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RESEARCH ARTICLE Open Access

Parameter estimation and inference for stochastic
reaction-diffusion systems: application to
morphogenesis in D. melanogaster
Michael A Dewar1, Visakan Kadirkamanathan2, Manfred Opper3, Guido Sanguinetti4,5,6*

Abstract

Background: Reaction-diffusion systems are frequently used in systems biology to model developmental and

signalling processes. In many applications, count numbers of the diffusing molecular species are very low, leading

to the need to explicitly model the inherent variability using stochastic methods. Despite their importance and

frequent use, parameter estimation for both deterministic and stochastic reaction-diffusion systems is still a

challenging problem.

Results: We present a Bayesian inference approach to solve both the parameter and state estimation problem for

stochastic reaction-diffusion systems. This allows a determination of the full posterior distribution of the parameters

(expected values and uncertainty). We benchmark the method by illustrating it on a simple synthetic experiment.

We then test the method on real data about the diffusion of the morphogen Bicoid in Drosophila melanogaster.

The results show how the precision with which parameters can be inferred varies dramatically, indicating that the

ability to infer full posterior distributions on the parameters can have important experimental design

consequences.

Conclusions: The results obtained demonstrate the feasibility and potential advantages of applying a Bayesian

approach to parameter estimation in stochastic reaction-diffusion systems. In particular, the ability to estimate

credibility intervals associated with parameter estimates can be precious for experimental design. Further work,

however, will be needed to ensure the method can scale up to larger problems.

Background

Reaction-diffusion systems play a fundamental role in

modelling spatio-temporal dynamics in systems biology.

Originally introduced by Turing [1] over 50 years ago to

provide a microscopic explanation of morphogenesis,

they have been extensively used to explain pattern and

organ formation in animals and plants [2,3], as well as

other spatio-temporal processes such as quorum sensing

in bacterial biofilms [4]. The deterministic reaction-dif-

fusion system is given by a system of partial-differential

equations

     t D fc c c (1)

where ∆ represents the Laplacian operator (second

derivative in the spatial directions). Here, c is a vector

of concentrations of chemical species, D is a diagonal

matrix of diffusion coefficients and f encodes the reac-

tion terms between different species.

An example of a systems biology application of this

type of models is the formation of morphogen gradients

during development. In the simplest case, c represents

the concentration of the morphogen across space, which

can diffuse through the embryo over time and decays at

a rate independent of its position. If we assume that

production of c can happen only in a specific region of

the embryo, then, after a transient period, the steady

state solution will exhibit a gradient in the concentra-

tion of c. While this is a very simple example, it is

already non-trivial due to the interplay of spatial and

temporal dynamics. This example also highlights

another important feature of the reaction-diffusion sys-

tems encountered in systems biology, i.e. the fact that

they necessarily will involve low counts of molecules.* Correspondence: guido@dcs.shef.ac.uk
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An embryo in the early stages of development may con-

sist of only a handful of cells; even if maternal deposits

of the morphogen consist of thousands of proteins, the

counts of morphogen proteins in cells far from the

deposit will necessarily start very low. At these count

numbers, stochastic fluctuations may become important,

and it has been argued that stochastic reaction-diffusion

models are best suited to describe biological spatio-tem-

poral systems [5].

By far the most used tool when dealing with stochastic

processes is simulation. Gillespie’s algorithm [6] pro-

vides an elegant and efficient tool to simulate chemical

reactions with K species of interacting individuals. Its

basic ideas can be extended to spatio-temporal systems

by discretising space into a number of N bins and then

simulating the system’s behaviour as a chemical reaction

with N × K species, where diffusion in continuous space

is replaced with a discrete interaction between neigh-

bouring bins (for a review, see e.g. [7]). This procedure

is partly motivated by its computational simplicity, but

also by the fact that data about the precise location of a

particle is very rare, while an approximate count of par-

ticles within a certain region is much easier to obtain.

