesbah 

et al., 2012; Kwon et al., 2014; Brown et al., 2018). Therefore, developing high fidelity models 

and model-based approaches have received considerable attention in many different areas, such 

as process design, control, real time optimization and Quality-by-Design (Mascia et al., 2013; 

Lakerveld et al., 2013; Su et al., 2015; Su et al., 2016).  

A prerequisite to apply process design and model-based control strategies, however, is the 

availability of a high fidelity mathematical model. The most fundamental approach for 

modelling particulate processes, such as crystallization, is the population balance model (PBM)  

framework (Randolph and Larson, 1988; Ramkrishna et al., 2000) coupled with kinetic 

expressions, mass and energy balances, which yields a set of nonlinear integro-partial 

differential equations. The set provides a rigorous approach to model the dynamic evolution of 

the dispersed phase system’s properties, such as CSSD (Sato et al., 2008; Borsos, et al., 2014; 

Borsos et al., 2016). Although the PBM framework is based on first principles, a general 

theoretical mathematical expression for the determination of the crystallization kinetics doesn’t 

exist and hence, empirical or semi-empirical expressions (e.g. power-law etc.) are used, that in 

most of the cases account for the supersaturation as the key variable (Rawlings et al., 1993; Cao 

et al., 2012). 

Estimating the kinetic parameters for these expressions, however is a non-trivial process. In 

general, the full characterization of the process requires large amounts of information, which, 

however, are not always available (Rawlings et al., 1993). Also, the quality and the information 

content of the available experimental data can be affected by many factors such as noisy 

measurements, limited number of data points, poor design of experiments (DoE) and limited 

range of operating conditions, which inadequately cover the design and operating space  

(Perregaard et al., 1993; Chu et al., 2011; Brown et al., 2018). Additionally, strong influence of 

a parameter on one or more of the measured responses, high correlation between the parameter  

effects and/or the effects of a parameter on model predictions can also lead to unreliable and  

inaccurate identification of the unknown parameter values, which in turn degrades the 

prediction capability of the mathematical model (Kravaris et al., 2013; Benyahia et al., 2013).  
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Apart from the experimental errors, challenges could also arise based on the model structure 

itself. Several assumptions are typically made during the model development to simplify the 

numerical complexity of the system with the risk, however, to affect the predictability of the 

model leading to under/over-estimation of essential variables (Su et al., 2015). However, it 

should be highlighted that there is a considerable trade-off between complexity and 

computational cost, which should be considered during decision-making. In general, models 

utilized for advanced control and complex optimization purposes should be simple due to 

computational time constraints. Therefore, appropriate numerical methods and solvers should 

be used based on the application of the model. Also, simplified lumped models are typically 

employed instead of distributed systems. Of course, the assumption of uniform mixing is not 

always valid and consequently the hydrodynamics should be evaluated as well especially when 

large scale processes are considered (Kougoulos et al., 2006). Furthermore, the hydrodynamics 

can affect the kinetic parameters, as well as the homogeneity of the system. The former may 

have a greater impact since in many cases the time scales for crystallization are longer 

comparing to the ones for mixing. 

Another assumption which is typically made, to simplify the PBM framework is the 

consideration that crystals have a constant shape (Randolph and Larson, 1988; Ramkrishna et 

al., 2000). Consequently, only one characteristic size is required for modelling the 

crystallization phenomena. Nevertheless, this hypothesis is not valid for most of the cases, since 

crystals exhibit more complicated morphologies, e.g. with varying aspect ratios. In this case, 

multi-dimensional models can be utilized to model the evolution of the CSSD (Acevedo et al., 

2015; Hemalatha and Rani, 2017). Although significant research has been already conducted 

for the design and optimization purposes using 1D crystallization models (i.e. CSD) a 

systematic design methodology for multi-dimensional PBMs (i.e. CSSD) is still missing. 

Although modelling the CSSD could be computationally complex and intensive, developing a 

systematic design methodology to control the size and shape attributes could be even more 

challenging. There are several approaches that have been implemented to modify the CSSD, 

such as supersaturation control, temperature cycling, mechanical post-processing (e.g. wet-

milling) or use of additives (Acevedo and Nagy, 2014; Eisenschmidt et al., 2016; Yang et al., 

2017). However, combination of the methods, such as supersaturation control and additives 

inclusion, which could form promising hybrid approaches resulting in enhanced attainable and 

size attributes due to the increased operation window, has gone unstudied. 
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1.2 Research Aims and Objectives 

The overall aim of this thesis is to develop robust population balance model-based tools for 

design, parameter estimation and optimization of crystallization processes considering multiple 

internal coordinates for CSSD design in pure/impure medium. Based on that, the following 

objectives were identified:  

• To develop one-dimensional and multi-dimensional lumped models for modelling and 

optimization purposes. 

 

• To develop a systematic model-based methodology for the design of batch and 

continuous crystallization processes through the implementation of optimization 

frameworks.  In this way the achievable crystal quality attributes (CQAs) can be 

evaluated by manipulating the critical process parameters (CPPs). 

 

• To utilize both single-objective and multi-objective optimization methods to determine 

optimal operating recipes and identify the feasible ATRs by considering single/multiple 

CQAs, different modes of operation, and different configurations. 

 

• To perform parameter estimation on the studied crystallization systems with the scope 

to model the processes more reliably.  

 

• To develop a systematic approach for parameter estimation for problems considering a 

large number of model parameters and limited amount of data (or data with low 

information content). 

 

• To perform local and global sensitivity analysis to determine how the variations of the 

outputs could be related to certain variations of the input variables. 

 

• To develop algorithms which can be applied for estimability analysis to assess whether 

optimal model reliability has been implemented. That also requires the development of 

a systematic methodology – via incremental optimization in this case – to determine 

the optimal subset of model parameters. 
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• To perform model-based design of experiments (MBDoE) to determine the optimal 

experimental conditions yielding the most informative process data, which can be used 

for the accurate identification of the nucleation, crystal growth and pinning mechanism 

parameters. 

 

• To identify and propose a new hybrid methodology for designing the CSSD. That 

requires the utilization of a systematic multi-objective optimization approach to explore 

the feasible range of the size and shape attributes.  

 

• To apply an advanced numerical scheme for modelling the multi-impurity PBM. That 

requires the implementation of high-resolution finite volume (HR-FV) scheme, instead 

of the standard method of moments (SMOM), so that full reconstruction and dynamic 

modelling of the crystal size and shape distribution can be enabled. 

1.3 Research Contribution 

The main contributions of this thesis are summarized below:  

• The development of a generic and systematic model-based design methodology for a 

wide range of crystallization processes for the identification of the attainable regions 

by incorporating single- and multi-objective optimization algorithms. This is the first 

time that a systematic study is conducted for the identification of the attainable regions 

by considering multi-dimensional PBMs. Also, it is the first that multi-objective 

optimization is presented as a robust way of determining the ATRs for both 1D and 2D 

PBMs, generating high dimensional attainable regions. The validity of the process is 

evaluated by a stochastic simulation approach as well. 

 

• The development of a new framework for parameter estimability for guaranteed 

optimal model reliability. Two estimability methods are combined and compared: the 

first is based on a sequential orthogonalization of the local sensitivity matrix and the 

second is Sobol, a variance-based global sensitivities technic. This is the first time that 

the modified Gram Schmidt Orthogonalization algorithm and Sobol analysis are 

combined and applied in crystallization and equally the first time that the estimability 
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analysis in general has been applied to assess the model reliability of a multi-

dimensional PBM in crystallization. The application of the framework can enhance the 

development of more reliable and high-fidelity models for the pharmaceutical industry 

for process design, optimization and advanced control.  

 

• The integration of a model-based design of experiments (MBDoE) approach into the 

proposed framework. As a result, the experimental operation is optimised to maximize 

the information content and reduce the cost inherent to redundant experimental 

information with the scope of improving the model predictability. 

 

• The potential application of the proposed framework to evaluate the information 

content of the data measured by process analytical tools (PAT). In the case of systems 

utilizing different sensors, the information content of each sensor can be assessed and 

consequently the number of parameters that can be estimated from each individual PAT 

or from their combination (e.g. sensors providing different outputs) can be determined, 

which helps select the most appropriate PAT depending on the targeted level of 

prediction capability and application (e.g. process control). 

 

• The utilization of a high-resolution finite volume technique (HR-FV), which arises 

from combining a semi-discrete FV method with the robust upwind Van Leer flux 

limiter, to solve the novel multi-impurity adsorption model (MIAM). By implementing 

the latter numerical method, the MIAM can be employed for modelling the CSSD 

evolution under the presence of multiple growth modifiers (aka growth additives). 

Therefore, the model can be used for process design, optimization and control of 

crystallization processes in impure medium. 

 

• Comprehensive model-based study to evaluate the effect of additives inclusion, with 

and without supersaturation control, on the product’s CQAs. Multi-objective 

optimization was applied for the identification of high dimensional attainable regions. 

The implemented methodology can be used to predict the feasible attainable regions 

(ATRs) of systems under the presence of additives/impurities.  
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1.4 Thesis Roadmap 

The thesis comprises of six chapters and is structured as follows: 

Chapter 2: Literature Review: This chapter presents an overview with respect to the 

fundamentals of crystallization, such as solubility, supersaturation and metastable zone width. 

The phenomena occurring during crystallization are discussed and their mechanisms are 

explained in detail. Modelling of crystallization processes by utilizing the population balance 

equations framework is also introduced. By reviewing the existing theories and modelling 

approaches, challenges, opportunities and gaps towards the implementation of these theories in 

industrial crystallization are identified and presented. 

Chapter 3: Systematic Model − Based Design and Optimization of Batch and Continuous 

Cooling Crystallization Processes: In this chapter a systematic methodology is presented for 

the design of batch and continuous crystallization processes through the implementation of 

optimization frameworks. It is shown how via utilizing optimization the achievable attained 

states of the CQAs can be identified. After a comprehensive literature review is reported with 

respect to the design of batch and continuous crystallization processes, the methodology is 

comprehensively described. The results of the analysis are demonstrated into the results section, 

which is divided in two different parts since single and multi-dimensional population balance 

models (PBMs) are utilized for different case studies. The advantages and the limitations of 

utilizing optimization to identify feasible regions are highlighted. 

Chapter 4: Model Reliability and Estimability Analysis of a Multi-Impurity Population 

Balance Model for Crystallization Processes: This chapter forms the core of this thesis and 

is divided to into three sections. The novel framework for parameter estimability for guaranteed 

optimal model reliability is presented and implemented. Then, the estimability analysis and 

optimal experimental design concepts are presented, followed by the results. In the last section 

the enhanced capabilities of the framework are demonstrated over the conventional approach 

for parameter estimation.  

Chapter 5: Optimal Control Strategies of CSSD based on the Combination of 

Supersaturation Control and Addition of CGMs: In this chapter the effect of additives 

inclusion, with and without supersaturation control, is evaluated for the design of crystal 

product with targeted size and shape attributes. A morphological population balance model 
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(PBM) is utilized for the modelling of the cooling crystallization under the presence of two 

competitive crystal growth modifiers (additives). The effect of the optimal temperature control 

with and without the additives on the attainable region is presented utilizing multi-objective 

optimization. In addition, the multi-impurity PBM model is extended by the utilization of a 

high-resolution finite volume (HR-FV) scheme, instead of the standard method of moments 

(SMOM), in order for the full reconstruction and dynamic modelling of the crystal size and 

shape distribution to be enabled. The implemented methodology illustrated the capabilities of 

utilizing high-fidelity computational models for the investigation of crystallization processes in 

impure media for process design and optimization purposes.  

Chapter 6: Conclusions and Recommendations for Future Work: In this final chapter the 

dissertation’s conclusions are presented along with recommendations for future work.  
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2 LITERATURE REVIEW 

Crystallization has been utilized extensively in several chemical industries as an essential unit 

operation. As a result, extensive research has been conducted for the development of the 

scientific basis defining the process. In this Chapter, an overview is presented with respect to 

the fundamentals of crystallization. The phenomena occurring during crystallization are 

discussed and their mechanisms are explained in detail. Modelling of crystallization processes 

by utilizing the population balance equations framework is also introduced. By reviewing the 

existing theories and modelling approaches, challenges, opportunities and gaps towards the 

implementation of these theories in industrial crystallization are identified and presented. The 

literature review reveals that although crystallization has been extensively applied, the 

phenomena describing crystallization have not been fully understood due to their inherent 

complexity.  
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2.1 Introduction 

Crystallization, which is conceptually a way to isolate chemical substances in the solid form 

for long-term storage and/or downstream processing, includes a series of processes resulting in 

the formation of a new heterogeneous phase from a solution (Mullin, 2001; Mersmann, 2001). 

Moreover, during crystallization, randomly organized solute molecules, ions or atoms are 

arranged in a certain manner forming an ordered and systematic three-dimensional structure 

which is called crystal. The imposed driving force resulting in the formation of this new phase 

is attributed to the change in Gibbs free energy (overall excess free energy), 𝛥𝐺, during the 

transition from a thermodynamically metastable to a stable state. Therefore, the energy barrier 

that is required to be overcome for the formation of the first tiny crystallites of the new phase 

corresponds to 𝛥𝐺. These clusters, also known as embryos or nuclei (Mullin, 2001), may be 

either re-suspended in the solution, or by overcoming an energy barrier they may grow 

generating crystals. Therefore, crystallization conceptually proceeds in two steps: nucleation 

and crystal growth, which typically occur almost simultaneously. Other processes also may 

occur within a system, that could affect several crystal attributes, namely breakage and 

agglomeration. All the aforementioned phenomena have a stochastic nature since they could be 

affected by numerous factors, such as solution thermal history, utilized cooling rate, 

hydrodynamics, mass and heat transfer, impurities, crystallizer’s geometry and volume etc. 

(Bogacz et al., 2016). Hence, as clearly indicated, crystallization is inherently a very complex 

stochastic phenomenon and developing an understanding of its mechanisms and fundamentals 

is essential.  

Therefore, in this Chapter, the mechanisms along with the most fundamental framework for 

modelling crystallization are briefly presented with the scope of providing to the reader the 

necessary theoretical background for interpreting the content of the thesis. For a more 

comprehensive study of the phenomenon of crystallization the reader is referred to the 

numerous textbooks that have been published through the years with respect to crystallization 

and its subsequent mechanisms (Davey and Garside, 2000; Mullin, 2001; Mersmann, 2001; 

Jones, 2002; Myerson, 2002; Karpinski and Wey, 2002). Additional literature is also presented 

in Chapters 3, 4 and 5, whenever required, related to the specific topic discussed within each 

Chapter.  The remainder of this Chapter is organized as follows: In section 2.2, the 

fundamentals of crystallization are presented, while the mechanisms are discussed in detail in 

section 2.3. In section 2.4, the population balance equation (PBE) framework is presented in 
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detail with specific emphasis on the approaches that can be utilized for its solution (section 

2.5). The Chapter ends with some concluding remarks in the conclusions section. 

2.2 Fundamentals of Crystallization 

The fundamental concepts of solubility and supersaturation are essential towards developing 

and characterizing the behaviour of a crystallization system (Aamir, 2010). The solubility, 

which is a thermodynamic property, can be defined as the maximum amount of substance (i.e. 

solute) that can be dissolved in a given amount of solvent under certain temperature and 

pressure conditions when thermodynamic equilibrium does apply. Typically, the solubility of 

solute in a solvent does increase by raising the temperature within the bulk and consequently it 

is commonly considered as a function of temperature (Mersmann, 2001; Schwartz, 2002). A 

phase diagram of a crystallization system is depicted in Figure 2.1, where the solubility curve 

is illustrated by a solid blue line. A solution which is located on the solubility curve is called 

saturated. Under certain conditions, however, a solution can dissolve more solute than is 

determined by the saturation condition, in which case a supersaturated solution is obtained.  

A necessary, but not sufficient condition for the formation of a new phase is the existence of 

supersaturation, a thermodynamically metastable state (Mullin, 2001). In more detail, 

supersaturation, which typically depends on the solute concentration and bulk temperature, is 

the decisive driving force of the crystallization (Mersmann, 2001). Therefore, optimal 

supersaturation control is a prerequisite for the economical production of crystals with desired 

quality attributes, such as size, shape and purity. 

Supersaturation (𝑆𝑛)  can be expressed as a function of the difference between the chemical 

potential of the solute molecules (𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) and solid (𝜇𝑠𝑜𝑙𝑖𝑑) state respectively, while at the 

same time the effect of the temperature is also considered as shown below (Davey and Garside, 

2000; Mangin et al., 2009): 

 𝑆𝑛 =  𝑒𝑥𝑝 ( 
𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝜇𝑠𝑜𝑙𝑖𝑑

𝑅𝑇
 ) (2.1) 

In industrial applications, however, supersaturation has been calculated by utilizing expressions 

based on the solute concentration (𝑐) and the saturated/equilibrium concentration (𝑐𝑠𝑎𝑡), which 

is more relevant for engineering applications comparing to the ones based on chemical potential 

(Simone, 2015; Borsos, 2016). Consequently, supersaturation is usually defined as absolute 
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supersaturation (𝛥𝑐), or as supersaturation ratio (𝑆) or as relative supersaturation (𝜎). The 

following expressions can be used to define the degree of supersaturation: 

 𝛥𝑐 = 𝑐 − 𝑐𝑠𝑎𝑡 (2.2) 

 𝑆 =
𝑐

𝑐𝑠𝑎𝑡
= 𝜎 + 1 (2.3) 

 
𝜎 =

𝛥𝑐

𝑐𝑠𝑎𝑡
= 𝑆 − 1 (2.4) 

  

As it is apparent the supersaturation is a substantial variable during crystallization since it can 

determine the size of the produced precipitate and could also have a major effect on the phase 

which is precipitated (i.e. polymorphism) (Davey and Garside, 2000). 

Apart from the solution temperature, the supersaturation can be also affected by the difference 

between the total energy generated by the hydration of the precipitating ions, the lattice energy 

and the surface energy of the particles of the precipitate. Crystals with a high surface tension 

and high molecular weight generally have a strong tendency to form supersaturated solutions 

(Mullin, 2001). 

In general, supersaturation in a solution (suspension crystallization: solution mediated 

crystallization) can be created by the following ways (Rielly, 2013):  

• By using chemical reaction, very high supersaturation can be created and hence crystals 

can be produced from a solution.   

• By cooling the solution, a temperature gradient is created (a solubility curve which is 

sensitive to temperature changes is required in this case) that drives the solution from the 

stable zone to the metastable zone and maybe into the labile region, where spontaneous 

nucleation will occur. 

• By evaporation of the solution. During evaporation, the solvent mass fraction is reduced 

and as a result the concentration of the solution is increased above the solubility curve. 

• By changing the pH, alterations in the solubility may occur and hence supersaturation can 

be created. 

• By adding a non-solvent (or anti-solvent) to produce a reduction in the solubility. This is 

quite useful when the temperature coefficient of the solubility is small. 
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The solubility curve (see Figure 2.1), which can be determined by thermodynamics, indicates 

the saturation equilibrium and it represents the boundary between the stable and metastable 

region. The supersolubility curve, on the other hand, is rather more uncertain and it depends on 

system kinetics and other operating variables, such as the employed supersaturation rate, the 

hydrodynamics within the bulk, the presence of impurities (which may affect the solvent 

activity and/or the subsequent process kinetics) and the thermal history of the solution.  

 

Temperature 

C
o

n
ce

n
tr

a
ti

o
n

 

Labile 

Stable 

Metastable 

Solubility 

curve 

Supersolubility 

curve 

A B C 

D 

B' 

C' 

B'' 

C'' 

 

Figure 2.1. Solubility - Supersolubility diagram (Adapted from Rielly (2013)). 

As it is evident, these curves divide the phase diagram into three distinctive areas: stable, 

metastable and labile region: 

The Stable region is a region where the solution is undersaturated. Therefore, even if crystals 

are present within the bulk they will eventually dissolve and hence crystallization in this region 

cannot occur. The dissolution rate of the crystals can be related to the degree of undersaturation, 

which is typically expressed similarly to supersaturation (see eq. 2.2 − 2.4). Dissolution is a 

kinetic process which highly depends on mass transfer and fluid dynamics. 

The Metastable region is an area where nucleation would not occur spontaneously, but if seeds 

are introduced, then crystal growth would occur. The metastable zone width (MSZW), defines 

a region which is bounded by the supersolubility and the solubility curves, it can be strongly 

affected by a variety of process parameters such as the rate of de-supersaturation and 

hydrodynamics. Typically, the MSZW can be significantly decreased with increasing agitation 

levels since the mass transfer during the formation of molecular clusters (aka embryos) is 

intensified (Steendam et al., 2018; Liu and Rasmuson, 2013). Additionally, the MSZW can be 
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also decreased by employing slow de-supersaturation rates (Mullin, 2001). The solution history 

(e.g. the pre-heating period) is another operating variable that could impact the MSZW. More 

specifically, by applying high temperatures and prolonged holding times, during the pre-heating 

stage, a wider MSZW may be generated (Davey and Garside, 2000). The identification of the 

MSZW, along with the solubility curve is, of course, essential for the development and 

optimization of the crystallization processes (Barret and Glennon, 2002). For instance, 

knowledge of the MSZW is required to determine the seeding regime and the optimum 

operating supersaturation levels throughout the process (Chung et al., 1999; Aamir, 2010).  

The Labile area, on the other hand, is a highly supersaturated region in which spontaneous 

nucleation would probably occur. 

2.3 Mechanisms of Crystallization 

Regardless of the way that supersaturation is achieved, the physicochemical process of 

crystallization, in general, proceeds in certain steps:  

• Initially, supersaturation is required to be achieved (i.e. crystallization’s driving force).  

• Depending on the system’s thermodynamic and kinetic properties and whether any dust 

or crystals are present, new particles can be formed. This phenomenon corresponds to 

the nucleation mechanism. 

• After the formation of the first particles supersaturation is also utilized for the subsequent 

growth of the particles, corresponding to the crystal growth mechanisms. However, 

dissolution might occur instead if supersaturation obtains negative values. 

• Further growth can also occur if agglomeration phenomenon is present. 

• Breakage of the particles may also occur due to crystal-crystal, crystal-wall and/or 

crystal-stirrer collisions. 

Although the aforementioned steps can occur simultaneously within the solution, there is a strict 

succession of the three first stages. It becomes evident, however, that it should not be assumed 

that these phenomena occur only sequentially. For instance, supersaturation is typically 

generated during the crystallization process. Also, material can continue to nucleate (primary 

and secondary nucleation) even after growth has started. It should be also highlighted that 

agglomeration and breakage phenomena are not always present during crystallization and in 

most cases occur after the crystals have reached a certain size.  
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2.3.1 Nucleation 

Supersaturation is a necessary, but not sufficient condition to initiate crystallization within a 

metastable system (Mullin, 2001). The existence of nuclei or seeds in the solution, which could 

act as centres (or sites) for crystallization may be required as well. In general, nucleation is the 

primary particle formation process and can be either spontaneously or artificially induced. 

Spontaneous nucleation can occur due to random collisions and aggregation of solute 

molecules, while the additions of seeds or the presence of small inert particles can be utilized 

from the system as active centres for nucleation and growth.  

Nucleation mechanisms can be classified into two different categories: primary and secondary 

nucleation (Mersmann, 2001; Jones, 2002; Myerson, 2002). A schematic summarizing all the 

potential nucleation mechanisms and their subgroups is presented in Figure 2.2. Primary 

nucleation, which is the formation of solid phase from clear unseeded solutions, can be further 

subdivided into homogeneous and heterogeneous nucleation. Homogeneous nucleation 

typically is considered to be the outcome of bimolecular interactions between molecules and/or 

ions of the solute phase resulting in the formation of molecular clusters (aka embryos) (Mullin, 

2001). In the other case, small inert particles, such as dust particles or impurities, are present in 

the solution, nucleation can be facilitated, and the process is known as heterogeneous 

nucleation. Heterogeneous nucleation can also occur due to abnormalities on the surface of the 

crystallizers since they can be utilized to establish energy favourable active nucleation centres. 

Thus, heterogeneous nucleation requires lower supersaturation, and lower Gibbs free energy, 

as will be shown later, in comparison to the homogeneous case.  

However, in semi-commercial and industrial crystallizers, nucleation occurs at very low 

supersaturation (Rawlings et al., 1993). This can be typically achieved when crystals of the 

same solute are present in the solution (e.g. addition of seed crystals, generation of attrition 

fragments etc.) and is known as secondary nucleation. Based on the way that secondary 

nucleation can been achieved further subgroups can be identified (see Figure 2.2). Regardless 

of their differences, both primary and secondary nucleation kinetics depend on the degree of 

supersaturation but typically to different orders, meaning that primary nucleation typically 

presents faster kinetics. 
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Figure 2.2. Nucleation mechanisms (Adapted from Simone (2015)). 

 

2.3.1.1 Primary Nucleation: Homogeneous 

Primary nucleation, which typically occurs in clear solutions, is a highly nonlinear function of 

supersaturation and it is commonly modelled as a Dirac delta function. Moreover, when the 

supersaturation is low primary nucleation tends to be negligible, while it surges once the 

supersaturation threshold is reached, generating substantial amount of crystal nucleus 

(Randolph and Larson, 1988).  

Until now, two opposing theories have been proposed to describe primary homogeneous 

nucleation: 

• the classical nucleation theory (CNT), and 

• the two-step nucleation theory. 

The classical nucleation theory, assumes that clusters are formed in solution through 

bimolecular collisions, which can be illustrated as: 
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 𝐴 + 𝐴 ⟷ 𝐴2  

 𝐴2 + 𝐴 ⟷ 𝐴3  

 …  

 …  

 …  

 𝐴𝑖−1 + 𝐴 ⟷ 𝐴𝑖  

 𝐴𝑖 + 𝐴 ⟷ 𝐴𝑖+1  

 𝐴𝑖+1 + 𝐴 ⟷ 𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑖  

Further addition of structural units in the critical nucleus, 𝑟𝑐, results in an increase in the size of 

the macroscopic crystal. Clusters that do not reach the size of the critical nucleus are re-

dissolved, since they are extremely unstable. The cluster structure of the critical nucleus is not 

known since it cannot be measured. Based on the hypothesis of the structure of the critical 

nucleus the two aforementioned theories have been proposed (i.e. CNT and two-step nucleation 

theory). The first one postulates that the critical nucleus is a tiny crystal with perfect structure, 

while the other supports that it is a diffuse particle, which contains molecules or solvated ions, 

that they have a similar state comparing to the bulk solution, without having, however, a clearly 

defined surface (Mullin, 2001).  

CNT’s thermodynamic basis, which was developed by Gibbs (1876;1878) and others (Volmer, 

1939), defines the free energy change of the formation of this new phase, 𝛥𝐺,  as the sum of 

the free energy change of the formation of the nucleus surface, 𝛥𝐺𝑠 and the free energy change 

of the transformation phase, 𝛥𝐺𝑉: 

 
𝛥𝐺 = 𝛥𝐺𝑠 + 𝛥𝐺𝑉 =  4𝜋𝑟2𝜎𝑖𝑛𝑡 + 

4

3
𝜋𝑟3𝛥𝑔𝑣 (2.5) 

 

• 𝛥𝐺𝑠 is the surface excess free energy between the particle surface and the particle bulk 

and it is a positive quantity proportional to the interfacial tension, 𝜎𝑖𝑛𝑡. 

• 𝛥𝐺𝑉  is the volume excess free energy between a very big particle and the solute in 

solution and is a negative quantity in a supersaturated solution. 

• 𝛥𝑔𝑣 is the excess free energy per unit volume. 

• 𝛥𝐺 is the overall excess free energy between a small particle of solute and the solute 

in solution. 
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Figure 2.3. Free energy diagram for primary nucleation illustrating the existence of a critical radius, 𝑟𝑐 

(Adapted from Rielly (2013)). 

 

Based on the CNT theory the subsequent free energy changes for a spherical nucleus can be 

qualitatively illustrated as depicted in Figure 2.3. As demonstrated, 𝛥𝐺 reaches a maximum 

critical threshold, before it starts declining. Therefore, it can be deducted that by forming 

clusters which have a larger size than the critical one, a transition to a more stable state occurs 

− free energy is reduced − which results in the generation of macroscopic nuclei. On the other 

hand, clusters with size smaller than the 𝑟𝑐 are dissolved. Consequently 𝑟𝑐   represents the 

smallest size of a stable nucleus and it can be estimated by minimizing the free energy function 

with respect to the radius ( 
𝜕(𝛥𝐺)

𝜕𝑟
= 0 ), resulting in the following expression: 

 
𝑟𝑐 = −

2𝜎𝑖𝑛𝑡

𝛥𝑔𝑣
 (2.6) 

The rate of nucleus formation can be given by an Arrhenius type of expression and can be 

defined as the number of nuclei formed per unit volume per unit time: 

 
  𝐵𝑝 = 𝐴𝑝 𝑒𝑥𝑝 (−

16𝜋𝜎𝑖𝑛𝑡
3𝑣2

3𝑘𝑏
3𝑇3(𝑙𝑛𝑆)2

) (2.7) 

where 𝑘𝑏 is Boltzmann’s constant and 𝐴𝑝 is the preexponential factor and has a constant 

theoretical value for a certain temperature. Thus, it can be clearly perceived that there are three 

main variables affecting the rate of homogeneous nucleation: the absolute temperature, 𝑇, the 
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degree of supersaturation, 𝑆, and the surface energy (aka interfacial tension), 𝜎𝑖𝑛𝑡. Therefore, 

by increasing the degree of supersaturation and temperature, the nucleation rate is also 

increased, while the opposite effect can be achieved by increasing the 𝜎𝑖𝑛𝑡. 

 

Figure 2.4. Schematic illustrating the two-step nucleation mechanism: Dense liquid cluster forms 

followed by the formation of nucleus inside the cluster. (a) Macroscopic viewpoint in the plane, (b) 

Macroscopic viewpoint of events along dashed line in (a) and (c) The free energy 𝛥𝐺 along two possible 

pathways for nucleation of crystals from solution (Adapted from Vekilov (2010)). 

 

Nevertheless, it has been demonstrated that the CNT approach fails to predict accurately the 

nucleation rate of several proteins, organic and inorganic molecules (Vekilov, 2010). Therefore, 

the two-step nucleation theory was proposed with the scope of providing a more accurate way 

of determining the primary nucleation mechanism. According to this theory, transition from 

nucleus to crystals occurs through a sequential process where fluctuations are accounted for 

both concentration and structure. In other words, the generation of crystal nucleus is preceded 

by the formation of a dense liquid phase, as illustrated in Figure 2.4 (Davey, 2013). The 

existence of metastable mesoscopic clusters of dense liquid was validated by monitoring the 

nucleation process in several protein solutions by utilizing dynamic light scattering (DLS): 

three haemoglobin variants, lysozyme and lumazine synthase were investigated and confirmed 

this hypothesis (Vekilov, 2010).  

 



LITERATURE REVIEW 

21 

Therefore, the consideration of this additional metastable phase during primary nucleation is 

the main difference between the two approaches, since in the CNT it is assumed that the solute 

molecules form directly an ordered cluster without considering the dense liquid (Omar and 

Rohani, 2017). On the other hand, both theories postulate that the solute molecules are 

connected via week forces (polar, hydrogen bonding etc.) to form clusters within the solution, 

which depending on the thermodynamics might generate nucleus (Simone, 2015). The reader 

is referred to literature for a more comprehensive review of the two nucleation theories 

(Vekilov, 2010; Karthika et al., 2016).  

2.3.1.2 Primary Nucleation: Heterogeneous 
 

Typically, the type of primary nucleation occurring during crystallization is heterogenous 

nucleation (Mullin, 2001). Heterogenous nucleation occurs due to the existence of small inert 

particles, such as dust particles or impurities, or rough surfaces which could act as active centres 

for nucleation (i.e. crystallizer walls and internal surfaces) since they could decrease the 

required interfacial surface energy. 

Moreover, a foreign substance present in a supersaturated solution is generally known to reduce 

the required energy and consequently nucleation in a heterogeneous system generally occurs at 

a lower degree of supersaturation than a homogeneous system — the free energy barrier is 

lower in the case of a heterogeneous system (Mersmann, 2001; Jones, 2002; Myerson, 2002).  

Therefore, heterogeneous and homogeneous primary nucleation free energies can be related 

with the following expression (Mullin, 2001):  

  𝛥𝐺ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 = 𝜑𝑐𝑜𝑒𝑓𝑓 𝛥𝐺ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 (2.8) 

where 𝜑𝑐𝑜𝑒𝑓𝑓 is a coefficient less than one (0 < 𝜑
𝑐𝑜𝑒𝑓𝑓

< 1) and it depends on the contact angle 

formed between the crystalline deposit, the heterogeneous solid surface and the liquid phase as 

illustrated in Figure 2.5.  

Volmer (1939) demonstrated that the reduction in, 𝛥𝐺, can be related to the contact angle (𝜃) 

of the solid phase. Based on this deduction, the following expression has been proposed for the 

estimation of the contact angle: 

 
  cos𝜃  =  

(𝜎𝑠𝑙 − 𝜎𝑐𝑠)

𝜎𝑐𝑙
 (2.9) 
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, where 𝜎𝑠𝑙, 𝜎𝑐𝑙  and 𝜎𝑐𝑠 are the interfacial tensions between solid surface − liquid phase, crystal 

deposit − liquid phase and the crystal deposit − solid surface, respectively (see Figure 2.5). 

 

 

 

 

 

 

 

Figure 2.5. Arrays of interfacial tension between the three phases: liquid (𝑙) Solid (𝑠) and Crystal deposit 

(𝑐)  (Adapted from Rielly (2013)). 

 

The coefficient, 𝜑𝑐𝑜𝑒𝑓𝑓, on the other hand, can be estimated by utilizing the following equation: 

 
  𝜑𝑐𝑜𝑒𝑓𝑓 = 

(2 + cos 𝜃)(1 − cos𝜃)2

4
 (2.10) 

Based on the equation above, when  𝜃 = 180°, cos 𝜃 =  −1, 𝜑𝑐𝑜𝑒𝑓𝑓 = 1: 

  𝛥𝐺ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 = 𝛥𝐺ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 (2.11) 

meaning that complete crystalline incompatibility is presented. In other words, the free energies 

of heterogeneous and homogeneous nucleation obtain equal values. In principal this condition 

indicates that there are no dust particles and/or abnormalities within the crystallizer, meaning 

that heterogenous nucleation does not occur. 

On the other hand, when 0 <  𝜃 < 180° and 𝜑𝑐𝑜𝑒𝑓𝑓 < 1: 

  𝛥𝐺ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 < 𝛥𝐺ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 (2.12) 

In this case, there is a partial crystalline compatibility resulting in heterogenous nucleation to 

be the dominant mechanism of primary nucleation over homogeneous nucleation. Finally, when 

 𝜃 = 0° and 𝜑𝑐𝑜𝑒𝑓𝑓 = 0: 

  𝛥𝐺ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 = 0 (2.13) 
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The above criterion indicates that there is complete compatibility between the crystalline 

lattices of the newly formulated phase and the foreign particles. This can occur when the newly 

formed phase grows on the same surface. Thus, energy considerations show that spontaneous 

nucleation would occur for a system with zero contact angles. Nevertheless, no such systems 

exist in practice.  

It should be highlighted, during the analysis it was considered that the substrate surface is flat, 

which is something that does not occur in practice. The substrate surface includes defects 

(particles that remain in cavities, or foreign particles in the walls of the reaction vessel) where 

the critical nuclei are formed and stabilized more easily. Therefore, based on the above, 

heterogeneous nucleation will always present a lower free energy barrier which consequently 

results on being the dominant mechanism of primary nucleation for each case. 

For the estimation of the heterogeneous nucleation rate, an Arrhenius expression has been 

proposed by Sohnel and Garside (1992): 

 
   𝐵𝑝,ℎ = 𝑘𝑏,ℎ  𝑒𝑥𝑝 (−

16𝜋𝜎3𝑣2𝑓(𝜆)

3𝑘3𝑇3(𝑙𝑛𝑆)2 ) (2.14) 

where factor 𝑓(𝜆) corrects nucleation on foreign surfaces. 

Although significant progress has been achieved in describing the phenomenon of primary 

nucleation, its pathway is still unclear, largely due to the difficulty of monitoring the process 

and its stochastic nature. Moreover, although during crystallization certain key operating 

variables can be set to certain values (e.g. applied temperature, supersaturation, etc.), there are 

other ones, such as the existence of dust particles, abnormalities on the crystallizer’s internal 

surfaces, hydrodynamics, presence of impurities etc. that cannot be fully controlled, resulting 

in substantial variations on the systems nucleation mechanisms and kinetics. Therefore, as a 

result, a large number of, studies have been reported in literature with the scope of identifying 

appropriate ways of estimating the nucleation kinetics (Kadam et al., 2011; Kadam et al., 2012; 

Sear, 2014; Maggioni and Mazzotti, 2015). In industrial applications, however, empirical 

expressions are utilized, which are functions of supersaturation, since they have been 

considered more relevant for engineering applications. In such a way, a deterministic average 

can be computed to provide an accurate estimate, which of course lies within certain confidence 

bounds. 
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It should be also mentioned that due to the complexity of the phenomenon substantial research 

has been conducted to identify potential factors that could be used to control the cluster 

formation. Moreover, it has been proven that nucleation can also be caused by agitation, 

mechanical vibration, friction and excessive pressures in solutions and melts. For example, Liu 

and Rasmuson (2013) investigated the potential influence of agitation and fluid shear on 

primary nucleation during suspension crystallization. They found that by increasing the input 

of mechanical energy the induction time can be decreased, meaning that primary nucleation is 

promoted. To describe the effect of shear rate on nucleation they proposed three different 

potential mechanisms: agitation enhanced mass transfer, agitation enhanced cluster aggregation 

and shear induced molecular alignment. Another approach that could impact the cluster 

formation is the acoustic cavitation. Virone et al. (2006), demonstrated that by applying 

ultrasound, a substantial reduction of induction times could be achieved. Moreover, ultrasound 

can cause cavitation (i.e. bubbles) within the bulk, which consequently result in inducing 

heterogeneous primary nucleation. In a similar way, Miyasaka et al. (2006) utilized ultrasonic 

irradiation to promote and inhibit nucleation. Utilization of laser light and application of electric 

and magnetic fields for inducing nucleation have also been reported in literature but until now 

none of these methods have been tested in large scale crystallization (Mullin, 2001; Sun et al., 

2008; Alexander and Camp, 2009; Ward and Alexander, 2012). 

2.3.1.2 Secondary Nucleation 
 

Secondary nucleation, which can be typically achieved when crystals of the same solute are 

present in the solution (e.g. addition of seed crystals, generation of attrition fragments etc.), is 

the dominant mechanism that is usually encountered in semi-commercial and industrial 

crystallizers. The pre-existence of crystals in the supersaturated solution, also known as parent 

crystals, decreases the required energy for inducing nucleation, leading to the formation of 

nucleus in lower degree of supersaturation comparing to primary nucleation (Mersmann, 2001; 

Jones, 2002; Myerson, 2002).  

Although, secondary nucleation is often found in commercial crystallizers, it is a phenomenon 

that it not currently well understood in terms of mechanisms and kinetics mainly due to the 

difficulty of monitoring the process and its stochastic nature (i.e. like primary nucleation). 

Nevertheless, secondary nucleation can be easier manipulated by controlling the seeding 

process and the agitation. In general, by increasing the agitation higher secondary rates can be 

achieved, while seeding is a more complicated process and depends on the seed loading, size 
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and shape of the seeds (Chung et al., 1999; Kubota et al., 2001a; Sarkar et al., 2006; Aamir, 

2010).  

Several mechanisms have been proposed for explaining the secondary nucleation, which can 

be summarized in the following categories (see also Figure 2.2): 

• Initial or dust breeding 

• Dendritic separation (needle breeding) 

• Crystal-crystal contact (contact nucleation) 

• Fracture (attrition) 

• Fluid shear (e.g. solute layer removal) 

In most of the cases secondary nucleation occurs due to parent crystals, whereas in the other 

cases it is initiated from the solute in the liquid phase. In initial breeding, secondary nuclei 

originate from the seed crystals. It occurs when a crystal surface contains tiny crystallites which 

can be detached and introduced into the supersaturated solution. Thus, the detached crystallites 

can become sites for nucleation in the supersaturated solutions. These crystallites are larger 

than the critical nucleus size and, as a result, the rate of nucleation is independent of the 

supersaturation of the solution. Dendritic separation (needle breeding), on the other hand, 

occurs when dendritic crystals are formed on the surface of a crystal at high supersaturation. 

These crystals can be detached from the surface and can be used as sites for nucleation in the 

solution. At even higher supersaturation, irregular polycrystalline aggregates may be formed. 

Attrition of these poly-crystals can serve as nucleation centres. This process is called 

polycrystalline breeding. However, this mechanism is not likely to be encountered in industrial 

crystallization (Myerson, 2002).  

New nucleation sites can be also formed at high relative speeds of the fluid (i.e. fluid shear 

nucleation), since loosely bonded units from the growing crystals may be sheared off by fluid 

dynamical stresses and these may become nucleation sites when swept into regions of high 

supersaturation. Also, turbulence on the surface of the growing crystal, crystal - crystallizer 

wall or crystal - crystal or crystal - impeller collisions in an agitated vessel can provide 

nucleation sites for secondary nucleation. This category of secondary nucleation is called 

contact nucleation and it is quite significant from an industrial point of view (Tai et al., 1975; 

Wong et al., 2013). Another category, which was not mentioned before, is the impurity 
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concentration gradient nucleation. In this theory it is stated that dissolved impurities in the 

solution can be embodied into the crystal surface and hence a concentration gradient can be 

created, which provides the possibility of nucleation. 

Typically, simple power law models are utilized for the estimation of the secondary nucleation 

kinetics: 

    𝐵𝑠𝑒𝑐 = 𝑘𝑏,𝑠𝑒𝑐  𝛥𝑐𝑏 (2.15) 

which can be modified accordingly to take into consideration the effect of agitation: 

    𝐵𝑠𝑒𝑐 = 𝑘𝑏,𝑠𝑒𝑐   𝑁𝑝
𝑘  𝛥𝑐𝑏 (2.16) 

where 𝑁𝑘 is related to the mixing power input of a stirrer or a pump impeller. A comprehensive 

literature review with respect to the secondary nucleation mechanisms and models has been 

presented by Agrawal and Paterson (2015). 

2.3.2 Crystal Growth and Dissolution 

Although some of the steps of crystal growth can be monitored, it hasn’t been possible so far 

to identify a general mechanistic model that can fully describe the phenomenon. Its inherit 

complexity is largely related to its stochastic nature since most of the factors affecting its 

kinetics cannot be fully controlled (e.g. hydrodynamics, impurities, density and viscosity of 

solvent, etc.).  

Additionally, most of the steps involved occur before growth units incorporated into the crystal 

lattice. Hence, in several cases two or more mechanisms are present within the system affecting 

the crystal growth dynamics. Therefore, it becomes evident that, if the mechanisms act in 

parallel then the fastest one determines the development speed, while in the case that the 

mechanisms are consecutive, the crystal growth is determined by the slowest one. In addition, 

the complexity of the phenomenon is increased even more since a variety of growth units exist 

(atoms, molecules, ions, hydrated solute molecules, polymers, clusters, etc.) depending on the 

crystallizing system and the solvent.  

The growth units are transferred from the bulk solution and incorporated into the crystal lattice 

based on the following steps (Aamir, 2010): 
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• Mass transport of the solute molecules from the solution to the crystal surface by 

diffusion, convection or by the combination of both mechanisms. 

• Incorporation of the material into the crystal lattice through surface adsorption, also 

described as a surface reaction step. 

• Adsorption of the growth unit on the crystal surface. 

• Release part of its solvation shell followed by diffusion of growth unit into the 

adsorption layer until it is either incorporated into the lattice or leaves the adsorption 

layer and returns into the solution. 

• If the growth unit reaches into the layer where it can be added to the lattice, it loses the 

remainder of its solvation shell before its incorporation in the lattice. 

