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Abstract
In most theorem proving applications, a proper treatment of equational theories or equality is mandatory. In this article we
show how to integrate a modern treatment of equality in the hyper tableau calculus. It is based on splitting of positive clauses
and an adapted version of the superposition inference rule, where equations used for superposition are drawn (only) from a
set of positive unit clauses, and superposition inferences into positive literals is restricted into (positive) unit clauses only.
The calculus also features a generic, semantically justified simplification rule which covers many redundancy elimination
techniques known from superposition theorem proving. Our main results are soundness and completeness of the calculus, but
we also show how to apply the calculus for finite model computation, and we briefly describe the implementation.
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1 Introduction
Tableau calculi play an important role in theorem proving, knowledge representation and in logic
programming. Yet, for automated first-order theorem proving the influence of tableau calculi
decreased in the last decade. The CADE ATP System Competition (CASC) [32] is dominated by
saturation-based provers, and a tableau system like SETHEO, which was several times among CASC
winners, is not even entering the competition any more. Among the reasons are the problems tableau
calculi have with efficient handling of equality. Of course there are numerous papers on equality
handling in tableau calculi. Various approaches have been discussed, for instance, in [1]. It is not
clear, however, whether they can be a basis for high performance theorem proving. This has to do with
the usage of free variables in most semantic tableau calculi. The nature of these free variables, their
rigidness, seems to be a major source for difficulties to define efficient proof procedures, even without
equality. For instance, proof procedures often suffer from excessive backtracking and enumerate
whole tableaux in an iterative-deepening fashion, typically based on the number of γ -rule applications
in a tableau.

To avoid the problems of rigid variables for equality reasoning, in [16] the authors combine
a superposition-based equality reasoning system with a top down semantic tableau reasoner. Yet,
certain substitutions still have to be applied globally to all variables in the tableau, which thus
are still treated rigidly. As with most free-variable tableau calculi, the important property of proof
confluence does not hold or is not known to hold.

Other free-variable tableau methods are based on solving (simultaneous) rigid E-unifiability
problems [17] but still face the same problem of not exploiting proof confluence.
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2 Hyper Tableaux Calculus with Equality

A more recent stream of equality handling in free-variable tableaux has been initiated by Martin
Giese. It is (also) motivated by addressing the excessive backtracking of the methods mentioned
above. In [21], the author gives a calculus for free variable tableaux with superposition-type inference
and proves completeness by adapting the model generation technique for superposition [1, 29]. One
improvement, compared with [16] and other free-variable methods is that unification constraints
leading to a closed tableau are now held locally together with tableau literals. This allows one to
avoid backtracking over the tableaux generated in a derivation, but instead amounts to combining
local substitutions in a compatible way for the purpose to witness a closed tableau (see Ref. [20] for
details). A drawback of this approach is its potentially high memory consumption, as, in essence,
it does not admit a one-branch-at-a-time proof procedure.

In [22], simplification rules and reasoning with universal variables1 are added to the framework
of [21], but without equality. Equality aside, the most relevant contribution in [22] from the
viewpoint of this article is the instantiation of the calculus there to a variant of the hyper tableau
calculus [5].2 An important difference to [5] is that [22] uses rigid variables for variables that are
shared between positive literals in clauses. For instance, a clause like ∀x,y (p(x,y)∨q(x)) then is
treated by β-expansion with the formulas ∀y p(X,y) and q(X), where X is a rigid variable shared
between branches. In contrast, the hyper tableaux of [5] would branch out on the formulas ∀y p(t,y)
and q(t), where t is some ‘guessed’ ground term of the input signature.3

In this article we stick with the hyper tableau calculus and its ‘obviously inefficient’ approach
of guessing ground terms for shared variables, as opposed to using free variables. More
precisely, we show how to incorporate efficient ordering-based equality inference rules and
redundancy elimination techniques from the superposition calculus [1, 29] into a tableau calculus.
We believe the hyper tableau calculus [5] is a good basis for doing that, for the following
reasons.

• All variables in a hyper tableau are universally quantified in the branch literal they occur. This
facilitates the adaption of the superposition framework and enables powerful redundancy criteria.

• As far as we know, none of the free-variable calculi mentioned above can be used as a non-trivial
decision procedure for function-free clause logic. The same holds true for any known resolution
refinement.
On the other hand, our calculus is a non-trivial decision procedure for this fragment (with
equality), which captures the complexity class NEXPTIME. Many practically relevant problems
are NEXPTIME-complete, e.g. first-order model expansion (relevant for constraint solving).

• Advanced techniques are available to restrict the domain of the guessed ground terms (like t
above). For instance, the preprocessing technique in [7] can readily be used in conjunction with
our calculus without any change.4

• Specific to the theory of equality and in presence of simplification inference rules, that
domain can even be further reduced. This occasionally shows unexpected (positive) effects,
leading to termination of our system, where e.g. superposition based systems do not

1Variables that are local to a clause or literal and that are universally quantified.
2Hyper tableaux is a tableau model generation method, which is applied to clauses and needs only one inference rule, which

can be seen as a tableaux β-rule. It is applied in a ‘hyper-way’, such that all negative literals are ‘resolved away’ by positive
literals in the branch. The remaining literals are positive and are split after that. This basic idea stems from SATCHMO [26],
which is extended in hyper tableaux by making better use of universally quantified variables.

3Notice that Resolution- or Superposition calculi, also those with Splitting [33], do not split ∀x,y (p(x,y)∨q(x)).
4For example, the calculus described here does not admit a finite (fair) derivation from the clause set {∀x p(x)∨q(x),r(f (c))},

but in conjunction with the techniques in [7] it does.
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terminate. See Section 6 for details and Section 7 for exploiting this idea for finite model
computation.

Also, the hyper tableau calculus is the basis of the KRHyper prover, which is used in various
applications [2, 4, 18] from which we learned that an efficient handling of equality would increase
its usability even more.

The closest approximation of the superposition calculus to E-hyper tableaux is obtained by using a
selection function that selects all negative literals in a clause and using a prover that supports splitting
(of variable-disjoint subclauses) like SPASS [33]. Even then, there remain differences. We discuss
these issues in Section 6.

The article [22] discusses various ways of integrating equality reasoning in dis- connection
tableaux. It includes a variant based on ordered paramodulation, where paramodulation inferences
are determined by inspecting connections between literals of two clauses. Only comparably weak
redundancy criteria are available.

In [8], the model evolution calculus is extended by equality. Model evolution is a lifting of
propositional Davis-Putnam-Logemann-Loveland procedure (DPLL) to the first-order case. The
model construction method behind admits semantically justified redundancy elimination criteria.

Both calculi belong to the family of instance-based methods, which are conceptually rather different
to resolution- or tableau calculi as considered here.

This article is organized as follows: we start with preliminaries in the following section. In Section 3,
we present superposition inference rules for clauses together with a static completeness result. In
Section 4, we introduce E-hyper tableaux and soundness and completeness properties. In Section 6,
we consider improvements for splitting and discuss the relation with splitting in the SPASS prover.
Section 7 shows how to apply the calculus for finite model computation. Section 8 describes the
implementation of the E-KRHyper system. A number of the results in this article have first been
described in [6]. Apart from updating the presentation and including the new Section 7, we have
extended the article with a full complement of proofs in Appendix A.