While simulation is certainly a powerful tool to get

insights on the plausible dynamics of the system, estima-

tion of the systems parameters is often difficult. While

in deterministic systems optimisation based approaches

have been shown to yield some success [8,9], the pro-

blem in stochastic systems is compounded by the fact

that the true state of the system is also a random vari-

able, and its distribution must be inferred (the so-called

state inference problem). Parameters are often fitted

using heuristics (e.g. by comparison with steady states

[5]) which do not have any guarantee of capturing the

correct dynamical behaviour of the system.

In this paper we present an approximate solution of

both the state inference and the parameter estimation

problems for stochastic reaction-diffusion systems. We

exploit the idea of discretising space and model the spa-

tio-temporal process as a finite number of reaction sys-

tems happening in spatial bins which can communicate

with each other. We draw upon a recently proposed fra-

mework for approximate inference in Markovian sto-

chastic jump processes [10] to tackle the inference

problem in discrete-space, continuous time reaction dif-

fusion systems. The Bayesian nature of our approach

means that we can provide full probability distributions

over the inferred parameters and states, not just point

estimates. We initially evaluate our approach on a sim-

ple but realistic synthetic dataset, to assess the accuracy

and identifiability of our system. As previously reported

for deterministic systems [9], we find that some global

identifiability issues exist, but nevertheless the results

can yield valuable information. We then investigate the

case study of Bicoid gradient formation in Drosophila

melanogaster [5]. The inferred parameters are reason-

able; interestingly, the precision with which the para-

meters can be inferred varies dramatically between the

different parameters. This gives a useful way of ranking

possible parameters in terms of information content,

suggesting that experimental determination of highly

uncertain parameters should be prioritised. The rest of

the paper is organised as follows: in the next section, we

present our model of Bicoid dynamics, articulate the

scientific question we are trying to answer, and present

results of our approach both on a simulated and real

developmental data set. In the conclusion, we continue

the discussion of our results, emphasizing the novelty

with respect to existing approaches. We then present in

the methods section the detailed derivation of our infer-

ence algorithm.

Results and Discussion

Basic Model of Bicoid dynamics

We consider the stochastic version of the reaction-diffu-

sion system described in equation(1). In the case of

Bicoid, we only consider a single molecular species dif-

fusing and reacting through the embryo. We further

exploit the axial symmetry of the embryo and consider a

single spatial dimension. The stochastic model can

therefore be thought of as a many-body system where

particles can diffuse in space at a constant rate. Bicoid

proteins can be produced in the anterior region of the

embryo as mRNA deposited by the mother is translated,

and proteins can decay anywhere in the embryo with

constant rate.

A common way to model these spatio-temporal sys-

tems is to use a compartmentalised approach: space is

divided into a number N of identical bins which are spa-

tially homogeneous and can only communicate with

neighbouring bins. Denoting with xi the number of

Bicoid particles, the system can be described by a set of

chemical reactions

x x i N

x

x i N
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The first equation represents diffusion between neigh-

bouring bins. This happens with a rate d D
h

 where D

is the diffusion constant and h is the width of the bins

making up the system. Notice that this reaction is rever-

sible, i.e. diffusion can happen in both directions. The

second equation represents production of Bicoid

Dewar et al. BMC Systems Biology 2010, 4:21

http://www.biomedcentral.com/1752-0509/4/21

Page 2 of 9



proteins at a rate k2; in our model this happens only in

the first bin (anterior region) where the maternal

mRNA deposit is localised. Finally, the third reaction

represents protein decay. All of the parameters have the

same dimensions of inverse times.

Mathematically, the stochastic dynamics of chemical

reactions at very low concentrations is conveniently

described using the formalism of Markov Jump Pro-

cesses (MJP). Exact sampling from MJPs is easily

achieved using Gillespie’s algorithm [6]. Given para-

meters and an initial state, this allows us to simulate

the behaviour of the system over a period of time.