There are a lot of theories that have developed for the crystal growth through the years. One 

group of theories considers that growth results due to an adsorbed layer of solute atoms 

generated on the crystal surface (Borsos, 2016). Another group is based around diffusion-

reaction theories. One of the early theories linked to the latter group, was proposed by Noyes 

and Whitney (1897), who described crystal growth as a diffusional process. Moreover, it was 

considered that the solid substances are bounded by a thin film of saturated solution. In this 

way diffusion does occur into all proportions of the solvent. Similar hypothesis was drawn with 

respect to dissolution which was treated as the exact opposite process comparing to crystal 

growth: diffusion in the opposite direction, when the supersaturation obtains negative values. 

Based on this theory, the gradient in concentration generated due to the difference between the 

liquid adjacent to the crystal (usually taken as the saturation concentration, 𝑐𝑠𝑎𝑡) and the 

concentration in the liquid bulk, 𝑐 , acts as the driving force in order crystal growth to occur and 

can be calculated by utilizing the following expression: 

 
 
𝑑𝑚

𝑑𝑡
= 𝑘𝑚 𝐴𝑒𝑓𝑓 (𝑐 − 𝑐𝑠𝑎𝑡) (2.17) 

where 𝑚 is the mass of deposited solid, 𝐴𝑒𝑓𝑓 is the effective mass transfer area and 𝑘𝑚 is the 

overall mass transfer coefficient. However, the diffusion layer thickness can vary depending on 

agitation rate and hydrodynamics in general. Moreover, in systems that are not agitated the 

diffusion layer thickness can be increased to 150 𝜇𝑚, while it can be substantially reduced 

when agitation already exists in the system (Mullin, 2001). Hence, considering the crystal 
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growth as a diffusional process seems that cannot provide an adequate description of the 

phenomenon.   

These observations resulted in the modification of the mechanism of diffusion from Berthoud 

(1912) and Valeton (1924), who considered that crystal can grow is a two-step process of mass 

transfer (diffusion) followed by a surface reaction (1𝑠𝑡 order reaction). During the reaction step, 

the solute molecules can rearrange themselves in the crystal lattice. These two-steps can be 

described by the following equations: 

 𝑑𝑚

𝑑𝑡
= 𝑘𝑑  𝐴𝑒𝑓𝑓 (𝑐 − 𝑐𝑖)       𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 (2.18) 

 𝑑𝑚

𝑑𝑡
= 𝑘𝑟 𝐴𝑒𝑓𝑓 (𝑐𝑖 − 𝑐𝑠𝑎𝑡)     𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 (2.19) 

where 𝑘𝑑 is the diffusion coefficient, 𝑘𝑟 is the surface reaction rate constant and 𝑐𝑖 is the solute 

concentration at the interface between the crystal and the solution. A schematic representation 

of the two-step theory is illustrated in Figure 2.6. 

 

 

 

 

 

 

 

 

 

Figure 2.6. Two-step crystal growth theory: Growing crystal-solution interface (Adapted from Rielly 

(2013)). 

Nevertheless, the latter equations cannot be utilized in practical applications since the 

concentration in the interface cannot be measured. Therefore, a general equation was proposed, 

that contains a term which indicates the total driving force:   

 
 
𝑑𝑚

𝑑𝑡
= 𝑘𝐺  𝐴𝑒𝑓𝑓 (𝑐 − 𝑐𝑠𝑎𝑡)

𝑔 (2.20) 
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where 𝐾𝐺 is an overall crystal growth coefficient and 𝑔 is the exponent of growth rate.  

Dissolution, which can be considered as the reverse process of crystal growth, it occurs when 

the solution becomes undersaturated. Based on that it can be modelled as two-step process as 

well:  

• Surface reaction in order the crystal units to be detached from the lattice. 

• Mass transfer via a diffusive layer in order the crystal units to be transferred into the 

bulk solution.  

Of course, depending on the system thermodynamics (i.e. solubility), the rate limiting step can 

be either the surface reaction or the mass transfer (Omar and Rohani, 2017). Typically, the 

kinetics of dissolution are faster comparing to growth and can be affected by several factors 

such as crystal size and shape, crystal form, solvent, impurities etc. A summary of the available 

dissolution kinetics can be found in Aamir (2010). 

2.3.3 Breakage and Agglomeration 

Apart from nucleation, crystal growth and dissolution, other phenomena may be present during 

crystallization such as, breakage and agglomeration. These phenomena do not always take place 

during crystallization and in most of the cases they occur after the crystals have reached a 

certain size. The systems utilized in this work were dominated mainly by nucleation and growth 

phenomena. Therefore, the agglomeration and breakage phenomena have been neglected 

during the solution of the population balance model. Consequently, these phenomena will be 

briefly discussed.  

Agglomeration is a particle size enlargement process which could have substantial impact on 

the final product’s characteristics. Moreover, during agglomeration new crystals are created 

when smaller ones are clustered together. It should be mentioned that in literature the terms 

agglomeration and aggregation have been used interchangeably creating confusion with respect 

to the description of the phenomenon. Therefore, Nichols et al. (2002) suggested a distinction 

between these two terms. It was proposed that aggregation should refer to pre-nucleation events 

when supramolecular structures are formed, while the term agglomeration should be used when 

macroscopic events do occur. An additional classification has been reported that proposes that 

agglomeration should be divided further into hard and soft agglomerates with respect to the 

force required for agglomerates to fracture (Omar and Rohani, 2017). 
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Agglomeration can be described as a process occurring in two steps:  

• Collision between two particles to form an agglomerative bond. 

• Adherence of the crystals and the formation of the agglomeration bond. 

Of course, sufficient time is required to form the agglomeration bond. Typically, the bond 

strengthens over time and consequently potential collisions could break the bond (Omar and 

Rohani, 2017). 

Agglomeration phenomena are usually size and system dependent and can be affected by 

several factors such as the system hydrodynamics, crystallizer type and geometry, crystal 

characteristics (e.g. size, shape, surface structure etc.), utilized supersaturation, nature of the 

agglomeration bond, amount and size of crystals present etc.  (Mersmann, 2001; Myerson, 

2002; Brunsteiner et al., 2005; Yu et al., 2005). 

Typically, in industrial crystallization agglomeration is considered undesirable due to its highly 

intrinsic stochasticity. This potentially could result in increased product variability while at the 

same time substantial difficulties arise in large scale applications with respect to the prediction 

of its output. Nevertheless, by controlling the supersaturation within the MSZW, the 

agglomeration phenomenon can be also manipulated resulting in larger and more uniform 

crystals (Fujiwara et al., 2002a). More information regarding the agglomeration phenomenon 

and its mechanisms can be found in literature (David et al., 1995; Yu et al., 2005; Pena et al., 

2017b). 

Breakage, on the other hand, is a phenomenon where new particles of varying sizes are 

generated from the disintegration of an existing crystal, which is known as a parent crystal. In 

other words, a co-existing crystal can irreversibly lose a fraction of its material, which can then 

be used to create smaller size crystals with varying sizes. Crystal breakage occurs due to several 

mechanisms, including: crystal – crystal, crystal – wall and crystal – impeller collisions. As the 

rest of the phenomena presented, breakage is also a stochastic phenomenon which is dependent 

on the systems hydrodynamics, crystallizer type and geometry, amount, size and shape of 

crystals etc (Bravi et al., 2003; Sato et al., 2008; Briesen et al, 2009). 

Another critical variable affecting breakage phenomena is process time. A study performed by 

Mazzarotta et al. (1996) in sugar crystals illustrated that at the beginning of the process a high 

number of fragments was produced which was gradually reduced until it became negligible. 
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Since a certain system was utilized this cannot be generalized, however it illustrates that process 

time could have a substantial effect. Additional information regarding the breakage 

phenomenon and its mechanisms can be found in literature (Mersmann, 2001; Myerson, 2002; 

Bravi et al., 2003; Yekeler, 2007; Sato et al., 2008; Briesen et al, 2009).  

Finally, it should be mentioned that although breakage and agglomeration present intrinsic 

stochasticity, they are typically modelled in a deterministic manner providing however an 

accurate estimation with respect to the CQAs’ average dynamics (Ramkrishna, 2000). The 

models utilized are known as population balance models (PBMs) and they could provide the 

mathematical formulation involving all the aforementioned crystallization phenomena. A nice 

summary of the available kinetic models employed for both agglomeration and breakage has 

been presented by Omar and Rohani (2017). 

2.4 Population Balance Modelling (PBM) 

In general, models derived from first principles (mechanistic models) should be preferred 

comparing to data-driven, surrogate or hybrid models (gray box) since they typically offer 

advanced predictive capabilities and validity for a broader range of operating conditions (Aamir 

et al., 2010; Bonvin et al., 2016). Since first principles models are based on laws of 

conservation, they can provide physical understanding of the process. Especially, in complex 

phenomena, such as crystallization, mechanistic models could provide an insight even in 

physical aspects of the system which cannot be directly measured. 

The most fundamental mechanistic approach for modelling particulate processes, such as 

crystallization, is the population balance equation (PBE) framework, which was initially 

derived based on the work of Randolph (1964) and Hulburt and Katz (1964), and was further 

improved by Randolph and Larson (1988) and Ramkrishna (2000). It is highly remarkable that 

although the derivation of the PBE framework was reported around the same time, it was based 

on different principles. Moreover, Randolph (1964) employed the continuum mechanical 

principles to derive the equations, while Hulburt and Katz (1964) utilized the Boltzmann – like 

equations. 

The PBE framework coupled with kinetic expressions, mass and energy balances yields a set 

of nonlinear integro-partial differential equations which could fully describe a crystallization 

process. Moreover, the set provides a rigorous approach to model the dynamic evolution of the 
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dispersed phase properties, such as the crystal size distribution and other state variables, across 

the temporal and spatial domains, with the latter one to consider both internal and external 

coordinates. External coordinates typically demonstrate the location of the crystals in physical 

space based on the ordinary cartesian system (𝑥, 𝑦, 𝑧), while the internal coordinates refer to 

the characteristic properties of the crystals (e.g. crystal length, crystal width, composition, 

chemical activity, etc.) (Ramkrishna, 2000; Omar and Rohani, 2017). The combination of the 

internal and external coordinates comprise the particle phase space. To fully characterize the 

particulate phase, considering 𝑖 independent internal coordinates, (𝑖 + 3) spatial dimensions 

and (𝑖 + 3) dimensional distribution is required (Randolph and Larson, 1988).  

Fundamental for the formulation of the PBE framework is the consideration of the existence of 

a number density of particles at every point in the particle phase space. The total number of 

particles in any region of the state space, 𝛺𝑥, can be computed by integrating the number density 

function, 𝑛(𝑡, 𝑋), over a certain region (Ramkrishna, 2000), such as: 

 
𝑁𝑎𝑣(𝑿, 𝑡)  =  ∫𝑛(𝑡, 𝑿) 𝑑𝑉𝑥

 

𝛺𝑥

  (2.21) 

Similar expressions do also exist for the calculation of the volume and mass density. 

The formulation of the PBE can be achieved by either utilizing an Eulerian or a Lagrangian 

approach. Typically, the Eulerian method is employed, which tracks the whole number of 

crystals as a continuous phase (Randolph and Larson, 1988; Omar and Rohani, 2017).  

The general PBE equation can be expressed as:  

 𝜕𝑛(𝑡, 𝑿)

𝜕𝑡
+ ∇𝑋[(𝐺𝑖  𝑛)] + 𝑛

𝑑(log (𝑉))

𝑑𝑡
 =  𝐵𝑏𝑖𝑟𝑡ℎ 

 − 𝐷𝑑𝑒𝑎𝑡ℎ − ∑
𝑄𝑘  𝑛𝑘

𝑉
𝑘

  (2.22) 

, where 𝑛(𝑡, 𝑿) represents the number density function, as a continuous form, while 𝐺𝑖 denotes 

the crystal growth (aka internal velocity, 𝑣𝑖). On the other hand, 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵] is the 

vector containing the various characteristic lengths, 𝑡 is the time, 𝐵𝑏𝑖𝑟𝑡ℎ 
is the birth rate, 𝐷𝑑𝑒𝑎𝑡ℎ 

denotes the crystal death, 𝑉 is the volume of the crystallizer and 𝑄𝑘 represents the volumetric 

flowrate streams. Since the PBE is a partial differential equation (PDE) boundary (B.C.) and 

initial (I.C.) conditions are required. For instance, in the case of an 1D PBM these conditions 

can be expressed as follows: 
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B.C. 𝐺(𝒙𝟏,𝒕=𝟎, 𝑡) 𝑛(𝒙𝟏,𝒕=𝟎, 𝑡)  =  (𝐵𝑝 
 + 𝐵𝑠)   (2.23) 

   

I.C.  𝑛(𝒙𝟏, 0)  =  0  (2.24) 

It should be mentioned that the discrete particles of the system are treated as a continuous 

distribution (𝑛(𝑡, 𝑿)). The validity of this hypothesis is justified due to the large number of 

sampling points of the crystal properties (Randolph and Larson, 1988). 

As illustrated in eq. 2.22, the PBE framework can be formulated to account multiple crystal 

properties. One typical example is the consideration of multiple internal characteristic 

coordinates for growth. In such way apart from size, the shape evolution of the crystals can be 

also predicted (Sato et al., 2008; Briesen et al, 2009; Borsos, 2016). However other properties 

aside from size coordinates can be also deliberated. For instance, Gerstlauer et al. (2001) 

developed a population balance model (PBM) with two independent internal crystal 

characteristics: crystal length and the internal strain energy. In this way, the researchers 

managed to model the evolution of the internal lattice strain during crystal growth. 

2.5 Numerical techniques for the solution of Population Balance 

Equations (PBEs) 

Solving the generic PBE framework is typically a computational intensive problem, which 

requires complex numerical solution techniques (Ramkrishna 2000; Aamir, 2010; Omar and 

Rohani, 2017). The difficulty of solving the PBEs arises from the integro-differential part of 

the PDE along with the nonlinear hyperbolic nature of the equations. Towards this end, several 

approaches have been proposed through the years for their efficient solution and they are 

presented below. 

Under certain assumptions, the PBE framework can be solved by utilizing analytical solutions 

(Randolph and Larson, 1988). Nevertheless, substantial limitations do arise. For example, only 

continuous MSMPR processes can be considered, while only nucleation and size-independent 

growth are taken into account. Terms for breakage and agglomeration can be included as well 

if additional simplifications are considered (Patil and Andrews, 1998; McCoy and Madras, 

2003). Nevertheless, these simplification limit substantially the capabilities and applicability of 

the PBM. 
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A numerical technique which has extensively utilized for the solution of the PBMs is the 

method of moments, which was initially developed by Hulburt and Katz (1964) and Randolph 

and Larson (1988). The critical advantage of the method of moments is that it converts the PBE 

into a set of moment equations of the number density. In this way the PDE is transformed into 

a set of small number of ODEs, which can be consequently solved by the utilization of 

commonly used ODE solvers (e.g. 4th order Runge – Kutta). As will be discussed later, 

discretization techniques do transform the PDE into a set of ODEs as well but the number of 

generated equations is significantly higher, resulting in a more numerical challenging problem. 

By converting the number density into a set of moments, global mean values of the distribution 

can be computed, such as: total number, total length, total surface area, total volume, mean 

average size of the crystals, and the coefficient of variation of the distribution. The 

computational efficiency and simplicity of the method makes it very attractive for the solution 

of complex optimization and control problems. Nevertheless, only mean values of the number 

density function can be computed. Although techniques have been proposed for the 

reconstruction of the CSD through the moments (Angelov et al., 2007; Cogoni and Frawley 

2015), limitations do arise based on the accuracy of the reconstruction. Also, they do lack the 

capability of generating bimodal distributions and reconstructing the density function for multi-

dimensional models (e.g. CSSD for a two-dimensional PBM). 

The standard method of moments (SMOM) is the foundation of the method of moments. It has 

been broadly used for the solution of one – dimensional and multi – dimensional population 

balance models for simulation, optimization and control purposes (Braatz and Nagy, 2003; 

Nagy et al., 2008; Majumder and Nagy, 2013; Borsos, 2016). Nevertheless, by utilizing the 

SMOM method, size-dependent growth, and agglomeration expressions cannot be considered, 

while breakage mechanisms can be only accounted under certain assumptions (Borsos and 

Lakatos, 2014). 

The quadrature method of moments (QMOM) is an extension of the SMOM, providing 

solutions for crystallization problems involving nucleation, size-dependent/independent 

growth, breakage and agglomeration (McGraw, 1997). In QMOM the integrals are computed 

by a quadrature approximation as shown below: 

 

𝜇𝑘  =  ∫ 𝑥 
𝑘 𝑛(𝒙 , 𝑡) 𝑑𝑥   ≈ ∑𝑤𝑖 𝑥𝑖

𝑘

𝑁

𝑖=1

∞

0

  (2.25) 
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Therefore, QMOM can be considered as a non-linear model reduction approach, where the 

number density function is approximated as a combination of linear basis functions (Aamir, 

2010). Due to its characteristics QMOM has been utilized extensively for modelling PBM 

processes and it is the method typically employed when PBM – CFD coupling is required (Nagy 

et al., 2009; Rane et al., 2014; Gimbun et al., 2016). Several other methods have been proposed 

as improvements to the initial QMOM method, such as the direct quadrature method of 

moments (DQMOM), modified quadrature method of moments (M – QMOM), fixed pivot 

quadrature method of moments (FPQMOM) etc. For more information, the reader is referred 

to the work of Su et al. (2009), where a detailed review and discussion of the different QMOM 

approaches is presented. 

Discretization techniques comprise a large category of different methods that can be utilized 

for the solution of the PBE framework. There are, undoubtedly, the preferred approach for 

solving a general PBM since the full distribution can be calculated, regardless of the internal 

coordinate dimensions. Discretization methods, as implied by their name, separate the internal 

coordinates of interest into finite number of grid points (i.e. bins) reducing the PBE to a set of 

ODEs. Depending on the PBM’s number of internal coordinates and their subsequent size of 

the distribution, a large number of grid points might be required. This most potentially would 

increase the computational time significantly since each grid point is described by an ODE. 

Therefore, by increasing the grid points the number of ODEs that needs to be simultaneously 

solved is increased as well. Towards this direction, selecting an appropriate type of grid can 

reduce the computational type considerably. In the case of crystallization where nucleation is 

typically generated as a pulse at the beginning of the process, utilization of a geometrical instead 

of a linear grid seems to be the most efficient strategy (Qamar and Warnecke, 2007).  

The method of characteristics (MOCH), which belong to the discretization methods, is an 

effective approach for solving PBMs. The method employs characteristic curves (for a first 

order PDE, lines are used) as basis function to reduce the partial differential equation to a set 

of ODEs (Fevotte and Fevotte, 2009). The method has illustrated remarkable accuracy during 

the prediction of CSD, comparing to other discretization techniques (Mesbah et al., 2009). 

Nevertheless, challenges may arise during its implementation since the spatial grid mesh, over 

which the crystal size distribution is discretized, is not fixed.  

Finite – difference method (FDM), is one of the most applied discretization numerical 

techniques for solving PDEs, due its simplicity. However, in the case of the PBEs, the method 
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fails to provide sufficiently accurate results. Moreover, due to numerical diffusion, sharp 

discontinuities do arise during the solution (Mahoney and Ramkrishna, 2002). This problem 

can be eliminated if higher – order FDM schemes are utilized and/or the resolution of the mesh 

is increased. However, as a result the computational time is increased as well, making FDM not 

a preferred option for model based control and optimization. Finite volume (FV) schemes, on 

the other hand, have illustrated advanced capabilities at the conservation of the scalar quantities 

and hence they provide an improved alternative to finite difference. FV can be utilized for the 

solution of all crystallization phenomena (i.e. nucleation, crystal growth, breakage and 

agglomeration) and has been extensively investigated since it is the most promising technique 

that can be employed for the solution of hyperbolic PDE problems (LeVeque, 2002). Especially 

the high order – FV schemes have illustrated higher accuracy for the solution of crystallization 

processes comparing to the rest of the discretization techniques, aside MOCH (Qamar and 

Warnecke, 2007; Mesbah et al., 2009). They have been also implemented extensively for multi-

dimensional PBMs (Gunawan, 2004; Majumder et al., 2010). Nevertheless, due the 

computational cost, the method cannot be employed for advanced control and complex 

optimization problems. Towards this direction Szilágyi and Nagy (2016) utilized parallel 

processing in combination to a graphical processing unit (GPU) to accelerate the numerical 

solution of the method. Based on that, they managed to reduce the computational cost by 50 −

250 times, enabling in this way the utilization of the FV method for real – time model based – 

control applications. The high order FV method has been utilized in this thesis for the solution 

of a complex multi-dimensional PBM. Therefore, the reader is referrer to Chapter 5 for more 

information regarding the FV algorithm.  

Finite element method (FEM) is also another discretization technique which can be utilized for 

the solution of PBMs. Typically, the internal coordinate domain is discretized into a finite 

number of elements and the solution is approximated by employing piecewise low – order 

polynomials. Moreover, Rigopoulos and Jones (2003) employed a FEM scheme with linear 

collocation elements to solve a PBM considering nucleation, growth, breakage and 

agglomeration. By utilizing linear collocation, the authors managed to reduce the number of 

interpolations comparing to a higher order scheme with the scope of reducing the computational 

cost. On the other hand, Nichmanis and Hounslow (1988) applied collocation and Galerkin 

FEM algorithms to solve a steady – state PBM. In both cases, the results showed reasonable 

prediction capabilities. However, Mesbah and co – authors (2009) illustrated that high 

resolution FV methods present increased accuracy with lower computational cost comparing to 
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equivalent FEM schemes. Therefore, FEM doesn’t appear as an attractive option for the 

solutions of PBEs. 

In the Lattice Boltzmann method (LBM), on the other hand, instead of solving the 

hydrodynamic equations by discretization, pseudo-particle kinetics are employed to recover the 

PBEs at the appropriate scale. The LBM was recently applied for one – dimensional and multi 

– dimensional PBMs, considering smooth and non – smooth distributions by Majumder et al. 

(2010;2012a; 2012b). For both the cases the LBM demonstrated advanced capabilities with 

respect to accuracy and convergence time. Nevertheless, the method presents substantial 

implementation difficulties. 

Finally, dynamic monte Carlo (DMC) methods are the most generic approach for the solution 

of the PBE framework. Apart that all the crystallization phenomena can be considered, DMC 

methods are easy to implement, with respect to both mono-dimensional and multi-dimensional 

models, and they present significant advantages in terms of numerical accuracy. The latter 

occurs since the stochastic nature of DMC can describe very accurately the physical nature of 

the crystallization processes. Therefore, several researchers have utilized stochastic DMC for 

the simulation of PBMs (Ramkrishna, 1981; Smith et al., 1998; Yu et al., 2015). Nevertheless, 

the method is too computationally expensive for complex optimization and/or advanced process 

control applications.    

2.6 Conclusions 

In this Chapter, an overview of the fundamentals of crystallization were discussed. The review 

mainly highlights the inherently stochastic nature of crystallization phenomena and the impact 

of this on process understanding and development. In other words, the intrinsic complexity of 

the process in combination with the limited capabilities of monitoring the dynamic evolution 

of the phenomena has resulted in utilizing mainly empirical/ semi-empirical kinetic 

mechanisms, which they discard the physicality of the problem. At the same time mechanistic 

approaches either fail to describe the phenomena or they are applicable for only certain systems.  

Additionally, modelling of crystallization processes by utilizing the population balance 

equations framework was also presented. The formulation and the main principles describing 

the PBEs were discussed with specific emphasis, however, on its numerical solution. Towards 

this direction, the available numerical solution methods were demonstrated. As it was 
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concluded, the SMOM, QMOM and the high resolution – FV schemes do present advanced 

overall capabilities for process modelling optimization and control purposes. 

Overall, the literature review reveals that although crystallization has been extensively applied, 

the phenomena describing crystallization haven’t been fully understood. Therefore, the 

development of a generalised approach of investigating crystallization both theoretically and 

experimentally, could enhance the process understanding and operation of the industrial 

crystallizers.  

NOMENCLATURE 

𝐴𝑖  - Molecular unit 𝑖𝑡ℎ, [-] 

𝐴𝑝  - Preexponential factor, [-] 

𝐴𝑒𝑓𝑓  - Effective mass transfer area, [m2] 

𝑎𝑖,𝑖  - Area of the crystal per unit, [m2] 

𝐵𝑏𝑖𝑟𝑡ℎ     - Birth rate, [#/s] 

 𝐵𝑝      - Primary nucleation, [#/s] 

𝐵𝑠      - Secondary nucleation, [#/s] 

𝑏      - Exponent of nucleation kinetics, [-] 

𝑐   - Concentration of crystals in the solution, [g/g solvent] 

𝑐𝑠𝑎𝑡  - Saturation concentration of the crystals in solution, [g/g solvent] 

𝐷𝑑𝑒𝑎𝑡ℎ     - Death rate, [#/s] 

𝐸𝑝  -      Kinetic energy of primary nucleation, [kJ/mol] 

𝐹𝑙𝑖  -      Pointwise flux of the 
thi characteristic size, [#/m2]  

𝛥𝑐                     - Absolute supersaturation, [g/g solvent] 
 
 

𝛥𝐺                - Overall excess free energy, [kJ/mol] 

𝛥𝐺 𝑠               - Surface excess free energy, [kJ/mol] 

𝛥𝐺 𝑉               - Volume excess free energy, [kJ/mol] 

𝛥𝐺 𝜐               - Εxcess free energy per unit volume, [kJ/mol/m3] 
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𝑔𝑖  - Exponent of growth kinetic equitation of the 
thi characteristic facet, [-] 

𝐺𝑖  - Crystal growth rate of the 
thi characteristic facet, [m/s] 

ℎ  - Discretization size interval, [-] 

𝐽(𝑝)  - Minimum sum of squared errors, [-] 

𝑘𝑏  - Nucleation kinetic constant, [#/m/s]   

𝑘𝐵  - Boltzmann factor,
 
[ m2 kg s-2 K-1] 

𝑘𝑑  - Diffusion coefficient, [-]   

𝑘𝑔𝑖  - Growth kinetic constant, [m/s] 

𝑘𝐺  - Overall crystal growth constant, [m/s] 

𝑘𝑚  - Overall mass transfer coefficient, [mol/s]       

𝑘𝑟  - Reaction rate coefficient, [-]   

𝑛𝑖,𝑗 
   - Size and shape distribution, [#/m2] 

𝑛̅𝑖,𝑗  - Cell average of 𝑛𝑖,𝑗 
 (𝑥1, 𝑥2, 𝑡) over the (𝑖, 𝑗) cell, [#/m2] 

𝑁𝑎𝑣  - Total number of particles per unit volume of physical space, [[#/m3] 

𝑁𝐺𝑖  - Number of discretization points of the thi characteristic size, [#] 

𝑁𝑝  - Power number input, [-] 

𝑄  - Volumetric flow rate, [m3 s-1] 

𝑟  - particle size, [ m] 

𝑅  - Ideal gas constant, [Pa m3 mol-1 K-1] 

𝑆   - Supersaturation ratio, [-] 

𝑇  - Temperature, [K] 

𝑡  - Time, [s] 

𝑉  - Volume of the crystallizer, [m3] 

GREEK LETTERS 

𝛽𝑖,𝑘  - Constant of the effectiveness factor, [m/K] 
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𝛾𝑖  - Edge free energy on the thi crystal face per unit length, [J/m] 

𝜇𝑚,𝑟 
 - 𝑚, 𝑟 𝑡ℎ order mixed moment of size variables 

𝜇𝑠𝑜𝑙𝑖𝑑         - Chemical potential of the solid state, [-] 

𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 - Chemical potential of the solute molecules, [-] 

𝜎𝑚,𝑟
      - m, r order joint moment, [-]  

𝜎 
    - Relative supersaturation, [-] 

𝜎𝑖𝑛𝑡 
    - Interfacial tension, [J/𝑚2] 

𝜑  - Flux limiter function, [-] 

𝜑𝑐𝑜𝑒𝑓𝑓  - Contact angle coefficient, [-] 

𝛺𝜅  - Particluate Space, [-] 
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3 SYSTEMATIC MODEL – BASED DESIGN AND 

OPTIMIZATION OF BATCH AND CONTINUOUS 

COOLING CRYSTALLIZATION PROCESSES 

The purpose of this chapter is to develop a systematic computer-aided methodology for the 

design of batch and continuous crystallization processes through the implementation of 

optimization frameworks to assess the achievable crystal quality attributes (CQAs) by 

manipulating the critical process parameters (CPPs). Paracetamol in water and potassium 

dihydrogen phosphate (KDP) in water are considered as the case studies. The systems are 

modelled utilizing single and multi-dimensional population balance models (PBMs) for 

paracetamol and KDP respectively. For the batch crystallization systems, single and multi-

objective optimization are carried out to determine the optimal operating trajectories by 

considering mean crystal size and the crystal size distribution standard deviation, for both the 

1D and 2D cases, and the mean aspect ratio of the crystals, for the 2D case, as the objective 

functions. For the continuous crystallization systems, the attainable region approach is 

employed to identify the performance of multi-stage MSMPR for various operating conditions 

and configurations. As such, the attainable regions are estimated in diagrams of mean crystal 

size against total residence time. Multi-objective optimization is also applied to determine a 

Pareto optimal attainable region with respect to multiple CQAs, such as mean length size and 

aspect ratio versus total residence time. The capability of utilizing various optimization 

frameworks is exploited to determine the feasible range of the design space (DS) and whether 

a desired product specification can be attained for the studied systems in certain configurations. 
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This methodology proved to be an essential tool that can be applied as a reliable model-based 

design practise for the identification of robust attainable regions (ATRs). By identifying the 

feasible range of a crystallization system, the manufacturing capabilities of the process can be 

explored, in terms of mode of operation, CPPs recipes, and equipment configurations, that 

would lead to the selection (i.e. decision making) of optimum operation strategies for the 

manufacturing of products with desired CQAs under given operating and business constraints. 

Highlights:  

• Batch and Continuous 1D and 2D crystallization systems are modelled utilizing PBM. 

• Design space determined via employing optimization frameworks for both systems.  

• High dimensional attainable regions (ATRs) obtained for 1D and 2D PBMs. 

• Single - objective and multi - objective optimization employed for 1D and 2D PBMs. 

3.1 Introduction 

In industrial crystallization, three different modes of operation are mainly utilized: batch, semi-

batch and continuous (Mersmann, 1988; Nýlvlt, 1994; Kramer & Jansens, 2003). Batch 

crystallization has been the most common method of operation for decades and it remains 

prevalent today (Chen et al., 2011; Vetter et al., 2014), since it offers considerable advantages, 

such as easy control of CSD, simplicity of process equipment and good traceability of off-spec 

product (Park et al., 2016). The latter is quite critical for industries such as pharmaceuticals. 

Potential problems with certain batches can be easily identified to withdraw from the market, 

safeguarding, in this way, the quality and safety of the product (Smith, 2005). Also, batch 

operation provides flexibility in equipment utilization since it can be employed to manufacture 

a variety of products by using the same equipment and it provides flexibility with respect to the 

production (i.e. reacting to demand by decreasing/increasing the number of batches). It can be 

also used during the development stages for screening purposes to identify an optimized recipe 

in order high yield to be achieved (i.e. minimum material loss). However, batch-to-batch 

variability, low plant availability/asset utilization and poor-scheduling (i.e. equipment cleaning 

and maintenance) and high operating costs, since batch processing is more labour intensive, 

and it requires more storage and handling steps, leads to low production capabilities (Mullin, 

2001; Smith, 2005; Lawton et al., 2009; Chen et al., 2011). Semi-batch operation, also known 

as fed-batch, has been also employed in pharmaceutical crystallization when higher 

supersaturation needs to be maintained in the crystallizer (Mesbah et al., 2011). Continuous 
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manufacturing offers significant advantages such as, consistent and reproducible product 

qualities (i.e. steady-state operation), lower capital and operating costs, improved process 

efficiency, reduced equipment footprint, improved control performance and lower inventory 

levels (Lawton et al., 2009; Benyahia et al., 2013; Mascia et al., 2013; Powell, 2017; Wang et 

al., 2017). Based on these advantages continuous processing is the preferred and widely-applied 

mode of operation in many large-scale industries, such as petrochemicals and polymers, since 

it can ensure product consistency and cost-effective manufacturing (Smith, 2005).  

Despite the benefits of continuous processing, the pharmaceutical industry has been reluctant 

to adopt this concept mainly due to the strict regulatory guidelines imposed by the 

pharmaceutical approval agencies, FDA in USA and EMA in Europe, and due to the low 

required production volumes (Vetter et al., 2014). Moreover, if substantial changes are made 

during the manufacturing of a pharmaceutical product, regulatory uncertainty for the product’s 

approval will be created that consequently will lead to additional costs and delays during the 

product development stage (Gonnissen et al., 2008; Sen et al., 2013; Su et al., 2015). Also, in 

most of the cases, the product volume demand cannot justify abandoning the existing batch 

production capabilities for the development of a continuous operated process dedicated to a 

specific active pharmaceutical ingredient (API) (Vetter et al., 2014).  

Therefore, it becomes apparent that each mode of operation has pros and cons. The decision-

making, of whether continuous manufacturing or batch operation should be adopted, is based 

on the following criteria:  

1. Techno economics. 

2. Targeted product. 

3. Production scale. 

4. Uncertainties (e.g. market demand).  

5. In-house experience and willingness to invest in non-standard technologies. 

6. Technology readiness.   

7. Regulatory requirements. 

To this end, process systems engineering (PSE) tools, such as model-based design and 

optimization, can be utilized for process understanding and consequently decision making. 

Moreover, decision making can be done more efficiently by employing model-based 

approaches for the determination of the ATRs. The ATRs comprises the multi-dimensional 
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feasible region defined from the input variables and operating conditions in which an acceptable 

product quality can be guaranteed (Rathore and Mhatre, 2008; Wang and Lakerveld, 2017). 

Thus, by identifying the ATRs, the achievable limits of each process for every CQA can be 

estimated and hence the process dynamics can be fully realized and eventually controlled (i.e. 

by applying process control approaches – Fujiwara et al, 2003; Nagy 2017; Cao et al., 2017).  

Model-based design and optimization methodologies have been extensively applied for batch 

and continuous crystallization processes (Rawlings et al., 1993; Kramer et al., 2000; Kramer 

and Jansens, 2003; Costa et al., 2005; Larsen et al, 2006; Lindenberg et al., 2009; Paroli, 2012; 

Yang et al., 2014;). For instance, Lang et al. (1999), utilized dynamic optimization to maximize 

the mean crystal size under a fixed final time. On the other hand, Mesbah et al (2010) applied 

a real-time dynamic optimization with the scope to maximize the batch productivity without 

compromising the CQAs, while Nagy et al (2008) utilized moment based PBMs and successive 

quadratic programming to design and compare optimal control strategies, such as classical 

temperature control and concentration control for batch processes. Design and optimization 

studies have also been utilized in seeded crystallization processes since the seed characteristics 

have a great impact on the attained final CSD along with the applied temperature trajectory. To 

that end, Chung et al. (1999) presented a dynamic programming formulation that optimizes the 

CQAs with the supersaturation profile and the seed characteristics to be the control variables, 

while Aamir et al. (2010) presented a novel approach that employs dynamic optimization to 

determine the optimal seed recipe, which is generated by the combination of seeds from various 

sieved seed fractions with the scope of achieving a desired final CSD. Although identification 

of the optimum process operation trajectories considering a single objective function, such as 

maximizing the mean crystal size or minimizing the coefficient of variation, has been applied 

for numerous cases, application of multi-objective optimization in crystallization processes is 

rather limited (Bhat and Huang, 2009; Hemalatha and Rani, 2016). Sarkar et al. (2006) were 

the first who presented the application of multi-objective optimization to improve multiple 

CQAs of a seeded batch crystallization process by utilizing the non-dominated sorting genetic 

algorithm (NSGA). Similar analysis was recently performed by Hemalatha and Rani (2017), 

which considered both seeded and unseeded batch crystallization systems and different 

objective functions, such as mean size, coefficient of variation and nucleated mass. Also, 

Acevedo et al. (2015) applied a weighted, multi-objective gradient based algorithm (successive 

quadratic programming (SQP)) to evaluate and construct the Pareto front. For this system, a 

complex multi-dimensional PBM was employed with the scope of improving the mean size and 
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the mean aspect ratio of the population of crystals, which correspond to size and shape 

objectives respectively.  

Continuous crystallization for pharmaceutical applications is currently an area of high interest 

and therefore, more and more, design and optimization studies have also been carried out by 

various researchers (Majumder et al, 2013a; Sen et al., 2013; Ridder et al, 2014; Vetter et al., 

2014; Su et al, 2015; Power et al., 2015; Park et al., 2016). For example, Yang and Nagy (2015a) 

modelled and optimized a continuous cascade MSMPR system by taking into consideration 

both the start-up and steady-state behaviours for a combined cooling and anti-solvent 

crystallization system. For the same system, advanced process control schemes - decentralized 

proportional-integral-derivative (PID) control and nonlinear model predictive control (NMPC) 

- were also employed and compared by the same investigators (Yang & Nagy, 2015b) with the 

scope of developing a robust modelling framework for process design, optimization and 

control. Similarly, Su et al. (2015) presented a rigorous framework for mathematical modelling, 

optimization and control of single/multi-stage continuous Mixed Suspension Mixed Product 

Removal (MSMPR) crystallizers, while advanced control, C-control strategy, was utilized to 

ensure that the continuous MSMPR operation remains within the predetermined design space. 

Also, continuous API purification processes have been modelled and optimized employing 

integrated flowsheet modelling. Moreover, Sen et al. (2013) optimized the start-up cooling 

process of a continuous MSMPR crystallizer followed by filtration, drying and mixing of the 

API with an excipient. Also, Benyahia et al. (2013) developed a plant-wide mathematical 

model, based on continuous pharmaceutical pilot plant developed at Novartis-MIT centre 

(Mascia et al., 2013), that was used for design, optimization and process control purposes 

(Lakerveld et al., 2013; Mesbah et al., 2017). The effect of numerous process parameters was 

investigated with the scope of improving pilot plant performance, while at the same time 

alternative start-up strategies were used to reduce the time to steady-state and consequently 

minimize the product loss (Benyahia et al, 2013). Vetter et al. (2014), on the other hand, 

presented first a detailed process design methodology that allows the determination of 

attainable particle sizes for crystallization processes under a set of constraints utilizing moment-

based PBMs. Moreover, attainable regions (ATRs) were estimated for multi-stage MSMPRs, 

plug flow and semi-batch crystallizers for three different case studies, where the supersaturation 

was generated by cooling, anti-solvent, and a combination of cooling/anti-solvent 

crystallization. It should be mentioned, that for these cases studies steady-state modelling was 

applied. Based on the latter work, Graham et al. (2015), estimated the ATR for a cascade 
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MSMPR configuration for the cooling crystallization of acetaminophen (paracetamol) in 

aqueous isopropanol solution by employing analytical expressions for the solution of the PBM 

and simple kinetic expressions for describing the phenomena. Finally, the ATR theory was also 

employed for the determination of the design space of a hybrid technology for separation, which 

combines continuous crystallization and membranes (Wang and Lakerveld, 2017). It was 

proved that membranes can enlarge the ATR, providing process flexibility since they can allow 

solvent removal that consequently can generate additional supersaturation if needed.  

Although significant research has been already conducted for the design and optimization 

purposes for 1D crystallization purposes, a process design methodology for multi-dimensional 

PBMs is an open subject in the literature. Therefore, in this chapter, a computer-aided 

methodology is developed for the design of batch and continuous mode operated processes 

through the implementation of various optimization frameworks (i.e. single and multi-

objective) to assess the achievable crystal quality attributes (CQAs) by manipulating the critical 

process parameters (CPPs) for both single and multi-dimensional PBMs. Moreover, the 

objective of this chapter is to investigate how model-based approaches can be employed for the 

identification of the design spaces for different modes of operation by considering two different 

chemical systems characterized by 1D and 2D PBMs. After the mathematical models are 

formulated, single and multi-objective optimizations are applied to systematically estimate 

those ATRs for both batch and cascade MSMPR configurations. In this way, the design space 

for each process can be compared and decisions can be made regarding the operating conditions 

and mode of operation for each system. Systematic studies for the construction of the ATRs for 

multi-dimensional pharmaceutical processes have not been published to the best of our 

knowledge. Also, it is the first time that multi-objective optimization is presented as a robust 

way of determining the design space for both 1D and 2D PBM crystallization processes.  

The remainder of this Chapter is organized as follows: In section 3.2, a summary of the 

mathematical formulation of the population balance equation (PBE) will be presented. In 

section 3.3, the single and multi-objective optimization procedure utilized for both case studies 

is presented and detailed description of the performance objectives is given, while the 

methodology of employing ATR theory for the determination of the design space is also 

presented in detail. In section 3.4, the optimization and ATR results obtained for each case 

study are presented and discussed, while the Chapter ends with some concluding remarks in the 

conclusions section. 
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3.2 Process Models 

To date, there are three main setups that have been utilized for continuous crystallization 

development: the mixed - suspension mixed - product removal (MSMPR) crystallizer (Larson 

and Randolph, 1988), the plug flow crystallizer (PFC) (Alvarez and Myerson, 2010; Simon and 

Myerson, 2011; Koswara and Nagy, 2015) and the continuous oscillatory baffled crystallizer 

(COBC) (Lawton et al., 2009; Briggs et al., 2015; Brown et al., 2015; Pena et al, 2017a). Among 

these alternatives, the MSMPR offers the most efficient route to continuous crystallization 

development for pharmaceutical applications, since it is based on the stirred tank reactor (STR) 

design. PFCs, on the other hand, present a considerable implementation obstacle which is 

related with the need to retain the crystals suspended by operating at high velocities to achieve 

a turbulent flow behaviour within the pipe (Vetter et al., 2014). As a result, low process 

productivity can be achieved which makes it impractical for pharmaceutical applications. 

Another significant drawback that PFCs present is that fouling seems to occur in higher 

frequency comparing to other platforms, such as MSMPR (Majumder and Nagy, 2015). On the 

other hand, new continuous crystallization platforms, such as COBC, are not fully understood 

and have not been broadly implemented, which could lead to regulatory impediments (Su et al., 

2015). It should also be mentioned that MSMPR crystallizers provide increased process 

flexibility, comparing to the rest of crystallization platforms, since the operating volumes and 

the residence time could be easily manipulated to meet system targeted operating conditions. 

Most significantly, a variety of crystallization systems (e.g. having fast and slow kinetics) can 

be handled more easily in comparison to other configurations. One drawback however is that 

the MSMPR crystallizer generates a CSD that is broader compared to the ones attained from 

tubular crystallizers, such as PFC or COBC (Ferguson, 2012). So, it becomes apparent that the 

process design of multi-stage MSMPR is of significant interest for the ongoing shift from batch 

to continuous operation and hence in this study that configuration will be explored and will be 

compared with the corresponding non-isothermal batch crystallization setup. 

To model crystallization processes, and consequently determine the CQAs of the system, such 

as size and shape, population balance equation (PBE) models coupled with mass and energy 

balance equations are employed, as mentioned in more detail in Chapter 2 (Randolph and 

Larson, 1988; Ramkrishna, 2000). Assuming that the batch and continuous crystallizers to be 

modelled are well-mixed at both macro-scale and micro-scale level (i.e. no classification 

occurs), are unseeded, and no agglomeration or breakage phenomena are present, the population 
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balance models with the corresponding initial ( I.C.) and boundary conditions ( B.C.) can be 

given respectively by:  

PBEs 

Batch 

𝜕𝑛(𝑡, 𝑿)

𝜕𝑡
+ ∇𝑿[𝐺 𝑛(𝑡, 𝑿)] =  𝐵  𝛿(𝑿 − 𝑿0)  (3.2) 

   

I.C. 𝑛(𝑿, 𝑡 = 0) = 0 (3.2) 

   

   

B.C.1 𝑙𝑖𝑚
𝑋1→ 𝐿𝑛 
𝑋2→ 𝐿𝑛 

⋮
𝑋𝑁→ 𝐿𝑛 

[𝑮𝟏 
 + 𝑮𝟐  + ⋯+ 𝑮𝟑] = 0 , 𝑋 ∈  𝜕𝛺 

(3.3) 

   

   

PBEs 

MSMPR 

𝜕𝑛(𝑡, 𝑿)

𝜕𝑡
+ ∇𝑿[𝐺 𝑛(𝑡, 𝑿)] =  𝐵  𝛿(𝑿 − 𝑿0) −

1

𝜏
𝑛(𝑡, 𝑿)   

 

(3.4) 

 

I.C. 