2 Preliminaries
Most of the notions and notation we use in this article are the standard ones in the field. We report
here only notable differences and additions.

We will use an infinite set of variables X, and x and y denote elements of X. We fix a signature "

throughout the article. Unless otherwise specified, when we say term we will mean "-term. If t is a
term we denote by Var(t) the set of t’s variables. A term t is ground iff Var(t)=∅.

A substitution σ is a mapping from X to ", with a finite domain dom(σ )={x |xσ $=x} and a finite
range ran(σ )={xσ |xσ $=x}, x∈X. A ground substitution γ is a substitution with vars(ran(γ ))=∅. A
renaming ρ is a substitution which is a bijection of X onto itself. Given two terms s and t, a substitution
σ is a unifier for s and t if sσ = tσ . σ is a most general unifier (mgu), if for any other unifier τ for s
and t there is a substitution λ with σλ=τ .

A term s is an instance of a term t if there is a substitution σ such that sσ = t. s is a variant of t if
there is a renaming ρ such that sρ = t. A variant is fresh as long as it shares no variables with any
other term. All of the above is extended from terms to literals and clauses in the obvious way.

The notation s[t]p denotes the replacement of a subterm of s at position p with a term t, as usual.
We leave away the subscript p if clear from the context. The notion of positions is extended from
terms to literals in the obvious way.
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In this article, we restrict ourselves to equational clause logic. Therefore, and essentially without
loss of generality, we assume that the only predicate symbol in " is&. Any atom A that is originally
not an equation can be represented as the equation A& t, where t is some distinguished constant not
appearing elsewhere. (But we continue to write, say, P(a) instead of the official P(a)& t.) This move
is harmless, in particular from an operational point of view.5 An atom then is always an equation,
and a literal then is always an equation or the negation of an equation. Literals of the latter kind, i.e.
literals of the form ¬(s& t) are also called negative equations and generally written s $& t instead. We
call a literal trivial if it is of the form t& t or t $& t.

We denote atoms by the letters A and B, literals by the letters K and L and by L the complement
of a literal L.

A clause is a finite multiset of literals, written as a disjunction A1∨ ···∨Am∨¬B1∨···∨¬Bn or an
implication A1,...,Am←B1,...,Bn, where m,n≥0. Each atom Ai, for i=1,...,m, is called a head
atom, and each atom Bj, for j=1,...,n, is called a body atom. We write A,A←B,B to denote a clause
with head atoms {A}∪A and body atoms {B}∪B, where A and B are multisets of atoms. As usual,
clauses are implicitly universally quantified.

We suppose as given a reduction ordering * that is total on ground "-terms.6 The non-strict
ordering induced by* is denoted by+, and≺ and- denote the converse of* and+. The reduction
ordering * has to be extended to rewrite rules, equations and clauses. Following usual techniques
[1, 29], to a given ground clause A←B we associate to each head atom s& t in A the multiset
{s,t} and to each body atom u&v in B the multiset {u,u,v,v}. Two atoms then (head or body) are
compared by using the multiset extension of *, which is also denoted by *. This will have the
effect of a lexicographic ordering, where, first, the bigger terms of two equations are compared,
then the sign (body atoms are bigger) and at last the smaller sides of the equations. To compare
clauses, the twofold multiset extension of * is used, likewise denoted by *. Given two clauses C
and D, C*D holds iff C and D are not variants and for each literal L exclusive to D there exists a
literal K exclusive to C with K*L. When comparing ground rewrite rules they are treated as unit
clauses.

A central notion for hyper tableaux is that of a pure clause [5]: a clause A1,...,Am←B1,...,Bn is
called pure iff Var(Ai)∩Var(Aj)=∅, for all 1≤ i,j≤m with i $= j. That is, in a pure clause variables
are not shared among head literals. (In the rest of this article, we will need this concept for positive
clauses only.) Any substitution that turns a clause C into a pure instance Cπ is called a purifying
substitution (for C).

A (Herbrand) interpretation I is a set of ground "-equations—those that are true in the
interpretation. Satisfiability/validity of ground "-literals, "-clauses and clause sets in a Herbrand
interpretation is defined as usual. We write I |=F to denote that I satisfies F, where F is a ground
"-literal or a "-clause (set).

Since every interpretation defines in effect a binary relation on ground "-terms, and every binary
relation on such terms defines an interpretation, we will identify the two notions in the sequel.

An E-interpretation is an interpretation that is also a congruence relation on the "-terms. If I is
an interpretation, we denote by IE the smallest congruence relation on the "-terms that includes I ,
which is an E-interpretation. We say that I E-satisfies F iff IE |=F. Instead of IE |=F we generally

5Strictly speaking, one has to move to a two-sorted signature with different signatures for function symbols and predicate
symbols, and all variables are of the sort of terms. We ignore this aspect throughout the article because it does not cause any
complications.

6A reduction ordering is a strict partial ordering that is well founded and is closed unter context i.e. s*s′ implies t[s]* t[s′]
for all terms t, and liftable, i.e. s* t implies sδ* tδ for every term s and t and substitution δ.
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write I |=E F. We say that F E-entails F′, written F |=E F′, iff every E-interpretation that satisfies F
also satisfies F′. We say that F and F′ are E-equivalent iff F |=E F′ and F′ |=E F.

2.1 Redundant clauses

Intuitively, a clause is redundant iff it follows from a set of smaller clauses. We will formalize this
now, following [1]. There is a related notion of ‘redundant inference’ which will be introduced in
Section 3.1 subsequently.

If D is a ground clause and C is a set of ground clauses then let CD ={C∈C |D*C}. When C is a
set of non-ground clauses and when writing CD we identify C with the set of all ground instances of
all its clauses.

Now, a ground clause D is redundant w.r.t. a set of clauses C iff CD |=E D. That is, D is redundant
w.r.t. C iff D follows from smaller clauses taken from C.7 When D is a non-ground clause we
say that D is redundant w.r.t. C iff every ground instance of D is redundant w.r.t. C. For instance,
using any simplification ordering, P(f (a))← is redundant w.r.t. {P(a)← , f (x)&x← }, because
{P(a)←, f (a)& a←} |=E P(f (a))← and each clause in the premise is smaller than P(f (a))← .

3 Inference rules on clauses
The following three inference rules are taken from the superposition calculus [1] and adapted to our
needs. We need in addition a splitting rule that will be defined afterwards. All rules will later be
embedded into the hyper tableau derivation rules.

An equation l&r always also denotes its symmetric version r& l.
The sup-left rule (superposition left8) applies a superposition step to a body literal:

sup-left(σ )
A←s[l′]& t,B l&r←

(A←s[r]& t,B)σ
if






l′ is not a variable,
σ is a mgu of l and l′,
lσ $-rσ , and
sσ $- tσ

If the last condition is dropped, then the resulting inference rule is called ordered paramodulation
left. This rule will not be used in our calculus.

The unit-sup-right rule (unit superposition right) applies a superposition step to a positive unit
clause:

unit-sup-right(σ )
s[l′]& t← l&r←

(s[r]& t←)σ
if






l′ is not a variable,
σ is a mgu of l and l′,
(s& t)σ $- (l&r)σ ,
lσ $-rσ , and
sσ $- tσ

The last condition can be dropped, and the resulting inference rule is then called ordered unit
paramodulation right.