Here, however, we are interested in the inverse pro-

blem: we observe the system at a discrete set of time

points, obtaining noisy counts of the numbers of pro-

teins in each bin. From these, we would like to infer

the true continuous time trajectory of the system (state

inference problem) and estimate the parameters of the

model.

Exact statistical inference for MJPs is known to be

computationally very intensive [11], ruling out even

small-sized systems. Our approach will use a variational

approximation to the inference problem which gives a

reasonable accuracy with very contained computational

costs [10]. This approach allows us to obtain a full pos-

terior distribution over both the process and the para-

meters. We will detail our mathematical approach in the

methods section; we now present some results on simu-

lated and real data. While the mathematical theory is

formulated in the general case of K interacting species,

we will only deal with the case K = 1 in the experiments

due to its relevance to the Bicoid morphogenesis. We

refer the reader to [10] for an example with K >1 (but

with no spatial dimensions).

Synthetic data

In order to validate our approach, we generated syn-

thetic data from a stochastic reaction-diffusion process

using a compartment-based Gillespie algorithm. The

reactions system we used for simulation is given in 2,

where we fixed the number of bins to be eight.

For this examples, the reaction rates for anterior pro-

duction and decay are chosen to be k2 = 0.4, k1 =

0.0001; the diffusion parameter is set to d = 0.01. This

set of parameters was found to give sample trajectories

which were qualitatively similar to those observed in the

real data. Gamma priors with shape coefficient 2 were

chosen for all the parameters; these were judged to be

vague enough not to bias excessively the results. As we

often have experimental estimates at least of the order

of magnitude of the parameters, we chose the scale

parameter of the Gammas so that most of the prior

probability mass was concentrated at the right order of

magnitude of the parameters.

The process is simulated using Gillespie’s algorithm

over 2000 time points (the time units in the simulation).

The system reaches an approximate steady state towards

the end of the simulation. The algorithm is initialised

with zero particles in each bin. Fifteen equally spaced

noisy observation samples are then taken from the first

1500 time points, forming the data set to be used for

inference. The posterior process is initialised as a con-

stant process with mode at the mean value of the obser-

vations. Ten samples from the same reaction-diffusion

process were used, and the parameters where initialised

at random from uniform distributions centred on the

true value and with width chosen to cover variations of

plus/minus 50%.

The results of the state inference for one of these runs

are shown in Figure 1. Spatial bins are shown top to

bottom, corresponding to left to right spatial locations.

The top plot shows the leftmost spatial location, in

which the particles are generated, and the bottom plot

shows the rightmost spatial location. The thicker solid

line shows the mean of the posterior process; the grey

area the 95% confidence interval. The black points show

the noisy observations and the thin line shows the true

path from which the observations were taken. While the

inferred posterior is in general in good agreement with

the process, it seems to overestimate it in some bins.

The fact that the prior process has very few parameters

might explain this as the system is heavily constrained.

Parameters estimation and identifiability

Parameter estimation in reaction-diffusion problems is

known to suffer from identifiability issues even in the

deterministic case [9]. The main difficulty is that both

the production and decay terms are always coupled with

the diffusion constant. This introduces correlations that

are potentially very difficult to disentangle. Secondly,

rescaling all the parameters by a common factor only

has the effect of changing the time the system takes to

reach steady state. Given the low particles counts we are

considering, the stochastic fluctuations at steady state

are of comparable magnitude to the average values. It is

therefore unrealistic to expect to be able to obtain an

accurate estimate of the time the system takes to reach

steady state, which may lead in the parameter estimates

being systematically scaled by a multiplicative constant.

Finally, we should point out that the factorised approxi-

mation we make to compute the posterior process can

sometimes lead to an underestimation of the true varia-

bility (see the Methods section for details). Therefore,

the error bars estimated with our approach will in gen-

eral be an underestimation of the true error bars.

