190 research outputs found

    The many-valued theorem prover 3TAP. 3rd. edition

    Get PDF
    This is the 3TAP handbook. 3TAP is a many-valued tableau-based theorem prover developed at the University of Karlsruhe. The handbook serves a triple purpose: first, it documents the history and development of the prover 3TAP; second, it provides a user\u27s manual, and third it is intended as a reference manual for future developers, including porting hints. This version of the handbook describes 3TAP Version 3.0 as of September 30,1994

    Proof search without backtracking for free variable tableaux [online]

    Get PDF

    Progress Report : 1991 - 1994

    Get PDF

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    The hyper Tableaux calculus with equality and an application to finite model computation

    Get PDF
    In most theorem proving applications, a proper treatment of equational theories or equality is mandatory. In this article we show how to integrate a modern treatment of equality in the hyper tableau calculus. It is based on splitting of positive clauses and an adapted version of the superposition inference rule, where equations used for superposition are drawn (only) from a set of positive unit clauses, and superposition inferences into positive literals is restricted into (positive) unit clauses only. The calculus also features a generic, semantically justified simplification rule which covers many redundancy elimination techniques known from superposition theorem proving. Our main results are soundness and completeness of the calculus, but we also show how to apply the calculus for finite model computation, and we briefly describe the implementation

    Acta Cybernetica : Volume 17. Number 2.

    Get PDF

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    A mechanization of sorted higher-order logic based on the resolution principle

    Get PDF
    The usage of sorts in first-order automated deduction has brought greater conciseness of representation and a considerable gain in efficiency by reducing the search spaces involved. This suggests that sort information can be employed in higher-order theorem proving with similar results. This thesis develops a sorted higher-order logic SUM HOL suitable for automatic theorem proving applications. SUM HOL is based on a sorted Lambda-calculus SUM A->, which is obtained by extending Church\u27;s simply typed Lambda-calculus by a higher-order sort concept including term declarations and functional base sorts. The term declaration mechanism studied here is powerful enough to allow convenient formalization of a large body of mathematics, since it offers natural primitives for domains and codomains of functions, and allows to treat function restriction. Furthermore, it subsumes most other mechanisms for the declaration of sort information known from the literature, and can thus serve as a general framework for the study of sorted higher-order logics. For instance, the term declaration mechanism of SUM HOL subsumes the subsorting mechanism as a derived notion, and hence justifies our special form of subsort inference. We present sets of transformations for sorted higher-order unification and pre-unification, and prove the nondeterministic completeness of the algorithm induced by these transformations. The main technical difficulty of unification in ! is that the analysis of general bindings is much more involved than in the unsorted case, since in the presence of term declarations well-sortedness is not a structural property. This difficulty is overcome by a structure theorem that links the structure of a formula to the structure of its sorting derivation. We develop two notions of set-theoretic semantics for SUM HOL. General SUM-models are a direct generalization of Henkin\u27;s general models to the sorted setting. Since no known machine-oriented calculus can adequately mechanize full extensionality, we generalize general SUM-models further to SUM-model structures, which allow full extensionality to fail. The notions of SUM-model structures and general SUM-models allow us to prove model existence theorems for them. These model-theoretic variants of Andrews unifying principle for type theory\u27; can be used as a powerful tool in completeness proofs of higher-order calculi. Finally, we use our pre-unification algorithms as a central inference procedure for a sorted higherorder resolution calculus in the spirit of Huet\u27;s Constrained Resolution. This calculus is proven sound and complete with respect to our semantics. It differs from Huet\u27;s calculus by allowing early unification strategies and using variable dependencies. For the completeness proof we make use of our model existence theorem, and prove a strong lifting lemma

    A mechanization of sorted higher-order logic based on the resolution principle

    Get PDF
    The usage of sorts in first-order automated deduction has brought greater conciseness of representation and a considerable gain in efficiency by reducing the search spaces involved. This suggests that sort information can be employed in higher-order theorem proving with similar results. This thesis develops a sorted higher-order logic SUM HOL suitable for automatic theorem proving applications. SUM HOL is based on a sorted Lambda-calculus SUM A->, which is obtained by extending Church';s simply typed Lambda-calculus by a higher-order sort concept including term declarations and functional base sorts. The term declaration mechanism studied here is powerful enough to allow convenient formalization of a large body of mathematics, since it offers natural primitives for domains and codomains of functions, and allows to treat function restriction. Furthermore, it subsumes most other mechanisms for the declaration of sort information known from the literature, and can thus serve as a general framework for the study of sorted higher-order logics. For instance, the term declaration mechanism of SUM HOL subsumes the subsorting mechanism as a derived notion, and hence justifies our special form of subsort inference. We present sets of transformations for sorted higher-order unification and pre-unification, and prove the nondeterministic completeness of the algorithm induced by these transformations. The main technical difficulty of unification in ! is that the analysis of general bindings is much more involved than in the unsorted case, since in the presence of term declarations well-sortedness is not a structural property. This difficulty is overcome by a structure theorem that links the structure of a formula to the structure of its sorting derivation. We develop two notions of set-theoretic semantics for SUM HOL. General SUM-models are a direct generalization of Henkin';s general models to the sorted setting. Since no known machine-oriented calculus can adequately mechanize full extensionality, we generalize general SUM-models further to SUM-model structures, which allow full extensionality to fail. The notions of SUM-model structures and general SUM-models allow us to prove model existence theorems for them. These model-theoretic variants of Andrews unifying principle for type theory'; can be used as a powerful tool in completeness proofs of higher-order calculi. Finally, we use our pre-unification algorithms as a central inference procedure for a sorted higherorder resolution calculus in the spirit of Huet';s Constrained Resolution. This calculus is proven sound and complete with respect to our semantics. It differs from Huet';s calculus by allowing early unification strategies and using variable dependencies. For the completeness proof we make use of our model existence theorem, and prove a strong lifting lemma
    • …
    corecore