7By compactness, even from a finite set of clauses.
8With our notation for clauses, the name superposition left is actually counterintuitive, but we keep it for compatibility

with corresponding rules in the superposition calculus.
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The general superposition right inference rule of [1] between non-unit clauses is not needed,
essentially due to the presence of the splitting rule below.

The ref rule (reflexivity) eliminates a body literal on the grounds of being trivially true (after
applying a substitution).

ref(σ )
A←s& t,B
(A←B)σ

if σ is a mgu of s and t

Finally, the announced splitting rule. It takes a disjunctive fact, applies a purifying substitution π

to it and returns the instantiated head atoms, one conclusion per head atom.

split(π )
A1,...,Am←

A1π← ··· Amπ← if

{
m≥2, and
π is a purifying substitution for A1,...,Am←

3.1 Redundant inferences and saturation

We write C,D⇒sup-left(σ ) E to denote a sup-left inference, i.e. an instance of the sup-left
inference rule with left premise C, right premise D, conclusion E and substitution σ that
satisfies the rule’s side condition. We use analogous notation for an application of the sup-right
inference rule, and for an application of ref we write, similarly, C⇒ref(σ ) E. Likewise, C⇒split(π )
A1← ,...,Am← denotes a split inference with premise C, purifying substitution π and conclusions
A1← ,...,Am← .

An R-inference, with R∈{sup-left,unit-sup-right,ref} is ground iff its constituent clauses C,D
and E are ground. The substitution σ in a ground inference is irrelevant and may be assumed, without
loss of generality, to be the empty substitution ε.

If C,D⇒R(σ ) E is an R-inference (with D absent in the case of ref) and γ is a substitution such
that Cσγ ,Dσγ ⇒R(ε) Eγ is a ground inference, then the latter inference is called a ground instance
of the inference C,D⇒R(σ ) E.

For instance, by taking γ ={x 2→a} one sees that the ground inference

(P(f (a))← ),(f (a)&a← )⇒sup-right(ε) P(a)←

is a ground instance of the inference

(P(f (x))← ),(f (y)&y← )⇒sup-right({y 2→x}) P(x)← .

In contrast,
(P(f (f (a)))← ),(f (a)&a← )⇒sup-right(ε) P(f (a))←

is not a ground instance of the inference above, for any substitution γ . Intuitively, only such ground
inferences can be ground instances of inferences where paramodulation takes place at positions that
exist also at the non-ground level. This excludes ground inferences that are not liftable because they
would require paramodulation into or below variables. We can define these notions for the split rule
analogously: a split inference is ground if the premise is ground (and hence all its conclusions are
ground). Similarly as above for the other rules, the purifying substitution π can always be assumed
to be the empty substitution then.
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If C⇒split(π ) A1← ,...,Am← is a split inference and γ is a substitution such that Cπγ ⇒split(ε)
A1γ ← ,...,Amγ ← is a ground split inference, then the latter inference is called a ground instance
of the former inference.

Let D be a set of (possibly non-ground) clauses. A ground inference C,D⇒sup-left(ε) E or
C,D⇒sup-right(ε) E is redundant w.r.t. D iff E is redundant w.r.t. DC ∪ {D}. A ground inference
C⇒ref(ε) E is redundant w.r.t. D iff E is redundant w.r.t. DC . And a ground inference C⇒split(ε)
A1← ,...,Am← is redundant w.r.t. D iff there is an i with 1≤ i≤m such that Ai← is redundant
w.r.t. DC .

For all inference rules sup-left, unit-sup-right, ref and split, a (possibly non-ground) inference is
redundant w.r.t. D iff each of its ground instances is redundant w.r.t. D.

Intuitively, a ground inference is redundant w.r.t. D iff its conclusion follows from a set of smaller
clauses than the left premise, while fixing the right premise. Because all (ground) inferences work in
a strictly order-decreasing way, adding the conclusion of an inference to the clause set the premises
are taken from renders the inference redundant w.r.t. that set.9 For instance, adding P(a)← to the set
{(P(f (a))← ),(f (a)&a← )} renders the obvious sup-right inference redundant w.r.t. the resulting
set.

It is not only redundant inferences that can be neglected. Also inferences where one or both parent
clauses are redundant can be neglected. This is captured by the following definition.

Definition 3.1 (Saturation up to redundancy)
A clause set C is saturated up to redundancy iff for all clauses C∈C such that C is not redundant
w.r.t. C all of the following hold:

1. Every inference C⇒split(π ) A1← ,...,Am← such that Cπ is not redundant w.r.t. C, is redundant
w.r.t. C.

2. Every inference C,D⇒R(σ ) E, where R∈{sup-left,unit-sup-right} and D is a fresh variant of
a positive unit clause from C, such that neither Cσ nor Dσ is redundant w.r.t. C, is redundant
w.r.t. C.

3. Every inference C⇒ref(σ ) E such that Cσ is not redundant w.r.t. C, is redundant w.r.t. C.

For instance, the (satisfiable) propositional clause set C ={(A,B← ),(←A)} is not saturated up to
redundancy. By an application of the split rule to A,B← one can infer A← and B← , and adding,
say, B← to C renders the clause A,B← redundant.

As an example for a non-ground split inference consider a clause P(x),Q(x)← from some clause
set. One may want to avoid applying all purifying substitutions to it. Fortunately, Definition 3.1-1
does not prescribe that at all. For instance, when the clause set includes an equation a&b← (where
a*b), then purifying P(x),Q(x)← by π ={x/b}, yielding P(b),Q(b)← , and adding P(b)← to the
clause set is sufficient to render the split inference with purifying substitution {x/a} redundant, as
the clause P(a)← follows from P(b)← and a&b← , both of which are smaller than P(a),Q(a)← .

Theorem 3.2 (Static Completeness)
Let C be a clause set saturated up to redundancy. If ! /∈C then C is E-satisfiable.

The proof employs the model-construction technique originally developed for the superposition
calculus, but adapted to our needs. The difference come from the facts that in our case all side premises
are unit clauses, and so there is no equality factoring (or merging paramodulation) inference rule,
and that we need a splitting rule.

9This property makes it obvious that fair derivations, as defined later, exist.
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Notice that Theorem 3.2 applies to a statically given clause set C. The connection to the dynamic
derivation process of the E-hyper tableau calculus will be given later, and Theorem 3.2 will be
essential in proving the completeness of the E-hyper tableau calculus.

4 E-hyper tableaux
In [5], based on [24], hyper tableau have been introduced as labelled trees over literals (which
are universally quantified, and hence can be seen as unit clauses). For our purposes, however,
a generalization towards trees over clauses is better suited. This is, because new clauses can now
be derived as the derivation proceeds, and these clauses are context dependant (branch local), and
tableaux are an obvious data structure to deal with this context dependency.

A tree is a pair (N ,E) where N is the set of the nodes of T and E is the set of the edges of T .
A labelled tree over a set M is a pair (T ,λ) consisting of a finite, ordered tree T and a labelling
function λ that maps each node of T to some element from M. A (clausal) tableau over a signature
" is a labelled tree over the set of "-clauses.