The results of the parameter estimation on the ten

independent simulations are given in Figure 2. The left

panel shows the results for k1 (decay rate, true value

Dewar et al. BMC Systems Biology 2010, 4:21

http://www.biomedcentral.com/1752-0509/4/21

Page 3 of 9



0.0001), the middle panel the results for k2 (anterior

production rate, true value 0.4) and the right panel the

results for d (diffusion rate, true value 0.01). A number

of things need to be noticed. First of all, estimates of k1
are largely inaccurate. This is not surprising, as the

effects of decay are difficult to distinguish from the

effects of diffusion in our model (both processes result

in a particle leaving a bin). As the diffusion constant is

two orders of magnitude greater than the decay con-

stant, its effect will be largely negligible, rendering this

parameter unidentifiable. Secondly, the results for k2
and d show a striking correlation; as mentioned before,

simultaneous rescaling of production and decay will

only result in a change in the time needed to achieve

Figure 1 State inference results on synthetic data. Posterior synthetic spatio-temporal process at each of the eight spatial locations. The top

to bottom plots correspond to left to right spatial locations, such that the leftmost bin, in which there is production, is shown at the top, and

the rightmost bin is shown at the bottom. The thicker solid line represents the posterior mode, the grey area represents the 95% confidence

interval and the thin line is the true path from which the data was sampled. The green crosses show the noisy observed data points. Notice that

the posterior mode for the last bin is always on the ground state (no particles present). The y axis represent particle counts in the bin, the x axis

time.
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steady state, which is inherently difficult to estimate in

stochastic processes. However, overall the approach

returns a very reasonable estimate for both k2 and d.

Finally, as mentioned before, the errobars associated

with the estimates are generally underestimated; notice

however that the error bars relative to k2 estimates are

much bigger than the ones relative to d estimates, mir-

roring the fact that k2 is only active in one bin and

hence harder to estimate.

Real data

To test our model on real data we used in situ protein

expression levels for the protein Bicoid at cleavage stage

14A in the Drosophila embryo. This system was the

focus of a recent study [5] where the stochastic reac-

tion-diffusion system was simulated using a compart-

ment-based Gillespie algorithm with 100 bins. The

parameters in this study were initialised by fitting to the

steady state, taken to be given by the last time point.

The data was obtained from the FlyEx database ([12],

available from http://flyex.ams.sunysb.edu/flyex) and

consists of six recordings of the Bicoid protein intensity

during the diffusion of the morphogen, measured at 100

locations across the embryo. From this set, eight equally

spaced locations were sampled forming a data set of

eight spatial locations with six time points each. The

time points are from equally spaced time classes, i.e. key

times during the cleavage cycle identified by the cura-

tors of the data set through image analysis citePoustelni-

kova:database04. These can be thought of equally spaced

in developmental time, although in general they are not

equally spaced in real time. Therefore, the units of our

parameters in this case will be the inverse of the time

classes units. The choice to consider only a single clea-

vage cycle was dictated by the need to minimize the

effects of growth and developmental changes on the sys-

tem (which we do not explicitly model). The recorded

intensities were reported in arbitrary units, therefore it

is difficult to assign precise particle counts to these

measurements. We chose to scale the data in order to

give population levels between 0 and 60 particles at

each location. This is motivated essentially by computa-

tional reasons (large particle counts slow down the algo-

rithm). Although it does result in unrealistically low

protein numbers (approximately 500 in the whole

embryo), it can be justified assuming that what we

model is the process in a small tube in the centre of the

embryo. To model the noise introduced by this assump-

tion, as well as the measurement noise, we assume that

the observations are randomly distributed around the

true value of the process with an exponentially decaying

distribution (following closely [10]). The process was

initialised using the first samples at each observation

location, leaving five remaining points in each bin. We

used the same model form as above, with initial para-

meter estimates of k2 = 0.05, k1 = 0.001 and d = 0.001.

Again, the mode of the posterior is initialised at the

mean value of the observations, and Gamma priors are

placed over the parameters with a scale equal to the

initial parameter estimates.