 

𝑛(𝑿, 𝑡 = 0) = 𝑛0(𝑿) 

 

(3.5) 

   

B.C.1 𝑙𝑖𝑚
𝑋1→ 𝐿𝑛 
𝑋2→ 𝐿𝑛 

⋮
𝑋𝑁→ 𝐿𝑛 

[𝑮𝟏 
𝑛(𝑿, 𝑡)  + [𝑮𝟐 

𝑛(𝑿, 𝑡) + ⋯+ [𝑮𝑵 
𝑛(𝑿, 𝑡) ] = 0 , 𝑋 ∈  𝜕𝛺 

(3.6) 

   

 

B.C.2 𝑙𝑖𝑚
𝑋1→ ∞
𝑋2→ ∞

⋮
𝑋𝑁→ ∞

  𝑛(𝑿, 𝑡) = 0  

(3.7) 

 

where  𝑛(𝑿, 𝑡)  is the number density function, 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵] is the vector containing the 

various characteristic lengths, 𝐵   is the nucleation rate,  𝑮 =  [𝑮𝟏, 𝑮𝟐, … , 𝑮𝑵]   is the vector of 

the crystal growth rate of the characteristic crystal facets, 𝑡 is the time and 𝜕𝛺 is the boundary 

of the size space. Also, 𝛿(𝑿 − 𝑿0) is the delta distribution that characterizes the formation of 

the nuclei and is zero for all the values of  𝑿, except when 𝑿 = 𝑿𝟎 . It should be noted that the 

expressions describing the kinetics are typically nonlinear functions of supersaturation, 

temperature but also CSD (e.g. kinetics incorporating the secondary nucleation effect).   
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In the present study, two systems are considered, namely paracetamol in aqueous solution and 

potassium dihydrogen phosphate (KDP) in water, for design and optimization. The dynamic 

and steady state models for the case studies are discussed below. It should be mentioned that 

all the developed models were solved and optimized by using the numerical computing 

environment, MATLAB®. 

3.2.1 Unseeded Batch & Continuous Cooling Crystallization of Paracetamol 

Initially, the unseeded cooling crystallization of paracetamol (also known as acetaminophen) 

in water, as studied by Nagy et al. (2008), is modelled and optimized. For this system, a 1D 

PBM model is considered, meaning that the generated crystals are assumed to have a fixed 

shape (i.e. one characteristic length: 𝑿 = [𝒙𝟏]). This simplification is quite common in 

crystallization modelling. Similar principles are also employed in PAT in order to provide 

useful information regarding the CQAs of the population. For instance, laser diffraction, which 

is the most common approach for measuring CSD, assumes the measured crystals are spherical 

in shape and reports the diameter of the volume-equivalent sphere. As expected, when laser 

diffraction is applied to crystals of a non-ideal shape, such as needles or plate-like crystals, the 

measured CSDs present a broader size distribution than they should actually have (Polawoski 

et al., 2014). Typically, to take this measurement error into account, constant and/or relative 

correction factors are applied to the quantile that can improve the accuracy of measurements.  

The general PBE (eq. 3.1 & 3.4) is usually reduced to a set of ordinary differential equations 

(ODEs) by utilizing the standard method of moments (SMOM) since in this way the set 

becomes more efficient with respect to the required computational time, and consequently they 

can be used for simulation and optimization purposes (see Chapter 2 for a detailed review on 

the numerical solution of PBEs).  

The 𝑖𝑡ℎ moment for one characteristic dimension ( 𝑥1 ) is   

 
𝜇𝑖 = ∫ 𝑥1

𝒊 𝑛(𝑥1 , 𝑡)
∞

0

 𝑑𝑋1 (3.8) 

Hence, by applying the moment transformation rule (eq. 3.8) to the PBE (eq. 3.1), considering 

the initial (eq. 3.2) and boundary conditions (eq. 3.3), a finite set of ODEs can be acquired: 

 

 𝑑𝜇0

𝑑𝑡
=  𝐵   (3.9) 
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 𝑑𝜇𝑖

𝑑𝑡
= 𝑖 𝐺 𝜇𝜄−1 + 𝐵  𝑟0

𝑖  (3.10) 

   

 𝑑𝑐

𝑑𝑡
= − 3 𝜌𝑐  𝑘𝜈 𝐺 𝜇2 − 𝜌𝑐  𝑘𝜈 𝐵   𝑟0

3  (3.11) 

where 𝑐 is the solution concentration expressed in mass of crystal per unit mass of solvent 

(𝑘𝑔 𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡⁄ ),  𝑟0 is the initial nuclei size, 𝜌𝑐 is the density of the crystals and 𝑘𝜈 is the 

volumetric shape factor. It should be mentioned that in most of the modelling studies, describing 

crystallization processes, the initial nucleus size is set to zero ( 𝑟0 ≈ 0 𝜇𝑚 ) for practical 

purposes since it leads to negligible modelling errors (Rawlings et al., 1993). 

This set of ODEs (eq. 3.9 – 3.10) coupled with the component mass balance (eq. 3.11), for the 

solute, describes a comprehensive moment-based model for crystallization processes for 

modelling a 1D batch cooling crystallization process.  

By following the same approach, the set of ODEs describing an 𝑁 – stage MSMPR crystallizer 

coupled with the mass balance, can be given by (Yang and Nagy, 2015a): 

 𝑑𝜇0

𝑑𝑡

( 𝑗 )

=
𝑉𝑗

𝑉𝑗−1 𝜏𝑗−1
𝜇0

(𝑗−1) −
1

𝜏𝑗
𝜇0

( 𝑗 ) +  𝐵𝑖  (3.12) 

 𝑑𝜇𝑖

𝑑𝑡

( 𝑗 )

=
𝑉𝑗

𝑉𝑗−1 𝜏𝑗−1
𝜇𝑖

𝑗−1 −
1

𝜏𝑗
𝜇𝑖

𝑗 +  𝑖𝐺𝑗𝜇𝑖−1
(𝑗−1)  (3.13) 

 𝑑𝑐𝑗

𝑑𝑡

 

=
𝑉𝑗

𝑉𝑗−1 𝜏𝑗−1
𝑐𝑗−1

 −
1

𝜏𝑗
𝑐𝑗

 − 3 𝜌𝑐  𝑘𝜈  𝐺𝑗 𝜇2
( 𝑗 )  (3.14) 

  𝑗 = 1,2,… , 𝑁  

 

 

, where 𝜏𝑗 is the residence time at stage 𝑗 and it can be given by dividing the volume of the 

crystallizer 𝑗 (𝑉𝑗) with the volumetric flow rate at the same stage (𝐹𝑜𝑢𝑡( 𝑗 )): 

 

 

 
𝜏𝑖 =

𝑉𝑗

𝐹𝑜𝑢𝑡( 𝑗 )
 (3.15) 
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It should be highlighted that in most modelling studies the solution volume of each crystallizer 

is considered to remain constant. The constant volume assumption, which can be easily 

implemented in practice by using a level controller in the vessel, is a quite reasonable 

assumption that should be made since during the manufacturing of a pharmaceutical product 

all variables should remain under steady-state operation. Moreover, potential disturbances in 

the system should be counteracted promptly since instabilities will potentially lead to 

inconsistent (i.e. out of specifications) product. 

In most of the cases, the four lowest order moments (i.e., zeroth to third), calculated from the 

set of ODEs, could be related to the physical description of the CSD (Nagy et al., 2008; 

Kariwala et al., 2012), since some of them are proportional to the total number, total length, 

total surface area and total volume of the particles. In more detail, the interpretation of the most 

critical moments is as follows: 𝜇0 is the total number of crystals (#/𝑘𝑔 𝑆𝑜𝑙𝑣𝑒𝑛𝑡), 𝜇1 is the total 

length of crystals (𝜇𝑚/𝑘𝑔 𝑆𝑜𝑙𝑣𝑒𝑛𝑡), 𝜇2 is the total surface area of crystals (𝜇𝑚2/𝑘𝑔 𝑆𝑜𝑙𝑣𝑒𝑛𝑡) 

and 𝜇3 is the total volume of crystals (𝜇𝑚3/𝑘𝑔 𝑆𝑜𝑙𝑣𝑒𝑛𝑡). These moments are not the only ones 

that have physical meaning, since their combination can also be used to determine other key 

properties of the crystal population, such as mean crystal sizes (eq. 3.16 – 3.18) and the standard 

deviation of the CSD (eq. 3.20), which can be related to the span of the distribution, as described 

below. 

The number mean size ( 𝐿  10
 ) provides information about the mean crystal size of the 

population (more sensitive for small crystal sizes): 

 𝐿  10
 =  

𝜇1

𝜇0
  (3.16) 

while the Sauter mean diameter ( 𝐿  32
 ) can describe the mean crystal size of the population 

based on the ratio between the volume of the dispersed phase to its surface area. 

 𝐿  32
 =  

𝜇3

𝜇2
  (3.17) 

Similarly, the weight mean crystal size ( 𝐿  43
 )  can also be used to estimate the mean size of the 

population (more sensitive towards larger crystals).  

 𝐿  43
 =  

𝜇4

𝜇3
  (3.18) 
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The moments can also provide indirect information regarding the width of CSD, since they 

could be utilized for the estimation of the coefficient of variation and the standard deviation of 

the distribution respectively: 

 

 

𝑐𝑣 =  √(
𝜇2 𝜇0

𝜇1
2

− 1)   (3.19) 

 

 

𝑆𝑑 =  √(
𝜇2 

𝜇0
 
−

𝜇1
2 

𝜇0
2 )   (3.20) 

These expressions (eq. 3.16 – 3.20) are of high significance since they directly describe 

essential quality attributes of the population of crystals. 

Typically, the expressions for primary nucleation and crystal growth kinetics are assumed to 

satisfy the following empirical power-law expressions (see full list of expressions that have 

been applied to crystallization processes in Chapter 2): 

 

 𝐵 =  𝑘𝑏 𝛥𝑐𝑏  (3.21) 

   

 𝐺 =  𝑘𝑔 𝛥𝑐𝑔  (3.22) 

where 𝑘𝑏, 𝑘𝑔, 𝑏 and  𝑔 are kinetic parameters, where 𝛥𝑐  denotes the absolute supersaturation 

(i.e. difference between the solute concentration ( 𝑐  )  and the solubility (𝑐𝑠𝑎𝑡) for a specific 

temperature value – See Chapter 2 for more information). It should be mentioned that 

supersaturation is the driving force for both nucleation and growth rates. Therefore, by tightly 

controlling the supersaturation, the nucleation can be supressed while at the same time the 

growth can be enhanced potentially leading to the generation of crystals with desirable CQAs: 

Larger crystals with reduced CSD. The absolute supersaturation can be calculated by: 

 𝛥𝑐 =  𝑐 − 𝑐𝑠𝑎𝑡    (3.23) 

The model parameters, physical properties and variables that are used for modelling the studied 

system are summarized in Table 3.1.  
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Table 3.1. Model parameters with 95% confidence intervals (C.I.), variables and physical properties 

utilized for the system Paracetamol in Water (Nagy et al., 2008) 

Model Inputs Values  

± 95 % C.I. 

 

Units 

𝑁𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑘𝑏 12.97 × 10−5  ± 0.0013 × 10−5 #/𝑠𝑒𝑐/𝜇𝑚3 
 

𝑁𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑏 6.2 ± 0.9 - 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑘𝑔 277 ± 82 𝜇𝑚/𝑠𝑒𝑐 
 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑔 1.5 ± 0.5 - 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝜌𝑐 1296 𝑘𝑔/𝑚3 

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑘𝑣 0.24 - 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 𝑠𝑖𝑧𝑒,  𝑟0 0 𝜇𝑚 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑚𝑎𝑥 318 𝐾 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑚𝑖𝑛 293 𝐾 

𝐵𝑎𝑡𝑐ℎ 𝑡𝑖𝑚𝑒, 𝑡𝑏 300 min 

𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 , 𝑐𝑠𝑎𝑡 (1.5846 × 10−5) 𝑇2 − (9.0567 × 10−3) 𝑇  

+ 1.3066 ,     𝑤𝑖𝑡ℎ 𝑇 𝑖𝑛 𝐾𝑒𝑙𝑣𝑖𝑛 

𝑘𝑔/𝑘𝑔𝑆𝑜𝑙𝑣𝑒𝑛𝑡 

 
 

 

3.2.2 Unseeded Batch & Continuous Cooling Crystallization of KDP  

In the second case study, the unseeded cooling crystallization of potassium dihydrogen 

phosphate (KDP) in water is modelled and optimized. The nucleation and growth kinetic 

parameters of KDP have been derived from the kinetic data given in Gunawan et al. (2004) and 

Majumder et al. (2013b). For this system, a two - dimensional (2D) PBM model is considered, 

meaning that the generated crystals are treated as having two characteristic lengths ( 𝑿 =

[𝒙𝟏, 𝒙𝟐] ). Furthermore, since two characteristic lengths are utilized which correspond to the 

length (𝒙𝟏) and the width (𝒙𝟐) of each crystal of the total population, respectively (see Fig. 3.1), 

bi- dimensional PBMs can be used to capture the dynamics of needle- or plate- like habit 

crystalline materials. Consequently, this mathematical representation can be utilized to model 

the size and shape of the crystals for batch and continuous non-isothermal crystallizers. 

As before, the model, described by the general PBEs (eq. 3.1 and 3.4), can be reduced from a 

partial differential equation (PDE) to a set of ordinary differential equations (ODEs) by using 

the joint standard method of moments (SMOM). For the 2D case, utilizing the SMOM as a 
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reduction method is not only related with improving the computational efficiency of the 

process, but also with practical aspects. In more detail, only average properties are needed for 

the determination of the mean sizes and mean aspect ratio (AR), which are the only size and 

shape related CQAs that can be monitored reliably based on up-to-date process analytical tools 

(PAT) capabilities, that are limited to on-line microscopy (e.g. Lasentec Particle Vision and 

Measurement V819 (PVM)). These measurements can be directly related to the moments (see 

eq. 3.31 – 3.33) and hence, utilizing the SMOM approach, since only nucleation and crystal 

growth is taking place during the cooling crystallization of KDP in water, can be considered 

the most relevant approach for investigating the dynamics of the process. Of course, more 

advanced numerical solution approaches, such as high-resolution finite volume (HR – FV), can 

also be utilized, if needed, for the full reconstruction of the CSSD (see Chapters 2 and 5 for 

more details). 

Figure 3.1. Graphical representation of the morphology of the KDP crystal. 

The joint moments for two characteristic dimensions  𝑿 = [𝒙𝟏, 𝒙𝟐], can be calculated by: 

 

𝜇𝑘,𝑚(𝑡) = ∫ ∫ 𝑥1
 𝑘

∞

0

∞

0

𝑥2
 𝑚 𝑛(𝑥1, 𝑥2, 𝑡)𝑑𝑥1𝑑𝑥2  ,   𝑘,𝑚 = 0,1,2…    (3.24) 

   

   

Hence, by applying the moment transformation rule (eq. 3.24) to the PBEs (eq. 3.1), 

considering the initial (eq. 3.2) and boundary condition (eq. 3.3), a finite set of ODEs can be 

acquired, which represents the PBEs coupled with the mass balance for a single batch stage 

operated at a constant volume: 

𝑥1 

𝜃 

𝑥2 

ሼ𝟏𝟎𝟎ሽ 

ሼ𝟏𝟎𝟏ሽ 
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 𝑑𝜇0,0

𝑑𝑡
=  𝐵   (3.25) 

 
  
𝑑𝜇𝑘,𝑚

𝑑𝑡
=  𝑘 𝐺1 𝜇𝑘−1,𝑚 + 𝑚 𝐺2 𝜇𝑘,𝑚−1   , 𝑘,𝑚 = 0,1,2,…    (3.26) 

 𝑑𝑐

𝑑𝑡
= −𝜌𝑐   (𝐺1𝜇02 + 2𝐺2𝜇11 − 2𝐺2𝜇02 tan𝜃) (3.27) 

   

where 𝐺1 and 𝐺2 are the size - independent growth rates along the length and width of the 

crystals and 𝐵  is the nucleation rate (as before in the 1D case). This set of ODEs (eq. 3.25, 

3.26) coupled with the component mass balance (eq. 3.27), for the solute, describes a 

comprehensive moment - based model for crystallization processes suitable for a 2D batch 

cooling crystallization process. 

Similarly, the set of ODEs describing an 𝑁 – stage MSMPR crystallizer coupled with the mass 

balance, can be given by: 

 𝑑𝜇0,0

𝑑𝑡

( 𝑗 )

=
𝑉𝑗

𝑉𝑗−1 𝜏𝑗−1
𝜇0,0

(𝑗−1) −
1

𝜏𝑗
𝜇0,0

( 𝑗 ) +  𝐵 𝑖  (3.28) 

 

 𝑑𝜇𝑚,𝑟

𝑑𝑡

( 𝑗 )

=
𝑉𝑗

𝑉𝑗−1 𝜏𝑗−1
𝜇𝑚,𝑟

( 𝑗−1 ) −
1

𝜏𝑗
𝜇𝑚,𝑟

( 𝑗 ) + 𝑚 𝐺1 𝜇𝑚−1,𝑟
( 𝑗 )

+ 𝑟 𝐺2 𝜇𝑚,𝑟−1
( 𝑗 )  

(3.29) 

 

 𝑑𝑐 

𝑑𝑡

( 𝑗 )

=
 𝜀𝑗−1

 

𝜏𝑗 
𝜀𝑗

 (𝑐𝑗−1 − 𝑐𝑗) − (
 𝜌𝑐 − 𝑐  

𝜀𝑗
 

) 𝑅𝑉

 

 (3.30) 

   

 𝑑𝑐𝑠𝑣 

𝑑𝑡

( 𝑗 )

=
 𝜀𝑗−1

 

𝜏𝑗 
𝜀𝑗

 (𝑐𝑠𝑣,𝑗−1 − 𝑐𝑠𝑣,𝑗) − (
 𝑐  

𝜀𝑗
 
) 𝑅𝑉

 

 (3.31) 

 

 𝑗 = 1,2,… , 𝑁  

where 𝑐𝑠𝑣 denotes the concentration of the solvent and therefore the mass balance of the solvent 

is given by eq. 3.31. Also, 𝜀𝑗  is the volumetric ratio of solution (i.e. partial volume of solution 

in the suspension) and  𝑅𝑉 denotes the rate of change of the total volume of the crystals in a 

unit volume of suspension and these properties can be calculated respectively from the 

following expressions: 

 𝜀𝑗(𝑡) = 1 − 𝑉𝑐(𝑡) = 1 − 𝜇1,2(𝑡)   (3.32) 
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 𝑅𝑉(𝑡) = (∫  

∞

0

∫ 𝐺1(𝑥1, 𝑡)  𝑥2
2 𝑛(𝑥1, 𝑥2, 𝑡)𝑑𝑥1𝑑𝑥2

∞

0

+ ∫  
∞

0

∫ 𝐺2(𝑥2, 𝑡) 𝑥1 𝑥2
  𝑛(𝑥1, 𝑥2, 𝑡)𝑑𝑥1𝑑𝑥2

∞

0

)

=  (𝐺1 𝜇0,2 + 2 𝐺2 𝜇1,1  )   

(3.33) 

More information regarding the mathematical formulation presented above coupled with mass 

and heat balance for a 2D MSMPR can also be found in the literature (Lakatos, 2007; Szilágyi 

et al., 2015). It is critical to be emphasized that the generated set of ODEs for the continuous 

2D case present strong stiffness and therefore a transformation into normalized dimensionless 

state variables was performed in this work, as described comprehensively by Lakatos (2007). 

It should be also noted that for the same reason mentioned before, the solution volume of each 

crystallizer is considered to remain constant (see subsection 3.1.1 for more information).  

2D PBM moment- based models require a higher number of joint moments for the estimation 

of the CSSD comparing to 1D PBMs. The interpretation of the most critical joint moments is 

as follows: μ0,0 is the total number of crystals and 𝜇1,2 represents the crystal volume in a unit 

volume of suspension. Although these are the only joint moments that have a physical meaning, 

other ones can also be used to determine other key properties of the crystal population. 

Furthermore, moments can be utilized to determine the mean crystal sizes (eq. 3.34, 3.35) of 

the total population of each characteristic length, while the mean aspect ratio of the crystals (eq. 

3.36) can be estimated by the division of the mean sizes as illustrated below: 

 

 

 𝑀𝑒𝑎𝑛 𝑙𝑒𝑛𝑔𝑡ℎ: 𝑥̅  1
 =

𝜇0,1

𝜇0,0
  (3.34) 

 

 𝑀𝑒𝑎𝑛 𝑤𝑖𝑑𝑡ℎ: 𝑥̅  2
 =

𝜇1,0

𝜇0,0
 (3.35) 

 

 
𝐴𝑅 =

𝑥̅  1
 

𝑥̅  2
  (3.36) 
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Tab3le 3.2. Crystallization model parameters, variables and physical properties utilized for modelling 

the system potassium dihydrogen-phosphate (KDP) in Water (Togkalidou et al., 2001; Gunawan et al., 

2004; Majumder et al., 2013b; Szilágyi et al., 2015; Borsos et al., 2016) 

 

Model Inputs 

 
 

Values   

 

Units 

𝑁𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑘𝑏 7.49 × 10−8 #/𝜇𝑚 /𝑠 

𝑁𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑏 2.04 - 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑘𝑔1 100.75 𝜇𝑚/𝑠 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑔1 1.74 - 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑘𝑔2 12.1 𝜇𝑚/𝑠 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑔2 1.48 - 

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑘𝑣 0.040 - 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 𝑠𝑖𝑧𝑒,  𝑟0 0 𝜇𝑚 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑚𝑎𝑥 313 𝐾 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝑚𝑖𝑛 293 𝐾 

𝐵𝑎𝑡𝑐ℎ 𝑡𝑖𝑚𝑒, 𝑡𝑏 180 min 

𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 , 𝑐𝑠𝑎𝑡
  (9.3027 × 10−5) 𝑇2

− (9.7629 × 10−5) 𝑇  

+ 0.2087 ,     𝑤𝑖𝑡ℎ 𝑇 𝑖𝑛 𝐾𝑒𝑙𝑣𝑖𝑛 

𝑘𝑔/𝑘𝑔𝑆𝑜𝑙𝑣𝑒𝑛𝑡 

 
 

 

The volume of a single crystal takes the form: 

 𝑢𝑐 =  𝑥1 𝑥2
2 (3.37) 

, while the macroscopic total volume of crystals can be estimated by 

 𝑉𝑐(𝑡) = 𝜇1,2(𝑡)  (3.38) 

The empirical power - law expressions utilized for the calculation of the nucleation and crystal 

growth kinetics are the following ones: 

 𝐵 = 𝑘𝑏  𝜎
𝑏 (3.39) 

 𝐺1 =  𝑘𝑔1 (𝜎)𝑔1   (3.40) 

 𝐺2 =  𝑘𝑔2 (𝜎)𝑔2   (3.41) 
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 𝜎 =
𝑐 − 𝑐𝑠𝑎𝑡

𝑐𝑠𝑎𝑡
 (3.42) 

, where  𝑘𝑏 , 𝑏 , 𝑘𝑔1, 𝑔1 , 𝑘𝑔2  and 𝑔2 are the kinetic parameters, while 𝜎  denotes the relative 

supersaturation.  

The model parameters, physical properties and variables that are used for modelling the studied 

system are summarized in Table 3.2. 

3.3 Optimization Problem Formulation 

Mathematical optimization, which is inextricably linked to chemical process design, has been 

mainly utilized in crystallization for many years with the scope of identifying optimum process 

operation conditions that will improve single key performance indicators (KPIs) associated with 

a process or a combination of processes (e.g. flowsheet modelling). Consequently, applying 

optimization techniques by considering different KPIs can lead to the identification of the 

boundaries, which define a certain feasible region (FR), comprising the values of the final 

product attributes, which can be attained for a certain process. It should be mentioned that other 

model-based approaches have also been proposed through the years for the construction of the 

attainable region, which are simulation-based (Giordano et al., 2011). Although the latter 

methodology can be accurately calculated by incorporating certain constraints, it presents 

limitations when more complexity is added to the process (e.g. superstructures commonly used 

in flowsheet modelling). In more detail, utilizing large number of simulations to map the FR 

cannot be used as a robust methodology since implementing constraints for multiple processes 

can become quite challenging. Also, solution of high number of simulations is required in order 

the FR to be estimated accurately making this approach computational demanding. Hence, 

employing optimization approaches seems to be more relevant.  

The idea of utilizing optimization techniques to identify all possible attained states was first 

presented by Horn (1964) for the process design of chemical reactors, which formed the basis 

of what is called today ATR theory. ATR theory is essentially a graphical method that can be 

utilized to explore the entire feasible operation space, and consequently can be used for the 

identification of a reactor superstructure (see Figure 3.2) that will yield products with the 

desired or optimal attributes. Moreover, ATR theory is a systematic methodology that accounts 

all possible outputs (related to product’s attributes) that can be generated not only by varying 
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the CPPs (i.e. inputs) but also exploring all possible combinations of different reactor types, 

mixing conditions, potential recycle loops and/or side streams and etc. (Ming et al., 2016).  

 

Figure 3.2. (a) A continuous stirred tank reactor (CSTR) configuration that approximates a plug flow 

reactor (PFR) (b) Example of a reactor superstructure (Adapted from Ming et al. (2016)). 

Although this theory has been extensively applied in the areas of chemical reaction engineering, 

mixing and separation (Glasser et al., 1987; Hildebrandt and Glasser, 1990; Nisoli et al., 1997; 

Feinberg and Hildebrandt, 1997; Ming et al., 2013; Ming et al., 2016), it was only recently 

applied for crystallization processes utilizing 1D PBMs for perfectly mixed MSMPRs, semi-

batch crystallizers and PFCs (Vetter et al., 2014; Power et al., 2015; Wang and Lakerveld, 

2017). A schematic that could illustrate potential combinations of only two crystallizers is 

depicted in Figure 3.3. Hence, it becomes apparent that even with just considering a small 

number of crystallizers, a variety of operational alternatives exist which should be explored. Of 

course, some of these alternatives could be easily excluded based on the design constraints or 

prior in-house experience. For instance, for the reasons mentioned above, the utilization of 

PFCs and COBCs can be excluded since they cannot be considered as a practical option for 

continuous cooling crystallization. As it is clearly illustrated in Figure 3.3, introducing process 

recycle could also be a possibility to increase the residence time. However, it has been 
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demonstrated both experimentally and numerically by Benyahia et al. (2012) that introducing 

recycle streams can create systematic saturation with the impurities, which is why typically a 

purge is required on all recycle streams. Consequently, the implementation of recycling will 

require enhanced purification, while it decreases the capacity of the configuration with respect 

of rejecting non-routine process disturbances. Based on that, recycling is not going to be 

considered in the current work. 

Figure 3.3. Graphical representation of possible combinations of different types of crystallizers, 

including potential recycle loops, feed and outflow streams. 

The solution approach for the construction of ATRs can be summarized in three basic steps: 

1. Consider different combinations of the available equipment 

2. Find best configuration 

3. Optimize based on the identified best configuration 
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Although, 2 and 3 are presented as separate steps, they should be considered simultaneously. 

In more detail, the comparison needs to be representative and therefore it should be based on 

the optimum performance of the potential configurations.  

The superstructures can be illustrated mathematically by a system of differential algebraic 

equations (DAEs). To optimize the generated model, the key performance parameters are 

checked against one or multiple objective functions (i.e. higher dimensional ATRs) to 

determine optimal performance. The optimization problem formulation can be described as 

maximizing and minimizing the objective functions (e.g. Objective functions: mean crystal 

size, standard deviation of the distribution, process time, etc.) which are subject to a set of 

constraints, such as yield, initial and final temperature conditions.  

As has already been mentioned, in the design of crystallization processes, the crystal size and 

shape and their corresponding distribution, are the CQAs for many pharmaceutical applications. 

Therefore, the ATRs of crystal size and the standard deviation related to the size distribution is 

investigated for the 1D case study, while the attained mean sizes, shape (i.e. mean aspect ratio) 

and their corresponding deviation are considered for the 2D case. Of course, depending on the 

number of CQAs assessed, either single-objective or multi-objective optimization problems can 

be formulated. Hence, optimization studies are carried out in different ways.  

Since cooling batch crystallization processes are considered, the aim is to determine the optimal 

cooling rate/profile, which will generate the appropriate level of supersaturation over the time 

to produce particles with the desirable CQAs defined by the objective functions and subjected 

to several constraints. The optimization problem can be formulated as shown below: 

 max/min
𝑇(1),𝑇(2),…,𝑇(𝑃) 

𝐽𝑜𝑏𝑗(𝑡)    (obj.3.1) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑇𝑚𝑖𝑛 ≤  𝑇𝑖  ≤   𝑇𝑚𝑎𝑥  (c.3.1) 

 
0 ≤ 𝑅𝑚𝑖𝑛 ≤

𝑑𝑇

𝑑𝑡
≤ 𝑅𝑚𝑎𝑥  (c.3.2) 

 𝑡 ≤ 𝑡𝑓𝑖𝑛𝑎𝑙 (c.3.3) 

 𝑦𝑖𝑒𝑙𝑑1 = 𝑐(𝑡𝑓𝑖𝑛𝑎𝑙) − 0.6 𝑐0  ≤ 0  (c.3.4) 
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where 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥,  𝑅𝑚𝑖𝑛 and  𝑅𝑚𝑎𝑥 are the minimum and maximum temperature and 

temperature ramp rates respectively. Different objective functions were utilized,  𝐽𝑜𝑏𝑗 = [𝐿  10
 ], 

  𝐽𝑜𝑏𝑗 = [𝑆𝑑]  and  𝐽𝑜𝑏𝑗 = [𝐿  10
  , 𝑆𝑑] for the 1D PBM and  𝐽𝑜𝑏𝑗 = [𝑥̅  1

 , 𝐴𝑅] ,   𝐽𝑜𝑏𝑗 =

[𝑥̅  1
 , 𝐴𝑅, 𝑆𝑑1] and   𝐽𝑜𝑏𝑗 = [𝑥̅  1

 , 𝐴𝑅, 𝑆𝑑1, 𝑆𝑑2] for the 2D PBM. The total batch time (𝑡𝑓𝑖𝑛𝑎𝑙) is 

set at fixed value and used as a constraint (c.3.1). The inequality constraint described by the 

expression c.3.2 guarantees that the temperature trajectory is monotonically decreasing which 

prevents dissolution, while the expression c.3.1 sets the upper and lower temperature bounds. 

The implementation of the temperature ramp rates (expression c.3.2) is related to the cooling 

capabilities of the utilized heat exchangers and, in this case, was selected to keep the cooling 

rates boundaries within the range of 0 to –2 ℃/𝑚𝑖𝑛.  The final constraint (c.3.4) allows the 

consideration of the desirable yield. The problem defined above is a dynamic optimization 

problem where the temperature 𝑇(𝑡) is the control variable. Hence, the input temperature 

trajectories were discretized as a piecewise linear function (piecewise continuous) with a finite 

number of decision variables over time (Sarkar et al., 2006; Acevedo et. al., 2015; Hemalatha 

and Rani, 2017). The batch time is discretized into 𝑃 equal steps in the time interval [0, 𝑡𝑓𝑖𝑛𝑎𝑙] 

– by the expression described in equation 3.43. Then, by solving the optimization problem, an 

optimal control vector can be determined at each iteration (eq. 3.44). 

 
𝑡 = 0: 

𝑡𝑓𝑖𝑛𝑎𝑙 − 𝑡0

𝑃
∶ 𝑡𝑓𝑖𝑛𝑎𝑙 (3.43) 

 
𝑇(𝑡) = 𝑇(𝑙) + 

( 𝑇(𝑙 + 1) − 𝑇(𝑙)) (𝑡 − 𝑡(𝑙))

𝑡𝑓𝑖𝑛𝑎𝑙 𝑃⁄
 (3.44) 

 𝑙 = 1,2, … , 𝑃.  

In contrast to optimize the MSMPR configurations, the methodology is simpler since the 

optimization is a traditional nonlinear programming (NLP) problem where a steady-state model 

is used and the control variables are time independent. The maximal/minimal attainable mean 

crystal size of the 𝑁 stage crystallizer ( 𝑥̅  𝑚𝑒𝑎𝑛,𝑁
 ), considering a certain number of MSMPRs 

and fixed total residence time, can be estimated by solving the following single-objective non-

linear optimization problem:  
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 max/min
 𝑇𝑖,𝜏𝑖

𝑥̅  𝑚𝑒𝑎𝑛,𝑁
   (obj.3.2) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:         ∑𝜏𝑖 = 𝜏𝑡𝑜𝑡𝑎𝑙

𝑁

𝑖

  (c.3.5) 

  𝑇𝑚𝑖𝑛 ≤  𝑇𝑖  ≤   𝑇𝑚𝑎𝑥 (c.3.6) 

 𝑦𝑖𝑒𝑙𝑑2 =  
𝑐0 − 𝑐𝑁

𝑐0  − 𝑐𝑠𝑎𝑡
 ≥  0.95  (c.3.7) 

where 𝑐0 , 𝑐𝑁 and 𝑐𝑠𝑎𝑡 are the feed (i.e. initial) stream concentration, the MSMPR steady-state 

concentration in stage 𝑁   and the equilibrium concentration of the corresponding operating 

temperature also in stage 𝑁    respectively. For the MSMPR case studies, the fractional yield is 

utilized, which represents the amount of material obtained in a specific stage during the 

crystallization process relative to the amount of the available supersaturation and it can be 

described by expression c.3.7. The yield requirement is set to be  ≥  0.95, meaning that only 

configurations yielding more than this value can be considered as valid solutions of the 

optimization problem. Of course, in general, this can change depending on the system and the 

imposed design requirements. It has been proven by Vetter et al. (2014) that the more stringent 

the yield constraint is, the narrower the boundaries of the ATR should be. Also, the total 

residence time (𝜏𝑡𝑜𝑡𝑎𝑙) in the multi-stage MSMPR is introduced as a constraint (expression 

c.3.5) and it is a fixed value. 

The decision variables of the presented optimization problem are the temperature and the 

residence time of each crystallizer, while the remaining process variables, such as the total 

residence time, number of crystallizers and the initial and final temperature are kept fixed. Of 

course instead of 𝑥̅  𝑚𝑒𝑎𝑛,𝑁
  other objective functions can be employed, as described before (i.e. 

  𝐽𝑜𝑏𝑗,1𝐷 = [𝐿  10
  , 𝑆𝑑] and  𝐽𝑜𝑏𝑗,2𝐷 = [𝑥̅  1

 , 𝐴𝑅, 𝑆𝑑1, 𝑆𝑑2]. 

The solution of the objective function (obj.3.2) provides the boundaries of the ATR, meaning 

the maximal/ minimal points with respect to different process time, as shown in Figure 3.4. 

However, in order to construct the whole feasible region an additional single point is required. 

Moreover, an extra optimization problem needs to be performed for the identification of the 

minimum time needed in order all the requirement constraints posed in the latter optimization 

problem to be fulfilled. This corresponds to the point that both local minima/maxima are located 
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to the same exact point and consequently the system reaches its limit under certain constraints 

(see Figure 3.4). 

 
Figure 3.4. Construction of the attainable region of particle size for a cascade of 3 MSMPR crystallizers 

for the cooling crystallization of paracetamol in water. The optimization problems solved for the 

determination of the FR are indicated by the equations and the arrows respectively. 

This single point can be directly estimated through the following optimization (obj.3.3): 

 min
 𝑇𝑖,𝜏𝑖

 𝜏   (obj.3.3) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:         ∑𝜏𝑖 = 𝜏𝑡𝑜𝑡𝑎𝑙

𝑁

𝑖

  (c.3.8) 

  𝑇𝑚𝑖𝑛 ≤  𝑇𝑖  ≤   𝑇𝑚𝑎𝑥 (c.3.9) 

 𝑦𝑖𝑒𝑙𝑑2 =  
𝑐0 − 𝑐𝑁

𝑐0  − 𝑐𝑠𝑎𝑡
 ≥  0.95   (c.3.10) 

The formulated optimization problems (obj. 3.1, 3.2 and 3.3) belong to the category of 

constrained nonlinear programming problems (NLP). The optimization problems are expected 

exhibit many local optima and therefore, classical derivative-based optimization algorithms are 

not recommended since they could easily be stuck in local maxima/minima. Although global 

nondeterministic optimization algorithms cannot guarantee that the global optimum can be 

found, they can increase considerably the probability of doing so. Hence, in this work, global 

and hybrid approaches were utilized to calculate the operating profiles. Moreover, the global 
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approach was comprised by the application of genetic algorithm while the hybrid method 

consisted of the combination of genetic algorithm with sequential quadratic programming 

(SQP), which is a local gradient based algorithm (Beers, 2006). It should be mentioned that for  

the multi-objective optimization, a real-coded elitist nondominated sorting genetic algorithm 

(NSGA) was employed (Deb, 2001). 

The genetic algorithm (GA) is a stochastic (heuristic) optimization method widely utilized for 

solving both constrained and unconstrained optimization problems. The algorithm 

fundamentally mimics the biological evolution (i.e. natural selection) to find the best 

individuals within given generations. By mutation, crossover and selection the individual 

solutions evolve from one generation to the other and converge towards an optimal solution 

based on biological principles of selection. The modification of the population consists in 

selecting the fittest individuals of the population and rejecting the rest of them, which are 

significantly outperformed by the former ones. The genetic algorithm presents major 

differences compared to the gradient based methods. Instead of generating one point at each 

iteration, as in the case of the gradient based methods, a population of points is created. From 

this population the best points (i.e. fittest points) – which are the ones that outperform the rest 

of the generations – are retained and used for crosslinking to generate new offspring that will 

improve the next generation. Additional, individuals randomly generated are added to complete 

the next generation and prevent the algorithm from being stuck at a local optimum. In contrast, 

the classical methods chose the next point in the sequence by utilizing a deterministic 

computation. More information regarding the employed optimization algorithms could be 

found in the literature (Deb, 2001; Beers, 2006; Sivanandam and Deepa, 2008; Sharma and 

Rangaiah, 2013; Wang and Wu, 2013). 

In this section, a general systematic methodology is presented for the determination of the FR 

for both batch and continuous crystallization systems. The presented methodology can account 

numerous combinations of different crystallizers but also it can be easily extended to account 

additional process variants such as, recycle operations, product classifiers, fines dissolutions 

loops, membranes etc. (Vetter et al. 2014; Wang and Lakerveld, 2017).  
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3.4 Results and Discussion 

To validate the methodology described in section 3.3 two well-studied cooling batch 

crystallization systems have been used as case studies: the cooling crystallization of 

paracetamol grown from an aqueous solution and the cooling crystallization of potassium 

dihydrogen phosphate (KDP) in water. For both case studies, batch and continuous mode of 

operation were considered.  It should be highlighted that the same kinetic expressions and 

parameter values were employed for modelling and optimization of both modes of operation.  

Even though, the same experimental configurations as presented in literature were considered, 

the kinetics of a chemical system can vary depending on the corresponding mode of operation, 

since different operating conditions will be generated. Although, some of the key operating 

variables could be set to certain values (e.g. initial and final temperature, initial supersaturation, 

etc.) there are other ones, such as the hydrodynamics, the supersaturation, the suspension 

density, the residence time and its corresponding distribution, and the heat transfer within the 

bulk (i.e. cooling rate and temperature trajectory) that will significantly vary. Therefore, in 

order to account of these variations, the parameters should be re-estimated when a different 

mode of operation is employed, otherwise there is the possibility that the kinetics may not 

represent the true rates, which consequently will lead in calculation errors. At the same time, it 

has been demonstrated (Garside et al., 1982; Palwe et al., 1985) that the parameter identification 

studies should be conducted in a batch mode, since data with higher information content due to 

the dynamic nature of the batch operated crystallization can be obtained compared to utilizing 

a continuous steady-state MSMPR crystallizer (Rawlings et al., 1993). Moreover, by employing 

batch crystallization, transient responses can be used to identify the kinetic parameters reliably 

since the whole range between the metastable zone width (MSZW) can be investigated. Other 

advantages relate to the large number of operating conditions that can be studied in a short time, 

while minimum development time and investment is required for the operation of a batch 

crystallizer (Rawlings et al., 1993). Thus, even when kinetics are needed for the description of 

a continuous process, batch experiments should be conducted in combination with continuous 

ones for the efficient determination and validation of the model parameters. Hence, it is 

common in modelling studies, during the initial development stages, for parameter kinetics 

from batch crystallization to be utilized for the process design and development of continuous 

processes (Mersmann, 2001; Lakatos, 2007; Vetter et al. 2014; Vetter et al. 2015; Szilágyi et 

al., 2015). In this study the same assumption was adopted for practical purposes since the 
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availability of kinetic data is rather limited for both modes of operation. Therefore, it was 

considered that the parameter estimates for both systems do not deviate significantly with 

respect to the mode of operation and they can be used reliably in the design of both batch and 

continuous cooling crystallization processes based on the same process geometry (i.e. stirred 

tank reactor (STR) design) agitation conditions and dimensions.  

Another point of discussion is related to the construction of the ATR. The crystallization kinetic 

parameters and certain operating process variables are required for the determination of the 

ATR. The crystallization kinetic parameters that were obtained from the literature (see Table 

3.1 and Table 3.2) characterize primary nucleation and crystal growth phenomena, which are 

the main mechanisms observed during the crystallization of the investigated systems. Of course, 

the same methodology can be employed to cope with additional complexity and phenomena, 

but limitations arising from the numerical solution of the PBM should also be considered. The 

implementation of SMOM, for example, is limited to describe primary and secondary 

nucleation, size-independent growth phenomena and binary breakage (see Chapter 2 for more 

details). Therefore, more advanced schemes, such as HR-FVM, need to be utilized if additional 

phenomena are present. Also, it should be noted that MSMPR crystallizers can exhibit multiple 

steady states depending on the dominant nucleation mechanism and the employed kinetic 

expressions (Sherwin et al, 1967; Lakatos, 2007b) and consequently stability analysis should 

be conducted if there is uncertainty regarding the uniqueness of the steady state. Moreover, the 

presence of secondary nucleation might generate multiple (e.g. one, two or even three) steady 

states (Lakatos, 1996). In contrast, the presence of primary nucleation can eradicate the steady 

state output multiplicity. Especially, in the case where primary nucleation is the dominant 

mechanism, it can be guaranteed that the crystallizer will demonstrate a unique steady state 

(Lakatos, 1992). Therefore, the considered case studies are considered to exhibit unique steady 

states and no further stability analysis should be conducted. The second aspect, is associated 

with the operating variables, such as the temperature initial and final values. Whereas the 

feeding conditions and/or properties are usually determined by the process preceding 

crystallization, and therefore cannot be manipulated, the outlet properties can be varied with 

respect of achieving the desired KPIs under certain economic and supply chain constraints. For 

instance, obtaining a specific yield is more critical than producing crystals of a certain size 

(Power et al., 2015). Besides improving the process efficiency and production level (i.e. 

maximize the recovered solute fraction), achieving high yield is also critical since it is related 

with the exit temperature and exit supersaturation. In more detail, obtaining a low yield means 
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that the solute concentration within the bulk would be high after the end of crystallization. 