We use the letter T to denote tableaux.
Let B be a branch of a tableau T of length n, i.e. a sequence of nodes (N1,...,Nn), for some n≥0,

where N1 is the root and Nn is the leaf of B. Each of the clauses λ(Ni), for i=1,...,n, is called a
(tableau) clause of B.

Occasionally it is convenient to read a branch B as the multiset of its tableau clauses λ(B) :=
{D |D is a tableau clause of B}. This allows us to write, for instance, C∈B instead of C∈λ(B).
Furthermore, if B is a branch of a tableau T we write B·C and mean the tableau obtained from
T by adding an edge from the leaf of B to a fresh node labelled with C. Furthermore, we write B·B′
to denote the branch obtained by concatenating the branch B and the node sequence B′.

4.1 Extension rules

We define two derivation rules for extending branches in a given tableau.
The Split rule branches out on an instance of a positive clause; its conclusions are labelled as

‘decision clauses’, as indicated by the annotation d. The role of this labelling will become clear
below in Section 4.2.

Split
B

B·A1←d ··· B·Am←d if






there is a clause C∈B and
a substitution π such that

C⇒split(π ) A1← ,...,Am← and
B contains no variant of Ai← ,
for each i=1,...,m

The clause C is called the selected clause (of a Split inference).
The Equality rule applies an inference rule for equality reasoning from Section 3 to a body literal.

Equality
B

B·E if






there is a clause C∈B,
a fresh variant D of a positive unit clause in B, and
a substitution σ such that

C,D⇒R(σ ) E with R∈{sup-left,unit-sup-right} or
C⇒ref(σ ) E, and

B contains no variant of E
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In both rules, the test for the conclusion(s) being not contained in B is needed in interplay with
deletion of clauses based on non-proper subsumption (see the Del subsequently).

Without this test, it is conceivable the calculus derives the following sequence of branches:

..., (P(x)← )

..., (P(x)← ), (P(y)← )

..., (t& t← ), (P(y)← )

..., (t& t← ), (P(y)← ), (P(x)← )

..., (t& t← ), (t& t← ), (P(x)← )

..., (t& t← ), (t& t← ), (P(x)← ), (P(y)← )

..., (t& t← ), (t& t← ), (t& t← ), (P(y)← )
…

The calculus alternately adds and deletes unit clauses. For the additions the calculus alternates
between P(x)← and P(y)← . The Del applications delete the next-youngest unit, respectively.As the
inference conclusions are not checked for already having variants in the branch, there always exist
one or two variants of P(x)← , even though no particular instance ultimately persists. In spite of no
new clauses being added, the branch grows indefinitely. The problem with such situations is there
is no ‘well-founded’ way to argue in the completeness proof that P(x)← will be satisfied by the
candidate model.

For later use, we say that an application of a Split, Sup-left, Unit-sup-right or Ref derivation rule
to a branch B is redundant iff its conclusion (at least one of its conclusions, in the case of Split) is
redundant w.r.t. B.

4.2 Deletion and simplification rules

From a practical point of view, deletion of redundant clauses and simplification operations on clauses
are crucial. We will introduce these now. Adding such rules is a major addition to the hyper tableau
calculus and involves a more sophisticted technical treatment than that in [5]. This is, because hyper
tableau as defined in [5] are non-destructive, in the sense that extending a branch goes along with
increasing the set of its corresponding labels (unit clauses). This is no longer the case in presence of,
for instance, the Del rule (deletion) below, which removes a clause that is redundant in a branch or
subsumed by another clause in the branch.

Also, to preserve the calculus’ soundness, arbitrary deletion of redundant clauses is not possible.
Aclause can be deleted only on the condition that none of the clauses which make the clause redundant
is a clause which has been introduced at a later ‘decision level’ (i.e. one that occurs further down in
the tree below a more leafwards decision clause). This is formalized next.

Del
B·C(d) ·B1 ·B2

B·t& t←(d) ·B1 ·B2
if






(1) C is redundant w.r.t. B·B1, or some
clause in B·B1 non-properly subsumes C, and
(2) B1 does not contain a decision clause

The notation (d) is meant to say that if there is a label d, it is preserved when replacing C by t& t← .
Observe that our redundancy notion does not cover non-proper subsumption.10 For instance, the

clause P(a)← is not redundant w.r.t. {P(x)← } (and neither is the clause P(y)← ). Therefore, deletion
of non-properly subsumed clauses has been taken care of explicitly.

10A clause C non-properly subsumes a clause D iff Cσ =D for some substitution σ .
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The next rule, Simp (simplification), replaces a clause by another one that is smaller in the ordering:

Simp
B·C(d) ·B1 ·B2

B·D(d) ·B1 ·B2
if






(1) B·C ·B1 |=E D,
(2) C is redundant w.r.t. B·D ·B1, and
(3) B1 does not contain a decision clause

The Simp rule covers, for instance, standard rewriting by unit clauses.
The condition (2) in Del is needed for completeness reasons, and the condition (3) in Simp is needed

for both completeness and soundness reasons. They make sure that no deletion or simplification step
is justified by a clause from a decision level further down in the tableau. Such a step would in
general be justified only in the branch containing the used clauses, but not in the other branches. For
illustration consider the following clause set.

P(a)← (1)

←P(b) (2)

a&b, Q← (3)

After a Split with clause (3) a branch containing the decision clause a&b← comes up. If
condition (3) in Simp were dropped (and a*b), then clause (1) could be simplified to P(b)← ,
leading to a refutation. This would be unsound because the simplification is not justified in the
branch containing Q← although it would contain the simplified literal. But with the restrictions in
place we arrive at the following lemma.

Lemma 4.1
For each of the derivation rules Split, Equality, Del and Simp, if the premise of the rule is
E-satisfiable, then one of its conclusions is E-satisfiable as well.

For similar reasons as for Simp, the Del rule cannot just delete the clause Cd mentioned in the
premise, as the deletion would remove the separation of B and B1 by a decision clause (while the
replacement by t& t←d preserves the separation).

A different approach to deletion and simplification is implemented in the SPASS prover [33]. The
corresponding rules in SPASS are even more general than ours as they allow to ignore the decision
levels. But then, in general, a deleted or simplified clause must be reinserted on backtracking to
an earlier decision level. This is never necessary in our case, essentially because of disallowing
‘backward’ deletion and simplification steps across decision levels, as just discussed in the previous
example.

4.3 Derivations

In the following, the letter κ will denote an ordinal smaller than or equal to the first infinite ordinal.
We say that a branch of a tableau is closed iff it contains the empty clause !.11 A branch that is

not closed is also called open. A tableau is closed iff each of its branches is closed, and it is open iff
it is not closed (i.e. if it has an open branch).

An (E-hyper tableau) derivation from a set {C1,...,Cn} of "-clauses is a possibly infinite sequence
(i.e. of length κ) of tableaux D= (Ti)0≤i<κ such that

11We write ! instead of ‘← ’.
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(1) T0 is the clausal tableau over " that consists of a single branch of length n with tableau clauses
C1,...,Cn.12, and

(2) for all i>0, Ti is obtained from Ti−1 by a single application of one of the derivation rules in
Sections 4.1 and 4.2 to some open branch of Ti−1, called the selected branch.