The results are shown in Figure 3. The posterior pro-

cess is shown to provide a good fit across the majority

of data points, though the inferred model is unable to

fully capture the fast dynamics associated with the

Bicoid intensity in the first spatial location (the posterior

mean is systematically lower than the observations). The

very sharp rise in morphogen suggests spatial edge

effects that are not captured by our model formulation.

At steady state the predicted posterior process describes

the expected morphogen gradient across the embryo,

which enables the subsequent development of the

French-Flag pattern. The inferred parameters for the

model are k1 = 8 ± 4 × 10-5, k2 = 5 ± 2 × 10-2 and d =

1.8 ± 0.1 × 10-3. As was observed previously, uncertainty

Figure 2 Parameter estimation results on synthetic data. Parameter estimation results for ten independent simulations of the same reaction-

diffusion process with parameters k2 = 0.4, k1 = 0.0001 and d = 0.01. The three panels show the results for k1 (left), k2 (centre) and d (right).

Notice the strong correlation between the parameters k2 and d, as well as the systematic underestimation of the error bars. Estimates of the

parameter k1 (decay rate) are inaccurate, due to the difficulty in distinguishing the effects of decay from those of diffusion (see main text).
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over the parameter estimates can vary greatly. This can

have useful repercussions when designing new experi-

ments. For example, we see that the uncertainty over

the diffusion parameter d is much smaller than the

uncertainty over the other parameters. This makes sense

since, for all the bins but the first, the rate of increase is

determined solely by the diffusion constant and hence it

can be accurately estimated from the data. The produc-

tion and decay parameters, instead, have much broader

distributions. Therefore, this would suggest that measur-

ing the decay rate would significantly reduce our overall

uncertainty, whilst measuring the diffusion constant

would contribute very little extra knowledge about the

dynamics of the system.

Conclusions

Parameter estimation problems are becoming increas-

ingly important in systems biology. While for

Figure 3 State inference results on real data. Posterior Bicoid reaction-diffusion process across eight spatial locations. The solid line represents

the mean, the grey area represents the 95% confidence interval. The black points show the noisy observed data points. The y axis represent

particle counts in the bin, the x axis time (in temporal class units, see main text).
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deterministic systems methods based on optimisation

have generally been yielding good results, there are no

equivalent methods for stochastic systems, and widely

used heuristics do not offer guarantees of accuracy. In

this contribution, we present an approach to state infer-

ence and parameter estimation for stochastic reaction-

diffusion systems. We focus on the important case study

of Bicoid dynamics in Drosophila melanogaster. Our

results show that inference in these systems is possible,

even if parameter estimation suffers from some iden-

tifiability issues similar to those encountered in determi-

nistic reaction-diffusion systems [9]. To our knowledge,

this is the first time a Bayesian approach is proposed to

perform inference in stochastic reaction-diffusion sys-

tems. Therefore, it is difficult to assess its quality in a

comparative manner; the natural comparison would be

with sampling based schemes such as [11], but their

computational intensity rules out the application to sys-

tems of even moderate size like the one we consider.

Stochastic reaction-diffusion models have been investi-

gated in the context of Bicoid diffusion in a number of

studies. For example, Wu et al [5] conducted a large

scale simulation study of the process using Gillespie’s

algorithm for a compartmentalised system. Perhaps clo-

ser to our approach is the recent work of Lepzelter and

Wang [13], who investigate the same biological problem

by solving the reaction-diffusion master equation at

steady state. While their approach leads to valuable

insights in the nature of the intrinsic noise involved in

the process, they do not address the issue of parameter

estimation, and the steady state assumption limits its

usefulness in describing dynamical processes.