Hence, this means that potential changes of temperature (i.e. hot slurry that cools down) and/or 

concentration (i.e. solvent removal) during filtration might create local supersaturation 

gradients. Consequently, uncontrolled crystallization can take place causing changes in CSSD. 

Additional to that, it can also increase significantly the probability of blockage to occur. As a 

result, this can have a major impact on the filtration and drying time (i.e. processability) and 

flowability of the product. Therefore, it becomes essential a high yield to be achieved during 

crystallization processes. Without doubt, changing these constraints would have an immediate 

effect on the FR with respect to the absolute attained states. In consideration of the foregoing, 

the operating variables, CPPs and constraints were chosen to be realistic for pharmaceutical 

applications.  

3.4.1 Case Study 1: Unseeded Batch & Continuous Cooling Crystallization 

of Paracetamol 

3.4.1.1 Batch Crystallization of Paracetamol 

The modelling of the paracetamol crystallization is conducted by utilizing the kinetic, 

thermodynamic properties and operating conditions as presented in Table 3.1. The temperature 

limits were set to 318 𝐾 (45℃) and 293 𝐾 (20℃) corresponding to the maximum and 

minimum allowed temperature respectively, while the yield was constrained by the expression 

C.3.4, which forces the system to reach the temperature bounds in order the desirable yield to 

be achieved. Initially, three different cooling profiles were applied: natural, linear and cubic 

(aka controlled) for comparison purposes followed by the optimum profile, as shown in Figure 

3.5.  

For the estimation of the optimum profile, cooling trajectories were generated randomly 

through the utilization of the genetic algorithm in conjunction with SQP algorithm (i.e. hybrid 

algorithm) with the scope of maximizing the number mean size  𝐿  10
 
 . The cooling rate and the 

subsequent applied temperature trajectory are critical since they dictate, in conjunction with the 

system’s kinetic parameters, the position in the metastable region and the temperature before 

the nucleation is generated. This is illustrated clearly in Figure 3.5, where the implementation 

of different temperature profiles leads to the generation of different trajectories on the phase 

diagram (see Figure 3.5c).  
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Figure 3.5. (a) Temperature, (b) solute concentration and (c) phase diagram trajectories obtained from 

the implementation of different cooling strategies: Natural, Linear, Cubic and Optimal cooling.  

 

 
Figure 3.6. (a) Nucleation rate, (b) growth rate and (c) supersaturation trajectories obtained from the 

implementation of different cooling strategies: Natural, Linear, Cubic and Optimal cooling.  
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Figure 3.7. (a) 𝜇0, (b)  𝜇1, (c)  𝜇2 and (d)  𝜇3 trajectories obtained from the implementation of 

different cooling strategies: Natural, Linear, Cubic and Optimal cooling.  

Applying a fixed temperature set-point during the cooling stage of a crystallization process will 

result in a natural profile following an exponential trajectory, as presented in Figure 3.5. The 

initial high cooling rate induced in a natural cooling profile, can create very high 

supersaturation, which consequently will result in excessive uncontrolled nucleation, as 

illustrated in Figure 3.6. This high cooling rate creates a large temperature gradient which 

consequently leads to high supersaturation. During the cooling process the system crosses the 

solubility curve and enters the metastable zone, after being initially in an undersaturated state 

(see Figure 3.5c). In the case of natural cooling, the increased cooling rate might lead the 

system to cross the MSZW and enter the labile region, where uncontrolled excessive primary 

nucleation occurs (see Figure 3.6). Therefore, at this stage, a high number of nucleus (embryos) 

are formed, which will consequently generate a large number of crystals, as illustrated by the 

high value of 𝜇0 (see Figure 3.7). Most significantly, the formed crystals present the lowest 

mean crystal size (see Figure 3.8) in comparison with the other utilized temperature 

trajectories, since the generated supersaturation (i.e. driving force of crystallization), is depleted 

for rapid growth of a large number of small crystals. In more detail, the high supersaturation 

which is created at the beginning, and reaches its peak at 𝑡 = 20 𝑚𝑖𝑛𝑠, is used to produce high 

nucleation rates until 𝑡 = 40 𝑚𝑖𝑛𝑠, when it can be noticed that due to the depletion of the 

supersaturation the nucleation and growth rate are considerably reduced, reaching gradually 

(after 20 𝑚𝑖𝑛𝑠) a steady-state, which signifies the end of the crystallization process (Figures 

3.5 – 3.9). Of course, it should be highlighted that by utilizing a natural profile the width of the 
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CSD seems to obtain the smallest value in comparison with the rest of the temperature 

trajectories, which can be seen by noticing the dynamic trajectory of the standard deviation of 

the distribution in Figure 3.9. This was highly expected since the natural cooling trajectory 

presents/ high nucleation and low growth rates under a short time-span, which results in the 

generation of a high number of crystals with very low supersaturation for their subsequent 

growth, and consequently with the limited capability to vary considerably with respect to their 

size. Another consequence of employing a natural profile might be excessive growth at the 

crystallizer wall generated by local high supersaturation at the cooling surface (Tung et al., 

2008). 

On the other hand, the optimum profile creates high supersaturation at the beginning to initiate 

crystallization, and then maintains the supersaturation at a nearly constant value within the 

metastable zone for the rest of the batch (Figure 3.6c). Due to the initial temperature drop, a 

small number of nucleus are generated, which corresponds to the lowest number of formed 

crystals comparing to the rest of the profiles, as presented in Figure 3.7a. The growth rate 

corresponding to the optimum trajectory remains constant after the initiation of nucleation, 

resulting to a nearly linear increase of the mean size. It can also be noticed that the rest of the 

moments follow similar trends (see Figure 3.7). The linear and cubic profile on the other hand, 

utilize cooling rates that are much slower at the initial stages of the natural cooling and their 

results are presented in in Figures 3.5 – 3.9.  

 
Figure 3.8. (a) Number, (b) Sauter and (c) weight mean size trajectories obtained from the 

implementation of different cooling strategies: Natural, Linear, Cubic and Optimal cooling. 
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Figure 3.9. Standard deviation ( 𝑆𝑑) trajectories obtained from the implementation of different cooling 

strategies: Natural, Linear, Cubic and Optimal cooling.  

So, it becomes rather obvious that there is a trade-off between nucleation and growth rates and 

the optimum temperature trajectory for nucleation (i.e. high number of crystals) does not 

correspond to the optimum one for promoting crystal growth (i.e. larger crystals). Essentially, 

in order for crystal growth to be promoted, the supersaturation needs to be maintained low when 

the available crystal surface area for growth is low and it can be gradually increased with respect 

to the growing surface area. In other words, ideally the utilized temperature trajectories should 

match the corresponding cooling rate with respect to the increasing surface area of the crystals 

(i.e. 𝜇2). Based on that, by utilizing the optimum temperature trajectory a population of crystals 

with the largest mean size, which has been the objective function for this study, can be obtained, 

since the supersaturation is generated dynamically over the whole batch time, allowing crystals 

to grow. The utilization of the optimum temperature profile has also an immediate effect on the 

products’ CSD since it is significantly broader comparing to the rest of the presented profiles, 

as illustrated in Figure 3.9.  

Therefore, it becomes apparent that by running the process under different operating conditions, 

such as various cooling trajectories with respect to different process time, a region can be 

obtained that corresponds to the systems’ ATR. Moreover, with the objective to  

max/min
𝑇(1),𝑇(2),…,𝑇(𝑃) 

𝐿  10
 , dynamic optimization is performed by considering different end batch time, 

𝑡𝑏𝑎𝑡𝑐ℎ. The results of the generated ATR are illustrated in Figure 3.10. The optimum dynamic 

trajectories corresponding to the max/min 𝐿  10
 are described by the blue lines, while the black 

dotted lines demonstrate the dynamic trajectories in the case that linear cooling is applied for 

[𝜇
𝑚

] 
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comparison purposes. By connecting the end points of the attained states of the dynamic profiles 

(red dotted line) the FR of the process can be obtained and consequently the boundaries of the 

FR are determined for the cooling crystallization of paracetamol in water system under the 

given process operating and supply chain constraints. It is also confirmed that the utilization of 

a linear cooling profile, provides a quite narrow feasible design space and it cannot be used for 

the determination of the ‘‘real’’ ATR. 

 
Figure 3.10. Attainable region of particle size with respect to time for the cooling batch crystallization 

of paracetamol in water. (−.  𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 (𝐴𝑇𝑅); − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐦𝐚𝐱  /

 𝐦𝐢𝐧   𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 ; ) 

 

 

Figure 3.11. Solute concentration profiles obtained corresponding to the attainable states. 
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Besides the determination of the ATR for the number mean crystal size, 𝐿  10
 , simulating the 

dynamic trajectories of the rest of the CPPs is also essential for process understanding purposes. 

Furthermore, in Figure 3.11, the dynamic profiles of the solute concentration are presented 

corresponding to the optimum profiles for a certain time. Also, alongside the number mean size 

and the Sauter mean size (𝐿  32
  ), the dynamic profiles and the attained states of the standard 

deviation ( 𝑆𝑑  ) are illustrated as well in Figure 3.12, while the trajectories of the remaining 

key moments, in terms of information content, are presented in Figure 3.13. 

 

 

Figure 3.12. Attainable regions of (a) number mean size (𝐿  10
  ), (b) Sauter mean size (𝐿  32

  ) and (c) 

standard deviation ( 𝑆𝑑  ) with respect to batch time. 

 

Figure 3.13. Attainable regions of (a) 𝜇0, (b)  𝜇1, (c)  𝜇2 and (d)  𝜇3 with respect to time. 
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One key point that should be discussed is related with the trade-off between mean size and 

CSD. It can be easily observed by Figures 3.8, 3.9 and 3.12, that the mean size and the standard 

deviation of the distribution are non-linear competing objectives: In this case, for instance, by 

maximizing the mean size the 𝑆𝑑 may increase as well, which is of course undesirable since the 

final product quality performance indicators (e.g. bioavailability, tablet stability, dissolution, 

dosage form etc.), as well as the downstream processability (e.g. filtration, drying etc.) can be 

significantly affected. In most cases, the desired product crystals should have large 𝐿10 and low 

𝑆𝑑 as the efficiency of the filterability of the product slurry can be significantly increased. 

Consequently, in order for the analysis to be more comprehensive both objectives need to be 

considered. 

Typically, real-life optimization problems encountered in industry, are posed as optimization 

problems dealing with multiple objectives, which are often conflicting in nature. This category 

of problems is known as multi-objective optimization problems (MOPs) where more than one 

objectives are involved during their simultaneous optimization. In most of the cases, these 

problems have been solved by combining the objective functions into one objective function 

composed by a weighted sum of all objectives, or by optimizing one objective while the others 

are set as constraints (Sarkar et al., 2006). Although by utilizing these methodologies the 

problem is simplified, a priori knowledge of the weights is required which is subject to 

individual perception making this an arbitrary process (Benyahia et al., 2011a). Distributing 

uniformly set of weights, for example, does not guarantee a distributed set of optimal solutions, 

while two different set of weight vectors does not necessarily lead to two different solutions 

(Miettinen, 1999). Moreover, the selection of the weights becomes a non-trivial problem 

especially when several objective functions of different natures (i.e. physical meaning, 

magnitudes and etc) is required.  

It should be clear that conceptually single and multi-objective optimization problems differ in 

terms of solution and results. In multi-objective optimization there is no single optimal solution 

with respect to all the objective functions as traditionally can be found in a single-objective 

optimization. Instead, MOPs give rise to a set of non-dominated/non-inferior optimal solutions 

(Pareto-optimal solutions – see Figure 3.14) which constitute the best trade-offs among the 

objective functions considered. Since none of these optimal solutions in the Pareto-optimal set 

can be classified as better, all of them can be considered. Therefore, utilizing Pareto optimal 

solutions provide the engineers a set of design and operational options for process design and 
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decision making which will eventually increase the probability of identifying and consequently 

designing more efficient processes (Benyahia et al., 2011a). 

Extensive research has been conducted on the algorithms utilized for the identification of the 

entire Pareto optimal solutions (Stewart et al., 2008; Sharma and Rangaiah, 2013). Among other 

approaches, utilizing evolutionary algorithms for the solutions of MOPs has been considered 

the most relevant and robust since the whole set can be constructed accurately in a single run 

opposing to the classical algorithms. Also, since they are stochastic by nature no prior 

information needs to be known about the problem being solved (i.e. initial guess), the 

evolutionary algorithms are robust and parallelization can be implemented (Sarkar et al., 2006). 

As mentioned before, in this work, the real-coded elitist nondominated sorting genetic 

algorithm (NSGA) is utilized for the solution of the MOP. In this case, for the NSGA, the 

following input parameters were set to fixed values for both case studies: The population size 

was selected to be equal to 200, the number of generations was set to 400, and the mutation 

probability was predetermined as an adaptive feasible function. The latter function randomly 

generates directions that are adaptive with respect to the last successful or unsuccessful 

generation, while at the same time the bounds and linear constraints can be satisfied. For the 

sake of clarity, it should be mentioned that crossover parameters determine the way that two 

individuals (i.e. parents) are combined to form a crossover child for the subsequent generation, 

while the mutation parameters specify the way that GA varies the population randomly, to 

create mutation children, which consequently ensure the genetic diversity and enable the GA 

to search efficiently at a broader parameter space. 

The application of the NSGA for the determination of the FR, by maximizing the number mean 

size (𝐿10) and minimizing the standard deviation of the distribution (𝑆𝑑) as the two fitness 

functions, is illustrated in Figure 3.14. During the implementation of the algorithm, different 

cooling trajectories are generated randomly, simulations are carried out and eventually the 

objective functions are evaluated. By doing this for different 𝑡𝑏𝑎𝑡𝑐ℎ, the Pareto fronts presented 

in Figure 3.14 can be generated indicating the system’s attainable states. As expected, 

competing interaction is shown since by maximizing the 𝐿10, the 𝑆𝑑 is maximized as well, 

which is something undesirable since 𝑆𝑑 needs to be minimized. The generated Pareto fonts are 

in agreement with the results presented before during the single objective optimization analysis. 

Moreover, longer batch times offer the capability of larger particles to be produced with high 

𝑆𝑑 of the distribution since improved control of supersaturation can be achieved through the 
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implementation of an optimum temperature trajectory. Also, for the same reason the higher the 

𝑡𝑏𝑎𝑡𝑐ℎ, the wider is the span of the optimal region for both the objectives, which is something 

that can be drawn from single objective optimization analysis as well. Additionally, the upper 

part of the Paretos corresponds to high values for 𝐿10 and 𝑆𝑑, while an opposite trend can be 

detected at the lower part of the Paretos. 

Figure 3.14. Pareto optimal-front obtained for the multi-objective optimization problem of maximizing 

the number mean size and minimizing the standard deviation of the distribution. 

The Pareto’s points, as mentioned, correspond to optimal cooling trajectories. For illustration 

purposes, the two boundaries for 𝑡𝑏𝑎𝑡𝑐ℎ = 300 𝑚𝑖𝑛𝑠 were selected and the optimum cooling 

trajectories were employed for the analysis of the boundaries of the operating region for a 

variety of process conditions, as shown in Figures 3.15-3.17. In more detail the dynamic 

cooling trajectories and solute concertation profiles are presented in Figure 3.15, while the 

corresponding supersaturation, nucleation and growth rates are illustrated in Figure 3.16. It 

should be mentioned that although a different algorithm (i.e. genetic algorithm) is utilized 

comparing to SOO (i.e. hybrid algorithm: genetic algorithm combined with the SQP algorithm), 

the same optimum cooling profile was generated with respect to the upper boundary. However, 

that’s not the case regarding the lower boundary since a different temperature trajectory is 

utilized. The 𝑆𝑑 of the distribution is depicted in Figure 3.17.  

 

[𝜇
𝑚

] 

Lower Boundary 

Upper Boundary 



CHAPTER 3 

78 

 

Figure 3.15. (a) Temperature and (b) solute concentration trajectories obtained from the implementation 

of two different cooling strategies corresponding to the boundaries of the Pareto front for 𝑡𝑏𝑎𝑡𝑐ℎ =

300 𝑚𝑖𝑛𝑠.  

 

 

 

Figure 3.16. (a) Nucleation rate, (b) growth rate and (c) supersaturation trajectories obtained from the 

implementation of two different cooling strategies corresponding to the boundaries of the Pareto front 

for 𝑡𝑏𝑎𝑡𝑐ℎ = 300 𝑚𝑖𝑛𝑠.  
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Figure 3.17. Standard deviation ( 𝑆𝑑) trajectories obtained from the implementation of two different 

cooling strategies corresponding to the boundaries of the Pareto front for 𝑡𝑏𝑎𝑡𝑐ℎ = 300 𝑚𝑖𝑛𝑠. 

3.4.1.2 Continuous Crystallization of Paracetamol 

In this subsection, the conceptual design of cascades of MSMPRs for the cooling crystallization 

of paracetamol in aqueous solution is investigated. Moreover, the scope is to determine the 

ATR with respect to single and multiple CQAs and how this could be altered by varying the 

number of stages of the MSMPR configuration and the independent operating variables, such 

as the residence time, operating temperature and supersaturation. The temperature limits were 

set to 318 𝐾 (45℃) and 293 𝐾 (20℃) corresponding to the maximum and minimum allowed 

temperature respectively, while the yield was constrained by the expression C.2.4. The analysis 

is conducted by utilizing the kinetics, thermodynamic properties and operating conditions as 

presented in Table 3.1.  

As mentioned earlier, different operating modes (e.g. batch STR vs continuous MSMPR) could 

eventually affect the systems’ kinetics. This may be extended to the case of different multistep 

operating models, such as multi-stage MSMPR crystallizers. Moreover, the kinetics of each 

crystallizer may differ from each other due to differences in the operating volume, residence 

time, hydrodynamics (e.g. specific power input, mixing conditions), supersaturation and 

suspension density. However, in these modelling studies, these variations are considered 

negligible and the same kinetics are applied to each stage.  

Of course, the operating strategies of a continuous process differ significantly compared to a 

batch one, since the first one is operated under steady-state conditions whereas the latter is 
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characterized by dynamic trajectories. Thus, the presented set of ODEs (eq. 3.12 – 3.14), which 

comprises a comprehensive moment-based model for a continuous cooling crystallization 

process, can be simplified by converting the set of ODEs to a system of non-linear equations. 

Although it won’t be presented, the set of dynamic equations were also solved to ensure the 

validity of the results and to observe the nature of the oscillations, which eventually reach a 

plateau (stability was assessed for long process times as well). 

For the optimization problems, the vector of the decision variables comprises the residence time 

and the temperature setpoint of each crystallizer considered in the analysis. The optimization 

problem is solved for different total residence time by maximizing and minimizing the objective 

function ( 𝐿10 ), which generates the attainable points depicted in Figure 3.18. These points can 

be connected by smooth lines constructing in this way the particle size ATRs. The points 

corresponding to 𝜏 = 25 − 60 𝑚𝑖𝑛𝑠 are estimated by utilizing eq. 3.46, while the single point 

corresponding to 𝜏 = 20 𝑚𝑖𝑛𝑠 can be calculated by eq. 3.47 (for more information see Section 

3.3 – Figure 3.4). Hence, the maximum and minimum front lines converge to a single point 

corresponding to a small total residence time.  

 
Figure 3.18. Attainable regions of particle size with respect to total residence time for a cascade of: 2, 

3 and 4 MSMPR crystallizers. 

The ATRs for different numbers of stages were investigated. As depicted, in Figure 3.18, the 

ATRs of particle size with respect to the total residence time are illustrated for two, three and 

four stages. As expected, by increasing the number of stages from two to four, broader ATRs 

can be obtained. This outcome can be justified based on the additional flexibility that is 
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provided to the system’s temperature dynamics which results in improved supersaturation 

control. Depending on the investigated system (i.e. different kinetics) and the total residence 

time, the benefits of this additional flexibility varies (Vetter et al., 2014; Wang and Lakerveld, 

2017). For instance, in this case, the additional flexibility doesn’t demonstrate considerable 

benefits, especially for short residence times. For higher total residence times (𝜏𝑡𝑜𝑡 >

50 𝑚𝑖𝑛𝑠), however, the benefits become rather obvious. Of course, the gain by adding more 

stages varies and it presents a nonlinear behaviour. So, by increasing the number of stages the 

ATRs will be become wider.  

 
Figure 3.19. Determination of the attainable region of particle size for a cascade of 2 crystallizers 

through optimization (− − • ) and Monte Carlo simulations  ( • ).  

The shape of the generated ATRs resembles to the ATRs reported in literature for different 

systems (Vetter et al., 2014; Wang and Lakerveld, 2017). In this case, as can be seen in Figure 

3.18, the upper limits of the ATRs (maximum line) increase with the increase of the total 

residence time, while the lower limits of the region (minimum line) remain almost the same 

with respect to time. Most specifically, the lower limits seem to maintain the value determined 

by eq. 3.47. The increase of the ATR of mean crystal size with respect to residence time can be 

attributed of course to the increased flexibility of controlling the temperature dynamics 

additionally to the prolonged retention time for crystals to experience more growth. 

The most common continuous experimental configuration for industrial crystallization 

considering both the performance and operating complexity is the two-stage MSMPR (Yang et 

al., 2015). Therefore, based on that and the fact that no significant gain is observed in Figure 
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3.18 when more than two stages are utilized, the rest of the analysis will be carried out 

considering a two-stage MSMPR. Hence, in Figure 3.19, the ATR of particle size for a cascade 

of two crystallizers is illustrated through optimization (− − • ) and Monte Carlo simulations 

( • ).  

 

Figure 3.20. Operating policy for minimum point marked in figure 3.16 (− − • ) for total residence 

time 𝜏 = 60 mins considering a two-stage MSMPR in comparison to the batch operating profiles. 

For the simulation – based study, a stochastic Monte Carlo approach was utilized. The Monte 

Carlo method performs multiple model evaluations with probabilistically selected model inputs 

(i.e. control variables). The outputs of these evaluations are then used to determine the formed 

ATR. The ranges and distributions of the input variables under consideration are carefully 

selected since they can considerably affect the generated results. Monte Carlo simulations was 

essentially employed for validation purposes. In more detail, the results clearly indicate that the 

optimization successfully determined accurately the upper boundary of the ATR. Regarding the 

lower boundary, a major difference can be noticed, which is related to the selection of the yield 

constraint. Moreover, all possible solutions are accepted when the simulation-based approach 

is considered, while in the case of the optimization a significantly narrower region of valid 

solutions can be generated due to the yield constraint (expression C.3.8). It should be also 

evident that most of the simulation points are concentrated within the area defined as the ATR 

by optimization. Therefore, it is illustrated that there is a higher probability the results to be 

located within the FR defined by the optimization-based method. 
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As highlighted, all the points defining the ATR correspond to certain combination of control 

variables. For example, the optimum operating policies describing the minimum and maximum 

points for total residence time 𝜏 = 60 𝑚𝑖𝑛𝑠 are presented in Figures 3.20 and 3.21 respectively. 

The minimum point can be achieved by operating the crystallizers at the lowest temperature 

values creating very high nucleation rates. By applying this policy, the highest possible 

supersaturation will be generated at the beginning of the process resulting in very high 

nucleation rates. In this way, a large amount of nucleus can be produced which can contribute 

to the rapid depletion of the solute. Hence, the crystals wouldn’t experience considerable crystal 

growth. This would result in a large population of crystals with low mean crystal size, as 

happening during batch crystallization by following a natural cooling trajectory. The 

distribution of the residence time between the crystallizers are also determined through the 

optimization and is based on the kinetics and their subsequent interaction depending on the 

system. In contrast, the optimum operating policy for obtaining the maximum 𝐿10 dictates that 

the supersaturation trajectory needs to be gradually increased with respect to the population’s 

available crystal surface (Figure 3.21). In more detail, an initial quick drop in temperature in 

the first crystallizer can generate a smaller number of nucleus than before. In order to achieve 

this objective a higher temperature setpoint is utilized. Also, the residence time is considerable 

higher than before, since by increasing this variable the formed nucleus can grow larger and be 

used as seeds to the second crystallizer.  Then the second crystallizer can be operated in such a 

way that the depleted supersaturation will be mainly employed to promote crystal growth and 

consequently to produce crystals with the maximum 𝐿10. 

Multi-objective optimization is also performed for the determination of the ATR for the two 

stage MSMPR cascade. As in subsection 3.4.1.1, the NSGA is utilized for the solution of the 

MOP, while the same input parameters are used regarding the algorithm’s properties 

(population size: 200, number of generations: 400, and mutation probability: adaptive feasible 

function). The optimization routine generated the Pareto fronts with respect to different 

residence times as depicted in Figure 3.22. The capability of achieving the target objectives 

can be identified from the Pareto fronts. It is evident, that the 𝑆𝑑 is increased monotonically 

with increasing 𝐿10, while by increasing the residence time larger particles can be obtained with 

lower or similar 𝑆𝑑. It can be also noticed that the rate of change (Figure 3.22) varies depending 

the position on the Pareto front. The upper part of the Pareto for 𝜏 = 30 𝑚𝑖𝑛𝑠, for instance, 

presents a relatively slow increase of 𝑆𝑑 by increasing 𝐿10, while Pareto’s lower part presents 

an opposing trend. It is expected, as can be seen for 𝜏 = 30 𝑚𝑖𝑛𝑠 and 𝜏 = 40 𝑚𝑖𝑛𝑠, that by 
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increasing the time, the Pareto fronts will become larger and larger in terms of target objectives 

range. However, this trend is not confirmed for 𝜏 = 50 𝑚𝑖𝑛𝑠 since the cooling rate setpoints 

are restricted based on certain cooling rate constraints. Moreover, very fast cooling rate 

trajectories, as such that would generate very low values of 𝑆𝑑, are discarded from the output.  

 

Figure 3.21. Operating policy for maximum point marked in figure 3.16 (− − • ) for total residence 

time  𝜏 = 60 mins considering a two-stage MSMPR in comparison to the batch operating profiles. 

 

Figure 3.22. Pareto optimal-front obtained for the multi-objective optimization problem of 

maximizing the number mean size and minimizing the standard deviation of the distribution with 

respect to different residence times. 
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3.4.2 Case Study 2: Unseeded Batch & Continuous Cooling Crystallization 

of KDP 

3.4.2.1 Batch Crystallization of potassium dihydrogen phosphate (KDP) 

It becomes evident that by conducting a systematic design methodology on the 1D case study, 

the impact of potential operating strategies and configurations can be evaluated, supporting, in 

this way, the decision – making during the process design. However, the 1D PBMs do consider 

one characteristic length meaning that they could be utilized accurately only to characterize 

crystals with certain shape. This limiting factor can be eliminated by employing multi-

dimensional PBMs, which can be used to fully characterize the crystal shape by considering 

two or three characteristic lengths depending its complexity. Therefore, the model-based design 

methodology, utilized before, is now extended to a two-dimensional batch cooling 

crystallization process. 

The modelling of the KDP crystallization is conducted by utilizing the kinetic, thermodynamic 

properties and operating conditions as presented in Table 3.2. The temperature limits were set 

to 313 𝐾 and 293 𝐾  corresponding to the maximum and minimum allowed temperature 

respectively, while the yield was constrained by the expression C.3.4. Since, multiple objectives 

need to be accounted, only the MOP framework was considered for the identification of the 

ATR, with the scope of:  

(1) maximizing the mean length size (max (
𝜇0,1

𝜇0,0
)),  

(2) minimizing the aspect ratio in order a target shape to be achieved (𝐴𝑅 → 1) and  

(3) minimizing the standard deviation in 𝑥1direction (𝑆𝑑,1). 

For the estimation of the optimal Pareto front the NSGA was utilized again. Due to the higher 

complexity of the multi-dimensional PBMs the analysis becomes more computational 

expensive and a trade-off needs to be accounted between computational burden and accuracy. 

Although most of the input parameters were kept to the same setpoints, as before, the number 

of generations was reduced without however compromising the accuracy of the algorithm 

(population size: 200, number of generations: 200, and mutation probability: adaptive feasible 

function).  
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By implementing the NSGA, the fitness functions were evaluated for different cooling 

trajectories resulting in an optimal Pareto front, as shown in Figure 3.23. From the analysis, a 

3D Pareto front was obtained which illustrates the trade-off interactions between the three 

different objectives with respect to different 𝑡𝑏𝑎𝑡𝑐ℎ. For visualization purposes the XY, XZ and 

YZ planes of the 3D Pareto front are also presented in Figures 3.24 − 3.26. It has been proven 

experimentally that the KDP is a growth dominated system and therefore its CQAs, such as 𝐿𝑛, 

𝐴𝑅 and 𝑆𝑑, can be considerably varied by the application of different temperature trajectories 

(Acevedo et. al., 2014; Acevedo et. al., 2015). This is also confirmed by the generated Pareto 

front that can span a broad range of solutions for all investigated objectives. For instance, for 

𝑡𝑏𝑎𝑡𝑐ℎ = 180 𝑚𝑖𝑛, it is illustrated in Figures 3.24 − 3.26 that 𝐿𝑛 ≈ 201.7 − 413.6 𝜇𝑚, 𝐴𝑅 ≈

1.8 − 3.3 and  𝑆𝑑,1 ≈ 15.5 − 110. As expected, in order the target shape (𝐴𝑅 → 1) to be 

obtained the mean size of the final crystals needs to be compromised (Figures 3.24). Trade-off 

between 𝐴𝑅 and 𝐿𝑛 arises since each crystal facet experiences different growth rates. As a 

result, different size is obtained along different characteristic lengths. In this case, larger sizes 

are obtained along 𝑥1 direction, where faster kinetics do apply, comparing to 𝑥2, leading to the 

formation of crystals with needle-like habit. However, this attribute can be modified by 

manipulating the temperature trajectory. Furthermore, by controlling the cooling rate and 

subsequently the supersaturation, the growth rates can be directed to generate crystals with 

𝐿𝑛,1 ≈ 𝐿𝑛,2  ↔ 𝐴𝑅 → 1. Spherical shape was selected as the target one since it presents 

improved flowability and processability characteristics (Mersmann, 2001). For this case study, 

a virtually linear correlation does occur between these two objectives as presented in Figure 

3.24.  

On the contrary, the interaction between 𝐿𝑛,1 and 𝑆𝑑,1 can be described by an exponential 

function, as depicted in Figure 3.25. As in the Case Study 1, the 𝑆𝑑,1 of the distribution can be 

improved only at the expense of reducing the 𝐿𝑛,1 of the final product. Each of the three Pareto 

fronts can be divided in three distinct regions: (1) The lower part of the Pareto, where low 

sensitivity of the 𝑆𝑑,1 is demonstrated by increasing the 𝐿𝑛,1, (2) the middle part, where a linear 

trade-off is presented between the two attributes and can be considered as a transition stage 

between the upper and lower part and (3) the upper part, where a surge of 𝑆𝑑,1 occurs by 

increasing the mean size. Same comments can be deduced for the trade-off interaction between 

𝐴𝑅 and 𝑆𝑑,1 demonstrated in Figure 3.26. 
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Figure 3.23. 3D Pareto optimal-front obtained for the multi-objective optimization problem of 

maximizing the number mean size (𝑥̅  1
 =

𝜇0,1

𝜇0,0
), minimizing the mean aspect ratio (AR) and 

minimizing the standard deviation of the distribution in 𝑥1 direction (𝑆𝑑,1) with respect to different 

batch time (𝑡𝑏𝑎𝑡𝑐ℎ). 

 

 

Figure 3.24. XY cartesian plane of the 3D Pareto optimal-front obtained for the multi-objective 

optimization problem of maximizing the number mean size (𝑥̅  1
 =

𝜇0,1

𝜇0,0
), minimizing the mean aspect 

ratio (AR) and minimizing the standard deviation of the distribution in 𝑥1 direction (𝑆𝑑,1) with respect 

to different batch time (𝑡𝑏𝑎𝑡𝑐ℎ). 
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Figure 3.25. XZ cartesian plane of the 3D Pareto optimal-front obtained for the multi-objective 

optimization problem of maximizing the number mean size (𝑥̅  1
 =

𝜇0,1

𝜇0,0
), minimizing the mean aspect 

ratio (AR) and minimizing the standard deviation of the distribution in 𝑥1 direction (𝑆𝑑,1) with respect 

to different batch time (𝑡𝑏𝑎𝑡𝑐ℎ). 

 

The effect of the batch time on the optimal trajectories and the CQAs of the final product was 

also evaluated for three different residence times ( 𝑡𝑏𝑎𝑡𝑐ℎ = 90, 135 𝑎𝑛𝑑 180 𝑚𝑖𝑛 ). 

Regardless the 𝑡𝑏𝑎𝑡𝑐ℎ, the generated optimum Pareto fronts exhibit analogous shape profile. 

However, the magnitude of the attained states and, also, the span of the FR is largely increased 

with respect to time. Moreover, by increasing the batch time, larger 𝐿𝑛,1 could be achieved, 

while corresponding to lower 𝑆𝑑,1 and 𝐴𝑅, which can be justified due to increased flexibility 

with respect to the supersaturation control. The benefits of this additional flexibility vary with 

respect to time in a nonlinear way. For instance, the rate of augmentation of the FR differs with 

respect to time as can be clearly seen by comparing the gain between the following time periods: 

𝑡𝑏𝑎𝑡𝑐ℎ = 90 − 135 and  𝑡𝑏𝑎𝑡𝑐ℎ = 135 − 180. 

Two cooling trajectories were selected corresponding to the upper (− − ) and lower boundary 

( − )  of the Pareto frontier for 𝑡𝑏𝑎𝑡𝑐ℎ = 180 𝑚𝑖𝑛 (Figure 3.27). In this case study, a coarser 

discretization of the time domain was utilized for the piecewise continuous dynamic 

optimization due to the high computational burden of the system (see eq. 3.43 and 3.44). The 

temperature profile representing the lower boundary of the Pareto front resembles a cubic 

profile. Initially a step change occurs during the cooling stage in order the first nucleus to be 
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formed that will be used as seeds. Due to that, the supersaturation is slightly reduced, and it is 

kept approximately steady at about 𝜎 ≅ 0.01 (Figures 3.28 and 3.29). Then a progressively 

increased cooling rate is applied which however doesn’t affect the supersaturation significantly. 

Moreover, as demonstrated in Figure 3.29, the system remains close to the solubility line 

sustaining a low level of supersaturation. By operating at low supersaturation, a more controlled 

utilization of the driving force could be achieved with the scope of minimizing the difference 

between the growth rates of the two characteristic sizes resulting in a population of crystals 

with lower 𝐴𝑅 and narrower 𝐶𝑆𝐷 but with the expense of producing smaller mean size crystals 

in both directions. These observations can be determined by Figures 3.30, where the dynamic 

evolution of the 𝐴𝑅, and the mean sizes are illustrated. Of course, during the process, a fraction 

of the supersaturation is depleted for the formation of nucleus (primary nucleation).  

 

 

Figure 3.26. YZ cartesian plane of the 3D Pareto optimal-front obtained for the multi-objective 

optimization problem of maximizing the number mean size (𝑥̅  1
 =

𝜇0,1

𝜇0,0
), minimizing the mean aspect 

ratio (AR) and minimizing the standard deviation of the distribution in 𝑥1 direction (𝑆𝑑,1) with respect 

to different batch time (𝑡𝑏𝑎𝑡𝑐ℎ). 
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Figure 3.27.  Implementation of two different cooling strategies corresponding to the boundaries of 

the Pareto front for 𝑡𝑏𝑎𝑡𝑐ℎ = 180 𝑚𝑖𝑛𝑠: Upper (− − ) and Lower boundary ( − ) 

 

 

 

Figure 3.28. Relative supersaturation (𝜎) trajectories obtained from the implementation of two 

different cooling strategies corresponding to the boundaries of the Pareto front for 𝑡𝑏𝑎𝑡𝑐ℎ = 180 𝑚𝑖𝑛𝑠: 

Upper (− − ) and Lower boundary (− ). 
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Figure 3.29. Phase diagram trajectories obtained from the implementation of two different cooling 

strategies corresponding to the boundaries of the Pareto front for 𝑡𝑏𝑎𝑡𝑐ℎ = 180 𝑚𝑖𝑛𝑠: Upper ( − − ) 

and Lower boundary ( − ). 

 

On the other hand, the cooling strategy corresponding to the upper boundary determines the 

optimum solution that satisfies the maximization of the 𝐿𝑛,1. Initially a very slow cooling rate 

is applied in order new nucleus to be formed (Figure 3.28), which can be used as seeds during 

the growth stage. This way of operation is typically met during the optimization of unseeded 

cooling crystallization processes (Nagy et al, 2008; Acevedo et. al, 2015). Since KDP is a 

growth dominated system, the imposed excess supersaturation is utilized mainly to promote 

mainly crystal growth instead of nucleation, opposing to the system presented in Case Study 

1. The rapid cooling rate stage should be associated with the imposed yield constraint. 

Moreover, the system is forced to attain a temperature and concentration value within the 

certain batch time, which will satisfy the yield constrain. Of course, this should be also related 

with the system kinetics since both cooling strategies reach a supersaturation peak at about the 

same time. Either way, the introduced cooling trajectory yields higher mean size crystals by 

compromising other CQAs, such as CSD and aspect ratio.  

This analysis elaborated the effect of the supersaturation dynamics on the evolution of the 

CQAs during the unseeded cooling batch crystallization of a growth dominated system. Its 

validity can be easily assessed by comparing with the experimental results presented in 

literature (Yang et al., 2006; Acevedo et. al, 2014; Acevedo et. al, 2015).  
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Figure 3.30. (a) Aspect ratio (𝐴𝑅), (b) Solute concentration, (c) mean crystal width size ( 𝐿𝑛,2) and (d) 

Mean crystal length size ( 𝐿𝑛,1)  trajectories obtained from the implementation of two different cooling 

strategies corresponding to the boundaries of the Pareto front for 𝑡𝑏𝑎𝑡𝑐ℎ = 180 𝑚𝑖𝑛𝑠: Upper ( − − ) 

and Lower boundary ( − ). 

 

 



SYSTEMATIC MODEL – BASED DESIGN AND OPTIMIZATION OF CRYSTALLIZATION PROCESSES 

93 

3.4.2.2 Continuous Crystallization of potassium dihydrogen phosphate (KDP) 

In this subsection, the conceptual design of cascades of MSMPRs for the cooling crystallization 

of potassium dihydrogen phosphate in aqueous solution is investigated. Moreover, the scope is 

to determine the ATR with respect to multiple CQAs and how this could be altered by varying 

the independent operating variables, such as the residence time, operating temperature and 

supersaturation. The temperature limits were set to 313 𝐾 and 293 𝐾  corresponding to the 

maximum and minimum allowed temperature respectively. The analysis is conducted by 

utilizing the kinetics, thermodynamic properties and operating conditions as presented in Table 

3.2. The analysis was performed by considering a two-stage MSMPR setup since is the most 

common continuous experimental configuration in the pharmaceutical industry regarding both 

the performance and operating complexity (Yang et al., 2015). 

As mentioned before, in Subsection 3.4.1.2, differences do exist between modelling batch and 

continuous processes since the first is one is a dynamic process while the latter one is operated 

under steady-state conditions. Thus, the presented set of ODEs (eq. 3.28 – 3.31), which 

comprises a comprehensive moment-based model for modelling a 2D continuous cooling 

crystallization process, is converted to a system of non-linear equations.  

Stochastic Monte Carlo simulations were used to evaluate the ATRs. Random combinations of 

model inputs (i.e. control variables) are generated within certain allocated limits. These sets of 

values correspond to the assigned ranges and distributions of the input variables under 

consideration. Then multiple random model evaluations are performed with their outputs to 

eventually determine the FR. To ensure that the optimum FR was identified, a high number of 

model evaluations were performed (≅ 1 × 103)  without increasing significantly the 

computational burden of the process. Of course, the results were validated using different 

number of evaluations to ensure consistency and robustness of the results. 

The generated outputs, form an area of points which clearly demonstrate the ATRs, as depicted 

in Figures 3.31 – 3.34. Initially, the 3D representation of the FR with respect to mean length 

size, 𝐴𝑅 and total residence time is illustrated, indicating the volume of the FR. Furthermore, 

for visualization purposes the 2D diagrams of mean crystal length size, 𝐴𝑅 and 𝑆𝑑,1 with respect 

to the total residence time, are presented in Figures 3.32, 3.33 and 3.34 respectively. The shape 

of the generated ATRs resembles the ATRs reported in literature for different 1D systems 

(Vetter et al., 2014; Wang and Lakerveld, 2017). As expected, the utilization of the continuous 
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two stage MSMPR configuration leads to a considerable reduction of the ATR comparing to 

the batch operating mode due to the reduced operational flexibility. The spans with respect to 

the three considered CQAs can be summarized as following: 

• mean length size ( 𝐿𝑛,1 ≈ 68 − 95 𝜇𝑚 ),  

• aspect ratio (𝐴𝑅 ≈ 2.85 − 4.0 ) and  

• standard deviation of the distribution in 𝑥1 direction (𝑆𝑑,1 ≈ 65 − 95 ). 

Also, it should be mentioned that similar trends are obtained regarding the trade-off interaction 

among the three simulated CQAs comparing to the batch crystallization presented in subsection 

3.4.2.1. Moreover, larger mean crystal length size can be achieved by compromising the 𝐴𝑅 

and the 𝑆𝑑,1, while lower 𝐴𝑅 and 𝑆𝑑,1 values could be obtained by minimizing the  𝐿𝑛,1. 

Figure 3.31. Determination of the 3D attainable region via stochastic simulation analysis of the: mean 

particle size (𝐿𝑛 = 𝜇0,1 /𝜇0,0 ) and mean aspect ratio (𝐴𝑅). 

Most of the simulation points present the tendency to accumulate within certain solutions areas. 

This effect is utterly based on the assigned probability distribution functions. Moreover, the 

model inputs values are determined by a uniform distributed distribution function. The latter 

would result in generating a large amount of random numbers around its mean value. 

Regardless though, the high number of model evaluations can statistically guarantee the validity 

of the results since all possible model input combinations are assessed.  
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Figure 3.32. Determination of the attainable region of the mean crystal length size (𝐿𝑛 = 𝜇0,1 /𝜇0,0 ) 

via stochastic simulation analysis. 

 

 

 

 

 

 

Figure 3.33. Determination of the attainable region of the aspect ratio (𝐴𝑅) via stochastic simulation 

analysis. 
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Figure 3.34. Determination of the attainable region for the standard deviation of the distribution in 𝑥1 

direction (𝑆𝑑,1) via stochastic simulation analysis. 