Recall that a tableau T is of the form (T ,λ), where T is a tree, i.e. a pair (N ,E) where N is the
set of the nodes of T and E is the set of the edges of T .

A derivation D= ((Ni,Ei),λi)i<κ determines a limit tree (
⋃

i<κ Ni,
⋃

i<κ Ei). It is easy to show that
a limit tree of a derivation D is indeed a (possibly infinite) tree.

Now let T be the limit tree of some derivation, let B= (Ni)i<κ be a (possibly infinite) branch in T
with κ nodes, and let Bi = (N1,...,Ni) be the initial segment of B with i nodes, for all i<κ . Define
B∞=⋃

i<κ

⋂
i≤j<κ λj(Bj), the multiset of persistent clauses (of B).

Recall that tableaux clauses can be labelled as decision clauses. These labels are preserved when
building the limit tree, i.e. the tableaux clauses in a limit tree are possibly also labelled as decision
clauses. However, the labels are ignored when building the persistent clauses of a branch. If two
clauses differ only in their label, they count as equal then.

Intuitively, the central property of a limit branch is a ‘static’ one, saturation up to redundancy, for
which the labels are not relevant. However, the derivation of a limit branch needs to take the labels
into account.

Definition 4.2 (Exhausted Branch)
Let T be a limit tree, and let B= (Ni)i<κ be a branch in T with κ nodes. The branch B is exhausted
iff it does not contain the empty clause, and for every clause C∈B∞ and every fresh variant D of
every positive unit clause in B∞ such that neither C nor D is redundant w.r.t. B∞ all of the following
hold, for all i<κ such that C∈Bi and D is a variant of a clause in Bi:

(1) if Split is applicable to Bi with underlying inference
C⇒split(π ) A1← ,...,Am← and Cπ is not redundant w.r.t. Bi, then there is a j<κ such that
the inference C⇒split(π ) A1← ,...,Am← is redundant w.r.t. Bj.

(2) if Equality is applicable to Bi with underlying inference C,D⇒R(σ ) E, for some R∈
{sup-left,unit-sup-right}, and neither Cσ nor Dσ is redundant w.r.t. Bi, then there is a j<κ

such that the inference C,D⇒R(σ ) E is redundant w.r.t. Bj.
(3) if Equality is applicable to Bi with underlying inference C⇒ref(σ ) E and Cσ is not redundant

w.r.t. Bi, then there is a j<κ such that the inference C⇒ref(σ ) E is redundant w.r.t. Bj.

A refutation of a clause set C is a finite derivation of C that ends in a closed tableau.
A derivation is fair iff it is a refutation or its limit tree has an exhausted branch.
In the preceeding definition, actually carrying out a Split inference with a clause C and purifying

substitution π , when applicable, will achieve the conclusion, i.e. make Cπ redundant w.r.t. Bj. The
analogous holds for the Equality inferences in items 2 and 3. This observation indicates that proof
procedures implementing fair derivations indeed can be given.

Theorem 4.3 (Soundness of E-Hyper Tableaux)
Let C be a clause set that has a refutation. Then C is E-unsatisfiable.

For the completeness direction we need the following result:

Proposition 4.4 (Exhausted branches are saturated up to redundancy)

12The order does not matter, as the collection of tableau clauses of a branch will be seen as sets. For technical reasons we
assume that no clause Ci is a variant of a clause Cj , for all 1≤ i< j≤n, but this is obviously not an essential restriction.
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If B is an exhausted branch of a limit tree of some fair derivation then B∞ is saturated up to
redundancy.

Proposition A.12 and Theorem 3.2 entails our main result:

Theorem 4.5 (Completeness of E-Hyper Tableaux)
Let C be a clause set and T be the limit tree of a fair derivation D of C. If D is not a refutation then C
is E-satisfiable.

Because the proof of this theorem refers to the proof of Theorem 3.2, the model constructed in the
proof of Theorem 3.2 provides a strengthening of Theorem 4.5 by being more specific.

Corollary 4.6 (Bernays-Schönfinkel Class with Equality)
The E-hyper tableau calculus can be used as a decision procedure for the Bernays-Schönfinkel class
with equality, i.e. for function free formulae with the quantifier prefix ∃∗∀∗.

The proof of Corollary 4.6 follows from the soundness and completeness results, and the facts
that the calculus cannot derive clauses that grow in length, or that grow in term depth (using the
assumption that no non-nullary function symbols are present) or that are variants of clauses already
contained in the branch. Therefore any (exhausted) branch derivable must be finite.13 Because of
the finite branching of hyper tableaux and by Koenig’s Lemma it follows that any (limit) derivation
must be finite.

5 Derivation examples
Figure 1 shows an E-hyper tableau that has been derived from the given clauses (1) – (6). The right
branch of the tableau is open, and no further extension steps can be applied. Clause (14) cannot
be split, as the resulting decision clause R(b)& t← is already an element of the branch. Del steps
can be used to further overwrite clauses (7) [redundant w.r.t. clause (8)] and (13) [redundant w.r.t.
clause (14)].

Figure 2 illustrates the usage of the Del and Simp rules. Equality extensions are used to construct
the tableau consisting of clauses (1) – (14). Clause (10) is non-properly subsumed by clause (14)
and can thus be deleted, replacing it with (10’) - t& t←. Clause (9) is redundant w.r.t. clause (12)
and the simpler clause (3). The Simp rule replaces clause (9) with (9’) - Q(a)& t←. As (9’) itself
is again non-properly subsumed by (3), it can be deleted in a further step. Note that clause (1)
cannot be deleted by clause (14), because there is a decision clause between the two clauses in the
branch.

6 Restricting Split and the relation to splitting in SPASS
For performance reasons, it is mandatory to restrict the search space induced by having to apply
purifying substitutions in Split rule applications. The fairness criteria in Definition 4.2 already support
that. For instance, one can take advantage of avoiding purifying substitutions that are reducible, as
they lead to redundant inferences.

13The situation is slightly more complicated due to the Simp and Del rules.
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Figure 1. Example: E-hyper tableau for given clauses (1) – (6)

Definition 6.1 (Reducible substitution)
Let C be a clause set and σ a substitution. We say that σ is reducible w.r.t. C iff there is a term
t∈Ran(σ )14, a unit clause l&r←∈C and a (matching) substitution µ such that lµ occurs in t and
lµ*rµ.

We say that σ is irreducible w.r.t. C if σ is not reducible w.r.t. C.
Obviously, for each (positive) clause C =A1,...,Am← in a branch B and each purifying

substitution π0 for C there is a maximal chain Cπ0*Cπ1* ···*Cπn, for some n≥0, where πi
is obtained from πi−1 by one-step rewriting a term of its range with a positive unit clause from B and
such that πn is irreducible w.r.t. B. It is not difficult to see that, by equality, applying Split with Cπn
renders the Split inferences with Cπ0,...,Cπn−1 redundant (w.r.t. all branches obtained by splitting
Cπn). No reducible purifying substitution need therefore ever be considered in Split inferences to
obtain an exhausted branch, and this is what is implemented in our system.