While the results we reported are in our view

encouraging, there are a number of improvements and

generalisations which would be of interest. Firstly, effi-

cient strategies are still required in order to tackle large

scale systems; the simulation study in [5] employed 100

bins with average number of particles per bin in the low

hundreds, which would be computationally very inten-

sive using our approach. While coding economies could

be made, alternative strategies based on quadratures

could be useful. Another important extension would be

to model several different proteins interacting, so that

the reaction rates become non-linear functions of the

state of the system. While handling non-linear systems

is in principle not a problem for our approach, the

increase in the number of species will again lead to sub-

stantially higher computational overheads.

Methods

In this section we briefly review the mathematical foun-

dations of Markov Jump Processes, as well as describing

our approach to inference in these systems. We start by

reviewing the stochastic theory of chemical reactions;

we do this in the general case where many species of

interacting particles are present, even if in our applica-

tion only one species is considered. We then describe

reaction-diffusion processes and how the compartmen-

talisation works. In particular, we should stress here that

dividing space into N compartments is equivalent to

replacing a single species existing in (inhomogeneous)

space with N species living in a well-stirred mixture

(each species being the population of a bin). Therefore,

the variational approach described for chemical reac-

tions with K species can be immediately transferred to a

reaction-diffusion system involving one species and K

spatial bins.

Chemical reactions

We briefly review here the kinetic theory of chemical

reactions and the underlying mathematical formalism of

Markov jump processes. We assume that the system

consists of a well-stirred mixture of K species X1, ..., XK

of interacting particles, with xd(t) d = 1, ..., K being the

number of particles of species d at time t. Assuming a

Maxwell distribution for the velocities of the particles

and assuming for simplicity that the stoichiometric coef-

ficients are all 1, the probability of a reaction in which a

particle of species d1 reacts with a particle of species d2
to form a particle of species d3 occurring in the infinite-

simal time δt is given by [6]

p t X X X x xd d d d d
d

d d 
1 2 3 1 2

3

1 2
   

where  d d
d

1 2

3 is the kinetic rate of the reaction.

Markov jump processes (MJPs) provide a convenient

mathematical formalism to model this type of processes.

A MJP is a family of discrete random variables indexed

by time; it is characterised by its transition rates f (x’|x)

defined as

p t t t tf        x x x xx x  | |’ (3)

Another important quantity is the marginal distribu-

tion pt (x) that the system is in a particular state at a

certain time t. The relationship between the transition

rates and the marginals is given by the Master equation

dpt

dt
p f p ft t

x
x x x x x x

x x

             

 ’ ’
’

| | . (4)

This is the analogue of the forward Fokker-Planck

equation of stochastic differential equations. It is worth

remarking that in general the master equation is a huge

system of linear ODEs with SK equations, where S is the

maximum number of particles that can exist in any one

species. Therefore, for all but the simplest reaction
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systems, direct solution of the master equation is not a

viable option.

Reaction-diffusion systems

The above description of chemical reactions relies on

the central assumption that the reactants are in a well-

stirred mixture, so that the spatial distribution of each

species is uniform. However, in many applications, this

is an unrealistic assumption and the spatial distribution

of the particles has to be kept into account.

Stochastic reaction-diffusion systems are many-particle

systems in which each individual particle performs diffu-

sion in space, and simultaneously chemical reactions can

happen when particles collide (or spontaneously in the

case of decay and spontaneous production). In the iso-

tropic case with no external drift, the diffusion of each

particle is given by the Smoluchowski equation

z z 0t t t D tI        ǫ ǫ, ~ , 2

where z is the position vector of the particle and D is

the diffusion constant. Since the number of particles in

the system is variable, the expression relating marginals

and (diffusion and reaction) rates analogous to the Mas-

ter or Fokker-Planck equation needs to be formulated in

Fock space [14] and is generally much harder to handle.

Furthermore, in many important applications the spatial

resolution of the data is not accurate enough to allow

the tracking of every single particle in the system.