3.5 Conclusions 

Process systems engineering (PSE) tools, such as model-based design and optimization, has 

been proven essential over the years to support process understanding and consequently 

decision making during the development and design stages. Within this perspective, a generic 

and systematic model-based design methodology for a wide range of crystallization processes 

is proposed for the identification of the ATR by incorporating single- and multi-objective 

optimization algorithms. The methodology’s applicability was appraised through two case 

studies involving the crystallization of paracetamol and potassium dihydrogen phosphate 

(KDP). These two crystallization processes were selected since they could be modelled by the 

utilization of 1D and 2D PBMs, respectively, and hence the effect of the model’s complexity 

on the methodology could be assessed. Initially, the analysis demonstrated the effect of the 

supersaturation dynamics on the evolution of the CQAs during the unseeded cooling batch 

crystallization of a nucleation dominated system, such as paracetamol in water. The system was 

optimized with respect to multiple objectives and the solutions corresponding to the Pareto’s 

front boundaries were simulated in order the different trade-offs among the objectives to be 

evaluated. The same investigation by considering three objectives (𝐿𝑛, 𝐴𝑅, 𝑆𝑑) was also 

conducted for the unseeded batch cooling crystallization of a growth dominated 2D 

crystallization system, such as KDP in water. Further analysis was performed for both systems 

[𝜇
𝑚

] 
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by considering continuous mode of operation instead of batch. Not surprisingly, the FR 

obtained by operating in a continuous mode for both systems illustrated considerable smaller 

span since the capability of supersaturation control is significantly reduced. In addition, it was 

shown that the addition of more crystallizers to an MSMPR cascade, enlarges the FR. The 

outputs of the continuous operated case studies were also validated by stochastic simulation-

based analysis. For all case studies, the optimization results demonstrated the correlation 

between the crystallization kinetics and the achievable attributes. As expected, the growth 

dominated system presented considerable higher variability capabilities with respect to size, 

shape and other CQAs comparing to the nucleation dominated system. Regardless the 

complexity of the PBM model, 1D and 2D, mode of operation or the dominated mechanism 

during crystallization, the implementation of the methodology managed to identify the optimum 

attainable region for all case studies efficiently and with high accuracy. Therefore, the proposed 

systematic optimization-based method can be extremely valuable for model-based design of 

crystallization processes and it can be easily extended to include more crystallization 

phenomena (e.g. size-dependent growth, secondary nucleation, breakage and agglomeration), 

process alternatives or additional constraints, which is something commonly encountered in 

real applications. The method’s accuracy, however, is not only related to the utilization of a 

systematic optimization but also to the developed models’ predictive capability which can be 

very challenging due to the complexity of the underlying phenomena, inherent to Population 

balance models (PBMs) and the large number of parameters that need to be identified from 

experimental data. Therefore, prior to the design/optimization methodology another analysis, 

which is illustrated in Chapter 4, should be conducted to ensure that the model parameters (i.e. 

kinetics) have been accurately and reliably estimated.  
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NOMENCLATURE 

 𝐴𝑅  - Mean aspect ratio of the population of crystals, [−] 

𝐵   - Primary nucleation kinetic rate, [#/ 𝑠/ 𝑘𝑔] 

𝑏  - Nucleation order constant, [−] 

𝑐   - Concentration of crystals in solution, [𝑘𝑔/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡] 

𝑐𝑠𝑎𝑡   - Saturation concentration of crystals in solution, [𝑘𝑔/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡] 

𝑐𝑣  - Coefficient of Variation, [−] 

𝐹𝑜𝑢𝑡  - Volumetric flow rate, [𝑚3/𝑠] 

𝑔𝑖  - Exponent of the growth kinetic equation of the 𝑖𝑡ℎ characteristic facet, [−] 

𝐺𝑖  - Crystal growth rate of the 𝑖𝑡ℎ characteristic facet, [𝑚/𝑠] 

𝐽𝑜𝑏𝑗   - Objective function 

𝑘𝑏  - Nucleation kinetic constant, [#/𝑚/𝑠] 

𝑘𝑔𝑖  - Growth kinetic constant, [𝑚/𝑠] 

𝑘𝑢  - Volumetric shape factor, [−]  

𝐿  𝑛,𝑖
 
   - Number based mean size of the 𝑖𝑡ℎ characteristic size, [ 𝑚 ] 

𝐿  10
 
   - Number based mean size, [ 𝑚 ]  

𝐿  32
 
   - Sauter mean diameter, [ 𝑚 ]  

𝐿  43
 
   - Weight mean crystal size, [ 𝑚 ]  

𝑛(𝑡, 𝑥)  - Size distribution, [#/𝑚 ] 

𝑛(𝑡, 𝑥1, 𝑥2) - Size and shape distribution, [#/𝑚2] 

𝑟0  - Initial nucleus size, [ 𝑚 ] 

𝑅  - Ideal gas constant, [𝑃𝑎 𝑚3 𝑚𝑜𝑙−1𝐾−1 ] 

𝑅𝑉  - Rate of change of the total volume of crystals, [𝑚3/𝑚3 ] 

𝑆𝑑  - Standard deviation of the distribution, [ 𝜇𝑚 ] 

𝑇  - Temperature, [𝐾] 

𝑡  - Time, [𝑚𝑖𝑛] 

𝑢𝑐  - Volume of a single crystal, [𝑚3] 

𝑣𝑑  - Variance of distribution, [−]  

𝑉𝑐  - Macroscopic total volume of crystals, [𝑚3/𝑚3] or [𝑚3/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡] 
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𝑉   - Crystallizer’s volume, [𝑚3]  

𝑥̅  𝑖
 
   - Number based mean size of the 𝑖𝑡ℎ characteristic facet, [ 𝑚 ]  

𝑋   - Vector containing the various characteristic lengths, [ 𝑚 ]  

𝑋0 
  - Vector containing the initial conditions for the various characteristic lengths, [ 𝑚 ]  

 

GREEK LETTERS 

 

𝛿 - Dirac delta function, [ − ] 

𝛥𝑐 - Absolute supersaturation, [ − ] 

𝜀𝑖 
 - Volumetric ratio of solution, [ 𝑚3/𝑚3 ] 

𝜇𝑚,𝑟 
 - 𝑚, 𝑟 𝑡ℎ order mixed moment of size variables 

𝜇𝑚 
 - 𝑚 𝑡ℎ order moment of size variables 

𝜌𝑐 - Density of the crystals, [ 𝑘𝑔/𝑚3  ] 

𝜎 
    - Relative supersaturation, [ − ] 

𝜏   - Residence time, [ 𝑚𝑖𝑛 ] 

𝛺𝜅   - Sample Space, [ − ] 

 

SUBSCRIPTS 

0 - Initial value 

1 - Length coordinate, [ 𝑚 ] 

2 - Width coordinate, [ 𝑚 ] 

𝑖 - Characteristic crystal facet indices, [ − ] 

𝑝 - Primary nucleation, [ 𝑚 ] 

𝑠𝑎𝑡 - Saturation (solubility curve), [ 𝑘𝑔/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡  ] 

𝑠𝑣 - Solvent, [ 𝑘𝑔/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡  ] 

 

SUPERSCRIPTS 

𝑗 - Number of MSMPR stages indices, [ − ] 
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4 MODEL REALIABILITY AND ESTIMABILITY ANALYSIS 

OF A MULTI – IMPURITY POPULATION BALANCE 

MODEL FOR CRYSTALLIZATION PROCESSES 

The development of reliable mathematical models for crystallization processes may be very 

challenging due the complexity of the underlying phenomena, inherent to Population Balance 

Models (PBMs), and the large number of parameters that need to be identified from 

experimental data. Due to the poor information content of the experiments, the structure of the 

model itself and correlation between model parameters, the mathematical model may contain 

more parameters than can be accurately and reliably identified from the available experimental 

data. A novel framework for parameter estimability for guaranteed optimal model reliability is 

proposed then validated by a complex crystallization process. The latter is described by a 

differential algebraic system which involves a multi-dimensional population balance model that 

accounts for the combined effects of different crystal growth modifiers/impurities on the crystal 

size and shape distribution of needle-like crystals. Two estimability methods were combined: 

the first is based on a sequential orthogonalization of the local sensitivity matrix and the second 

is Sobol, a variance-based global sensitivity technic. The framework provides a systematic way 

to assess the quality of two nominal sets of parameters: one obtained from prior knowledge and 

the second obtained by simultaneous identification using global optimization. A cut-off value 

was identified from an incremental least square optimization procedure for both estimability 

methods, providing the required optimal subset of model parameters. In addition, a model-based 

design of experiments (MBDoE) methodology approach is also reported to determine the 
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optimal experimental conditions yielding the most informative process data, which can be used 

for the accurate identification of the nucleation, crystal growth and pinning mechanism 

parameters. The implemented methodology showed that, although noisy aspect ratio data were 

used, the eight most influential and least correlated parameters could be reliably identified out 

of twenty-three, leading to a crystallization model with enhanced prediction capability. 

 

Highlights:  

• Robust selection of the most influential and least correlated parameters. 

• Estimability analysis based on sequential orthogonalization and Sobol. 

• Local and Variance-based global sensitivity analysis. 

• Optimum parameter subset for guaranteed model reliability.  

• Multidimensional PBM model with Multi-Impurity Adsorption Model.  

• Optimal model-based design of experiments (MBDoE) 

4.1 Introduction 

The benefits of the mathematical models are widely accepted, however, setting a unified 

rigorous framework for building reliable and predictable models is still an open subject, 

particularly for pharmaceutical processes. In order to obtain accurate model predictions, 

identification of the unknown model parameters is often required. In many cases, first-

principles models are comprised by a large number of parameters which often cannot be 

estimated reliably from the available experimental data. In addition, the quality and the 

information content of the available experimental data can be affected by many factors such as 

noisy measurements, limited number of data points, poor design of experiments (DoE) and 

limited range of operating conditions (Perregaard et al., 1993; Chu et al., 2011). Additionally, 

strong influence of a parameter on one or more of the measured responses, high correlation 

between the parameters’ effects and/or the effects of a parameter on model predictions can also 

lead to unreliable and inaccurate identification of the unknown parameter values, which in turn 

degrades the prediction capability of the mathematical model (Kravaris et al., 2013; Benyahia 

et al., 2013; Eghtesadi et al., 2014). Of course, mismatch could also arise from the model 

structure itself, since several assumptions are typically made in order to simplify the numerical 

representations of the system and reduce its complexity with the risk of neglecting some of the 

key underlying phenomena and consequently reducing the prediction capabilities of the model.   
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Several approaches have been developed to cope with some of these problems, such as 

modifying the model structure, incorporating additional measured outputs (e.g. using different 

process analytical technology (PAT) tools) and improving the information content of the 

experimental data by utilizing DoE approaches. However, before deciding whether the 

mathematical equations should be modified or supplementary experiments should be designed 

and performed, one key step is to investigate whether the available experimental data contain 

enough information to identify uniquely and reliably the overall model parameters, or 

alternatively, the subset of the model parameters that could be identified reliably whose optimal 

estimates can lead to the most predictable mathematical model. This could be achieved by 

evaluating the structural identifiability and estimability (i.e. practical identifiability) of the 

model parameters (McLean et al. 2011; Sin et al., 2010). The structural identifiability approach 

evaluates whether the parameters are locally or globally identifiable based utterly on the model 

structure, while estimability appraises whether the parameters can be identified uniquely by 

using the available experimental data or data from a proposed set of experiments (McLean et 

al. 2011; Walter and Pronzato, 1997). The estimability or practical identifiability methodology 

depends on the domain of variability of model parameters and experimental conditions whereas 

the structural identifiability is totally independent from both. The objective of the estimability 

analysis is to identify how many of the model parameters can be estimated accurately from the 

available data, while the ones with low estimability potential can be set to certain nominal 

values without degrading the prediction capability of the model (Benyahia et al., 2013; Chu et 

al., 2011). Consequently, estimability potential can be defined as a measure of the effects of 

parameters on the experimental outputs and/or correlation among the model parameters. In this 

work, only the estimability of the model parameters is evaluated without considering the 

structural identifiability of the model. 

Different approaches have been developed and proposed to help identify the most appropriate 

subset of parameters for estimation based on the estimability approach. Degenring et al. (2004) 

proposed an approach for parameter selection based on principal component analysis (PCA), 

which is a statistical procedure that converts a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables. A parameter selection was 

obtained by using three different PCA methods (Jolliffe et al., 1972), which provided different 

parameter ranking outcomes. The PCA-based approach was applied in more recent 

investigations (Schittkowski et al., 2007; Quaiser et al., 2009) and was proven to be less robust 

compared to the orthogonalization and the eigenvalue method discussed below. The eigenvalue 
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method, introduced by Vajda et al. (1989) and was improved independently by other researchers 

(Schittkowski et al., 2007; Quaiser et al., 2009), determines the most estimable subset of 

parameters based on the eigenvector and eigenvalues of the fisher information matrix (FIM). 

Although, the method has been shown better accuracy compared to other methods, sometimes 

it becomes challenging to match eigenvalues with specific parameters (McLean et al. 2011). 

The singular value decomposition (Velez-Reyes et al., 1995) and the correlation and 

collinearity methods (Jacquez et al., 1985; Brun et al., 2001; Quaiser et al., 2009; Sin et al., 

2010 were also proposed for the estimability analysis. The main drawback of the correlation 

and collinearity techniques is that they consider only directions of the sensitivity vectors 

without taking into account the magnitude of the sensitivities (McLean et al. 2011). This led 

Brun et al. (2002) to propose a robust combinational approach that combined a method based 

on a scalar measure of the fisher information matrix (FIM) and the collinearity method. A more 

robust approach for performing the estimability analysis is based on the orthogonalization of 

the sensitivity matrix. The method, that was initially introduced by Yao et al. (2003) and 

improved by Lund et al. (2008) and Thomson et al. (2009), ranks the parameters according to 

both their individual effect on the measured responses and the correlation between the 

parameters. Due to the efficiency of this forward-selection method, it has been employed widely 

in complex chemical and biochemical systems (Benyahia et al., 2013; Kou et al., 2005; Surisetty 

et al., 2010; Thomson et al., 2009; Jayasankar et al., 2009). Despite the popularity of the 

estimability analysis in numerous scientific areas, such as polymer science, environmental 

engineering and biology, this class of methods is still novel in the area of crystallization and its 

inherent benefits are not well understood, as only very limited number of studies have been 

reported in the literature.   

Chen et al. (2004) presented a model-discrimination for model-based design by using the D-

optimal criterion for the parameter set selection. However, only four parameters were 

considered making the benefits of the method unclear. Some of the benefits of the parameters 

selection methods were discussed by Czapla et al. (2009) who used an approach proposed by 

Brun et al. (2002) to select the most sensitive model parameters of a preferential batch 

crystallization of enantiomers. However, both studies utilized an arbitrary cut-off value for the 

parameter selection. A more comprehensive study was presented by Samad et al. (2012; 2013) 

where two global sensitivity analysis techniques, Morris screening and the standardized 

coefficients, are utilized to identify the most significant parameters. Although, these techniques 

can be useful for the classification of the parameters in terms of sensitivity measure, the 
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correlation of the parameters is not considered during the ranking procedure but it is estimated 

later on. 

Considering all the challenges inherent to parameter selection and identification discussed 

above and with the scope of improving the current methodology for parameter identification 

for crystallization processes, a new framework (Figure 4.1 – see next section) is proposed for 

a systematic and optimal selection of the parameter subset with the highest estimability 

potential for guaranteed model reliability.  

As a case study, a batch cooling crystallization process is considered under the presence of 

multiple impurities, more specifically crystal growth modifiers (CGMs), which can affect, 

besides product purity, the growth and potentially the nucleation kinetics and hence the size 

and shape distribution of the final crystals. A novel morphological multi-dimensional 

population balance model (MIAM model) that incorporates mechanisms for multisite 

competitive adsorption of the impurities on the crystal faces, coupled with mass balance 

equations is used (Borsos et al., 2016). 

To the best of our knowledge, it is the first time that the modified Gram Schmidt 

Orthogonalization algorithm and Sobol analysis are combined and applied in the area of 

crystallization and equally the first time that the estimability analysis in general is being applied 

to assess the model reliability of a PBM that takes into consideration the presence of impurities. 

The complexity of the case study provides an opportunity to show the capabilities of the 

methodology with the scope of building more reliable and high-fidelity models for the 

pharmaceutical industry for process design, optimization and advanced control that would 

enhance the implementation of model-based Quality-by-Design (QbD).  

4.2 Method 

The proposed methodology (Figure 4.1) combines a sequential orthogonalization method, 

which takes into account the overall magnitude of the local sensitivities and the correlation 

between the parameters, with a variance-based global sensitivity ranking method. In both cases, 

a rigorous approach is used to identify the cut-off values based on the minimization of the 

maximum likelihood criterion. To assess the consistency and quality of the methodology, the 

correlation coefficients are calculated and the parameter estimates are assessed against their 

confidence domains. The proposed methodology enables a more robust classification of the 
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model parameters based on the estimability potential and provides a key tool to analyse the 

information content of the experimental data and consequently the quality of the measurements 

and the employed sensors (PAT). As such, the method helps identify the parameters that could 

be estimated accurately from the available data and whether additional data are required to 

identify a specific model parameter (e.g. new experiments or additional data from another 

sensor) would enhance the estimation process. To this end, the proposed framework is also 

coupled with a design of experiments (DoE) approach in case that the reliability of the model 

is not satisfactory. 

 

Figure 4.1. Schematic of the parameter identification and estimability analysis framework. 

Although the estimability approach aims at identifying more reliably the model parameters 

from the existing data, it initially requires a nominal vector of model parameters, commonly 

obtained from prior knowledge of the process. In the case of lack of prior knowledge or 

uncertain model parameters (extremely poor estimates or broad confidence intervals), the 

estimability framework described in the paper provides a methodology to help identify the set 

of the nominal parameters. Although a variety of different approaches (e.g. Kalman Filters, 

polynomial fitting, Bayesian estimation etc.) has been applied for the determination of the 

unknown model parameters of complex, highly nonlinear chemical processes, utilizing 
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nonlinear optimization algorithms has been considered the most accurate and precise 

methodology due to their accuracy and efficiency (Rawlings et al., 1993; Janaideh et al., 2008; 

Kou et al., 2005; Fujiwara et al., 2002b). Typically, the least-squares error optimization 

approach is applied, unless the data measurements have different scales and/or different degree 

of reliability. In the latter case, weighted least squares approaches are usually utilized (Cao et 

al., 2012). A good review of the available optimization techniques (global and local ones) for 

crystallization processes can be found in Besenhard et al. (2015), where it was reported, that 

hybrid optimization techniques, provided the most accurate results, regardless the number and 

the quality (e.g. noise) of the experimental data, while the global optimization algorithms 

techniques proved to be ineffective when they employed alone. Hence, it is proposed that hybrid 

optimization techniques should be utilized for the identification of the unknown parameters. In 

this work, a hybrid global optimization technique that combines a genetic algorithm and local 

deterministic method (sequential quadratic programming) was used to identify the unknown 

parameters.  

To maximize the benefits of the methodology, the estimability approach was implemented in 

both cases: the case where the initial nominal vector of parameters exists form prior process 

knowledge and the case where all parameters of the nominal vector should be identified globally 

and simultaneously by minimizing the weighted least square error. Both estimability 

approaches, the sequential orthogonalization and Sobol (variance-based method), rank the 

model parameters by order of importance. The ultimate objective of the estimability approach 

is then to find the optimal subset of model parameters that guarantee maximum model 

reliability. As a consequence, an estimability threshold or cut-off value is required to identify 

the subset of parameters that should be subject to re-estimation, to maximize model accuracy, 

and the subset of parameters that should be kept at nominal values, without degrading the 

prediction capability of the model. An optimal subset of parameters can be obtained by running 

a sequential parameter estimation procedure by identifying the top 𝑖𝑡ℎ parameters (where 𝑖 = 1, 

2, …) each time and calculating the corresponding objective function value. The cut-off value 

can be obtained when the improvement in the objective function due to an additional parameter 

becomes insignificant.  If the model prediction capability with the optimal parameter subset is 

unsatisfactory, the method suggests running additional experiments, redesign the experiments 

(e.g. optimal experimental designs) or/and select additional or alternative PAT tools with the 

scope of increasing the information content of the data. Ideally this can be done by incorporating 

a model-based design of experiments (MBDoE) methodology. To this end, a dynamic 
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optimization formulation is proposed to determine the optimal experimental conditions yielding 

the most informative process data, which can be used for the accurate identification of the 

model-parameters.   

4.3 Process Model 

Multidimensional PBM model with Multi-Impurity Adsorption Model (MIAM)  

The MIAM model was recently developed by Borsos et al. (2016) as a novel mathematical 

model for crystallization processes considering multi-impurity adsorption mechanisms with the 

purpose of process design, optimization and control. The model was built to predict the dynamic 

evolution of size and shape distribution during crystallization under the presence of impurities. 

The effect of the crystal growth modifiers was monitored in real time by using an in-situ video 

imaging probe: Lasentec Particle Vision and Measurement V819 (PVM). Images were 

automatically obtained with a frequency equal to six images per second and analysed by 

Lasentec’s image and stat acquisition software, where blob analysis was utilized for the 

monitoring of the aspect ratio. In more detail, the cooling crystallization of pure potassium 

dihydrogen phosphate (KDP) in deionized water was investigated under the presence of 

aluminum sulfate (Crystal Growth Modifier: CGM1) and sodium hexametaphosphate (CGM2) 

and aspect ratio measurements were obtained as experimental outputs. As it has been presented 

by Borsos et al. (2016), divalent and trivalent metal ions preferably adsorb onto the ሼ100ሽ KDP 

crystal facet hindering the crystal growth in that facet, while anionic growth modifiers have a 

propensity for adsorbing onto the ሼ101ሽ KDP crystal facet inhibiting the crystal growth of the 

corresponding length. Hence, CGM1 is likely to adsorb onto  ሼ100ሽ facet leading to more 

needle-like shaped crystals while CGM2 tends to adsorb onto the ሼ101ሽ facet causing an 

opposite effect by generating crystals with lower aspect ratio. Thus, in this case, these CGMs 

have competing effects. Since the aspect ratio (AR) is needed, a two-dimensional (also called 

morphological) PBM model is required. 

Thus, for the modelling of the evolution of the crystal shape distribution, multidimensional 

population balance equations (PBEs) with two characteristic lengths  𝒙𝒍 = ሼ𝑥1, 𝑥2ሽ were 

considered (Figure 3.1) that can be written as: 

 𝜕𝑛(𝑡, 𝑥)

𝜕𝑡
+

𝜕𝑛[𝐺1 𝑛(𝑡, 𝑥)]

𝜕𝑥1
+  

𝜕𝑛[𝐺2𝑛(𝑡, 𝑥)]

𝜕𝑥2
 =  𝐵𝑝 𝛿(𝑥1 − 𝑥1,0) 𝛿(𝑥2 − 𝑥2,0) (4.1) 
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where  𝑛(𝑡, 𝑥)  is the number density function, 𝛿(𝑥 − 𝑥0) is the delta distribution that 

characterizes the formation of the nuclei,  𝐵𝑝  is the primary nucleation rate and  𝐺𝑖  is the crystal 

growth rate of the  𝑖𝑡ℎ  characteristic crystal facet. The initial and boundary conditions of the 

PBE are respectively: 

 𝑛(𝒙𝒍, 𝑡 = 0) = 𝑛0(𝒙𝒍) (4.2) 

   

 𝐺𝑖𝑛(𝒙𝒍, 𝑡) = 0 , 𝒙𝒍 ∈  𝜕𝛺  (4.3) 

   

where 𝜕𝛺 is the boundary of the size space. 

The model can be reduced from a partial differential equation (PDE) to a set of ordinary 

differential equations (ODEs) by using the standard method of moments (SMOM). Since only 

average properties are needed for the determination of the mean crystal AR, the SMOM method 

can provide an efficient and accurate method for the estimation of the key characteristics of the 

crystal population. 

The joint moments of internal variables can be calculated as: 

 

𝜇𝑘,𝑚(𝑡) = ∫ ∫ 𝑥1
 𝑘

∞

0

∞

0

𝑥2
 𝑚 𝑛(𝑥1, 𝑥2, 𝑡)𝑑𝑥1𝑑𝑥2  ,   𝑚, 𝑛 = 0,1,2…    (4.4) 

 

Hence, by applying the moment transformation rule (eq. 4.4) to the PBE (eq. 4.1), considering 

the initial (eq. 4.2) and boundary conditions (eq. 4.3), a finite set of ODEs can be acquired: 

 

 𝜕𝜇0,0

𝜕𝑡
=  𝐵𝑝 ;          

𝜕𝜇𝑚,𝑟

𝜕𝑡
=  𝑚 𝐺1 𝜇𝑚−1,𝑟 + 𝑟 𝐺2 𝜇𝑚,𝑟−1   , 𝑚, 𝑟 = 0,1,2,…    (4.5) 

This set of ODEs coupled with the component mass balances, for the solute and impurities, 

describes a comprehensive moment-based model for crystallization processes under the 

presence of one or multiple impurities/ additives. The interpretation of the most critical joint 

moments is as follows: μ0,0 is the total number of crystals (#/𝑚3) and 𝜇2,1 represents the 

crystal volume in a unit volume of suspension (𝑚3/𝑚3). However, although these are the only 
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joint moments that have a physical meaning, other ones can be used to determine other key 

properties of the crystal population. Furthermore, moments can be utilized to determine the 

mean crystal sizes (eq. 3.34, 3.35) of the total population of each characteristic length, while 

the mean aspect ratio of the crystals (eq. 3.36) can be estimated by the division of the mean 

sizes as has been already presented in Chapter 3. 

 

To integrate/solve the PBM model, the concentrations of the solute and the impurities are also 

required, which are calculated by coupling the corresponding mass balances. The overall model 

is summarized in Table 4.1 and it consists of a set of ODEs (moment equations coupled with 

mass balances) combined with algebraic equations that describe the kinetics and 

thermodynamics.  

 

The complete set of differential-algebraic equations (DAEs) is solved simultaneously. The 

interaction between the state variables is high particularly between the moments, as shown in 

the causal loop diagram depicted in Figure 4.2, where each state variable is fed to the next one. 

For instance, after the 𝜇00 moment is computed, the value passes to 𝜇01 and 𝜇10, where 

consequently their values pass to 𝜇20, 𝜇02 and 𝜇11. This continues until all the required 

moments to be estimated coupled with the mass balances for the solute concentration and the 

impurities. Also, it should be mentioned that the algebraic equation that describes the nucleation 

expression is fed into 𝜇00, while the 2D crystal growth kinetics and algebraic equations, which 

describe the impurities effect, are passed to the rest of the ODEs.  

Figure 4.2.  Causal loop diagram illustrating the interaction between the moments in the two-

dimensional case. 
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It should be noted the model is based on a few assumptions among others: 

• All the new formed crystals have a nominal size  𝐿𝑥1,𝑛 ≈ 𝐿𝑥2,𝑛 ≥ 0. Hence, it can be 

considered that the initial nuclei size is  𝐿𝑛 ≈ 0 (In most of the modelling studies, 

describing crystallization processes, the initial nucleus size is set to zero for practical 

purposes). 

• The process operates under well-mixed conditions, so it could be assumed that the 

system is perfectly mixed. Hence a lumped parameter model is developed since the 

dependent variable does not change with spatial location (e.g. the density function, the 

concentration of the different chemical compounds and the moments are functions of 

time and not space). 

• Only primary nucleation and crystal growth is considered since only these phenomena 

were detected experimentally. Thus, secondary nucleation, agglomeration and breakage 

can be neglected.  

• Size-independent growth rates are assumed for the two characteristic faces since the 

SMOM is applied for the identification of the parameters 

• Two different impurities and two different active sites are taken into account, which are 

located on two different crystal facets.  

• There is no interaction between the active sites. 

• Impurity effect on the solubility is considered negligible. 

• Equilibrium adsorption model is considered. 

The mathematical model requires 23 parameters and can be represented, for notational 

expediency, by the following general form of differential-algebraic equations (DAEs): 

 𝒙̇ = 𝒇(𝒙(𝑡), 𝒛(𝑡), 𝒑, 𝑡) , 𝒙(𝑡 = 0) =  𝒙𝟎 , 𝑧(𝑡) =  𝒈(𝒙(𝑡), 𝒛(𝑡), 𝒑, 𝑡) (4.6) 

where  𝒙  is the vector of the differential state variables,  𝒛  is the vector of the algebraic state 

variables, and  𝒑  is the vector of the parameters. 

A multi-variate nonlinear dynamic regression model can be considered for the mathematical 

illustration of the interaction between the model prediction and measured output: 

 𝒚𝒊𝒋 = 𝒚̂𝒊𝒋(𝒑, 𝑡𝑖𝑗) + 𝜀𝑖𝑗  (4.7) 

where  𝒚𝒊𝒋  is the  𝑗th  measurement of the  𝑖th  experimental output, 𝒚̂𝒊𝒋 is the corresponding 

model prediction,  𝑡𝑖𝑗  is the  𝑗th sampling time of the  𝑖th  output and  𝜀𝑖𝑗  is the measurement 

error assumed to be uncorrelated, Gaussian distributed, with zero mean.  
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Table 4.1. Complete set of differential-algebraic equations (DAEs) that represent the Multi-Impurity 

Adsorption Model (MIAM). 
 

General form of the moment − based PBEs 

𝜕𝜇0,0

𝜕𝑡
=  𝐵𝑝                                                                            

𝜕𝜇𝑚,𝑟

𝜕𝑡
=  𝑚 𝐺1 𝜇𝑚−1,𝑟 + 𝑟 𝐺2 𝜇𝑚,𝑟−1   ,   𝑚, 𝑟 = 0,1,2, …       

Component Mass Balance − Solute Concentration         Component Mass Balance −  Impurities Concentration 

𝑑𝐶(𝑡)

𝑑𝑡
=  −𝜌𝑐

𝑑𝜇1,2

𝑑𝑡
                                                                                  

𝑑𝐶𝐶𝐺𝑀,𝑗

𝑑𝑡
=  

𝜒𝑐,𝑗

1 − ∑ 𝜒𝑐,𝑗𝑗

 
𝑀𝐶𝐺𝑀,𝑗

𝑀𝐶

𝑑𝐶

𝑑𝑡
     

Primary nucleation rate                                                            Crystal growth kinetic rate 

𝐵𝑝 = 𝑘𝑝,0 𝑒𝑥𝑝 (−
𝐸𝑝

𝑅𝑇
) 𝑒𝑥𝑝 (−𝑘𝑒  𝑙𝑛−2(

𝐶

𝐶𝑠𝑎𝑡

))              𝐺𝑖 =  𝑘𝑔,𝑖  (
𝐶 − 𝐶𝑠𝑎𝑡

𝐶𝑠𝑎𝑡

)
𝑔𝑖

{1 − (𝑎𝑖,𝑖  
𝐾𝑖,𝐶𝐺𝑀𝑖,𝑖  𝐶𝑖,𝐶𝐺𝑀𝑖,𝑖

1 + 𝐾𝑖,𝐶𝐺𝑀𝑖,𝑖  𝐶𝑖,𝐶𝐺𝑀𝑖,𝑖

)} 

Mole fraction of the 𝑗𝑡ℎ  CGM                                                     Thermodynamic distribution coefficient of the 𝑗𝑡ℎ  CGM   

𝜒𝑐,𝑗 = ∑ 𝐾𝑑,𝑖,𝑗

𝐶𝐶𝐺𝑀,𝑗

𝑀𝐶𝐺𝑀,𝑗

(
𝐶

𝑀𝑐

+ ∑
𝐶𝐶𝐺𝑀,𝑗

𝑀𝐶𝐺𝑀,𝑗
𝑗

)

−1

𝑖

                                        𝐾𝑑,𝑖,𝑗 = 1 −  (1 − 𝐾𝑒,𝑗)√
𝐺𝑚𝑖𝑛,𝑖  𝑘𝑚,𝑖,𝑗

𝐺𝑖  𝑘𝑚𝑖𝑛,𝑖,𝑗

 

Langmuir constant of the 𝑗𝑡ℎ CGM on the 𝑘𝑡ℎ site on  𝑖𝑡ℎ characteristic face  

𝐾𝑖,𝑗,𝑘 =
𝑘𝑎𝑑𝑠,𝑖,𝑗,𝑘

𝑘𝑑𝑒𝑠,𝑖,𝑗,𝑘

=
𝑘𝑎𝑑𝑠,0,𝑖,𝑗,𝑘

𝑘𝑑𝑒𝑠,0,𝑖,𝑗,𝑘

𝑒𝑥𝑝 (
𝛥𝐺𝑑𝑒𝑠,𝑖,𝑗,𝑘 − 𝛥𝐺𝑎𝑑𝑠,𝑖,𝑗,𝑘

𝑅𝑇
) 

Absorption effectiveness factor of the kth site on the ith characteristic face 

𝑎𝑖,𝑘 =
𝛾𝑖

𝑘𝐵𝑇 (
𝐶−𝐶𝑠𝑎𝑡

𝐶𝑠𝑎𝑡
) 𝐿𝑖,𝑘

=
𝛽𝑖

𝑇 (
𝐶−𝐶𝑠𝑎𝑡

𝐶𝑠𝑎𝑡
)

 

Mass transfer coefficient when impurity distribution does and does NOT occur, respectively 

𝑘𝑚,𝑖,𝑗 = 𝐺𝑖  [1 − 𝑒𝑥𝑝 (−
𝐺𝑖

𝑘𝑚0,𝑗

)]

−1

                                                      𝑘𝑚𝑖𝑛,𝑖,𝑗 = 𝐺𝑚𝑖𝑛,𝑖 [1 − 𝑒𝑥𝑝 (−
𝐺𝑚𝑖𝑛,𝑖

𝑘𝑚0,𝑗

)]

−1

 

Unknown Parameters for Primary Nulceation & Crystal Growth in each characteristic face 

𝒑 = [𝒌𝒂𝒅𝒔,𝟎,𝑪𝑮𝑴𝟏 ,  𝒌𝒅𝒆𝒔,𝟎,𝑪𝑮𝑴𝟏 , 𝜷𝟏, 𝑮𝒎𝒊𝒏,𝟏, 𝒌𝒎,𝟎,𝑪𝑮𝑴𝟏 ,  𝑲𝒆,𝑪𝑮𝑴𝟏, 𝜟𝑮𝒅𝒆𝒔,𝟏, 𝜟𝑮𝒂𝒅𝒔,𝟏 … 

𝒌𝒂𝒅𝒔,𝟎,𝑪𝑮𝑴𝟐 ,  𝒌𝒅𝒆𝒔,𝟎,𝑪𝑮𝑴𝟐 , 𝜷𝟐, 𝑮𝒎𝒊𝒏,𝟐, 𝒌𝒎,𝟎,𝑪𝑮𝑴𝟐 ,  𝑲𝒆,𝑪𝑮𝑴𝟐 , 𝜟𝑮𝒅𝒆𝒔,𝟐, 𝜟𝑮𝒂𝒅𝒔,𝟐 … 𝒈𝟏,  𝒌𝒈𝟏, 𝒈𝟐,  𝒌𝒈𝟐, 𝒌𝒑,𝟎 ,  𝑬𝒑,  𝒌𝒆];  
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4.4 Estimability Analysis 

In the current study, the estimability analysis consists of three main steps. In the first step, the 

relative effect of each model parameter on the measured outputs is determined through local 

sensitivity analysis of the dynamic system. Sensitivity analysis is a fundamental study that can 

determine how the variations of the outputs could be related to certain variations of the input 

variables. The second step is to apply the Orthogonalization algorithm with the scope of ranking 

the parameters in descending order, in terms of impact on the outputs and minimum correlation 

between the parameters. Finally, a parameter estimation procedure is performed incrementally 

and sequentially in order to identify the threshold (cut-off value) on the objective function, 

which in turn helps select of the optimum most estimable subset. These steps are thoroughly 

described below. 

4.4.1 Ranking the Model Parameters – Orthogonalization Method 

The development of an effective solution to the parameter selection problem requires the 

quantification of the influence of each parameter on the measured outputs. This approach 

indicates which parameters are the most important and most likely to affect the model 

predictions. The first step of the estimability analysis method is the evaluation of the sensitivity 

coefficients which can be calculated analytically or numerically.  The numerical approach 

consists in applying a perturbation to the nominal values of the parameters according to the 

backward finite differences method as follows  

 
𝑠𝑖𝑗 =

𝜕𝑦̂𝑖

𝜕𝑝𝑗
 ≈  

𝑦̂𝑖(𝑡, 𝑝𝑗) − 𝑦̂𝑖(𝑡, 𝑝𝑗 − 𝛥𝑝𝑗)

𝛥𝑝𝑗
 , 𝑗 = 1,2,… ,𝑁𝑝 (4.8) 

where  𝑁𝑝  is the number of the parameters. It should be mentioned that the relative perturbation 

applied to the nominal values of the parameters was equal to −2% (i.e.  𝛥𝑝𝑗/𝑝𝑗). As such the 

local sensitivity can be calculated for each sampling or measurement time  

As the model parameters and outputs have different units and numerical values that could span 

several orders of magnitude, a normalization of the local sensitivities is often applied with 

respect to the parameters’ nominal values and corresponding model output in order to make a 

more reliable comparison between the inherent effects of the parameters. The normalized 

sensitivity coefficients are given by the following equation: 
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𝑠𝑖𝑗| 𝑡=𝑡𝑘

=
𝑝𝑗̅

𝑦𝑖̅| 𝑡=𝑡𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦̂𝑖

𝜕𝑝𝑗
 ≈  

𝑝𝑗̅

𝑦𝑖̅| 𝑡=𝑡𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑦̂𝑖(𝑡, 𝑝𝑗) − 𝑦̂𝑖(𝑡, 𝑝𝑗 − 𝛥𝑝𝑗)

𝛥𝑝𝑗
 (4.9) 

 

where  𝑝𝑗̅  is the nominal value of the  𝑗𝑡ℎ  parameter,  𝑦𝑖̅| 𝑡=𝑡𝑘   is the model prediction of the 𝑖𝑡ℎ 

output, evaluated at a sampling time  𝑡𝑘  using the nominal vector of parameters 𝒑𝒋̅ and 𝑗 =

1,2, … ,𝑁𝑝. 

After the sensitivity coefficients have been calculated, a sensitivity matrix Z is constructed as 

follows: 

 

 𝒁 =  

[
 
 
 
 
 
 
 𝑠11| 𝑡=𝑡1

… 𝑠1𝑁𝑝
|  𝑡=𝑡1

⋮ ⋱ ⋮

𝑠𝑁𝑦1|  𝑡=𝑡1
… 𝑠𝑁𝑦𝑁𝑝

|  𝑡=𝑡1

𝑠11| 𝑡=𝑡2
… 𝑠1𝑁𝑝

|  𝑡=𝑡2

⋮ ⋱ ⋮

𝑠𝑁𝑦1|  𝑡=𝑡𝑁𝑚
… 𝑠𝑁𝑦𝑁𝑝

|  𝑡=𝑡𝑁𝑚]
 
 
 
 
 
 
 

 (4.10) 

 

Thus, the sensitivity matrix has a dimension 𝑁𝑦 × ( 𝑁𝑝  × 𝑁𝑚) , where  𝑁𝑦   is the number of 

the measured outputs, 𝑁𝑚 is the number of the measurements or sampling times, and  𝑁𝑝 is the 

number of model parameters. Hence, each column represents the sensitivity coefficients with 

respect to one particular parameter, while each row captures the sensitivities of a specific output 

to the whole set of parameters at a particular sampling time. 

One important property of the sensitivity matrix is that it can be related to the Fisher information 

matrix (FIM) by 

 𝐹𝐼𝑀 =  𝑍𝑇𝐴  𝑍 (4.11) 

   

where  A  is a square weighting matrix that represents the inverse of the measurement error 

covariance at the sampling points. The FIM matrix, which is also a square matrix 

(dimensions: 𝑁𝑝 ×  𝑁𝑝 ), provides a key tool to assess parameters uncertainty and help 

determine the confidence intervals and correlation coefficients. In addition, the FIM rank gives 

an excellent indication on the number parameters that show high estimability potential. For 

instance, if two columns of the FIM are linearly dependent, the impact of one parameter can be 

affected significantly by the effect of the other one, and hence the identification of the 

corresponding parameters would lead to inaccurate estimations. Therefore, the FIM can provide 
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critical gen for estimability analysis as it contains information regarding measurement 

uncertainty and sensitivities of predicted response to model-parameters at all measurement 

times. Hence, in this work it is used to determine the covariance matrix and consequently the 

correlation coefficients as described below. 

Table 4.2. Orthogonalization algorithm for estimability analysis (Benyahia et al. 2013). 

𝜡𝒊: sensitivity vector corresponding to the parameter; 𝑝𝑖  :   𝜆: cut − off value; 

𝒓𝒊: orthogonal projection of 𝜡𝒊 ;   𝑷𝒋: set of estimable parameters; 

𝑿𝒋: the matrix of the selected parameters vectors at the 𝑗𝑡ℎ stage; 

1. Select the parameter with the highest effect: find the index k such that: 

𝒌 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒊

(𝒁𝒊)
𝑻𝒁𝒊 ,  𝒊 ∈  𝑰𝟎 = {1,… , 𝑛𝑝} 

𝑖𝑓  (𝒁𝒌)
𝑇𝒁𝒌  ≥ 𝜆   𝑠𝑒𝑡  𝑷𝟏 = ሼ𝑝𝑘ሽ  𝑎𝑛𝑑  𝑿𝟏 = 𝒁𝒌 

otherwise   stop 

2. Orthogonalization: Compute the orthogonal projection of the matrix 𝒁: 

𝑹𝒋 = (𝑰 −  𝑿𝒋(𝑿𝒋
 𝑻𝑿𝒋

 )
−𝟏

  𝑿𝒋
 𝑻) 𝒁 

3. Select the next parameter with the highest effect: 

𝒍 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒊

(𝒓𝒊
 𝒋)𝑻𝒓𝒊 ,    𝒊 ∈  𝑰𝒋 =  (𝑰𝒋−𝟏 − ሼ𝒌,… ሽ) 

𝑖𝑓  (𝒓𝑙  
𝑗)

𝑇
𝒓𝑙  

𝑗  ≥ 𝜆   𝑠𝑒𝑡  𝑷𝒋 = {𝑷𝒋−𝟏, 𝑝𝑙}  𝑎𝑛𝑑  𝑿𝒋+𝟏 = {𝑿𝒋 , 𝒁𝒍 } 

Return to step 2 

𝐎𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 𝐒𝐭𝐨𝐩  

The Orthogonalization method provides an efficient forward-selection method that has been 

applied extensively for parameter ranking and selection. The technique is relatively simple to 

implement and most importantly it ranks the parameters more reliably, as both the magnitude 

of the effect of each model parameter on the outputs and the correlations between the effects of 

different parameters are considered simultaneously. This is paramount since both phenomena 

can reveal critical to process of parameters selection and discrimination, and consequently, to 

the prediction capabilities of the mathematical model. If a perturbation of a model parameter 

has minor effect on the outputs, then the parameter cannot be identified accurately from the 

data. This can be mathematically determined by calculating the norm of the sensitivity vectors 

(the norm of the columns Zi). Conversely, large magnitudes/norms indicate significant effects 

on the outputs. At the same time, if a disturbance of two or more model parameters have similar 
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trends/effects on the outputs, and then the parameters are highly correlated. As a result, the 

impact of one parameter can’t be isolated from the impact of the other, and hence these 

parameters cannot be reliably and uniquely identified from the data. It should be noted that the 

orthogonalization method selects sequentially the least correlated and most influential 

parameters (Benyahia et al. 2013). The correlation can also be evaluated using the FIM (e.g. 

linear dependency of the sensitivity vectors). Moreover, when two parameters 𝑝𝑖 and 𝑝𝑗 are 

orthogonal (i.e. linear independent - Not correlated) the element of the 𝑖𝑡ℎ and  𝑗𝑡ℎ of the FIM 

is zero, while the FIM obtains a value close to one (𝐹𝐼𝑀 → 1) when the two parameters are 

linearly dependent (i.e. correlated parameters). The orthogonalization algorithm utilizes this 

criterion at step 2 (Table 4.2) to rank and select the optimal parameter set. 

In this work, a modified Gram-Schmidt orthogonalization algorithm (Yao et al. 2003) is used 

to help rank sequentially the model parameters according to the magnitude of the sensitivities 

and the least correlation effect. The sequential orthogonalization algorithm is presented in 

Table 4.2. The first parameter is selected then all vectors of the scaled sensitivity matrix are 

sequentially projected onto an orthogonal basis (the sensitivity vectors with the highest 

magnitude).  

Although, the ranking of the parameters regarding their estimability potential can be achieved 

with the orthogonalization method, selecting the optimal subset of parameters that can be 

reliably identified remains open, since in most of the cases arbitrary cut-off values are applied. 

In this work, an optimization-based approach is utilized for the optimum parameter selection 

based on the maximum likelihood approach: 

 

𝐽(𝑝) =  𝑚𝑖𝑛
𝒑

{ ∑𝑁𝑒   𝑙𝑛 (∑[(𝒚𝒊𝒋(𝒑, 𝑡 ) − 𝒚̂𝒊𝒋(𝒑, 𝑡 ))
2
]

𝑁𝑒

𝑗=1

)

𝑁𝑦

𝑖=1

 }  (4.12) 

   

𝒔. 𝒕.     𝒙̇ = 𝒇(𝒙(𝑡), 𝒛(𝑡), 𝒑, 𝑡) , 𝒙(𝑡 = 0) =  𝒙𝟎 , 𝒈(𝒙(𝑡), 𝒛(𝑡), 𝒑, 𝑡) = 𝒚̂𝒊𝒋(𝑡)   

where yij(p, t ) is the experimental measurement; Ny is the number of outputs and Ne is the 

number of the experiments. 