An example of such a situation is C =P(x),Q(x)← , a&b←∈B, a*b, π0 ={x/a} and π1 ={x/b}.
Split with P(b),Q(b)← alone to extend B is sufficient.

A different split rule is implemented in the SPASS prover [33]. It does not apply a purifying
substitution to force partitioning a clause into variable disjoint parts. Instead, it splits on clauses only
that are already partitioned.

14As usual, the range of a substitution σ is Ran(σ )={xσ |xσ $=x}.
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Figure 2. Example: E-hyper tableau for given clauses (1) – (6)
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It is not clear a priori which of these approaches to splitting is preferrable in practice. An example
where our approach is preferrable is as follows. Consider the clauses

f (a)&a← (1)

g(a)&a← (2)

f (g(x))&g(f (x))← (3)

p(f (x)),p(g(x))← (4)

Suppose a precedence f *g*a (or g* f *a, as the problem is symmetric in f and g), lifted to any
simplification ordering. All superposition inferences among the clauses (1)–(3) are redundant, and a
prover like SPASS will detect that. Among others, there is a superposition inference between clause
4 and 3, which yields the clause

p(g(f (x))),p(g(g(x)))← . (5)

In fact this inference is redundant, too. To see this, consider any ground substitution γ . It must map
x to some term comprised of a combination of f ’s, g’s and (one) a, e.g. γ ={x/f (f (g(f (a))))}. Now,
any ground instance of clause (5), for instance,

p(g(f (f (f (g(f (a))))))),p(g(g(f (f (g(f (a)))))))←

can be reduced by the unit clauses (1)–(3) in one or more steps to the clause p(f (a)),p(g(a))← (they
can be reduced even further), which is a ground instance of clause (4) and which is smaller in the
ordering than the ground instance of clause (5) we started with. By this argument the superposition
inference leading to clause (5) is redundant (and need not be carried out).

Notice that this argumentation takes the clause set’s signature into account. However, the commonly
implemented redundancy criteria do not do that. In particular, for instance, SPASS does not find a
finite saturation of the clause set above. In contrast, E-hyper tableaux are aware of the input signature
and the redundancy criteria based on irreducible purifying substitutions, as mentioned above, are
strong enough to achieve termination.15 To see this, it is enough to observe that every purifying
substitution, like π ={x/f (f (g(f (a))))}, is reducible (to π ={x/a}) w.r.t. every branch containing
clauses (1) and (2). Thus, the only instance of clause (4) to be considered for splitting (in presence of
(1)–(3) is p(f (a)),p(g(a))← (which can be simplified further). Moreover, this can easily be achieved
by adding the following ‘logic programme’

dom(a)← (6)

dom(f (x))←dom(x) (7)

dom(g(x))←dom(x) (8)

which, in combination with rewriting by unit clauses will enumerate in its dom predicate the ground
terms of the input signature that are irreducible w.r.t. the orientable current positive unit clauses. In
presence of clauses (1) and (2), this is the singleton {a}. The general form of the ‘logic program’
has, of course, already been used within SATCHMO [26] and some descendants. To our knowledge,
though, it was never observed before that equational reasoning can help to confine the dom-predicate.

In the following Section 7, we will build on the informal observations made here and devise a
sound and complete calculus for finite model computation based on E-hyper taleaux.

15More precisely, there is a finite derivation in the E-hyper tableau calculus, and any reasonable implementation, like our
E-KRHyper system, will find it.
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7 Finite model computation
Finite model computation is the problem of computing an (E-)model of a given clause set with a
finite domain (or detecting there is none).

Notice that as soon as the clause set contains one single non-zero arity function symbol, any
finite model is necessarily not a Herbrand model. This indicates that standard theorem proving
paradigms, which are ultimately based on Herbrand interpretations, cannot be used directly for finite
model computation then. Indeed, methods for finite model computation can be classified as those that
directly search for a finite model, like the extended PUHR tableau method [10], the methods in [12, 15]
and the methods in the SEM-family [28, 31, 34], and those that are based on transformations into
(clausal) logic and which rely on readily available theorem provers or SAT solvers.

The latter approach includes the family of MACE-style model builders [28]. These systems
search for finite models essentially by constructing a sequence of translations corresponding to
interpretations with domain sizes 1,2,..., in increasing order, until a model has been found. The
model builder from this class with the best performance today is probably Paradox [14]. It is based
on translation into propositional logic, and it uses a (very efficient) SAT solver to decide if there is a
model of the current domain size.

However, there are several intrinsic problems with this and other approaches that are based on
translation into propositional logic. One of them is lack of space efficiency, because the number of
the ground instances of a clause grows exponentially in the number of variables in the clause [14].
(See [3] for a more detailed discussion of this issue and examples of problematic clause sets.)

To address the space efficiency problem of MACE-style model computation, ref. [3] proposes
to employ a first-order theorem prover instead of a propositional SAT solver. The target logic for
the corresponding translation then is function-free clause logic (the theorem prover used there, the
Darwin system [9], is a decision procedure for that fragment). This allows to avoid the exponential
growth of the clause set as the domain size increases, which is crucial for problems that have models
of a relatively large size.

Yet, there remain other problems with the MACE approach, for instance lack of decent equality
handling. Because equality reasoning is not supported natively by the underlying systems (naturally,
equality reasoning does not apply to propositional SAT solving), equality is translated away. This
involves removing the whole-term structure by flattening all deep terms at the cost of introducing
long clauses and turning each n-ary function symbol into a n+1-are predicate symbol. This way,
all equations are translated away, too. This makes any built-in equational reasoning impossible
then, such as simplification by rewriting, which is one of the crucial techniques for efficient
equality reasoning. Using E-hyper tableau (or any other system supporting equational reasoning)
is pointless then.

Notice that equality comes in even if the original problem is not equational. If the current domain
size is n, then the translations into the target logic have to treat disjunctions of the form

x&1∨ ···∨x&n .

This leads to the motivation for our approach presented below: we propose yet another MACE-
style model finder, but this time using a theorem prover based on E-hyper tableau. This way, the
exponential space requirements of the translation into propositional clause logic can be avoided
while at the same time enabling more efficient equality treatment.

We present here only the theoretical core of our approach. We introduce a transformation on clause
sets related to the transformation into range-restricted form described at the end of Section 6, but
that is adapted to enable finite model computation. More precisely, our transformation is sound and
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complete (cf. Proposition 7.2 below) and E-hyper tableau (or related calculi, like hyper-resolution
with equality and splitting) can then be used to decide whether there is a model of a given size for a
given clause set. This is our main result in this section.

In [7] somewhat related techniques are discussed. However, the method there is known to be
incomplete for finite model computation. That is, it may fail to compute a finite model for a given
clause set although there is one.

In [23], a streamlined version of the superposition calculus for finite model computation is
described. Indeed, the ideas in both approaches are quite similar. Our approach can be seen as a
simplified implementation of their approach. It is simpler in the sense that it is based on preprocessing
and exploiting the properties of the calculus and standard redundancy criteria. Unlike [23], it does
not require modifications to the prover itself. For fairness it has to be added, though, that some
redundancy criteria that have been specifically designed in [23] will possibly be missed by our
transformation.