For both these reasons, a common approach is to

discretise space into N bins, and then treat the discre-

tised system as a Markov jump process with as many

species as the original number of species K times the

number of bins. The transition rates for this process

are given by the sum of the reaction transition rates

plus a diffusion part representing the fact that num-

bers in a bin can change due to influx (departure) of

particles from (to) the neighbouring bins. Explicitly,

the transition rates f for the reaction-diffusion process

are given by

f x f x d x x

f x f x

m
i

R m
i

m
i

m
i

m
i

R m
i

       
   

1 1

1 1

1| |

| |

x x

x x

+1

  2dxm
i .

(5)

Here xm
i represents the number of particles of species

m in bin i, fR are the rates due to reactions going on in

the i-th bin and d D

h


2 where h is the width of the bin

(the factor 2 in the second equation is due to diffusion

happening through both walls of the bin).

Variational inference and parameter estimation

Opper and Sanguinetti [10] recently proposed a varia-

tional approach to approximately compute a posterior

MJP given discrete observations with independent and

identically distributed noise. The approach was based on

approximating the posterior process with a factorised

process where the effect of the interactions between spe-

cies were replaced by a mean-field approximation. This

was interleaved with parameter estimation steps in an

Expectation-Maximization (EM) algorithm. This allowed

the authors to reduce the complexity of the problem

from exponential to linear in the number of species and

to set up a forward-backward procedure to iteratively

determine the rates and marginals of the approximating

process. Let y denote the observed data, which are

related to the true state of the system via a noise model

p (yjx). The variational approximation relies on the

minimisation of the variational free energy

 q p q pq T prior T                y y x x x
x

, log | || lo: : KL 0 0 gg |p y   (6)

where

KL[ ]q p dq
q

p
|| log 

is the Kullback-Leibler divergence, an information the-

oretic measure of dissimilarity between distributions.

Here θ denotes collectively the parameters of the model

(decay, diffusion constant, etc.) plus any parameters con-

tained in the observation noise model. We use the nota-

tion x0:T to denote the whole process as opposed to the

random variables x(t) (whose distribution is given by the

marginal). It can be shown that the bound in (6) is satu-

rated if and only if the distribution q (the approximating

distribution) is the posterior process. The free energy is

a function of the parameters and a functional of the

approximating distribution q (x). Since the posterior

process is also Markovian, an optimisation where q is

unconstrained would return the true posterior. Unfortu-

nately, it would also require the solution of the Master

equation (and of the corresponding backward equation)

which, as we remarked before, is not computationally

feasible.

The key idea of the variational approximation is to

restrict the class of approximating distributions q. In

particular, we will make a mean field approximation so

that the approximating process is factorised across dif-

ferent species. This means that we will impose

q q x g g x xt it i

i

K

t x x it i i

j ii

K

j j
x x x         





 

1 1

|  , | (7)

where g x xit i i | are the rates for the approximating

process. If f (x’|x) are the rates for the prior process, it

was shown in [10] that the free energy (6) for this

choice of approximating process is given by
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Here

ˆ | exp ln ’ | : ,

|

\

\

f x x E f x x j i

f x x E

i i i j j

i

’

’

       



 

  
x

x

x x


ii i j jf x x j i     



x x| : ,

(9)

are the mean-field rates obtained by averaging the

rates of the prior process under the approximate poster-

ior for all species but the one under consideration.

Opper and Sanguinetti [10] then went on to derive an

iterative functional gradient descent algorithm to mini-

mise the free energy w.r.t. the approximating distribu-

tion q. Parameter estimation was then performed in an

M-step returning maximum likelihood point estimates.

Our model has a relatively low number of parameters

due to the fact that the decay and diffusion parameters

are shared across all species. This means that we can

efficiently use a sampling approach to obtain an esti-

mate of the full posterior distribution over the para-

meters. Specifically, we set a prior p (θ) over the

parameters and sample from the distribution

p
Z

p  | exp ,y y        1  (10)

where the variational free energy is used as an approx-

imation to the (intractable) true joint over the data and

parameters. This allows us to use a Metropolis-Hastings

sampler to obtain an approximation to the posterior dis-

tribution over the parameters.
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