The maximum likelihood criterion was also used in the parameter estimation problem to 

identify the initial set of model parameters (i.e. nominal set). 
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4.4.2 Global Sensitivity Analysis  

Sensitivity analysis has been extensively applied as a technique for model simplification, model 

calibration and process understanding through computer-aided design (Varma et al., 2005; 

Saltelli et al., 2004). LSA has widely been accepted by the research community due to the low 

computational cost. However, LSA techniques can only determine the sensitivity of each input 

separately, without taking into account the overall contributions of the input variables to the 

output predictions. In GSA methods, a simultaneous perturbation of all parameters (inputs) is 

performed within specific bounds, as opposed to LSA techniques where the parameters inputs 

are varied once at a time. Hence, the GSA approaches are capable of measuring not only the 

relative impact of each input variable, but also the interactions between them. The Variance-

based global sensitivity techniques are used here, which they depend on the calculation of the 

following ratio: 

 𝑉𝑎𝑟𝑝[𝐸(𝑦𝑖𝑗(𝒑, 𝑡 )|𝒑)]

𝑉𝑎𝑟(𝑦𝑖𝑗(𝒑, 𝑡 ))
 (4.13) 

 

where 𝐸(𝑦𝑖𝑗(𝒑, 𝑡 )|𝒑) denotes the expectation of the output  y  on a fixed value, and the variance 

is calculated over all possible values of the inputs. In our case the inputs are the vector of the 

unknown parameters  𝒑.  

Many GSA techniques have been developed, with the most well established being the method 

of Sobol (Sobol, 2001). The Sobol method decomposes the output function 𝑦(𝑝1, … , 𝑝𝑘)  into 

terms of increasing degrees of interactions between the model inputs as follows: 

 

𝑦̂  
(𝑝1, … , 𝑝𝑁𝑝

) =  𝑦̂ 0
+ ∑ 𝑦̂ 𝑖

(𝑝𝑖) +

𝑁𝑝

𝑖=1

∑  ∑ 𝑦̂ 𝑖𝑗
(𝑝𝑖 , 𝑝𝑗) +

𝑁𝑝

𝑗=𝑖+1

𝑁𝑝−1

𝑖=1

…

+ 𝑦̂ 1,2,…,𝑁𝑝
(𝑝1, 𝑝2, … , 𝑝𝑁𝑝

) 

(4.14) 

   

In general, there are infinite ways to decompose the function  𝑦̂  
(𝑝1, … , 𝑝𝑁𝑝

). However, for 

independent factors, the decomposition based on orthogonal terms becomes unique (Sobol, 

2001) and the functions can be calculated through multidimensional integrals as follows: 

 
𝑓0 = 𝐸(𝑦) =  ∫𝑓(𝑝)𝑑𝑝

 

𝛺𝑘

 (4.15) 
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𝑓𝑖 = 𝐸(𝑦|𝑝𝑖) − 𝐸(𝑦) =  −𝑓0 + ∫ …∫ 𝑓(𝑝 )

1

0

1

0

𝑑𝑝~𝑖 (4.16) 

   

 
𝑓𝑖𝑗 = 𝐸(𝑦|𝑝𝑖, 𝑝𝑗) − 𝐸(𝑦|𝑝𝑖) − 𝐸(𝑦) = ∫ …∫ 𝑓(𝑝 )

1

0

1

0

𝑑𝑝~𝑖𝑗 − 𝑓0 − 𝑓𝑖 (4.17) 

   

where  𝑑𝑝~𝑖  and  𝑑𝑝~𝑖𝑗  denote the integration over all variables except  𝑝𝑖  and  𝑝𝑖 and  𝑝𝑗 

respectively, Ωk is the sampling space. Sobol’s method employs Monte Carlo approximations 

to calculate the integrals described in equations 4.15 - 4.17 (Sobol, 2001; Saltelli et al., 2005).  

Similarly, the eq. 4.14  can be re-written as a variance (eq. 4.18) and sensitivity form (eq. 4.19) 

respectively: 

 

𝑉(𝑦) = ∑𝑉𝑖  +

𝑘

𝑖=1

∑ 𝑉𝑖𝑗  +

1≤𝑖≤𝑗≤𝑘

…+ 𝑉1,2,…,𝑘 (4.18) 

 

 

     ∑𝑠𝑖  +

𝑘

𝑖=1

∑ 𝑠𝑖𝑗  +

1≤𝑖≤𝑗≤𝑘

…+ 𝑠1,2,…,𝑘     = 1         (4.19) 

 

where 𝑉𝑖 is the contribution of the parameter 𝑝𝑖 to the total variance 𝑉(𝑦), while  𝑉𝑖𝑗 is the 

contribution inherent to the interactions between two parameters 𝑝𝑖 and 𝑝𝑗. 

Hence, these contributions (i.e. partial variances) can be used to calculate the first-order 

sensitivity index for the parameter 𝑝𝑖 which evaluates the main effects of  𝑝𝑖 on the output (i.e. 

partial variance of  𝑝𝑖 to the total variance): 

 
𝑠𝑖 =

𝑉𝑖

𝑉(𝑦)
 (4.20) 

 

In a similar way, the second-order 𝑠𝑖𝑗 and the total order sensitivity indices 𝑠𝑇𝑖 can be 

determined from: 

 
𝑠𝑖𝑗 =

𝑉𝑖𝑗

𝑉(𝑦)
      (4.21) 

   

 
𝑠𝑇𝑖 = 1 −

𝑉~𝑗

𝑉(𝑦)
 (4.22) 
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The total sensitivity index  𝑠𝑇𝑖 determines the total contribution of the parameter  𝑝𝑖 considering 

both direct and indirect effects. Hence, the difference between 𝑠𝑇𝑖 and 𝑠𝑖 indicates the degree 

of interaction. More information regarding the method of Sobol and other variance method 

techniques can be found in Saltelli et al. (2008). 

4.5 Optimal Experimental Design (OED) 

The criteria of estimability analysis, however, cannot be always satisfied, indicating that the 

model-estimates may present high uncertainty or otherwise the model is inestimable (i.e. ill-

conditioned). In this case, a model-based design of experiments (MBDoE) approach should be 

utilized sequentially, as indicated in Figure 4.1, in order the optimal experimental conditions 

yielding the most informative process data to be identified, resulting in accurate identification 

of the model-parameters. The optimal experimental design (OED) is in principal an 

optimization problem with the scope of minimizing the parameter uncertainty iteratively, which 

consequently leads to improved parameter precision (Chen et al., 2004; Schenkendorf et al., 

2009).  

One way of assessing the parameter uncertainty is through confidence domains. So, in this 

study, for the estimation of the confidence intervals of the model-parameters, a method based 

on the fisher information matrix is used (Walter and Pronzato, 1997; Sin et al, 2010). In more 

detail, the covariance matrix of the identified parameters,  𝐶𝑂𝑉(𝒑) , can be linearly 

approximated by: 

 
𝐶𝑂𝑉(𝒑)−1 ≈

𝐽(𝒑)

𝑁𝑦 − 𝑁𝑝
  ((

𝜕𝑦̂ 

𝜕𝒑 
 )

𝑇

𝐴  (
𝜕𝑦̂ 

𝜕𝒑 
 )

 

) =
𝐽(𝒑)

𝑁𝑦 − 𝑁𝑝
 𝐹𝐼𝑀 (4.23) 

   

Then the confidence region (aka hyperellipsoid) of the parameters, 𝒑, at 𝑎𝑡 significance level 

is given as: 

 𝒑1−𝑎𝑡
= 𝒑 ± √𝑑𝑖𝑎𝑔(𝐶𝑂𝑉(𝒑) ) ∙  𝑡𝑑(𝑁𝑦 − 𝑁𝑝, 𝑎𝑡 2⁄ ) (4.24) 

, where 𝑡𝑑(𝑁𝑦 − 𝑁𝑝, 𝑎𝑡 2⁄ ) is the t-distribution value corresponding to the 𝑎𝑡 2⁄  percentile with 

𝑁𝑦 − 𝑁𝑝 degrees of freedom and  𝑑𝑖𝑎𝑔(𝐶𝑂𝑉(𝒑)) denotes the diagonal elements of the 

covariance matrix. 
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Figure 4.3.  Graphical representation of how the optimal design criteria can be related to the parameter 

uncertainty and can be utilized to minimize the parameter error by identifying the optimum operating 

trajectory. 

Therefore, a scalar function of the FIM is usually utilized as the objective function since it is 

directly related to the estimated confidence regions of the parameter estimates (see Figure 4.3 

- Walter and Pronzato, 1997; Sin et al, 2010). Well known optimality criteria related to the FIM 

matrix are (McLean and McAuley, 2012):  

 𝐴 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: min
 

(𝑡𝑟(𝐹𝐼𝑀−1)) (4.25) 

 𝐷 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: max
 

(𝑑𝑒𝑡(𝐹𝐼𝑀 )) (4.26) 

 𝐸 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: max
 

(𝜆𝑚𝑖𝑛(𝐹𝐼𝑀 )) (4.27) 

 
𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐸 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛: 𝑚𝑖𝑛 (

𝜆𝑚𝑎𝑥(𝐹𝐼𝑀)

𝜆𝑚𝑖𝑛(𝐹𝐼𝑀)
) (4.28) 

, where 𝜆𝑚𝑖𝑛(𝐹𝐼𝑀) and 𝜆𝑚𝑎𝑥(𝐹𝐼𝑀) are the smallest and largest eigenvalues of the FIM 

respectively. The eigenvectors and eigenvalues of the FIM correspond to the direction and the 

length of the axes of the hyperellipsoid respectively. Hence, when the E – optimal design 

criterion maximizes the smallest eigenvalue of the FIM matrix is equivalent of minimizing the 

largest axis of the confidence ellipsoid. Similarly, when the condition number, which is the 

fraction of the largest and smallest eigenvalue, is minimized during the optimization of the 

modified E – optimal design criterion, the aspect ratio of the hyperellipsoid is minimized. 

Hence, the E – optimal design criterion utilizes only the size of the confidence ellipsoid, while 

the modified E – optimal design criterion is related only to the shape, which can be problematic 

since ideally both size and shape should be considered. Therefore, in this case study, the A – 

optimal and D – optimal design criteria, were utilized as the objective functions since they 

account both size and shape of the hyperellipsoid. More specifically, the A – optimal design 

criterion, minimizes the trace of the inverse FIM which is equivalent to minimizing the sum of 

squares of the length of the axes of the hyperellipsoid, while the D – optimal design criterion 
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maximizes the determinant of the FIM, which corresponds to minimizing the volume of the 

confidence ellipsoid.  

Since, a cooling batch crystallization process is considered, the problem of designing dynamic 

experiments is posed as an optimal control problem that enables the estimation of the optimum 

temperature trajectory under different impurities’ concentration, as shown below: 

max/min
𝑇(1),𝑇(2),…,𝑇(𝑃),𝐶𝐶𝐺𝑀𝑖 

𝐽𝑜𝑏𝑗,𝑑𝑒𝑠(𝑡)    (obj.4.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑇𝑚𝑖𝑛 ≤  𝑇𝑖  ≤   𝑇𝑚𝑎𝑥  (c.4.1) 

𝑅𝑚𝑖𝑛 ≤
𝑑𝑇

𝑑𝑡
≤ 𝑅𝑚𝑎𝑥  (c.4.2) 

𝑡 ≤ 𝑡𝑓𝑖𝑛𝑎𝑙 (c.4.3) 

 0 ≤ 𝐶𝐶𝐺𝑀𝑖 ≤ 5𝑝𝑝𝑚  (c.4.4) 

, where 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥,  𝑅𝑚𝑖𝑛 and  𝑅𝑚𝑎𝑥 are the minimum and maximum temperature and 

temperature ramp rates respectively. Two different objective functions were utilized, 

  𝐽𝑜𝑏𝑗,𝑑𝑒𝑠,𝐴 = min
 

(𝑡𝑟(𝐹𝐼𝑀−1)) and   𝐽𝑜𝑏𝑗,𝑑𝑒𝑠,𝐷 = max
 

(𝑑𝑒𝑡(𝐹𝐼𝑀 )) for the MIAM model. The 

total batch time (𝑡𝑓𝑖𝑛𝑎𝑙) is introduced as a constraint (c.4.3) and it is a fixed value. The inequality 

constraint described by the expression c.4.2 guarantees that the temperature trajectory is 

monotonically decreased since no dissolution is considered, while the expression c.4.1 sets the 

upper and lower temperature bounds. The implementation of the temperature ramp rates 

(expression c.4.2) is related to the cooling capabilities of the utilized heat exchangers and, in 

this case, was selected to keep the cooling rates boundaries within the range of 0 to –2 ℃/𝑚𝑖𝑛. 

The final constraint (c.4.4) sets the upper and lower bounds with respect to the impurities’ 

concentrations. The task defined by obj.4.1 is a dynamic optimization problem with the 

temperature 𝑇(𝑡), which is a continuous function of time, to be the control variable. Hence, the 

input temperature trajectories were parametrized as a piecewise linear function with a finite 

number of decision variables over time (see Chapter 3: section 3.3 for more information). 
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4.6 Results and Discussion 

4.6.1 Parameter Estimability Analysis 

Due to the large number of parameters commonly associated with the crystallization processes, 

a sequential parameter estimation approach has been extensively proposed. The method 

consists in splitting the model parameters to be identified into subsets with the aim of 

simplifying the optimization procedure, as limited number of parameters is considered each 

time. However, the approach doesn’t rely on a rigorous or systematic selection procedure and 

no theoretical proof that the parameter subset can be optimally selected. As such, some authors 

claimed that the sequential approach outperforms the simultaneous one, which identifies all 

model parameters in one single step, while others observed non-inconsistencies between the 

prediction capabilities inherent to both methods. For instance, Wohlgemuth & Schembecker, 

2013, achieved better fitting by using the sequential approach for the concentration data, while 

the simultaneous method proved to be more accurate when the relevant model predictions were 

compared with CSD measurements. Hence, although the sequential approach can potentially 

simplify the parameter estimation process, it doesn’t guarantee better estimates and 

consequently more predictable models.  

Here, a rigorous selection procedure of the optimal subset of parameters, based on the 

estimability approach, is developed and implemented to the MIAM. The method combines two 

estimability methods: the first associates local sensitivities to a sequential orthogonalization 

procedure and the second uses a variance based global sensitivity selection. Only the optimal 

subset or parameters require identification (the rest of the parameters can be set to their nominal 

values) with a guaranteed minimum model mismatch (i.e. high prediction capability). 

It should be emphasized that the parameters of the novel Multi-Impurity PBM model were 

previously identified by Borsos et al. (2016) using a sequential identification methodology and 

attempted to identify decoupled kinetic parameters while taking several parameters from 

literature. For instance, the parameters associated with the primary nucleation and the crystal 

growth of the two different facets were obtained from the literature, while the kinetic parameters 

inherent to the two crystal growth modifiers (i.e. impurities) were estimated from on-line image 

analysis data. However, the addition of additives/impurities might affect the kinetics of 

nucleation and growth (Epstein, 1982; Kubota, 2001a), and hence the nominal parameter vector 

might not be reliable enough. 
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Table 4.3. Nominal vector of the model parameters and their confidence intervals (C.I.) 

Parameter Nominal value from 

Borsos et al., 2016 

Estimated nominal values 

Current work 

Value ± C.I. % 

Units Corresponding 

Number 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 27.3  6.131 ± 90.64 % - 1 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 0.56562  0.630 ± 98.93 % - 2 

 𝛽1 4.6  10.626 ± 87.50 % m/K 3 

𝐺𝑚𝑖𝑛,1 4.5 × 10−4  2.812 × 10−4 ± 99.96 % μm/s 4 

𝑘𝑚,0,𝐶𝐺𝑀1 389.348 19.135  ± 0.0014 % m/s 5 

𝐾𝑒,𝐶𝐺𝑀1 0.999 1.669  ± 66.75 %  - 6 

𝛥𝐺𝑎𝑑𝑠,1 2.436 × 10+3  1.578 × 10+3 ± 2.24 % kJ/mol 7 

𝛥𝐺𝑑𝑒𝑠,1 2.2994 × 10+4  2.17 × 10+4 ± 2.37 % kJ/mol 8 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2 11.24   4.046  ± 86.78 % - 9 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀2 0.49127 0.4566  ± 98.36% - 10 

 𝛽2 5.15 5.1164 ± 87.03% m/K 11 

𝐺𝑚𝑖𝑛,2 246.952 487.034  ± 0.23% μm/s 12 

𝑘𝑚,0,𝐶𝐺𝑀2 61.1286 79.096  ± 0.99% m/s 13 

𝐾𝑒,𝐶𝐺𝑀2 0.994   0.997  ± 99.84 % - 14 

𝛥𝐺𝑎𝑑𝑠,2 5.301 × 10+3 6.386  × 10+3  ± 1.09 % kJ/mol 15 

𝛥𝐺𝑑𝑒𝑠,2 2.4181 × 10+4 2.709 × 10+4 ± 0.88 % kJ/mol 16 

𝑔1 1.4776   1.553  ± 99.57 % - 17 

𝑘𝑔1  12.2063 21.028  ± 74.11% μm/s 18 

𝑔2 1.692   1.692  ± 99.27 % - 19 

𝑘𝑔2 1.7412 98.109  ± 24.15% μm/s 20 

𝑘𝑝,0 100.751 × 10−18 
334.331× 10−18  

± 0.35% 
#/𝜇𝑚−3𝑠−1 21 

𝐸𝑝 2.814  × 10+3 0.001  ± 64.28% kJ/mol 22 

𝑘𝑒  1.576 × 10−3   4.895  ± 2.24% - 23 

 

Commonly, the estimability approach requires a set of nominal parameter values which 

represent a reasonable initial guess, usually obtained from literature or prior process knowledge. 

To guarantee a generic robust framework for parameter estimation and extend the discussions 

above, the estimability approach is developed for two case scenarios: the case where the model 

parameters obtained by Borsos et al. (2016), in conjunction with the literature, can be used as 

nominal values, and the case where no prior knowledge of the process parameter is available. 

In the latter case, a simultaneous identification approach, based on a hybrid global optimization 

approach, that combines a genetic algorithm and a local deterministic approach was used to 

identify the nominal values. The model-parameters that were estimated based on these 

techniques are presented in Table 4.3. In both cases the estimability approach will help identify 
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the best parameter estimates of the optimal subset that guarantees maximum prediction 

capability, given the available experimental data. It is worth mentioning that this forward 

estimability method can also be used for the optimum design of experiments for improved 

parameter estimation (Benyahia, 2009; Benyahia et al., 2011b). 

One crucial step after the identification of the 23 unknown parameters is the evaluation of the 

uncertainty of the model estimates, since it could provide information regarding the robustness 

and the predictive capability of the model. One way of assessing these uncertainties is through 

confidence domains. In this study, a method based on the FIM is used to estimate the 95% 

confidence intervals of the model-parameters (Sin et al, 2010). The mean values of the 

identified model parameters for the simultaneous approach and the corresponding confidence 

intervals are presented in Table 4.3. 

Although the confidence intervals associated with some of the nominal parameter estimates are 

reasonably narrow, most of the model parameters highlighted in red present broad confidence 

intervals. Statistically speaking, this indicates that the parameters are unidentifiable and 

consequently the parameter estimates are not reliable. Hence, a good fit should be combined 

with the estimation of confidence regions and the corresponding correlation matrix. In this way, 

the reliability of the estimated unknown parameters can be assessed (Table 4.3). In most of the 

cases, the cause of these broad confidence domains is associated with the existence of strong 

correlations amongst the parameters. The correlation effects will be thoroughly discussed in 

conjunction with the estimability analysis in the next sections. 

4.6.2 Local Estimability Analysis: LSA and Orthogonalization Algorithm 

Although the estimability aims in essence at improving the parameter estimates in order to 

enhance the model prediction capability, the initial parameter estimates, used as nominal values, 

can play a crucial role in the quality of the sensitivity analysis, both LSA and GSA, and 

consequently determines the outcome of the estimability analysis. Poor nominal model 

parameters would potentially lead to inaccurate parameter ranking that consequently would lead 

to a degradation of the predictive capability of the mathematical model (Benyahia, 2009). The 

investigation of the estimability analysis is carried out, as explained before, in three steps: a 

local sensitivity analysis is performed in order to evaluate the relative effect of the parameters 

on the process outputs, then the model parameters are ranked in descending order, in terms of 

sensitivity magnitude and correlation, by using the Orthogonalization algorithm (Table 4.2). 
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Finally, an incremental optimization approach that consists in a sequential identification of the 

top 𝑖𝑡ℎ parameters (where 𝑖 = 1, 2, …) is utilized to determine the threshold or cut-off value 

and identify the optimal subset of model parameters. 

In Figure 4.4, the variation of the dynamic sensitivity of some model parameters is presented. 

The first selected parameter (Figure 4.4a), 𝑔1, which is the exponent of the growth kinetic 

equation in the 𝑥1 dimension (i.e. along the length of the crystal), shows very high sensitivities 

at all times. This means that 𝑔1, has a strong effect on the model predictions (outputs) and 

consequently its estimability potential can be very high depending the concurrent correlation 

effects. The same stands for the second selected parameter (Figure 4.4b), 𝑘𝑒,𝐶𝐺𝑀2 , which 

describes the thermodynamic mass distribution coefficient for the CGM2 (i.e. sodium 

hexametaphosphate). These two parameters are likely to be ranked high in terms of estimability 

potential meaning that the information obtained from the measurements in the considered time 

window will be adequate for their accurate estimation. On the other hand, 𝑘𝑝,0 and  𝑘𝑚,0,𝐶𝐺𝑀1 

show very weak sensitivities at all times. For instance, the sensitivities associated 

with 𝑘𝑚,0,𝐶𝐺𝑀1 are always below  6 × 10−7which indicates that these model parameters are 

likely to be practically unidentifiable (inestimable). 

 

 

Figure 4.4. Comparison of the dynamic sensitivity of selected model parameters: (a) 𝑔1 (b) 𝐾𝑒,𝐶𝐺𝑀2 (c) 

𝑘𝑝,0  (d) 𝑘𝐶𝐺𝑀1,𝑚,0 

 

(a) (b) 

(c) (d) 
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Figure.4.5. Comparison of the sensitivity profiles of selected model parameters: (a) 

𝑝1 : 𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 & 𝑝2 : 𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 and (b) 𝑝7 : 𝛥𝐺𝑑𝑒𝑠,1 & 𝑝9 : 𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2 

Besides the relative effect of the parameters on the outputs, the sensitivity analysis can give a 

very good indication of the existence of correlations between the parameters. Similar sensitivity 

trajectories indicate strong correlation as seen by comparing the sensitivity trajectories of 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 and 𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 (Figure 4.5a) and 𝛥𝐺𝑑𝑒𝑠,1  and 𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2 (Figure 4.5b). These 

outcomes are also consistent with the correlogram (correlation matrix) depicted in Figure 4.7 

Similar results could be drawn from Figure 4.6, where the whole parameter set is presented in 

a box plot. This diagram illustrates the variation of the estimated model parameters. The 

parameters can be classified in three different discrete subgroups according to their contribution 

to the output: high, moderate and low. As such, some of the parameters such as 

{𝑘𝑒,𝐶𝐺𝑀2, 𝛥𝐺𝑎𝑑𝑠,2, 𝛥𝐺𝑑𝑒𝑠,2, 𝑔1, 𝑘𝑔1 , 𝑔2, 𝛥𝐺𝑑𝑒𝑠,1} can be classified as parameters with high 

impact. {𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1, 𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1,  𝛽1, 𝛥𝐺𝑎𝑑𝑠,1, 𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2, 𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀2,  𝛽2,  𝑘𝑔2} and {𝐺𝑚𝑖𝑛,1,

𝑘𝑚,0,𝐶𝐺𝑀1, 𝐾𝑒,𝐶𝐺𝑀1, 𝐺𝑚𝑖𝑛,2, 𝑘𝑚,0,𝐶𝐺𝑀2, 𝑘𝑝,0, 𝐸𝑝, 𝑘𝑒}, on the other hand, seem to present moderate 

and low sensitivity to the imposed perturbation respectively. Hence a considerable number of 

the parameters obtain low sensitivity values. This lack of sensitivity suggests that the model is 

over-parametrized (Saltelli et al., 2008). However, model discrimination is beyond the scope of 

this paper and all parameters are considered essential for other physical aspects of the model 

performance and may be set to their nominal values without degrading the prediction 

capabilities of the model. These observations indicate that the vector of the model parameters 

as a whole is practically unidentifiable (from the available data) and further analysis should be 

done in order to select an optimal subset of parameters. It should be highlighted that this 

(a) (b) 
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classification is based utterly on observation of the variation of the sensitivities and is presented 

as a preliminary qualitative analysis of the results. The formal implementation of the 

estimability approach and identification of the cut-off value will be discussed in the subsequent 

sections. 

A robust approach for ranking the model parameters according to their estimability potential is 

based on the orthogonalization algorithm (Table 4.2), which takes into account both the 

sensitivity magnitude (i.e. Euclidean norm) and correlation during the sequential selection of 

the most estimable parameter. The results obtained based on modified Gram-Schmidt 

orthogonalization algorithm are presented in Table 4.4. The exponents of the growth kinetic 

equations in the ሼ𝑥1, 𝑥2ሽ dimensions (i.e. 𝑔1 and 𝑔2) indicate high estimability potential. This 

was expected since these parameters represent the exponential factors of the crystal growth 

rates used in the model algebraic equations (i.e. empirical power law expressions). The 

absorption energy of the impurities (i.e. 𝛥𝐺𝑎𝑑𝑠,1 and 𝛥𝐺𝑎𝑑𝑠,2) also appear to have a significant 

impact on the outputs since they are highly ranked on the list illustrating high estimability 

potential. It is also evident, that the kinetic parameters corresponding to the nucleation 

mechanism are ranked quite low {𝑘𝑝,𝑜 , 𝐸𝑝, 𝑘𝑒} because of their weak sensitivity coefficients at 

the sampling times. This reveals how critical is the incorporation of the estimability analysis in 

the development of the design of experiment and consequently in mathematical modelling. 

Moreover, it is known that the AR measurements can provide negligible information regarding 

the nucleation phenomena. This limitation maybe overcome by incorporating additional PAT 

to measure the concentration and number of counts (focussed beam reflectance (FBRM)) and 

considering these two variables as process outputs in the estimability framework. 

Figure 4.6.  Box plot illustrating the variation of the sensitivity of the estimated model parameters. 
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The estimability analysis revealed that the data are not adequate to estimate accurately the 

nucleation kinetics. This is key, especially in systems utilizing different sensors. As such, the 

information content of each sensor may be assessed and consequently the number of parameters 

that can be estimated from each individual PAT or from their combination (e.g. sensors 

providing different outputs) may be determined. This may also be employed for the evaluation 

of the accuracy of the measuring method with the scope of collecting more accurate 

measurements. Hence, the estimability analysis can be utilized for the selection of the 

appropriate PAT and consequently the most efficient strategy to collect the experimental data 

to improve the accuracy of the model parameters, which in turns enhances the model reliability 

in key applications such as process design and control.  

Figure 4.7.  Correlation matrix for the estimated nominal parameter set. 

The sequential orthogonalization approach helps select the parameters with the highest 

sensitivity and least correlation. To provide a more rigorous insight into the correlation effects, 

a correlation matrix, can be computed by using the Pearson method (Kendall et al., 1977). The 

23 × 23 correlation matrix obtained from the covariance matrix (inverse of the FIM) is 

presented in Figure 4.7. As shown, strong positive or negative correlations exist between some 

parameters. For instance, the parameters 𝑝20 and 𝑝23 present very strong negative correlation. 
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Hence, any change that occurs in 𝑝20 can be compensated by an inverse change in 𝑝23. Similar 

interaction patterns do occur between the kinetics describing the nucleation phenomenon 

(i.e. 𝑝21, 𝑝22, 𝑝23), which present strong positive and negative correlation. In general, the 

presence of high correlations, especially if it corresponds to a high number of the estimated 

parameters, can make the identification process difficult and inaccurate (not unique).  

In order to identify the optimal subset of parameters that maximize model reliability, a cut-off 

value should be selected to set a boundary between the parameters with high estimability 

potential, that can be identified reliably, and the remaining parameters that are poorly 

identifiable and should be set to their nominal value without degrading the prediction capability 

of the model. As such, the cut-off value is critical as it affects both the cost and quality of the 

estimability approach and the prediction capability of the model. Several methods were used in 

the literature to set a cut-off value as discussed earlier (Section 4.4.1).   

Table 4.4. Ranking of parameters with the highest estimability potential 

 

Method  

 

Parameter ranking 

Orthogonalization algorithm 𝑔1, 𝑘𝑒,𝐶𝐺𝑀2 , 𝛥𝐺𝑎𝑑𝑠,1,  𝑔2, 𝛥𝐺𝑎𝑑𝑠,2 , …  𝑘𝑔1 ,  𝛽1, 𝛥𝐺𝑑𝑒𝑠,2 , 𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 , 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 ,  𝑘𝑔2 , 𝛥𝐺𝑑𝑒𝑠,1 ,  𝛽2 , 𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀2 ,  𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2 ,  𝑘𝑒 , 𝐾𝑒,𝐶𝐺𝑀1 , 

𝑘𝑝,0 , 𝑘𝑚,0,𝐶𝐺𝑀2 , 𝐺𝑚𝑖𝑛,1 , 𝐸𝑝 , 𝐺𝑚𝑖𝑛,2, 𝑘𝑚,0,𝐶𝐺𝑀1 

  

17, 14, 8, 19, 16, 18, 3, 15, 1, 2, 20, 7, 11, 10, 9, 23, 6 , 21, 13, 4, 22, 12, 5 

 

To identify the cut-off value and consequently the optimal subset of parameters, an iterative 

approach is performed. It consists in identifying incrementally the subsets of model parameters, 

from the experimental data, according to their estimability potential (Table 4.4) staring with 

the top ranked parameter, then the top two parameters and so forth. This approach will help 

identify the optimal objective function threshold (i.e. cut-off value), beyond which all 

improvements are insignificant, and consequently the optimum identifiable subset of 

parameters. The results of the iterative incremental approach are depicted in Figure 4.8. 

Typically, when a mean square error approach is considered, the objective function, 𝐽(𝑝), 

decreases until a plateau is reached. The initial point of the plateau can be considered as the 

cut-off value as no significant improvement can be achieved from that point onwards, which 

consequently sets the limit of the optimal identifiable parameter set. Figure 4.8a indicates that 

the top 7 ranked parameters, in the case of the nominal values obtained from Borsos et al. 

High Estimability Potential                                     Low Estimability Potential 
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(2016), and the top 8 ranked parameters, in the case of the simultaneous optimization approach, 

are sufficient to capture the information contained in the experimental data.  

Figure 4.8.   Maximum likelihood error vs the number of selected parameters for: (a) nominal set of 

parameters estimated by Borsos et al. (2016) – sequential approach and (b) nominal set of parameters 

estimated in this work – simultaneous approach. 

Despite the fact that using more parameters may lead to a slight decrease in the objective 

function, as depicted in Figure 4.8, the estimability approach guarantees the best trade-off 

between model reliability and minimum set of parameters to be identified. Figure 4.8 also 

confirms that different nominal parameter values, as clearly shown in Figure 4.8a and b, lead 

to different threshold values (340 in case a and 290 in case b). In this particular case, the 

estimability approach implemented with the nominal vector inherent to a simultaneous 

identification approach outperforms the quality of the one carried out with Borsos et al. nominal 

value obtained sequentially. It should be noted that the objective functions show non-

(a) 

(b) 
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smoothness in both cases which is likely due to the high nonlinearity and stiffness of the set of 

ODEs and the increased correlation between the parameters as more parameters are being 

added. This non-smooth behaviour may also indicate that the local solver got stuck in local 

optima. 

 

4.6.3 Global Sensitivity Analysis (GSA) 

The global sensitivity analysis (GSA) is utilized here in order to assess the performance of the 

model itself and to cross-validate the local estimability analysis approach discussed earlier. The 

method provides another alternative to rank the model parameters and identify the optimal set 

of parameters that could be estimated from the experimental data. In this case the total order 

sensitivity index will be used to rank the parameters, followed by an incremental optimization-

based selection approach whose performances will be compared against the previously 

described estimability approach, associated with the local sensitivities. 

The Sobol analysis is performed as follows. Firstly, a nominal set of model parameters is 

defined followed by the definition of the probability distributions for each individual parameter. 

In this work a Gaussian distribution was assigned for every parameter by considering 2 % 

variance. Narrow limits are applied since the population balance models for crystallization 

processes present, in general, high stiffness, which might have a considerable effect on the 

computational burden. Random combination of parameter sets are generated from the assigned 

probability distribution functions. In this way, the output of the model is evaluated for different 

parameter sets along with the uncertainties. Consequently, the sensitivity indices are calculated 

in order to assess the effect of the parameters and rank them accordingly. 

The global sensitivity analysis is performed here by taking into account two different scenarios. 

In the first scenario, the effects of the parameters are analysed considering only the model 

predicted outputs inherent to the set of the ODEs representing the studied system. Hence, the 

impact of the parameters on the joint moments and on the concentration of the solution and 

impurities is investigated based exclusively on simulations (i.e. without considering the 

sampling times). The second scenario considers the mean aspect ratio measurements. Hence, 

Sobol analysis is applied for the decomposition of the variance which is associated with the 

difference between experimental and simulation data (i.e. global estimability analysis). In more 

detail, the computation of the root mean square error can provide information with the scope of 
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parameter ranking and model selection (cut-off value determination). The 23 unknown model 

parameters estimated in this work and defined in Table 4.3 are used as inputs for the sensitivity 

and estimability analysis.  

Figure 4.9. Sobol analysis for the 1st case scenario: (a) first order sensitivity indices of the 23 parameters 

in descending order (b) total order sensitivity indices in descending order (c) first order sensitivity 

indices for a sample of randomly generated sets of parameters (d) total order sensitivity indices for a 

sample of randomly generated sets of parameters.  

It was demonstrated that a trade-off between computational accuracy and efficiency of the first 

and total order sensitivity indices can be achieved at a cost of (𝑁𝑝 + 2) 𝑁  model evaluations 

(Saltelli et al., 2005), where  𝑁  is the number of samples that should be between 5 × 102 

and 1 × 103  and  𝑁𝑝 is the number of parameters (23 in our case). In this analysis, for both 

scenarios a conservative approach is selected by considering  𝑁 = 1 × 103 and the total number 

of evaluations as 25 × 103 . The results were validated using different numbers of samples (N) 

to ensure consistency and robustness of the results.   

(a) (b) 

𝑔2 

𝛥𝐺𝑎𝑑𝑠,2 

𝐾𝑒,𝐶𝐺𝑀2 

𝑔1 

𝑔2 

(c) (d) 

𝛥𝐺𝑑𝑒𝑠,2 

𝑔1 

𝛥𝐺𝑑𝑒𝑠,2 

𝛥𝐺𝑎𝑑𝑠,2 

𝐾𝑒,𝐶𝐺𝑀2 
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The results are summarized in Figure 4.9 and Figure 4.10, where the first and total order Sobol 

sensitivity indices are presented in descending order for the two scenarios. Figure 4.9a and 

4.9b indicate that both first and total order Sobol sensitivity indices yield the same order of 

priority for the first scenario which illustrates that certain parameters have a considerable 

impact on the output variable (i.e. aspect ratio) both directly (relative impact of each input 

variable) and indirectly (interaction among the input parameters).On the other hand, Figure 

4.9c and 4.9d represent the first order and total order sensitivity indices respectively for each 

randomly generated parameter set, screening the effect of possible parameter combinations (i.e. 

inputs) on the model output (i.e. predicted mean aspect ratio in this case scenario). In a similar 

way to the discussion above, the effect of randomly generated subsets of parameters on the 

mean square error between the measured and predicted mean aspect ratio is analysed for the 

second scenario.  

 

Figure 4.10. Sobol analysis for the 2nd case scenario: (a) first order sensitivity indices of the 23 

parameters in descending order (b) total order indices in descending order (c) first order sensitivity 

(b) (a) 

(c) (d) 

𝑔2 

𝑔1 

𝑔2 

𝛥𝐺𝑎𝑑𝑠,2 𝑔1 

𝐾𝑒,𝐶𝐺𝑀2 

𝑘𝑔2 

𝐾𝑒,𝐶𝐺𝑀2 

𝛥𝐺𝑑𝑒𝑠,2 
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indices for a sample of randomly generated sets of parameters (d) total order sensitivity indices for a 

sample of randomly generated sets of parameters. 

 

The greater the sensitivity indices are, the more critical the parameters are for the model. Figure 

4.9 and Figure 4.10 show that the parameters  𝑔1 and 𝑔2, which are the exponents of the growth 

kinetic equations in the 𝑥1 and 𝑥2 dimension respectively, possess the highest total sensitivity 

indexes. This was expected since a growth dominated physical system is under investigation. 

The analysis also demonstrates that 𝛥𝐺𝑎𝑑𝑠,2, 𝛥𝐺𝑑𝑒𝑠,2 and  𝐾𝑒,𝐶𝐺𝑀2 , which represent the 

adsorption, desorption kinetics and the thermodynamic mass distribution coefficient for CGM2 

respectively, can be reliably identified. This can be anticipated as well since it was 

experimentally proven (Borsos et al., 2016) that the CGM2 (i.e. sodium hexametaphosphate) 

has a more prominent effect compared to CGM1 (i.e. aluminum sulfate). When both growth 

modifiers are present in the system, the aspect ratio decreases which is caused by CGM2, even 

when lower amounts of CGM2 are used. The nucleation kinetics present low sensitivity values, 

which is consistent with the outcomes of the estimability analysis based on local sensitivities. 

By comparing the two scenarios, the majority of the parameters show significant lack of 

sensitivity. However, in both scenarios interesting patterns emerge. Sensitive parameters 

(high 𝑠𝑖 values) affect the output through both direct and indirect effects (high 𝑠𝑡 values). Thus, 

the parameters with moderate and low sensitivity values cannot affect the system even 

indirectly (i.e. through interactions) from a sensitivity point of view. Overall, the Sobol analysis 

demonstrates that a large number of parameters can be set to nominal values without degrading 

the model prediction capabilities.  

The total order indices, presented in Figure 4.9b and Figure 4.10b, are used to identify the cut-

off value for the selection of the optimal subset of model parameters. As it can be seen, the 

values of the total order indices are reduced until a plateau is reached. The initial point can be 

considered as the cut-off value since the additional parameters wouldn’t improve the estimation 

process and hence the predictive capability of the model 

The Sobol analysis indicate that a cut-off value can be identified directly from the total order 

indices and accordingly the top 7 and 8 parameters are sufficient to build a reliable model for 

the 1st and 2nd scenarios respectively. However, for the sake of consistency and in order to 

enable a reliable comparison between the two estimability methods, the cut-off value will be 

identified from the profile of the objective function associated with the parameter identification 

problem (minimization between the model predictions and the experimental data). The profile 
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of the objective functions for the two scenarios, obtained by an incremental iterative approach 

as described above for the case of LS-based estimability, are depicted in Figure 4.11. As 

noticed in the previous case, the objective functions deceases significantly with the introduction 

of the top few parameters. The diagram confirms that the selection of the top 8 parameters can 

be sufficient enough to maximize the prediction capabilities of the model. Despite these 

consistent outcomes, the selection process through an incremental iterative parameter 

estimation procedure is highly advised as it is more reliable compared to the selection based on 

the magnitudes of the total order sensitivity index. Figure 4.11 also shows non-smooth 

behaviour similar to Figure 4.8.  

Figure 4.11.  Maximum likelihood error vs the number of selected parameters for both Sobol 

scenarios. 

To make a reliable and effective comparison between the two methods described in the paper 

(the estimability method based on LS and Sobol method with two scenarios), the parameter 

ranking and optimal parameter sets are summarized in Table 4.5. Although, each method yields 

a different classification, as expected, some consistency was achieved as the same four 

parameters, highlighted in red, which were identified by both methods as the ones with the most 

prominent effects. The inconsistencies can be explained by the fact that the methods use 

essentially different approaches, LSA and GSA, besides the quality of the nominal vector of 

parameters can play a key role in both cases. Although, both technics can be used separately 

the outcomes of the analysis show that their combination can provide a more systematic and 

robust selection of the subset of parameters that provides guaranteed optimal prediction 

capabilities based on the available data. In addition, the methodology can provide a basis to 

assess the quality and quantity of the experimental data or alternatively inform or help design 
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the required experiments and/or measurements (DoE) that could improve the estimability 

potential of a specific parameter, which in turn helps improve the prediction capabilities of the 

mathematical model, particularly in the case of multi-dimensional population balance models.  