7.1 Transformation

We define a transformation FDd on clause sets. It is parametrized by a positive integer d, the current
domain size. The transformation can be defined by a procedure carrying out the following steps.

(0) Initialization. Initially, let FDd(C) :=C.
(1) Finite domain elements. Add to FDd(C) the clauses

dom(1)←
... (1)

dom(d)←
← i& j for all i,j=1,...,d with i< j (2)

where 1,...,d are fresh constants.
(2) Finite domain constraints. For each n-ary function symbol f ∈C, where n≥0, add to FDd(C)

the clause
f (x1,...,xn)&1,...,f (x1,...,xn)&d← . (3)

(3) Range restriction. For each clause A←B in FDd(C), let {x1,...,xk} be the set of variables
occurring in A but not in B. Replace A←B by the clause

A←B,dom(x1),...,dom(xk) . (4)

Example 7.1
Consider the following clause set C:

P(a)← (C1)

P(f (x))←P(x) (C2)

Of course it has finite models, even of size 1, but E-Hyper tableaux, like any ‘bottom-up’ model
generation method will fail to find any of them.
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For the sake of illustration of our transformation let d =3. Then, FD3(C) consists of the clauses:

dom(1)← dom(2)← dom(3)← (1)

←1&2 ←1&3 ←2&3 (2)

a&1,a&2,a&3← (3-a)

f (x)&1,f (x)&2,f (x)&3←dom(x) (3-f )

P(a)← (4-C1)

P(f (x))←P(x) (4-C2)

With appropriate simplification rules (see below), E-Hyper tableau derives a (finite) exhausted branch
consisting of the unit clauses

dom(1)← a&1←
dom(2)← f (1)&1←
dom(3)← f (2)&1←

p(1)← f (3)&1←

Notice that our transformation does not start from a clause

x&1∨ ···∨x&n

as mentioned above. Instead of our clause (3), such a clause could be used in conjunction with the
clauses

dom(f (x1,...,xn))←dom(x1),...,dom(xn) ,

for each n-ary function symbol f ∈C.16 But observe that E-Hyper tableau can then derive dom-literals
with nested terms, such as dom(f (f (1))). These can always be simplified into non-nested ones [in
the example, any branch containing dom(f (f (1))] must also contain f (1)= j, for some 1≤ j≤d).
However, it is preferable not to derive them in the first place. Indeed, the transformation as defined
makes it impossible to derive dom-literals with nested terms.

7.2 Correctness

The transformation FDd is sound and complete w.r.t. finite model of size d in the following sense:

Proposition 7.2 (Correctness of FDd)
Let C be a clause set and d a non-negative integer. Then C has a finite model with d domain elements
if and only if FDd(C) is E-satisfiable.

16Such a translation then would be quite similar to the ‘classical’ transformation into range-restricted form [13, 26].
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Notice that Proposition 7.2 alone is not sufficient for practical purposes. We still need to know that
E-Hyper tableau provides a procedure to decide satisfiability of FDd(C), for any clause set C and
non-negative integer d. To this end, one can define a concrete fair strategy for derivations and prove
that any derivation from FDd(C) is finite. To obtain this result, a certain simplification technique has
to be used. We refrain from laying out the details here, in particular as only standard techniques are
needed, and instead we provide only a brief account.

Any fair derivation strategy will do, and the only redundancy elimination technique needed is
‘eager rewriting by positive branch equations’. This will suffice to make infinite extension of branches
impossible.

More precisely, observe that according to the scheme (4) in the definition of FDd all clauses are
range restricted. In particular, thus, initially all positive unit clauses are ground. Moreover, any new
positive unit clause in any branch must be ground, too. This follows inductively together with the
design of the inference rule: in essence, any Equality application then can only remove occurrences of
variables in clauses, but never add new ones. In consequence then and together with range restriction,
if all negative literals from a clause have been removed by enough Equality applications, any resulting
positive clause must be ground. Either it is a positive (ground) unit clause already or Split turns it
into some positive (ground) unit clauses, which are the only ways to obtain new positive clauses.

From the just obtained fact that all positive unit clauses in branches are ground it follows that there
is no infinite sequence of applications of Equality inference rules to clause bodies. This follows
because, as said, any Equality application (ref or sup-left) removes at least one occurrence of
a variable, or otherwise it replaces a ground term by a smaller ground term. Thus, the only way
an infinite branch could be constructed is by infinitely many Equality (unit-sup-right) or Split
applications.

However, in both cases the selected clauses can be supposed to be maximally simplified by rewriting
with the positive equations in the branch. By construction of FDd , for every n-ary function symbol f
in C and any n integers i1,...,in with 1≤ i1,...,in≤d, there is a k with 1≤k≤d such that f (i1,...,in)&
k← is contained in the branch (cf. also the proof of Proposition 7.2 above). Together, this suffices to
rewrite any functional term into one of the constants 1,...,d. If such rewriting is applied exhaustively
prior to adding new positive unit clauses, it is clear that only finitely many different such clauses exist.
No branch need thus be extended infinitely. In conclusion, E-Hyper tableaux (proof procedures) can
be used as a decision procedure for finite satisfiability.

8 Implementation
We have implemented the E-hyper tableau calculus by extending our existing KRHyper system.
KRHyper is a hyper tableaux theorem prover, and as such it lacked equality handling in the original
version. The modified system, called E-KRHyper, adapts the methods of its precursor to accommodate
the new inferences, while at the same time retaining the original functionality.

The derivation proceeds in a bottom-up manner. Internally, clauses are divided into three sets,
one containing the positive non-equational units (facts), the other consisting of the positive non-unit
clauses (disjunctions) and the third including both the unit equations and the clauses with negative
literals (rules). The hyper extension inference of KRHyper is equivalent to a series of Sup-left,
Ref and Split applications, and therefore it is kept in place in E-KRHyper as a shortcut inference
for the resolution of non-equational atoms. The E-hyper tableau is generated depth first, with the
current state of the three clause sets always representing a single branch. The Split on a disjunction
is only executed when the other inference possibilities have been exhausted. An iterative deepening
strategy with a limit on the maximum term weight of generated clauses is employed: the tableau is
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Table 1. Results for E-KRHyper on CNF problems from the TPTP

Status Horn Range restricted No. of problems Solved

Satisfiable Yes Yes 26 20 (77%)
Satisfiable Yes No 239 55 (23%)
Satisfiable No Yes 89 66 (74%)
Satisfiable No No 470 140 (30%)
Unsatisfiable Yes Yes 122 122 (100%)
Unsatisfiable Yes No 2016 924 (46%)
Unsatisfiable No Yes 335 232 (69%)
Unsatisfiable No No 2027 666 (33%)
Open/unknown Both Both 953 0 (0%)
Overall Both Both 6250 2225 (36%)

only extended by such inference results which fall within the limit, and exceeding results are stored
separately. If the tableau is exhausted and non-redundant exceeding results have been found, then the
limit is raised and E-KRHyper backtracks to the point of the first weight transgression. This strategy
ensures the refutational completeness and a fair search control, as it prevents splitting from being
delayed indefinitely by other inferences.