Table 4.5. Summary of the parameter ranking based on Orthogonalization algorithm and the Sobol 

analysis  

Orthogonalization (LSA) 
Sobol Analysis (GSA) 

Estimated nominal vector of parameters 

Nominal 

parameters 

from Borsos et 

al., 2016 

Estimated 

nominal vector 

of parameters  

1st Scenario 2nd Scenario 

𝑺𝒊 
  

𝑺𝒕 
𝑺𝒊 𝑺𝒕 

𝒈𝟏 (𝒑𝟏𝟕) 

𝒌𝒆,𝑪𝑮𝑴𝟐  (𝒑𝟏𝟒) 

 𝒈𝟐 (𝒑𝟏𝟗) 

𝜟𝑮𝒂𝒅𝒔,𝟏  (𝒑𝟖) 

𝜟𝑮𝒂𝒅𝒔,𝟐  (𝒑𝟏𝟔) 

 𝒌𝒈𝟏  (𝒑𝟏𝟖) 

 𝜷𝟏 (𝒑𝟑) 

 𝒌𝒈𝟐 (𝒑𝟐𝟎) 

𝜟𝑮𝒅𝒆𝒔,𝟐 (𝒑𝟏𝟓) 

 𝜷𝟐 (𝒑𝟏𝟏) 

𝒌𝒂𝒅𝒔,𝟎,𝑪𝑮𝑴𝟏 (𝒑𝟏) 

𝒌𝒅𝒆𝒔,𝟎,𝑪𝑮𝑴𝟏 (𝒑𝟐) 

𝜟𝑮𝒅𝒆𝒔,𝟏 (𝒑𝟕) 

𝒌𝒅𝒆𝒔,𝟎,𝑪𝑮𝑴𝟐 (𝒑𝟏𝟎) 

𝒌𝒂𝒅𝒔,𝟎,𝑪𝑮𝑴𝟐 (𝒑𝟗) 

𝒌𝒑,𝟎 (𝒑𝟐𝟏) 

 𝒌𝒆  (𝒑𝟐𝟑) 

𝑲𝒆,𝑪𝑮𝑴𝟏 (𝒑𝟔) 

𝒌𝒎,𝟎,𝑪𝑮𝑴𝟐 (𝒑𝟏𝟑) 

 𝑬𝒑 (𝒑𝟐𝟐) 

𝑮𝒎𝒊𝒏,𝟐 (𝒑𝟏𝟐) 

𝑮𝒎𝒊𝒏,𝟏 (𝒑𝟒) 

 𝒌𝒎,𝟎,𝑪𝑮𝑴𝟏 (𝒑𝟓) 

𝑔1  (𝑝17) 

𝑘𝑒,𝐶𝐺𝑀2  (𝑝14) 

𝛥𝐺𝑎𝑑𝑠,1  (𝑝8) 

 𝑔2 (𝑝19) 

𝛥𝐺𝑎𝑑𝑠,2  (𝑝16) 

 𝑘𝑔1  (𝑝18) 

 𝛽1 (𝑝3) 

𝛥𝐺𝑑𝑒𝑠,2 (𝑝15) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 (𝑝1) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 (𝑝2) 

 𝑘𝑔2 (𝑝20) 

𝛥𝐺𝑑𝑒𝑠,1 (𝑝7) 

 𝛽2 (𝑝11) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀2 (𝑝10) 

 𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2 (𝑝9) 

 𝑘𝑒  (𝑝23) 

𝐾𝑒,𝐶𝐺𝑀1 (𝑝6) 

𝑘𝑝,0 (𝑝21) 

𝑘𝑚,0,𝐶𝐺𝑀2 (𝑝13) 

𝐺𝑚𝑖𝑛,1 (𝑝4) 

𝐸𝑝 (𝑝22) 

𝐺𝑚𝑖𝑛,2 (𝑝12) 

𝑘𝑚,0,𝐶𝐺𝑀1 (𝑝5) 

 𝑔2 (𝑝19) 

𝛥𝐺𝑎𝑑𝑠,2  (𝑝16) 

𝑘𝑒,𝐶𝐺𝑀2  (𝑝14) 

𝑔1  (𝑝17) 

𝛥𝐺𝑑𝑒𝑠,2 (𝑝15) 

 𝑘𝑔2 (𝑝20) 

 𝑘𝑔1  (𝑝18) 

𝛽2 (𝑝11) 

 𝑘𝑒  (𝑝23) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀2 (𝑝10) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2 (𝑝9) 

𝐸𝑝 (𝑝22) 

𝐺𝑚𝑖𝑛,2 (𝑝12) 

𝐺𝑚𝑖𝑛,1 (𝑝4) 

𝛥𝐺𝑎𝑑𝑠,1  (𝑝8) 

 𝛽1 (𝑝3) 

𝛥𝐺𝑑𝑒𝑠,1 (𝑝7) 

𝐾𝑒,𝐶𝐺𝑀1 (𝑝6) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 (𝑝1) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 (𝑝2) 

𝑘𝑚,0,𝐶𝐺𝑀1 (𝑝5) 

𝑘𝑝,0 (𝑝21) 

𝑘𝑚,0,𝐶𝐺𝑀2 (𝑝13) 

 𝑔2 (𝑝19) 

𝛥𝐺𝑎𝑑𝑠,2  (𝑝16) 

𝑘𝑒,𝐶𝐺𝑀2  (𝑝14) 

𝑔1  (𝑝17) 

𝛥𝐺𝑑𝑒𝑠,2 (𝑝15) 

 𝑘𝑔2 (𝑝20) 

𝛽2 (𝑝11) 

 𝑘𝑔1  (𝑝18) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀2(𝑝10) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2 (𝑝9) 

 𝑘𝑒 (𝑝23) 

𝑘𝑚,0,𝐶𝐺𝑀2 (𝑝13) 

𝑘𝑝,0 (𝑝21) 

𝐸𝑝 (𝑝22) 

𝐺𝑚𝑖𝑛,2 (𝑝12) 

 𝛽1 (𝑝3) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 (𝑝1) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 (𝑝2) 

𝐾𝑒,𝐶𝐺𝑀1 (𝑝6) 

𝛥𝐺𝑎𝑑𝑠,1  (𝑝8) 

𝐺𝑚𝑖𝑛,1 (𝑝4) 

𝛥𝐺𝑑𝑒𝑠,1 (𝑝7) 

𝑘𝑚,0,𝐶𝐺𝑀1 (𝑝5) 

 𝑔2 (𝑝19) 

𝑔1  (𝑝17) 

𝑘𝑒,𝐶𝐺𝑀2 (𝑝14) 

 𝑘𝑔2 (𝑝20) 

𝛥𝐺𝑎𝑑𝑠,2 (𝑝16) 

𝛥𝐺𝑑𝑒𝑠,2 (𝑝15) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2  (𝑝9) 

 𝑘𝑔1  (𝑝18) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀2  (𝑝10) 

𝑘𝑝,0 (𝑝21) 

𝐸𝑝 (𝑝22) 

𝐺𝑚𝑖𝑛,2 (𝑝12) 

𝑘𝑚,0,𝐶𝐺𝑀1 (𝑝5) 

𝐾𝑒,𝐶𝐺𝑀1 (𝑝6) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 (𝑝2) 

𝛥𝐺𝑑𝑒𝑠,1 (𝑝7) 

 𝛽1 (𝑝3) 

𝐺𝑚𝑖𝑛,1 (𝑝4) 

𝛥𝐺𝑎𝑑𝑠,1  (𝑝8) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 (𝑝1) 

𝑘𝑚,0,𝐶𝐺𝑀2 (𝑝13) 

 𝛽2 (𝑝11) 

 𝑘𝑒 (𝑝23) 

 𝑔2 (𝑝19) 

𝛥𝐺𝑎𝑑𝑠,2 (𝑝16) 

𝑔1  (𝑝17) 

𝑘𝑒,𝐶𝐺𝑀2  (𝑝14) 

𝛥𝐺𝑑𝑒𝑠,2 (𝑝15) 

 𝑘𝑔2 (𝑝20) 

 𝛽2 (𝑝11) 

 𝑘𝑔1  (𝑝18) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀2 (𝑝9) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀2 (𝑝10) 

 𝑘𝑒 (𝑝23) 

𝑘𝑚,0,𝐶𝐺𝑀2 (𝑝13) 

𝑘𝑝,0 (𝑝21) 

𝐸𝑝 (𝑝22) 

𝐺𝑚𝑖𝑛,2 (𝑝12) 

𝑘𝑚,0,𝐶𝐺𝑀1 (𝑝5) 

𝑘𝑎𝑑𝑠,0,𝐶𝐺𝑀1 (𝑝1) 

𝛥𝐺𝑎𝑑𝑠,1  (𝑝8) 

 𝛽1 (𝑝3) 

𝐺𝑚𝑖𝑛,1 (𝑝4) 

𝑘𝑑𝑒𝑠,0,𝐶𝐺𝑀1 (𝑝2) 

𝐾𝑒,𝐶𝐺𝑀1 (𝑝6) 

𝛥𝐺𝑑𝑒𝑠,1 (𝑝7) 
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Figure 4.12. Comparison between the experimental and simulated mean aspect ratio dynamic evolution: 

(a) Experiment 1 (400 g H2O ; 150 gr KDP; 12.5 ppm CGM1; 0.0 ppm CGM2), (b) experiment 2 (400 

g H2O ; 150 gr KDP; 12.5 ppm CGM1; 7.5 ppm CGM2) and (c) experiment 3 (400 g H2O ; 150 gr KDP; 

0.0 ppm CGM1; 5.0 ppm CGM2). 

 

(b) 

(a) 

(c) 
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Although the Sobol analysis provides one of the most accurate methods for calculating the 

sensitivities of the parameters, the method doesn’t consider the correlation between the 

parameters systematically during the ranking process as opposed the local estimability which 

addresses quite effectively the correlations issue, as the sequential orthogonalization approach 

is used precisely to exclude the parameters showing high correlations from being selected 

amongst the top ranked parameters. 

Finally, to further demonstrate the benefits of the estimably analysis and appraise the prediction 

capability of the model built with the optimal subset of parameters, the model predictions are 

compared against the experimental data as well as the predictions of the model built without 

the estimability approach (Borsos et al., 2016), three different experiments that consider mean 

aspect ratio measurements are used as shown in Figure 4.12. It should be noted that obtaining 

accurate aspect ratio data is very challenging which explains the noisy data used here. For 

instance, the dynamic evolution of the mean AR shouldn’t have exhibited a dynamic cyclic 

behaviour but instead should have increased monotonically, as correctly is captured by the 

model. Currently, real time image monitoring is the only online available technique that can be 

used for monitoring the size and shape evolution of the population of crystals and unfortunately 

it is inherently noisy. 

 

Figure 4.13. Comparison between the experimental and simulated mean aspect ratio dynamic evolution: 

Experiment 1 (400 g H2O ; 150 gr KDP; 12.5 ppm CGM1; 0.0 ppm CGM2) and experiment 2 (400 

g H2O ; 150 gr KDP; 12.5 ppm CGM1; 7.5 ppm CGM2) by considering 8 and 23 parameters. 
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Although both models seem to provide a good fitting, Figures 4.12a and 4.12b show that the 

mathematical model with estimability approach demonstrates better prediction capability. This 

outcome is consistent with the incremental objective function analysis (Figures 4.8). The 

results show that the model build by identifying the 8 most estimable parameters outperforms 

the one build by identifying all parameters sequentially, as can be seen also in Figure 4.13. It 

becomes clear that the estimability approach makes the identification process more accurate 

and less laborious, as a reduced set of parameters is identified while the rest of the parameters 

are kept to their nominal values without compromising the prediction capability of the 

mathematical model.  

4.6.4 Optimal Experimental Design (OED) 

In the case that the estimability of the model doesn’t illustrate satisfactory results, MBDoE can 

be used iteratively for designing new experiments that could yield the highest quality data for 

parameter estimation purposes, as illustrated in Figure 4.1. After the nucleation, growth and 

the pinning mechanism parameters were identified and further improved based on the parameter 

estimation and estimability analysis described in this study, they can now be used to perform 

MBDoE. Of course, the performance of the OED approach highly depends on the applied 

nominal values of the model parameters. Considerable deviation from the true parameter values 

will probably lead to a poor design strategy. In this case study, at least eight out of twenty-three 

parameter nominal values are expected to be close to the true values, while no guarantees can 

be given for the rest of them. This can be deducted from the estimability analysis performed in 

advance (see subsection 4.6.2 and 4.6.3). 

The optimal experimental design, which is posed as a single objective optimization (SOO) 

problem, is solved using a hybrid optimization approach: Utilization of genetic algorithm (GA) 

in combination with sequential quadratic programming (SQP). A – optimal and D – optimal 

design criteria, were utilized as the objective functions while the temperature trajectory, 𝑇(𝑡), 

and the initial impurities concentrations, 𝐶𝐶𝐺𝑀1 and 𝐶𝐶𝐺𝑀2 were set as the control variables. By 

optimizing the FIM, and consequently the covariance – variance matrix, the magnitude and the 

correlation effects between the parameter inputs are also accounted. In more detail, correlation 

between the model-parameters results in reducing the determinant of the FIM which 

consequently leads to decreasing the confidence region volume along with the uncertainty. 

Also, the FIM quantifies the information content of the data: The higher its value (i.e. sensitivity 

magnitude) the more informative the data are.  
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As mentioned before (see section 4.5), the D – optimal design criterion maximizes the 

determinant of the FIM, which corresponds to minimizing the volume of the confidence 

ellipsoid and consequently minimizing the uncertainty. Similarly, the A – optimal design 

criterion, minimizes the trace of the inverse FIM which is equivalent to minimizing the sum of 

squares of the length of the axes of the hyperellipsoid, which eventually minimizes the average 

variance (i.e. uncertainty) of the model estimates. 

Table 4.6. Parameter precision design using D-optimal and A-optimal criteria with respect to different 

initial impurities concentration 

Virtual 

Experiment 

𝑪𝑪𝑮𝑴𝟏 (𝒑𝒑𝒎) 𝑪𝑪𝑮𝑴𝟐 (𝒑𝒑𝒎) 𝑫 − 𝑶𝒑𝒕𝒊𝒎𝒂𝒍 𝑨 − 𝑶𝒑𝒕𝒊𝒎𝒂𝒍 

1 0 0 1.396 × 10−66 8.544 × 10−5 

2 5.0 0 2.016 × 10−60 1.058 × 10−4 

3 0.0 5.0 2.741 × 10−46 7.101 × 10−5 

4 5.0 5.0 𝟐. 𝟔𝟖𝟎 × 𝟏𝟎−𝟐𝟖 𝟔. 𝟗𝟐𝟎 × 𝟏𝟎−𝟓 

5 2.5 2.5 1.117 × 10−41 9.844 × 10−5 

 

In Table 4.6 the objective function values for A – and D – optimal criteria are depicted for 

improving parametric precision. The maximum allowed concentration for each impurity was 

set arbitrarily to 5 ppm. In general, constraints should exist regarding the acceptable amount of 

impurities with respect to the investigated chemical system properties. For instance, the 

constraints can be more flexible if the additive is generally recognized as safe (GRAS) 

compound. As can be seen, for both design criteria the optimum value, can be reached when 

both impurities do present their highest values: 𝑪𝑪𝑮𝑴𝟏 = 𝑪𝑪𝑮𝑴𝟐 = 𝟓 𝒑𝒑𝒎. This was expected 

since it has been noticed that the best values of OED can be typically, but not invariably, found 

on the boundary of the experimental region (Rippin, 1988). This could be easily justified based 

on the stronger effects that a larger concentration of additives can have on the systems’ 

dynamics, even when the impurities present competing impact. Moreover, the D – optimal 
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value is constantly increasing by increasing the concentration of the additives. On the contrary, 

A – optimal is decreased by increasing the 𝑪𝑪𝑮𝑴𝟐, while the addition of 𝑪𝑮𝑴𝟏 results to the 

opposite undesired effects (compare virtual experiments 2, 3 and 5). For both cases, 

temperature and composition optimization could improve the criteria by several orders of 

magnitude. 

The model predictions using the precision design based on A – and D – optimal criteria are 

presented in Figures 4.14 – 4.17. It is evident that each criterion provides different optimal 

design inputs, which depends on the optimal design criterion and the impurities composition 

applied. However, all cases do present some distinctive similarity: An initial fast cooling rate 

is always introduced for every case. This trend is potentially generated since no crystallization 

occurs during the initial stage. Therefore, a high cooling rate would initiate nucleation and 

crystal growth quickly, which consequently would result in decreasing the time span where no 

information for the system could be obtained.  

Figure 4.14.   Optimal operating temperature trajectories for experimental design based on D-Optimal 

criterion. 
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Figure 4.15.   Optimal operating concertation trajectories for experimental design based on D-Optimal 

criterion. 

 

 

Figure 4.16.   Optimal operating temperature trajectories for experimental design based on A-Optimal 

criterion. 
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Figure 4.17.   Optimal operating concertation trajectories for experimental design based on A-Optimal 

criterion. 

After the initial temperature drop, each trajectory continuous to cool down by utilizing different 

cooling rates until the end of the process time. This is a very interesting outcome since it is 

indicated that multiple new linear cooling experiments are taking place within one experiment 

with different conditions, such as different cooling rates and supersaturation. In more detail, the 

model separates the process into distinctive areas, where different conditions do apply to 

optimize the information content of the supplied data. This can be clearly seen by investigating 

the supersaturation, nucleation and crystal growth trajectories as depicted in Figures 4.18 – 

4.20. For instance, in Figure 4.18, where the dynamic evolution of the relative supersaturation 

is illustrated, four distinctive zones can be identified: 1) 𝑡𝑠𝑝𝑎𝑛,1 ≈ 0 − 18 𝑚𝑖𝑛𝑠 , 2) 𝑡𝑠𝑝𝑎𝑛,2 ≈

18 − 38 𝑚𝑖𝑛𝑠, 3) 𝑡𝑠𝑝𝑎𝑛,3 ≈ 38 − 77 𝑚𝑖𝑛𝑠 and 4) 𝑡𝑠𝑝𝑎𝑛,4 ≈ 77 − 180 𝑚𝑖𝑛𝑠. In each of these 

areas different supersaturation set-point is applied which generates different effects opposing 

to the linear case where the supersaturation is constantly changing (i.e. exponentially declining). 

Based on D – optimal design criterion this can generate data with enhanced information content.  

Finally, it should be mentioned that the DoE of non-linear models, such as the one presented 

here, cannot be generally valid and it must be iteratively improved/updated until an acceptable 

level of information content is reached. In this case, the analysis indicated that the virtual 

experiment 4, should be selected as the next OED. However, additional experimental data 
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would potentially change this design in future iteration, since the new parameter set would most 

probably define different DoE operating strategies. 

Figure 4.18.   Relative supersaturation trajectories: Linear and D-Optimal cooling design with 𝐶𝐶𝐺𝑀1 =

 𝐶𝐶𝐺𝑀2 = 5 𝑝𝑝𝑚. 

 

Figure 4.19.   Crystal growth rates along the 𝑥1 axis: Linear and D-Optimal cooling profiles with 

𝐶𝐶𝐺𝑀1 = 𝐶𝐶𝐺𝑀2 = 5 𝑝𝑝𝑚. 
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Figure 4.20.   Crystal growth rates along the 𝑥2 axis: Linear and D-Optimal cooling profiles with 

𝐶𝐶𝐺𝑀1 = 𝐶𝐶𝐺𝑀2 = 5 𝑝𝑝𝑚. 

 

 

4.7 Conclusions 

Parameter estimability is essential to assess whether the model parameters can be reliably 

identified from existing data, which consequently provides a key step towards more predictable 

and robust mathematical models. Within this perspective, a novel estimability framework that 

combines a sequential orthogonalization of the local sensitivity matrix and Sobol, a variance-

based global sensitivities technic, was proposed. The estimability analysis requires an initial or 

nominal vector of model parameters. When either of the two situations occurs: a nominal vector 

of parameters is not available or the initial parameter estimates are considered as highly 

uncertain, the framework suggests a simultaneously identification of the whole set of 

parameters using a hybrid global optimization approach. The estimability procedure can be then 

conducted using the nominal vector of parameters in conjunction with the available 

experimental data.  The systematic combination of two different estimability methods 

guarantees a robust selection of the optimal subset of parameters: the set that can be identified 

more reliably with a guaranteed maximum model prediction capability. As such, both 

parameters significance and correlations should be considered to rank the model parameters. 

The framework suggests a systematic methodology, based on the parameter identification 
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objective function, to identify the cut-off value which indicates the boundary between the 

parameters that can be reliably identified (the optimal subset) and those who should be set to 

their nominal values. When the resulting model prediction capability is not satisfactory or/and 

very limited number of parameters can be identified reliably, the method suggests extracting 

additional experimental data that can be based on appropriate design of experiments. 

As a validation step, the methodology was implemented to a complex multi-dimensional 

morphological population balance for batch crystallization processes, which combines the 

effects of different crystal growth modifiers/ impurities on the crystal size and shape 

distribution of the population of needle-like crystals. Initially, two situations were considered 

regarding the nominal vector of parameters: parameters obtained from literature and those 

identified using a simultaneous global optimization. The first evaluation of the quality of the 

nominal vector of parameters revealed that most of the nominal parameters are inherently 

uncertain, based on the confidence domains, which justifies the need for the estimability 

analysis.  The 23 model parameters were ranked accordingly in terms of highest local sensitivity 

magnitude and least correlation, in the case of the sequential orthogonalization method, and 

total order sensitivity indices, in the case of Sobol. The correlation patterns confirmed the 

existence of strong correlation between some parameters, which helped explain the resulting 

parameter ranking. The least square incremental parameter identification procedure helped 

determine the cut-off value and consequently the optimal subset of parameters which turned 

out to be 8 parameters using both methods. Despite some slight parameter ranking differences, 

the two different estimability methods managed to capture consistently the most significant 

parameters. However, it is highly recommended to run both methods to maximize the benefits 

of the estimability approach and minimize the least square value at the cut off value, which 

guarantees maximum model prediction capability. The case study showed that although noisy 

aspect ratio data with low information content were used, a set of the most influential and the 

least correlated parameters could be identified, providing enhanced prediction capabilities of 

the dynamic model of the studied crystallization process. As a consequence, the framework can 

be extremely valuable in complex model systems when a large number of parameters needs be 

identified from low information content data, which is commonly encountered in real systems. 

The proposed framework can also embed an optimization of the experimental design to 

maximize the information content and reduce the cost inherent to redundant experimental 

information. In the case of systems utilizing different sensors, the information content of each 

sensor can be assessed and consequently the number of parameters that can be estimated from 
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each individual process analytical tool (PAT) or from their combination (e.g. sensors providing 

different outputs) can be determined, which helps select the most appropriate PAT depending 

on the targeted level of prediction capability and application (e.g. process control). Since the 

estimability analysis has been conducted and the reliability of the model has been assessed, the 

MIMA model can be utilized to perform model-based design analysis for the studied system. 

Moreover, through optimization and simulation studies the effect of the impurities/ CGMs on 

the transient behaviour of the CQAs can be further investigated, as will be presented in the 

following Chapter. 
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NOMENCLATURE 

𝐴  - Inverse covariance matrix 

𝐴𝑅  - Mean aspect ratio of the population of crystals, [-] 

𝑎𝑖,𝑖  - Area of the crystal per unit, [m2] 

 𝐵𝑝      - Primary nucleation, [#/s/kg] 

𝐶   - Concentration of KDP crystals in the solution, [g/g solvent] 

𝐶𝐶𝐺𝑀,𝑗  - Concentration of the jth crystal growth modifier, [g/g solvent] 

𝐶𝑠𝑎𝑡  - Saturation concentration of KDP crystals in solution, [g/g solvent] 

𝐶𝑂𝑉(𝒑) - Covariance matrix of the estimated parameters 

𝐸𝑝  -      Kinetic energy of primary nucleation, [kJ/mol] 

𝑔  - Aggregate vector of the variables, [-] 

𝛥𝐺𝑎𝑑𝑠,0,𝑖,𝑗,𝑘 - Adsorption energy, [kJ/mol] 

𝛥𝐺𝑑𝑒𝑠,0,𝑖,𝑗,𝑘 - Desorption energy, [kJ/mol] 

𝑔𝑖  - Exponent of growth kinetic equitation of the 
thi characteristic facet, [-] 

𝐺𝑖  - Crystal growth rate of the 
thi characteristic facet, [m/s] 

𝐺𝑚𝑖𝑛,𝑖  - Specific growth rate when distribution does not occur, [m/s] 

𝐽(𝑝)  - Minimum sum of squared errors, [-] 

𝑘𝐵  - Boltzmann factor, [m
2 kg s-2 K-1

] 

𝐾𝑑,𝑖,𝑗  - Distribution coefficient, [-]  

𝑘𝑎𝑑𝑠,0,𝑖,𝑗,𝑘 -           Adsorption rate constant of the 𝑗𝑡ℎ crystal growth modifier, [-] 

𝑘𝑑𝑒𝑠,0,𝑖,𝑗,𝑘 -           Desorption rate constant of the 𝑗
𝑡ℎ

crystal growth modifier, [-] 

𝑘𝑒  - Kinetic constant of Primary nucleation, [-] 

𝐾𝑒,𝑗  - Thermodynamic distribution coefficient, [-] 

𝑘𝑔𝑖  - Growth kinetic constant, [m/s] 

𝑘𝑚,𝑖,𝑗  - Mass transfer coefficient with crystal growth, [m/s] 
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𝑘𝑚0  - Mass transfer coefficient without crystal growth, [m/s] 

𝑘𝑝,0  - Coefficient of primary nucleation, [m-3 s-1] 

𝐿𝑖,𝑘  - Average distance between thk type of sites, [m] 

𝑀𝐶𝐺𝑀,𝑗             - Molecular weight of CGM, [g] 

𝑀𝑐  - Molecular weight of KDP, [g] 

𝑛  - Size and shape distribution, [#/m2] 

𝑃𝑖𝑚𝑝,𝑖  - Impurity factor of the growth rate of thi characteristic facet, [-] 

𝑁𝑝  - Number of the model parameters, [#] 

𝑁𝑦  - Number of measured outputs, [#] 

𝑁𝑚  - Number of measurements of sampling times, [#] 

𝑁𝑒  - Number of measurements, [#] 

𝑝  - Vector of the input parameters (estimated parameters) 

𝑝1−𝑎𝑑  - Vector of confidence domain boundaries, [-] 

𝑅  - Ideal gas constant, [Pa m3 mol-1 K-1] 

𝑅𝑚𝑎𝑥, 𝑅𝑚𝑖𝑛 - minimum and maximum temperature ramp rates, [ 𝐶/𝑚𝑖𝑛 
𝑜 ] 

𝑟𝑖  - Orthogonal projection of 𝑍, [-] 

𝑠𝑖  - First – order sensitivity index, [-] 

𝑠𝑡  - Total – order sensitivity index, [-] 

𝑠𝑖𝑗  - Second – order sensitivity index, [-] 

𝑆𝑖𝑗  - Sensitivity coefficients, [-] 

𝑇  - Temperature, [K] 

𝑡  - Time, [s] 

𝑡𝑖𝑗  -  𝑗𝑡ℎ sampling time of the  𝑖𝑡ℎ  output, [s] 

𝑉𝑖  - Variance, [-] 

𝑥  - Vector of the differential state variables, [-]  

𝑦̂𝑖𝑗  - Vector of numerically calculated aspect ratio at thk point in time, [-] 

𝑦𝑖𝑗  - Vector of measured aspect ratio at thk point in time, [-] 



CHAPTER 4 

150 

𝑧  - Vector of the algebraic state variables, [-] 

𝑍  - Sensitivity Matrix, [-] 
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𝛼𝑡 - Significance level of the t-distribution, [-] 

𝛽𝑖,𝑘  - Constant of the effectiveness factor, [m/K] 

𝛾𝑖  - Edge free energy on the thi crystal face per unit length, [J/m] 

𝜀𝑖𝑗  - Stochastic measurement error, [-] 

𝜂𝑖𝑗  - Time spent by a particle in the presence of impurities, [s] 

𝜆  - Cut-off value, [-]  

𝜇𝑚,𝑟 
 - 𝑚, 𝑟 𝑡ℎ order mixed moment of size variables 

𝜌𝑐  - Density of the KDP crystals, 2.338 [kg/m3]  

𝜎𝑚,𝑟
      - m, r order joint moment, [-]  

𝜎 
    - Relative supersaturation, [-] 

𝜎𝑖𝑗
  2  - Variance, [-] 

𝜏𝑖,𝑗,𝑘  - Adsorption time constant, [s] 

𝜒𝑐,𝑗  - Mole fraction of the CGM in the crystal phase, [-]  

𝛺𝜅  - Sample Space, [-] 

 

SUBSCRIPTS 

0 - Initial value 

1 - Length coordinate, [ 𝑚 ] 

2 - Width coordinate, [ 𝑚 ] 

𝑖 - Characteristic crystal facet indices, [ − ] 

𝑝 - Primary nucleation, [ 𝑚 ] 
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𝑠𝑎𝑡 - Saturation (solubility curve), [ 𝑘𝑔/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ] 

𝑠𝑣 - Solvent, [ 𝑘𝑔/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ] 
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5 OPTIMAL CONTROL STRATEGIES OF CSSD BASED ON 

THE COMBINATION OF SUPERSATURATION CONTROL 

AND ADDITION OF CGMS 

Controlling the crystal size and shape and their subsequent distribution is a critical 

consideration in industrial crystallization. Towards this direction, the combination of 

supersaturation and additives control can be a promising approach. In this work, a systematic 

model-based design approach is utilized to identify the impact of this method on the crystal 

quality attributes (CQAs). A morphological population balance model (PBM) is utilized for the 

modelling of the cooling crystallization of pure potassium dihydrogen phosphate (KDP) in 

aqueous solution, as a case study, under the presence of two competitive crystal growth 

modifiers/ additives: aluminum sulfate and sodium hexametaphosphate. The effect of the 

optimal temperature control with and without the additives on the CQAs is presented via 

utilizing multi-objective optimization. The results indicate that the attainable size and shape 

attributes, in general, can be considerably enhanced due to advanced operation flexibility. 

Especially it is shown that the shape of the KDP crystals can be affected even by the presence 

of small quantity of additives and their morphology can be modified from needle-like to 

spherical, which is more favourable for processing. In addition, the multi-impurity PBM model 

is extended by the utilization of a high-resolution finite volume (HR-FV) scheme, instead of 

the standard method of moments (SMOM), in order the full reconstruction and dynamic 

modelling of the crystal size and shape distribution to be enabled. Both numerical schemes 

utilized for the resolution of the PBM, illustrated fast and accurate simulation of the transient 
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features of the crystal size and shape attributes. The implemented methodology, inextricably 

linked to the framework presented prior in Chapter 4, illustrated the capabilities of utilizing 

high-fidelity computational models for the investigation of crystallization processes in impure 

media for process and product design and optimization purposes.  

Highlights:  

• Modelling crystallization under the presence of multiple impurities.  

• Standard method of moments (SMOM) and high-resolution finite volume method 

(HR-FVM) utilized for the solution of the multi-dimensional population balance 

model (PBM). 

• Effect of multiple additives on crystal growth modelled using the pinning mechanism. 

• An extended multicomponent Langmuir adsorption model considered. 

• Multiple CQAs can be determined via multi-objective optimization considering both 

supersaturation and impurity effects with respect to crystal size and shape attributes.  

• Deliberately addition of impurities in combination with optimal supersaturation control 

can considerably enhance the attained states. 

 

5.1 Introduction 

In crystallization, control over the crystals’ quality attributes such as size and shape has a 

predominant impact on the function and physical properties of the final solid-form product. 

Especially for pharmaceutical compounds, the product effectiveness, such as bioavailability or 

tablet stability, as well as the efficiency of downstream operations, such as filtration, drying, 

milling and compaction, can be substantial affected (Mullin, 2001; Mersmann, 2001). For most 

commercial purposes rod- (i.e. needles) and plate-like crystals, for instance, are usually 

undesirable since they could form impermeable layers during filtration resulting in poor process 

efficiency, whereas spherical or block shaped crystals can enhance the processability 

competence (Davey and Garside, 2000; Chianese and Kramer, 2012). 

In industrial crystallization habit modification is required and consequently several approaches 

have been implemented to control the size and the shape during the process. Optimal control of 

the supersaturation trajectory is the most common approach for shape modification, however, 

its operating window is rather narrow (Acevedo and Nagy, 2014). Yang et al. (2006) managed 
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to modify the crystal morphology of KDP crystals, grown in a batch non-isothermal crystallizer, 

by utilizing different temperature trajectories and seed recipes to investigate the effect of 

supersaturation on the relative growth rates of different facets. In a similar way, Acevedo and 

Nagy (2014) and Acevedo et al. (2015) studied both experimentally and computationally the 

effect of the temperature trajectories with respect to the attainable final shape of crystals for 

various systems. Shape control is also possible via mechanical processing. In-situ milling, wet-

milling and even intense mixing have been successfully employed to modify the size and shape 

attributes of the product crystals by inducing crystal breakage and/or attrition (Sato et al., 2008; 

Acevedo et al., 2016; Yang et al., 2016; Yang et al., 2017). 

Size and shape modification can be also achieved by temperature cycling, which is an approach 

where the system is sequentially cycled through positive and negative supersaturation and is 

mainly utilized for dissolving the generated fines while the product crystals can grow larger 

(Bakar et al., 2009; Eisenschmidt et al., 2016; Wu et al., 2016). Prolonged temperature cycling 

however, can significantly affect the shape of the crystals since different faces of the same 

crystals experience different relative growth and dissolution rates (Snyder et al., 2007; Lovette 

et al, 2012; Borsos et al., 2017). Consequently, by utilizing consecutive temperature cycling 

crystal shapes can be attained that wouldn’t be feasible to obtain solely by optimal 

supersaturation control (Eisenschmidt et al., 2016). However, as shown by Lovette et al. (2012) 

in order considerable shape change to be achieved twenty to eighty temperature cycles were 

required. Jiang et al. (2014), on the other hand, managed to reduce significantly the required 

number of cycles through deep temperature cycling. Moreover, considerable changes on the 

size, shape and number of the crystals are reported for each cycle (only 5 cycles were 

employed). However, the experiment was stopped before steady-state condition could be 

detected as it was indicated from the focused beam reflectance measurement (FBRM).  

Habit modification can be also achieved by deliberately adding an impurity (e.g. additives) 

which could cause shape modification or by deactivating an impurity which is already present 

within the system (Mullin, 2001). The existence of even small amounts (i.e. ppm) of impurities 

can have a substantial effect on thermodynamic properties, such as solubility, but also on the 

kinetics of crystallization, such as nucleation, growth and dissolution rates (Davey and Garside, 

2000; Mersmann, 2001). To this end, extensive work has been done considering how impurities 

can affect the CQAs of the final product, especially with respect to the crystal morphology, 

which is highly related to the crystal growth mechanism (Li et al., 1994; Dowling et al., 2010; 

Kestur et al., 2013; Saleemi et al., 2013). For example, Xie et al. (2010) utilized polymeric 
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additives and surfactants to modify the morphology of the salbutamol sulfate by antisolvent 

crystallization. In more detail, the researchers managed to modify the morphology of the 

obtained crystals in the presence of small quantities of polyvinylpyrrolidone (PVP 25) from 

needle-like to block-like crystals with a lower aspect ratio. On the other hand, Klapwijk et al. 

(2016) managed to change the shape of crystals from plate-like to block-like in a fully 

reproducible manner by adding triblock copolymer Pluronic P123, which is generally 

recognized as safe (GRAS) compound, in succinic acid - water system. Most importantly, this 

research was extended by combining the impurity addition with temperature cycling (static and 

convergent cycling), as presented by Simone et al. (2016). The latter work proved that the 

application of a hybrid methodology can substantially enhance the capability of controlling the 

shape by extending the attainable crystal morphology states.  

Additives, which in most of the cases present some sort of chemical affinity with respect to the 

crystallizing substance, usually are consisted by two parts: One part that is structural similar 

with a certain crystal facet on which it is adsorbed and the second one which disrupts or 

promotes the bonding sequence inhibiting or promoting crystal growth respectively. Most 

probably the additives tend to adsorb on chemical structures, where hydrogen bonding acceptor 

or donor sites may be positioned (Berkovitch‐Yellin et al., 1982; Trasi and Taylor, 2012). 

Several mathematical models were developed for crystallization processes to quantitatively 

describe the rate of crystal growth under the presence of a single impurity (Davey, 1976; 

Sizemore and Doherty, 2009; Nagy et al, 2013). One of the proposed models is based on the 

Langmuir adsorption isotherms with a modified pinning mechanism (Kubota and Mullin, 1995; 

Kubota, 2001b; Kubota et al., 2004). The pinning mechanism was coupled with population 

balance equations (PBEs) and mass balance by Févotte and Févotte, (2010) to model the effect 

of additives on crystal growth and crystal size distribution (CSD). This model was extended 

from single dimensional to a multi-dimensional PBM by Majumder and Nagy (2013). The 

established modelling framework was utilized for the dynamic modelling and control of crystal 

size and shape attributes of KDP crystals, as well as the dynamic variation of crystal purity. 

Recently the latter modelling framework was further developed by Borsos et al. (2016) for 

modelling the crystal purity, size and shape evolution under the presence of multiple impurities, 

by considering an extended multicomponent Langmuir adsorption model (Gu et al., 1991; Lim 

et al., 1995; Rabe et al., 2011).  

Therefore, it becomes evident that the deliberate addition of impurities (preferably GRAS 

compounds) in combination with supersaturation control could potentially enhance the ATR by 
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achieving crystal size and shape attributes that wouldn’t be feasible to attain solely by optimal 

supersaturation control or by temperature cycling. The existence of the comprehensive and 

robust modelling frameworks, mentioned before, can enable the accurate and fast construction 

of ATRs while at the same time they can reduce the amount of the experimental work required. 

To the best of our knowledge it is the first time that a systematic model-based study is 

implemented to map the ATRs of a pharmaceutical process under the presence of multiple 

impurities.  

In this study, the systematic model-based design and optimization methodology, presented in 

Chapter 3, is implemented for the investigation of the impact of multiple impurities, in 

conjunction with supersaturation control, on the ATR. Multi-objective optimization is 

systematically applied for the identification of the attainable regions with respect to size and 

shape attributes. The cooling crystallization of pure potassium dihydrogen phosphate (KDP) in 

deionized water, under the presence of aluminum sulfate (CGM1) and sodium 

hexametaphosphate (CGM2), is utilized as the model system (same system investigated in 

Chapter 4). The mathematical model is based on the novel morphological multi-dimensional 

population balance model (MIAM model) presented initially by Borsos et al. (2016), which 

accounts nucleation and crystal growth of different crystal facets. The modelling framework is 

also extended, for the first time, with the utilization of high-resolution finite volume (HR-FV) 

schemes in order the full reconstruction of the size and shape distribution (CSSD) to be enabled.  

The remainder of this chapter is organized as follows: In section 5.2 the mathematical model 

of the bivariate PBM and the mechanisms/kinetics are presented. In section 5.3 the multi-

objective optimization procedure utilized for identifying the ATR is presented and detailed 

description of the performance objectives is given, while in section 5.4 the results obtained 

from the analysis are discussed. The Chapter ends with some concluding remarks in the 

conclusions section. 

5.2 Process Model 

The multi-impurity adsorption model (MIAM) consists a state-of-the-art mathematical 

framework for modelling crystallization processes under the presence of multiple impurities, 

which are adsorbed on different crystal facets to modify mainly the shape and size of the crystals 

and their subsequent distribution. This multi-dimensional PBM, denoted by eq. 4.1, can be used 
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to predict the dynamic evolution of size and shape attributes by simultaneously considering the 

supersaturation and impurities effects. The overall model is illustrated in Table 4.1 and it 

consists of a set of ODEs (moment equations coupled with mass balances) combined with 

algebraic equations that describe the system’s kinetics and thermodynamics. A detailed 

description of the mathematical MIMA model and its solution by utilizing the standard method 

of moments (SMOM) is presented in Chapter 4. It should be mentioned that due to inherent 

stiffness of the PBMs, stiff solvers are usually employed for the solution of complex PBMs. In 

this case, the ode23s solver is utilized for the SMOM method, which is based on a modified 

Rosenbrock formula of order two (Shampine and Reichelt, 1997). 

Although the SMOM method provides significant information regarding average values of the 

crystal population and contributes to the characterization of the CQAs, this technique cannot 

be used for the full reconstruction of the crystal size and shape distribution (CSSD). The high-

resolution finite volume method (HR-FVM), on the other hand, which was initially developed 

for the solution of hyperbolic PDEs (LeVeque, 2002), has been applied successfully for the 

computation of the CSD and CSSD of PBMs illustrating at the same time increased accuracy 

especially near to sharp variations (Gunawan et al., 2004; Qamar and Warnecke, 2007; Mesbah 

et al., 2009; Majumder et al., 2010).  

FV techniques, which belong to the discretization methods for the solution of partial differential 

equations (PDEs), are based on the integral form of the conservation law (Majumder and Nagy 

2013b). So, when this technique is applied, the spatial variable domain is discretised in a finite 

number of  𝑁𝐺  grid cells (i.e. discretization points) for each direction (2-D domain in our case) 

and piecewise functions are used to approximate the derivatives (i.e. fluxes at the cell face) with 

respect to the spatial variable (Mesbah et al., 2009). In this way, the average value of the 

conserved variable can be calculated for each grid cell, providing accurate solutions even for 

discontinuous solutions.  

The discretization of the PDE (eq. 5.1) can be achieved by utilizing either fully discrete or semi-

discrete methods. By employing fully discrete methods the PDE is discretized in both space 

and time, resulting in a set of algebraic equations. However, when methods with high order of 

accuracy (i.e. greater than two) or methods considering to two or more dimensions (multi-

dimensional problems) need to be developed, it is usually beneficial to discretize the PDE only 

with respect to space, leaving the problem continuous in time (LeVeque, 2002). This approach 

is known as semi-discrete method and it reduces the PDE to a set of ODEs, which finally is 
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solved by further discretizing the set of ODEs with respect to time using a standard numerical 

ODE solver. By decoupling the spatial and temporal variables, high order interpolation, with 

respect to the spatial variables, can be initially applied to the flux at a cell boundary, and then 

solved by using high order ODE solvers resulting in high order temporal accuracy. 

Consequently, in this case a semi-discrete FV method is utilized since MIMA is a multi-

dimensional PBM. The utilized method employs a finite volume discretization scheme of the 

two-dimensional probability density function for the MIMA considering a uniform 2D grid, as 

illustrated in Figure 5.1. 

 

Figure 5.1.  Representation of the finite volume discretization of a two-dimensional CSD considering a 

uniform 2D grid. 

To solve a 2D PBM, we need first to introduce an approximation of the average population 

density, 𝑛𝑖,𝑗
 , as shown below: 

 

𝑛𝑖,𝑗 
 (𝑥1, 𝑥2, 𝑡) ≈

1

ℎ2
 ∫  ∫ 𝑛(𝑥1, 𝑥2, 𝑡)𝑑𝑥1𝑑𝑥2

𝑗 ℎ

(𝑗−1)ℎ

𝑖 ℎ

(𝑖−1)ℎ

 (5.1) 
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where  𝑛𝑖,𝑗 
 (𝑥1, 𝑥2, 𝑡)  is the number density function, ℎ denotes the size interval, and 𝑖 and 𝑗 are 

integers such that 𝑖, 𝑗 ≥ 1. Hence, this expression can calculate the properties of crystals located 

in each discrete size domain.  

Based on eq. 5.1, the PBE given by eq. 4.1 is integrated over the (𝑖, 𝑗) cell to obtain the 

following finite set of ODEs, after certain approximations have been made based on the semi-

discrete method (see LeVeque, 2002 for more information): 

 𝒅 

𝒅𝒕
 𝒏̅𝒊,𝒋(𝒙𝟏, 𝒙𝟐, 𝒕)

≈ −
1

ℎ2
 ∫ 𝐺1 𝑛 (𝑥1, 𝑥2𝑗+

1

2

, 𝑡) − 𝐺1 𝑛 (𝑥1, 𝑥2𝑗−
1

2

, 𝑡)

𝑥1
𝑖+

1
2

𝑥1𝑖−
1
2 

 𝑑𝑥1

− 
1

ℎ2
 ∫ 𝐺2 𝑛 (𝑥1𝑖+

1

2

, 𝑥2 
, 𝑡) − 𝐺2 𝑛 (𝑥1𝑖−

1

2

, 𝑥2 
, 𝑡)

𝑥2𝑗+
1
2

𝑥2𝑗−
1
2

 𝑑𝑥2  ≈ 

≈  − 
𝟏

𝒉 
[𝑮𝟏𝑭𝒍𝟏(𝒏𝒊,𝒋 

 , 𝒊, 𝒋) − 𝑮𝟏𝑭𝒍𝟏(𝒏𝒊,𝒋 
 , 𝒊 − 𝟏, 𝒋)

+ 𝑮𝟐𝑭𝒍𝟐(𝒏𝒊,𝒋 
 , 𝒊, 𝒋)  − 𝑮𝟐𝑭𝒍𝟐(𝒏𝒊,𝒋 

 , 𝒊, 𝒋 − 𝟏)] 

(5.2) 

   

where 𝑛̅𝑖,𝑗(𝑥1, 𝑥2, 𝑡) is the cell average of 𝑛𝑖,𝑗 
 (𝑥1, 𝑥2, 𝑡) over the (𝑖, 𝑗) cell, while the 𝐹𝑙1 and 

𝐹𝑙2 terms are pointwise fluxes which approximate the appropriate integrals, as shown below: 

 

𝐹𝑙1(𝑛𝑖,𝑗 
 , 𝑖, 𝑗) ≈

1

ℎ 
 ∫  𝑛 (𝑥1, 𝑥2𝑗+

1

2

, 𝑡)

𝑥1𝑖+
1
2

𝑥1𝑖−
1
2 

 (5.3) 

  

 

𝐹𝑙2(𝑛𝑖,𝑗 
 , 𝑖, 𝑗) ≈

1

ℎ 
 ∫  𝑛 (𝑥1𝑖+

1

2

, 𝑥2 , 𝑡)

𝑥2𝑗+
1
2

𝑥2𝑗−
1
2

 (5.4) 

  

The evaluation of these fluxes (𝐺1𝐹𝑙1(𝑛𝑖,𝑗 
 , 𝑖, 𝑗) and 𝐺2𝐹𝑙2(𝑛𝑖,𝑗 

 , 𝑖, 𝑗) ) is done through the 

utilization of the available cell average values. Conceptually, the numerical accuracy and 

computational efficiency of the FV approach depends on how these cell-face fluxes are 
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calculated since different ways of estimating the numerical flux do exist. By applying backward 

differences, for example, a first-order accurate upwind scheme can be achieved, as has been 

shown in literature (LeVeque, 2002). However, a higher order accuracy, which is generally 

desirable, can be achieved by utilizing Taylor series expansion or piecewise polynomial 

interpolation (Qamar et al., 2006). In this case the employed flux approximations are calculated 

through the following expressions: 

 
𝐹𝑙1 (𝑛𝑖,𝑗 

 , 𝑖 +
1

2
, 𝑗)

=  𝐹𝑙1(𝑛𝑖,𝑗 
 , 𝑖, 𝑗) + 

1

2
 𝜑 (𝑟

𝑥1,𝑖+
1

2

)(𝐹𝑙1(𝑛𝑖,𝑗 
 , 𝑖 + 1, 𝑗)

− 𝐹𝑙1(𝑛𝑖,𝑗 
 , 𝑖, 𝑗)) 

(5.5) 

  

 
𝐹𝑙2 (𝑛𝑖,𝑗 

 , 𝑖, 𝑗 +
1

2
)

=  𝐹𝑙2(𝑛𝑖,𝑗 
 , 𝑖, 𝑗) + 

1

2
 𝜑 (𝑟

𝑥2,𝑗+
1

2

)(𝐹𝑙2(𝑛𝑖,𝑗 
 , 𝑖, 𝑗 + 1)

− 𝐹𝑙2(𝑛𝑖,𝑗 
 , 𝑖, 𝑗)) 

(5.6) 

  

where 𝜑 (𝑟
𝑥1,𝑖+

1

2

) and 𝜑 (𝑟
𝑥2,𝑗+

1

2

) are the flux limiter functions for the 𝑥1 and 𝑥2 coordinates 

respectively. The flux limiters are highly depended on the smoothness of the solution and its 

estimation is done prior to the calculation of the flux limiter functions. The smoothness of the 

solution can be quantified by calculating the ratio of the two consecutive gradients, given by 

the following equations: 

 
𝑟
𝑥1,𝑖+

1

2

= 
𝐹𝑙1(𝑛𝑖,𝑗 

 , 𝑖, 𝑗) − 𝐹𝑙1(𝑛𝑖,𝑗 
 , 𝑖 − 1, 𝑗) + 𝜀

𝐹𝑙1(𝑛𝑖,𝑗 
 , 𝑖 + 1, 𝑗) − 𝐹𝑙1(𝑛𝑖,𝑗 

 , 𝜄, 𝑗) + 𝜀
 (5.7) 

  

 
𝑟
𝑥2,𝑗+

1

2

= 
𝐹𝑙2(𝑛𝑖,𝑗 

 , 𝑖, 𝑗) − 𝐹𝑙2(𝑛𝑖,𝑗 
 , 𝑖, 𝑗 − 1) + 𝜀

𝐹𝑙2(𝑛𝑖,𝑗 
 , 𝑖, 𝑗 + 1) − 𝐹𝑙2(𝑛𝑖,𝑗 

 , 𝜄, 𝑗) + 𝜀
 (5.8) 

where  𝜀 =  10−10 is a small number employed to avoid division by zero (Majumder and Nagy 

2013b).  
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After the quantification of the smoothness, a robust upwind Van Leer flux limiter (Van Leer, 

1985), is utilized, which provides a 𝒪(ℎ2) accuracy, where the solution is smooth and can be 

computed for 𝑥1 and 𝑥2 coordinates as shown below:  

 

𝜑 (𝑟𝑥1,𝑖+
1

2

) =  
𝑟
𝑥1,𝑖+

1

2

 + |𝑟
𝑥1,𝑖+

1

2

|

1 + |𝑟
𝑥1,𝑖+

1

2

|
 (5.9) 

  

 

𝜑 (𝑟𝑥2,𝑗+
1

2

) =  

𝑟
𝑥2,𝑗+

1

2

 + |𝑟
𝑥2,𝑗+

1

2

|

1 + |𝑟
𝑥2,𝑗+

1

2

|
 (5.10) 

In general, flux limiter functions are usually employed along with the interpolation schemes to 

guarantee the monotonicity of the solution by supressing spurious oscillations (wiggles) and/or 

negative solution values that would otherwise occur during the implementation of high-order 

spatial discretization schemes due to sharp changes or discontinuities of the solution domain 

(Majumder and Nagy, 2013b). Essentially, the flux limiters change the flux approximation from 

higher to lower order and vice versa depending on whether the solution is smooth (higher order) 

or non-smooth (lower order). Several flux limiters have been proposed in literature, such as 

Van Leer, Koren, superbee, minmod and MC limiters, which of course lead to a different FV 

scheme (LeVeque, 2002). In this case the Van Leer flux limiter function was employed since it 

has demonstrated high accuracy and efficiency for the solution of PBMs (Qamar et al., 2006; 

Mesbah et al., 2009; Majumder and Nagy 2013b). More information regarding the HR-FV 

method could be found in literature (LeVeque, 2002; Gunawan et al., 2004; Qamar et al., 2006; 

Qamar and Warnecke, 2007; Mesbah et al., 2009; Majumder et al., 2010). 

It should be highlighted that the right-hand side of eq. 5.2 represents only the source terms, 

which in this case correspond to the growth terms of the two different internal coordinates. 

Consequently, the methodology described above is utilized for modelling the crystal growth 

terms. The nucleation term on the other hand, is introduced at the inlet boundary (i.e. source 

term at the first corner cell) as the boundary condition (see eq. 4.3). 

To sum up, in this work, the MIAM model was extended by applying a high-resolution finite 

volume technique (HR-FV) which arises from combining a semi-discrete FV method with the 

robust upwind Van Leer flux limiter, which provides a 𝒪(ℎ2) accuracy, where the solution is 

smooth. In more detail, the PBEs (eq. 5.2) that characterize the MIAM system were discretized 
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into a finite number of ODEs, 𝑁𝐺𝑖 , in each direction (i.e. 𝑁𝐺𝑥2
= 150 , 𝑁𝐺𝑥1

= 300 grid cells) 

resulting in equivalent number of size bins increased by one. The resulting set of ODEs 

continuous in time was solved by utilizing an explicit fourth-order Runge-Kutta ODE solver.  

5.3 Optimization Problem Formulation 

The reader is referred in Chapter 3 – Section 3.3 where a detailed description and discussion 

of the optimization formulation problem has been presented for the dynamic multi-objective 

optimization of the investigated system. In terms of coherence, the optimization problem is 

briefly presented below as well. 

 

Since cooling batch crystallization processes are considered, the aim is to determine the optimal 

cooling rate/profile, which will generate the appropriate level of supersaturation over the time 

to produce particles with the desirable CQAs defined by the objective functions and subjected 

to several constraints. In this case an additional control variable is considered, which is the use 

of additives to control the CSSD. The addition of the CGMs takes place at the beginning of 

the process and hence, they are implemented in the system as initial conditions of the 

corresponding mass balances. 

Therefore, the optimization problem can be formulated as shown below: 

 max/min
𝑇(1),𝑇(2),…,𝑇(𝑃) 

𝐽𝑜𝑏𝑗(𝑡)    (obj.5.1) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑇𝑚𝑖𝑛 ≤  𝑇𝑖  ≤   𝑇𝑚𝑎𝑥  (c.5.1) 

 
𝑅𝑚𝑖𝑛 ≤

𝑑𝑇

𝑑𝑡
≤ 𝑅𝑚𝑎𝑥  (c.5.2) 

 𝑡 ≤ 𝑡𝑓𝑖𝑛𝑎𝑙 (c.5.3) 

 𝑦𝑖𝑒𝑙𝑑1 = 𝑐(𝑡𝑓𝑖𝑛𝑎𝑙) − 0.6 𝑐0  ≤ 0  (c.5.4) 

, where 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥,  𝑅𝑚𝑖𝑛 and  𝑅𝑚𝑎𝑥 are the minimum and maximum temperature and 

temperature ramp rates respectively. The objective functions considered are the following ones: 

  𝐽𝑜𝑏𝑗 = [𝑥̅  1
 , 𝐴𝑅, 𝑆𝑑1] for the 2D PBM.  
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5.4 Results and Discussion 

After the parametric analysis has been conducted and the reliability of the model has been 

assessed, as presented in Chapter 4, model-based design and optimization analysis can be 

performed to investigate the impact of multiple impurities on the ATR. The analysis is divided 

into two parts. First simulations are performed by applying different operating conditions to 

investigate how the impurities affect the transient performance of the CQAs. Then the impact 

of the multiple impurities in conjunction with supersaturation control (i.e. hybrid approach) is 

explored via multi-objective optimization since multiple attributes are considered.  

It should be highlighted that although both SMOM and HR-FV numerical schemes are utilized 

for the simulation of the dynamic evolution of the moments and the CSSD of the batch cooling 

crystallization process, only the SMOM is employed for optimization purposes due to its 

superior computational efficiency. In more detail, multi-objective optimization, which is 

systematically applied for the identification of the attainable regions (ATRs) with respect to 

size and shape attributes, can be very computationally expensive especially for complex 

optimization problems, such as the one investigated in this work. Of course, if the full 

reconstruction of the CSSD is required, the HR-FV can be used after the optimization process 

for the simulation of the optimum conditions. 

Since the cooling crystallization of pure potassium dihydrogen phosphate (KDP) in deionized 

water, under the presence of aluminum sulfate (CGM1) and sodium hexametaphosphate 

(CGM2), is investigated in this work, the kinetics identified in Chapter 4 and presented in 

Table 4.3 are utilized. In general, the existence of even small amounts (i.e. ppm) of additives 

can have a considerable impact on the kinetics and thermodynamic properties of the system 

(Mullin, 2001). For the investigated system the presence of additives has demonstrated a 

substantial effect especially with respect to the crystal morphology (Borsos et al., 2016), which 

is highly related to the crystal growth mechanism. However, this doesn’t guarantee that other 

properties are not affected and consequently, in the future, additional experiments should be 

conducted to explore the potential effect of these additives with respect to thermodynamic 

properties (e.g. solubility) and kinetics, which were not considered here or in previous studies 

reported in literature. For example, conducting seeded experiments would provide additional 

information of the effect of additives on the secondary nucleation kinetics. 
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5.4.1 Simulation – based analysis of MIAM model 

The main operating variable in an unseeded cooling crystallization process is the applied 

cooling trajectory combined with the initial saturated concentration amount. The generated 

temperature gradient creates the driving force (i.e. supersaturation) that leads the system in a 

supersaturated state, where spontaneous nucleation occurs. Of course, depending on the 

metastable zone width (MSZW) and the thermodynamic behaviour of the system, the induction 

time in order for the nucleation to occur varies. After the nuclei are formed, the operating 

concentration profile is reduced, since molecules from the liquid phase start forming crystal 

nucleus, and it is positioned between the solubility and supersolubility curve (i.e. within the 

MSZW). Within this region, apart from nucleation crystal growth also occurs and 

supersaturation is utilized in order new nucleus to be formed and more structural units to be 

incorporated on the crystal lattice. The concentration keeps diminishing until steady state is 

reached. Therefore, it becomes apparent that the applied temperature trajectory should have a 

major impact of the way that the phenomena would evolve since it determines, in conjunction 

with the system’s kinetics, the pathway of the process (see Chapter 3 for more details). 

Table 5.1. Process variables and physical properties. 

𝑻𝟎 [℃] 𝑻𝒆𝒏𝒅 [℃] 𝒕𝒊𝒎𝒆 [𝒎𝒊𝒏𝒔] 𝝆𝒄 [𝒌𝒈 𝒎𝟑⁄ ] 𝒎𝑯𝟐𝑶 [𝒌𝒈] 𝒎𝑲𝑫𝑷 [𝒌𝒈] 

 

45 

 

20 

 

180 

 

2338 

 

0.40 

 

0.15 

However, in this section, the scope of the investigation lays in identifying solely the effect of 

the 𝐶𝐺𝑀𝑠 on the CSSD and not in determining an optimum operating strategy. Therefore, a 

linear cooling profile is used for all the cases presented in this subsection, while the initial 

concentration of the CGMs is varied in each run, providing in this way the effect of the CGMs 

on the CSSD. The rest of the process conditions, whose values are specified in Table 5.1, were 

kept constant. 

Based on previous experimental data (Borsos et al., 2016), it is expected that the utilized 

additives can enhance the attainable product habit since they can adsorb on different crystal 

facets hindering the relative growth rates in different directions. It should be mentioned that the 

faster the growth in a certain direction is, the smaller the crystal facet area becomes. For 

example, in this case, where needle-like crystals are generated (see Figure 4.2), the growth rate 



CHAPTER 5 

166 

along the 𝑥1 direction is faster comparing to 𝑥2. Hence, reducing the crystals’ aspect ratio (AR) 

can be achieved by adding an impurity, which is going to be adsorbed on the crystal facet ሼ101ሽ 

vertical to 𝑥1 direction, as shown in Figure 4.2. This reduction would be the outcome of 

decreasing the relative growth rates between the two directions. It should be mentioned that for 

this system, sodium hexametaphosphate (CGM2) is preferably adsorbed onto the ሼ101ሽ KDP 

crystal facet, while aluminum sulfate (CGM1) has a propensity for adsorbing onto the ሼ100ሽ 

crystal facet (see Chapter 4 – Section 4.3 for more details).  

The results of applying the same linear cooling profile, as shown in Figure 5.2, for all 

simulations with respect to different initial impurities concentrations are presented below.  

Figure 5.2. Linear cooling profile is utilized for all the simulations. 

In Figure 5.3a, the dynamic evolution of the solute concentration trajectories is illustrated 

under the presence of different amount of 𝐶𝐺𝑀𝑠. It is demonstrated that minor variations on 

the evolution of the solute concentration do occur under the presence of impurities within the 

bulk solution. These variations occur owing to the effect that impurities have on the system’s 

kinetics, as depicted in Figures 5.4 and 5.5. Moreover, the presence of 𝐶𝐺𝑀𝑠 can cause 

substantial variations of the dynamics of the supersaturation, which become more evident when 

relatively high concentrations of additives are employed (Figure 5.4a). Consequently, the 

growth kinetics, 𝐺𝑥1
 and 𝐺𝑥2

, are also affected significantly, as presented in Figures 5.4b and 

5.4c, since each 𝐶𝐺𝑀𝑖 can be adsorbed on a certain crystal facet hindering the relative growth 

rates in different directions. By inhibiting crystal growth (Figure 5.4b and 5.4c), the excess 

supersaturation can be utilized for the formation of new nuclei (i.e. primary nucleation occurs) 

which develop into new crystals. Therefore, the nucleation dynamics, which can be directly 
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related to the total number of generated crystals can be accelerated by increasing the quantity 

of  𝐶𝐺𝑀𝑠 within the bulk. It should be mentioned that although the 𝜇0,0 illustrate high 

sensitivity to the variation of the concentration of  𝐶𝐺𝑀𝑠, the crystal volume in a unit volume 

of suspension (𝜇1,2) presents minor effects. Similarly, to what was stated before, these 

variations can be attributed based on the variations of the dynamics of the supersaturation and 

the corresponding kinetics. It can be also noticed that 𝜇1,2 exhibits analogous effects compared 

to the solute concentration, which was highly expected since the component mass balance is 

calculated through the utilization of the crystal volume’s gradient (see Table 4.1). 
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Figure 5.3. Dynamic evolution of the: (a) solute concentration trajectory in presence of different 

amounts of CGMs, (b) 𝐶𝐶𝐺𝑀1 impurity concentration and (c) 𝐶𝐶𝐺𝑀2 impurity concentration. 

(a) 

(b) 

(c) 
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Figure 5.4. Effect of the 𝐶𝐺𝑀𝑠 concentration on (a) relative supersaturation (𝜎), (b) crystal growth 

along the characteristic length  𝑥1 (𝐺𝑥1
) and (c) crystal growth along the characteristic width  𝑥2 (𝐺𝑥2

). 
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The dynamic evolution of the 𝐶𝐺𝑀𝑠 concentration,𝐶𝐺𝑀1 and 𝐶𝐺𝑀2, is also depicted in Figure 

5.3b and Figure 5.3c respectively. Based on these figures, it becomes apparent that the 

adsorption of the impurities is initiated at about the same time with the induction of the 

crystallization process. Meaning that slightly after the first nuclei have been formed (i.e. 

nucleation occurs), the additives are incorporated onto the crystal lattice simultaneously with 

the growth structural units. Surprisingly, although the initial amount of 𝐶𝐺𝑀𝑠 is limited to ppm 

levels, the corresponding 𝐶𝐺𝑀𝑠 impurity level is rather low. For instance, with respect to the 

first simulation, where 𝐶𝐺𝑀1 = 10.0 𝑝𝑝𝑚 and 𝐶𝐺𝑀2 = 0.0 𝑝𝑝𝑚 (results corresponding to the 

blue line), the yield of the 𝐶𝐺𝑀1 is less than 30%. Similar trend was obtained for the second 

simulation, where 𝐶𝐺𝑀1 = 0.0 𝑝𝑝𝑚 and 𝐶𝐺𝑀2 = 10.0 𝑝𝑝𝑚 (results corresponding to the red 

line). However, in the latter case a higher yield is demonstrated (i.e. 40%) for the same initial 

concentration, which could be potentially associated with the additive’s (𝐶𝐺𝑀2) stronger effect 

on the system comparing to 𝐶𝐺𝑀1 as will be shown later based on the dynamic responses of 

the mean sizes, mean aspect ratio (AR) and CSSD. Also, by evaluating the fourth simulation, 

where 𝐶𝐺𝑀1 = 17.2 𝑝𝑝𝑚 and 𝐶𝐺𝑀2 = 11.7 𝑝𝑝𝑚 (results corresponding to the purple line), it 

can be observed that by increasing the initial concentration of the 𝐶𝐺𝑀𝑠, an upsurge of the 

impurity adsorption yield can be achieved.  

 

Figure 5.5. Effect of the 𝐶𝐺𝑀𝑠 concentration on the (a) evolution of the mean crystal size of population along 

the characteristic length  𝑥1 ( 𝜇0,1/ 𝜇0,0) and (b) evolution of the mean crystal size of population along the 

characteristic length  𝑥2 ( 𝜇1,0/ 𝜇0,0). 
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The impact of the 𝐶𝐺𝑀𝑠 on the products size and shape attributes becomes rather obvious by 

investigating the dynamic evolution of the mean sizes for each direction and the AR, which are 

illustrated in Figures 5.5 and 5.6 respectively. Moreover, the variation of the dynamic 

trajectories of the mean sizes (Figures 5.5a and 5.5b) with respect to different initial 𝐶𝐺𝑀𝑠’ 

concentrations is presented illustrating the competitive effects of the two additives: The 

addition of 𝐶𝐺𝑀1 increases the AR of the crystals (↑ 𝑥1̅̅̅ and ↓ 𝑥2̅̅ ̅ ), while the addition of 𝐶𝐺𝑀2 

reduces the AR (↓ 𝑥1̅̅̅ and ↑ 𝑥2̅̅ ̅ ), which is the desired effect (Figure 5.6). Through the simulated 

mean aspect ratio trajectories, it is also indicated that the 𝐶𝐺𝑀2 has a more predominant role 

during the crystal growth comparing to 𝐶𝐺𝑀1, since a greater impact on the system’s dynamics 

is observed when the same quantity of additives is utilized. The same outcome can be drawn 

by evaluating the results when both additives are present within the bulk (4th simulation: 

𝐶𝐺𝑀1 = 17.2 𝑝𝑝𝑚 and 𝐶𝐺𝑀2 = 11.7 𝑝𝑝𝑚). As can be clearly seen, although a smaller 

amount of the 𝐶𝐺𝑀2 is employed, compared to 𝐶𝐺𝑀1, 𝐶𝐺𝑀2 presents a dominant effect 

resulting in the reduction of the AR.  

 

Figure 5.6. Effect of the 𝐶𝐺𝑀𝑠 concentration on the evolution of the mean aspect ratio. 

The full reconstruction of the CSSD of the four simulated combinations of the 𝐶𝐺𝑀𝑠 is 

presented in Fig. 5.7, which is in complete agreement with the simulation results generated by 

using the SMOM solver. However, additional information can be obtained by investigating the 

evolution of the CSSD, which are related to its shape. As demonstrated, with or without the 

presence of additives a bimodal CSSD is generated which would most potentially compromise 
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the efficiency of the downstream processability (e.g. filtration, drying etc.) following the 

crystallization step.  

 

 

Figure 5.7. Effect of the 𝐶𝐺𝑀𝑠 concentration on the evolution crystal size and shape distribution (CSSD) for: (a) 

view 1 and (b) view 2. 

 

5.4.2 Multi – objective Optimization Problem of MIAM 

In this subsection, the conceptual design of the batch cooling crystallization of KDP in aqueous 

solution in impure medium is investigated. Moreover, the scope lays in identifying the 

attainable region with respect to multiple CQAs, corresponding to certain size and shape 

attributes, under the combined effect of additives and supersaturation control (hybrid 

approach). The temperature limits were set to 45℃ and 20℃ corresponding to the maximum 

and minimum allowed temperature respectively, while the yield was constrained by the 

expression C.5.4. The analysis is conducted by utilizing the thermodynamic properties and 

operating conditions as presented in Table 5.1.  

To this end, a multi-objective optimization framework is considered, to evaluate the benefits of 

utilizing supersaturation control combined with 𝐶𝐺𝑀𝑠 addition, with the scope of: 

(1) maximizing the mean length size (max (
𝜇0,1

𝜇0,0
)),  

(2) minimizing the aspect ratio in order a target shape to be achieved (𝐴𝑅 → 1) and  

(3) minimizing the standard deviation in 𝑥1direction (𝑆𝑑,1). 
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For the estimation of the optimal Pareto front the real-coded elitist nondominated sorting 

genetic algorithm (NSGA) was utilized (see Chapter 3 for more information). Due to the higher 

complexity of the multi-dimensional MIAM PBM the analysis becomes more computational 

expensive and the trade-off between computational burden and accuracy needs to be 

considered. The population size was selected to be equal to 200, the number of generations was 

set to 200, and the mutation probability was predetermined as an adaptive feasible function. 

Different values with respect to the number of generations and population size, were applied in 

order the accuracy of the algorithm not to be compromised. 

By implementing the NSGA, the fitness functions were evaluated for different cooling 

trajectories, which were generated randomly, and helped construct the Pareto front, as shown 

in Figure 5.8. From the analysis, a 3D Pareto front was obtained which illustrates the trade-off 

interactions between the three different objective functions under the presence of different 

concentrations of 𝐶𝐺𝑀𝑠. For visualization purposes the XY, XZ and YZ planes of the 3D Pareto 

front are also presented in Figure 5.9.  

It has been proven both experimentally and computationally (see Chapter 3) that the KDP in 

aqueous solution system is growth dominated and therefore its CQAs can be significantly 

controlled by implementing supersaturation control. This can be also confirmed based on the 

Pareto front generated here, that can span a broad range of solutions for all investigated 

objectives without the presence of any additives. For instance, it is illustrated that: 𝑥1̅̅̅ ≈ 150 −

465 𝜇𝑚, 𝐴𝑅 ≈ 1.4 − 2.1 and  𝑆𝑑,1 ≈ 40 − 340. In order the target shape (𝐴𝑅 → 1) to be 

achieved the 𝑥1̅̅̅ needs to be compromised (Figure 5.8). Thus, when fast cooling rates do apply 

growth occurs relatively faster along 𝑥1 direction comparing to 𝑥2 resulting in crystals with 

needle-like morphology. On the contrary, by manipulating the cooling trajectory and 

subsequently the supersaturation, the relative growth can be optimized to be: (𝐺𝑥1
→ 𝐺𝑥2

) ↔ 

(𝑥1̅̅̅ → 𝑥2̅̅ ̅) ↔ (𝐴𝑅 → 1). A comprehensive conceptual analysis for the KDP in aqueous solution 

without the presence of any additives has been conducted in Chapter 3 and additional 

information could be found there. 
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Figure 5.8. 3D Pareto optimal-front obtained for the multi-objective optimization problem of 

maximizing the number mean size (𝑥̅  1
 =

𝜇0,1

𝜇0,0
), minimizing the mean aspect ratio (AR) and minimizing 

the standard deviation of the distribution in 𝑥1 direction (𝑆𝑑,1) with respect to different additives’ 

(𝐶𝐶𝐺𝑀𝑖) concentration. 

Although by implementing supersaturation control, the CQAs could be modified, the utilization 

of the combined effects of supersaturation control and additives inclusion, demonstrates 

enhanced capabilities resulting in increasing the Pareto ranges substantially (Figures 5.8 and 

5.9). Moreover, the implementation of a hybrid approach provides advanced process flexibility 

and consequently crystal size and shape attributes, that wouldn’t be feasible to be attained solely 

by one of these methods, can be achieved. The benefits from the inclusion of additives can be 

realized from the comparison of the blue scatter points, which correspond to the Pareto optimal-

front obtained without the presence of any additives with the rest of the curves. For example, 

by utilizing a solution where 5 ppm of 𝐶𝐺𝑀2 is included, a population of spherical crystals 

(𝐴𝑅 ≈ 1) with narrow distribution (i.e. low standard deviation) and mean size equal to about 

200 𝜇𝑚 can be obtained. These properties could be considered ideal for industrial applications. 

Of course, particles with a variety of CQAs can be generated by selecting the corresponding 

operating conditions. It should be reminded that every Pareto’s point, correspond to a certain 

cooling trajectory. Of course, since systems with and without the presence of additives present 

different dynamics the optimum cooling operating policies vary. Nevertheless, the obtained 

Pareto optimal-front present some consistent trends as it is clearly illustrated in Figure 5.9. As 
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expected, the addition of 𝐶𝐺𝑀1 will lead to the formation of crystals with high AR and 

consequently large mean values along the length characteristic size. Opposing to that, the 

inclusion of 𝐶𝐺𝑀2 would generate low AR crystals that would have lower mean size and 

slightly lower CSD.  

Undeniably, larger quantities of 𝐶𝐺𝑀𝑠 would generate a stronger effect on the system’s 

dynamics, which was highly anticipated due to the nonlinear dynamic nature of the phenomena. 

Meaning that by increasing the 𝐶𝐺𝑀1 by a factor of two wouldn’t result in increasing the effect 

of 𝐶𝐺𝑀𝑠 on the system by the same factor. For instance, when comparing the system under the 

presence of 𝐶𝐺𝑀2 = 10.0 𝑝𝑝𝑚 with the one with 𝐶𝐺𝑀2 = 15.0 𝑝𝑝𝑚, it can be observed that 

the gain with respect to reducing some of the properties, such as the AR is not so substantial. 

On the contrary, the gain is significantly higher by comparing the systems under the presence 

of  𝐶𝐺𝑀2 = 5.0 𝑎𝑛𝑑 10.0 𝑝𝑝𝑚. Similar observations are drawn with respect to the 

optimizations considering the addition of the 𝐶𝐺𝑀1 instead.  

The combination of supersaturation control and addition of 𝐶𝐺𝑀𝑠 can increase the process 

flexibility and operability, which is demonstrated based on the extension of the feasible CQAs 

for the selected case study. In principal this can be extended and applied for numerous systems, 

especially for the ones, where crystal growth has a dominant effect opposing to nucleation. 

Finally, it should be highlighted that apart from the system’s nature, the feasible attained states 

depend on the process and supply chain constraints, as well as the CQAs and their desired 

ranges. Therefore, this methodology could be used for quantitatively evaluating the influence 

of additives with or without combining it with supersaturation control. 
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Figure 5.9. Pareto optimal-front obtained for the multi-objective optimization problem of maximizing 

the number mean size (𝑥̅  1
 =

𝜇0,1

𝜇0,0
), minimizing the mean aspect ratio (AR) and minimizing the standard 

deviation of the distribution in 𝑥1 direction (𝑆𝑑,1) with respect to different additives’ (𝐶𝐶𝐺𝑀𝑖) 

concentration.: (a) XY cartesian plane, (b) XZ cartesian plane and (c) YZ cartesian plane. 
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5.5 Conclusions 

A systematic model-based design methodology for crystallization processes under the presence 

of multiple impurities (or additives) is proposed, in order to investigate the impurity effect on 

the size and shape attributes of the product crystals. The methodology’s applicability was 

evaluated through the batch cooling crystallization of pure potassium dihydrogen phosphate 

(KDP) in aqueous solution under the presence of two crystal growth modifiers: aluminum 

sulfate and sodium hexametaphosphate. The crystallization process was modelled by using a 

morphological population balance model (PBM), which was solved by utilizing the standard 

method of moments (SMOM) and a high-resolution finite volume technique (HR-FV), which 

arises from combining a semi-discrete FV method with the robust upwind Van Leer flux limiter. 

Both numerical schemes utilized for the resolution of the PBM, illustrated fast and accurate 

simulation and optimization of the transient features of the crystal size and shape attributes. 

Initially, a simulation-based analysis was conducted for the investigation of the influence of the 

two additives on the attainable crystal size and shape attributes. Therefore, the concentration of 

the additives was set as the control variable while the rest of the process conditions maintained 

the same values throughout the analysis. The results indicated that the two additives, which 

have a competing nature, can be utilized for controlling the crystal size and shape attributes 

since they present a direct impact on the system’s kinetics. The impact of the combination of 

supersaturation control and 𝐶𝐺𝑀𝑠 addition on the control of the CSSD was investigated by 

using multi-objective optimization. The results indicated that by using this approach the CQAs 

can be substantially modified due to advanced operation flexibility. Specifically, it was shown 

that the attained size and shape attributes were considerably affected by even the presence of 

small quantities of additives and their morphology could change entirely from needle-like to 

spherical and vice versa. Significant effects were also demonstrated with respect to the crystals’ 

mean sizes and their subsequent distribution. Therefore, the implemented methodology, 

illustrated the capabilities of utilizing additives combined with supersaturation control as a 

promising approach for process design and control purposes. 

The proposed multi-objective optimization approach which can be currently utilized for the 

identification of the ATRs for cooling crystallization systems in impure medium can be easily 

extended to include additional crystallization phenomena, such as breakage and agglomeration 

for further studies. 
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NOMENCLATURE 

 

𝐴𝑅  - Mean aspect ratio of the population of crystals, [−] 

𝑎𝑖,𝑖  - Area of the crystal per unit, [m2] 

 𝐵𝑝      - Primary nucleation, [#/s] 

𝐶   - Concentration of KDP crystals in the solution, [g/g solvent] 

𝐶𝐶𝐺𝑀,𝑗  - Concentration of the jth crystal growth modifier, [g/g solvent] 

𝐶𝑠𝑎𝑡  - Saturation concentration of KDP crystals in solution, [g/g solvent] 

𝐸𝑝  -      Kinetic energy of primary nucleation, [kJ/mol] 

𝐹𝑙𝑖  -      Pointwise flux of the 
thi characteristic size, [#/m2]  

𝛥𝐺𝑎𝑑𝑠,0,𝑖,𝑗,𝑘 - Adsorption energy, [kJ/mol] 

𝛥𝐺𝑑𝑒𝑠,0,𝑖,𝑗,𝑘 - Desorption energy, [kJ/mol] 

𝑔𝑖  - Exponent of growth kinetic equitation of the 
thi characteristic facet, [-] 

𝐺𝑖  - Crystal growth rate of the 
thi characteristic facet, [m/s] 

𝐺𝑚𝑖𝑛,𝑖  - Specific growth rate when distribution does not occur, [m/s] 

ℎ  - Discretization size interval, [-] 

𝐽(𝑝)  - Minimum sum of squared errors, [-] 

𝑘𝐵  - Boltzmann factor, [m
2 kg s-2 K-1

] 

𝐾𝑑,𝑖,𝑗  - Distribution coefficient, [-]  

𝑘𝑎𝑑𝑠,0,𝑖,𝑗,𝑘 -             Adsorption rate constant of the 𝑗𝑡ℎ crystal growth modifier, [-]  

𝑘𝑑𝑒𝑠,0,𝑖,𝑗,𝑘 -             Desorption rate constant of the 𝑗
𝑡ℎ

crystal growth modifier, [-]  

𝑘𝑒  - Kinetic constant of Primary nucleation, [-] 

𝐾𝑒,𝑗  - Thermodynamic distribution coefficient, [-] 

𝑘𝑔𝑖  - Growth kinetic constant, [m/s] 
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𝐾𝑖,𝑗,𝑘 - Langmuir constant of 
thj CGM on the 

thi characteristic   facet, [-] 

𝑘𝑚,𝑖,𝑗  - Mass transfer coefficient with crystal growth, [m/s] 

𝑘𝑚0  - Mass transfer coefficient without crystal growth, [m/s] 

𝑘𝑝,0  - Coefficient of primary nucleation, [m-3 s-1] 

𝐿𝑖,𝑘  - Average distance between thk type of sites, [m] 

𝑀𝐶𝐺𝑀,𝑗              - Molecular weight of CGM, [g] 

𝑀𝑐  - Molecular weight of KDP, [g] 

𝑛𝑖,𝑗 
   - Size and shape distribution, [#/m2] 

𝑛̅𝑖,𝑗  - Cell average of 𝑛𝑖,𝑗 
 (𝑥1, 𝑥2, 𝑡) over the (𝑖, 𝑗) cell, [#/m2] 

𝑃𝑖𝑚𝑝,𝑖  - Impurity factor of the growth rate of thi characteristic facet, [-] 

𝑁𝐺𝑖  - Number of discretization points of the thi characteristic size, [#] 

𝑅  - Ideal gas constant, [Pa m3 mol-1 K-1] 

𝑅𝑚𝑎𝑥, 𝑅𝑚𝑖𝑛 - minimum and maximum temperature ramp rates, [ 𝐶/𝑚𝑖𝑛 
𝑜 ] 

𝑟𝑥𝑖
              - Ratio of the two consecutive gradients, [-] 

𝑆𝑑,𝑖  - Standard deviation of the distribution of the thi characteristic size, [ − ] 

𝑇  - Temperature, [K] 

𝑡  - Time, [min] 

 

GREEK LETTERS 

 
𝛼𝑖,𝑘 -            Effectiveness factor of the adsorption on thi characteristic facet, [-] 

𝛽𝑖,𝑘  - Constant of the effectiveness factor, [m/K] 

𝛾𝑖  - Edge free energy on the thi crystal face per unit length, [J/m] 

𝜀𝑖𝑗  - Stochastic measurement error, [-] 

𝜀   - Small number to avoid division by zero, [-] 

𝜂𝑖𝑗  - Time spent by a particle in the presence of impurities, [s] 

𝜇𝑚,𝑟 
 - 𝑚, 𝑟 𝑡ℎ order mixed moment of size variables 
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𝜌𝑐  - Density of the KDP crystals, 2.338 [kg/m3]  

𝜎𝑚,𝑟
      - m, r order joint moment, [-]  

𝜎 
    - Relative supersaturation, [-] 

𝜏𝑖,𝑗,𝑘  - Adsorption time constant, [s] 

𝜑  - Flux limiter function, [-] 

𝜒𝑐,𝑗  - Mole fraction of the CGM in the crystal phase, [-]  

𝛺𝜅  - Sample Space, [-] 

 

SUBSCRIPTS 

0 - Initial value 

1 - Length coordinate, [ 𝑚 ] 

2 - Width coordinate, [ 𝑚 ] 

𝑖 - Characteristic crystal facet indices, [ − ] 

𝑝 - Primary nucleation, [ 𝑚 ] 

𝑠𝑎𝑡 - Saturation (solubility curve), [ 𝑘𝑔/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡  ] 

𝑠𝑣 - Solvent, [ 𝑘𝑔/𝑘𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡  ] 
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6 CONCLUSIONS AND FUTURE WORK 

6.1 Summary and Conclusions 

Process systems engineering (PSE) tools, such as process design and optimization, have been 

proven essential over the years to support process understanding and consequently decision 

making during process development. Most significantly, utilization of PSE tools for complex 

systems, such as crystallization processes, which exhibit highly nonlinear and stochastic 

behaviour, and the application of PSE practises in conjunction with experimentation are the 

only viable and sustainable way to enhance the process’ understanding and efficiency. 

In this thesis, PSE tools were extensively used for design of batch and continuous crystallization 

processes subjected to certain constraints and various objective functions with the scope of 

identification of the optimum operating recipes and the feasible design spaces of the 

investigated systems. Towards this perspective, a generic and systematic design methodology 

was presented and applied for the identification of the attainable regions (ATRs) by considering 

single- and multi-objective optimization algorithms (see Chapter 3). The applicability of these 

methodologies was appraised through two case studies involving the crystallization of 

paracetamol and potassium dihydrogen phosphate (KDP). These two crystallization processes 

were selected since they could be modelled by the utilization of 1D and 2D PBMs, respectively, 

and hence the effect of the model complexity on the methodology could be assessed. The 

accuracy of the results was validated based on stochastic simulations and/or from literature data 
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whenever this was possible. In general, continuous operation demonstrated a significantly 

smaller ATR comparing to batch processing for both cases, which can be justified based on the 

reduced operation flexibility (i.e. supersaturation control was significantly reduced). Also, the 

addition of more crystallizers to an MSMPR cascade, enlarged the feasible design range since 

the operation flexibility was increased as well. 

However, the predictive capabilities of these models is not only related to the utilization of 

systematic optimization strategies and advanced numerical solvers, but also to the accurate 

estimation of the model-parameters, which are typically identified from experimental data. 

Therefore, prior to process design, estimability analysis should be conducted to ensure that the 

model parameters (e.g. in the kinetic rate laws) have been accurately and reliably estimated. In 

this perspective, a novel estimability framework that combines a sequential orthogonalization 

of the local sensitivity matrix and Sobol, a variance-based global sensitivities technic, was 

proposed, in Chapter 4.  As presented, the systematic combination of two different estimability 

methods guaranteed a robust selection of the optimal subset of parameters resulting in enhanced 

model prediction capabilities. During the analyses, both parameter significance and correlations 

were considered to rank the model parameters, while the selection of the optimal subset was 

done via incremental optimization. As a validation step, the methodology was applied to a 

complex multi-dimensional morphological population balance for batch crystallization, which 

combines the effects of different crystal growth modifiers/ impurities on the crystal size and 

shape distribution of the population of needle-like crystals (MIAM model). The case study 

showed that although noisy aspect ratio data with low information content were used, a set of 

the most influential and the least correlated parameters could be identified, providing enhanced 

prediction capabilities of the dynamic model of the studied crystallization process. For further 

enhancement of the predictability of the model, an optimal experimental design was proposed 

in addition to the estimability analysis that maximize the information content of the 

experimental data and reduces the cost inherent to redundant experimental information. The 

applied model-based design of experiments (MBDoE) was posed as a single objective 

optimization (SOO) problem considering A – optimal and D – optimal design criteria, as the 

cost functions. By utilizing MBDoE the optimum operating policies that can yield the most 

informative experiments were identified. 

After the reliability of the MIAM had been evaluated, the model was utilized to investigate the 

effect of the impurities/ CGMs on the transient behaviour of the CQAs (Chapter 5). The 



CONCLUSIONS AND FUTURE WORK 

183 

morphological population balance model (PBM), was solved by utilizing the standard method 

of moments (SMOM) and a high-resolution finite volume technique (HR-FV), which arises 

from combining a semi-discrete FV method with the robust upwind Van Leer flux limiter. The 

SMOM method was employed during the optimization process, while the HR-FV was utilized 

for the full reconstruction of the CSSD. Both numerical schemes illustrated fast and accurate 

simulation of the transient features of the crystal size and shape attributes. The results indicated 

that the two additives, which have a competing nature, can be utilized to control the crystal size 

and shape attributes since they present a direct impact on the system’s kinetics. The combined 

effect of supersaturation control and additives inclusion, was also evaluated as a promising 

hybrid approach for controlling the CSSD. It was clearly demonstrated that this hybrid approach 

offers enhanced operational flexibility resulting in broader ATRs. More specifically, it was 

predicted that the presence of small quantities of additives could change entirely the 

morphology of the needle-like crystals to spherical and vice versa. Significant effects were also 

demonstrated with respect to the crystal mean sizes and their subsequent distribution. The 

implemented methodology clearly demonstrates that additives inclusion combined with 

supersaturation control can be a promising approach for process design and control purposes. 

 

6.2 Future Work 

In this last section of the thesis, recommendations for future work are provided.  

The systematic design approach for the identification of the attainable regions (ATRs) could be 

extended by incorporating recycle streams, fine dissolution loops, product classifiers and 

additional unit operations, such as wet-milling, filtration and drying. In this way, the feasible 

design space of the key performance indicators (KPIs) could be evaluated with the scope of 

optimizing the process design during crystallization development. Ideally, this could be 

extended even further to incorporate the whole range of the employed unit operations − plant-

wide design − considering end-to-end manufacturing of active pharmaceutical ingredients. It 

would be also interesting to investigate the way that the inherent uncertainty of kinetic 

parameters propagates through the process and how it could impact the distribution of the 

CQAs. The effect of uncertainty during the identification of the ATRs was demonstrated by 

Vetter et al. (2015) for 1D PBM models by employing a stochastic Monte Carlo approach. 

Extending this methodology to 2D PBMs would be rather beneficial for the identification of 
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the effect of kinetics’ uncertainty on size and shape attributes distributions. Therefore, it would 

be interesting to apply the same principal to a multi-dimensional PBM analysis in order to 

assess the impact of the parameter uncertainty on CSSD attributes. 

Also, the parameter identification and estimability analysis framework could be easily extended 

to incorporate model-discrimination capabilities. In this work, we considered certain 

expressions to describe primary nucleation and crystal growth, but there are other model choices 

available. By evaluating different combinations of kinetic expressions of the available 

mechanisms, the optimum one could be identified via optimization (structural identifiability/ 

model discrimination): i.e. by minimizing the maximum likelihood (eq. 4.15) for each possible 

combination and then comparing between them. It would be also beneficial for more advanced 

cost functions to be utilized for model-based design of experiments (MBDoE). The Sigma point 

method, which has demonstrated superior predictability comparing to the conventional criteria 

related to the Fisher information matrix (FIM), could be considered (Schenkendorf et al., 2009). 

The parameter identification and estimability analysis framework could be also enhanced by 

improving the Sobol analysis method. In the current work, only the first and total order indices 

were employed to compute the direct and indirect effects respectively. By increasing the 

dimensionality of the sensitivity coefficients, the correlations between parameters sets can be 

estimated as well. In this way, the computation of the correlations can be cross-validated for 

increased accuracy. Most significantly, the proposed framework can potentially be utilized to 

evaluate the information content of the data measured by process analytical tools (PAT). In the 

case of systems utilizing different sensors, the information content of each sensor can be 

assessed and consequently the number of parameters that can be estimated from each individual 

PAT or from their combination (e.g. sensors providing different outputs) can be determined, 

which helps select the most appropriate PAT depending on the targeted level of prediction 

capability and application (e.g. process control). This, however needs to be validated by 

experimental results. The proposed validation experiments should utilize ultra-performance 

liquid chromatography as an on-line PAT tool for the measurement of the impurities’ 

concentrations in combination with Raman spectroscopy and image analysis for the 

measurement of solute concertation and crystals’ mean aspect ratio. 

The effect of additives on the size and shape attributes was also investigated in this work. 

However, apart from growth, additives/impurities could have a major impact on several other 

properties, such as solubility, MSZW and crystallization kinetics in general. Therefore, this 
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work could be extended to estimate these potential effects. In addition to that, the proposed 

high-resolution finite-volume scheme can be extended for the solution of the multi-dimensional 

MIAM model by incorporating also breakage and agglomeration mechanisms. In this way a 

more general MIAM model can be proposed for a broader range of applications. Nevertheless, 

the implementation of these phenomena to a morphological PBM is not trivial (Salvatori and 

Mazzotti, 2017). It would be also interesting for morphological PBMs to be coupled with 

computational fluid dynamic (CFD) models to consider the non-ideal mixing effect on CSSD. 

This would not only enhance the predictability of the models but could also be employed for 

CSSD control. For example, by controlling the stirring frequency of the agitator, the breakage 

could be increased affecting the CSSD. Finally, the MIAM model could be applied to real-time 

closed loop control strategies. The moment-based MIAM could be used for on-line optimization 

and control of the CSSD, considering a nonlinear model predictive control framework.  
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