Clauses are derived by a loop iterating over the rules, with each rule in turn accessing indexes in
the search for inference partners. The inferred clauses are added to their respective sets after having
passed the weight and subsumption tests. The dynamic nature of the rule set represents a major
change compared to the previous system version. As the hyper tableaux calculus has no inferences
that generate new rule clauses, this set remained fixed throughout the derivation of KRHyper, and
many optimizations on the input could be delegated to preprocessing. Operations like the clause
subsumption test are necessary for the new calculus, and they are now employed to optimize the
input clauses as well.

The superposition inferences utilize a discrimination-tree based index [27] over the subterms of
clauses, and terms are ordered according to the recursive path ordering (RPO). As an option, the
backtracking mechanism allows the removal of redundant clauses from the entire current branch,
beyond the limits set in Section 4.2.

E-KRHyper supports input clauses in a Prolog-like syntax. The system also accepts input in
the common TPTP-syntax, both in clause normal form (CNF) and as first-order formulas (FOF).
As an option, E-KRHyper can apply the finite model transformation (Section 7). E-KRHyper is
intended for embedding in knowledge-representation applications and has a number of features
for this purpose, including logic extensions like stratified negation as failure, proof output for
models and refutations as well as for partial results, as well as rapid switching and retraction of
input clause sets for an efficient usage as a reasoning server. More details about the system can
be found in [30]; it is available under the GNU Public License from the E-KRHyper website at
http://www.uni-koblenz.de/˜bpelzer/ekrhyper.

We have tested E-KRHyper on the CNF problems of the current TPTP version 3.3.0 [19], using the
360 s timeout limit of the most recent CASC system competition in 2007. No special transformations
were applied to the problems. Table 1 summarizes the results for various subsets of problems. The
status open/unknown indicates those problems that have not yet been solved by any theorem proving
system. The most difficult problems solved by E-KRHyper are SYN761-1.p, SYN788-1.p,
SYN789-1.p and SYN792-1.p with a TPTP-rating of 0.83. The average time for a successful
proof is 10.4 s, and 77% of the proofs were found in <1 s.
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The use of purifying substitutions may be necessary for those problems which occur in the subsets
containing both non-Horn clauses and clauses which are not range restricted. Recognizing which
problems need purification is non-trivial. This can be demonstrated with an example using the clause
C =p(x)∨q(y)←r(x,y), which is range-restricted and has no shared variables among its positive
literals. Nevertheless, if at any point during a derivation a branch contains a unit r(t,t) with t being a
non-ground term, then an inference resulting in the positive disjunction p(t)∨q(t)← is possible. This
disjunction will require purification upon splitting. If on the other hand no such non-ground unit is
ever derived, then the presence of C in a set of clauses will never make purification necessary. As the
need for purification cannot be determined beforehand in an efficient manner, the domain required
for purification must be enumerated for all problems where purification might become necessary.

Further optimization of E-KRHyper is necessary, in particular regarding purely equational
problems. Experiments with preprocessing steps like the finite model transformation may also yield
improvements. We consider this version of E-KRHyper a first step towards an efficiently applicable
tableau prover with equality.

9 Conclusion
We have presented a tableau calculus with equality, by integrating superposition based inference
rules into the hyper tableau calculus rules. Our main result is its soundness and completeness, the
latter in combination with redundancy criteria. These are exploited to obtain a sound and complete
procedure for finite model generation. To our knowledge, this is the first MACE-style approach to
finite model computation that supports equality reasoning natively instead of translating it away. The
calculus is implemented in the E-KRHyper system, an extension of our existing KRHyper prover.
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Appendix A: Proofs
The general technique to prove the E-hyper tableau calculus complete is taken from the completeness
proof of the superposition calculus [1, 29], but adapted to our needs. One of the key concepts concerns
the construction of a model of a clause set under certain conditions. That model constructed is
presented as a (convergent) rewrite system. We will describe these concepts next.

A.1 Orderings and rewrite rules

Our approach makes heavy use of term rewrite systems and term orderings. We only mention here
some details specific to our framework and refer to the literature [1, 29] for standard definitions
otherwise.

We assume a reduction ordering* that is total on ground "-terms. The non-strict ordering induced
by * is denoted by +, and ≺ and - denote the converse of * and +, respectively.

A (rewrite) rule is an expression of the form l→r where l and r are "-terms. A rewrite system
is a (possibly infinite) set of rewrite rules. A ground rewrite system R is ordered by * iff l*r, for
every rule l→r∈R, and R is lhs-irreducible if it contains no two different rules of the forms l→r
and s[l]→ t. In other words, no left hand side of a rule can be rewritten by another rule.
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Notice that any ground rewrite system ordered by * and without lhs-overlaps is a convergent
ground rewrite system.17 It is well-known that for any convergent rewrite system R, and any two
terms s and t, R |=E s& t if and only if they have the same normal, i.e. there is a term u such that
s→+

R u and t→+
R u and u cannot be rewritten further. This result thus applies in particular to ground

lhs-irreducible convergent rewrite systems.
In the sequel, the letter R will always denote a ground lhs-irreducible rewrite system.
By a slight abuse of notation, we will write R |=F for a ground rewrite system R and clause (set)

F iff the interpretation {l&r | l→r∈R} satisfies F (similarly for R |=E F).

A.2 Model construction

This section presents the proof of Theorem 3.2 (Static Completeness). Let C be a (possibly infinite)
set of clauses. (In the completeness proof C will be obtained as a certain limit branch of a tableau.)
We show how C induces a ground lhs-irreducible rewrite system RC .

First, for a positive ground "-clause C we define by induction on the term ordering * sets of
rewrite rules εC and RC as follows (we leave the parameter C implicit). Assume that εD has already
been defined for all ground "-clauses D with C*D. With RC =⋃

C*DεD, we define

εC =






{l→r} if C = l&r← is a ground instance of some positive
unit clause in C, l*r, and l is irreducible w.r.t. RC

∅ otherwise

Then RC =⋃
C εC , where C ranges over all ground "-clauses.

By construction, RC has no critical pairs, and is thus an lhs-irreducible rewrite system. Since * is
a well-founded ordering, RC is a convergent rewrite system by construction. The given clause set C
comes into play only in the first condition of the definition of εC . An important detail is that according
to our convention the equations s& t and t&s are treated as the same. Thus, if s≺ t then s& t← may
still be turned into the rewrite rule t→s in RC by means of its symmetric version t&s← .

Observe that even if C is a set of positive unit clauses, then RC , even if convergent, may be
incomplete w.r.t. the equational theory presented by it. For instance, with C ={(a&b← ),(a&c← )}
and the ordering a*b*c the induced rewrite system RC ={a→c} is clearly incomplete w.r.t. the
equational theory {a&b,a&c}. In general then it might be necessary to add enough positive unit
clauses to C to make RC complete, which the E-hyper tableau calculus does. Positive non-unit clauses
are handled differently, by splitting.

The following lemma states that satisfaction of a clause C in RC is preserved as RC is being
extended.

Lemma A.1
Let C be a clause set, C a ground clause, and R and R′ rewrite systems such that RC⊆R⊆R′ ⊆RC .
If R |=E C then R′ |=E C.

Proof. Writing C as the clause A←B, we suppose R |=E A←B and show R′ |=E A←B.
If R |=E B (reading B as a conjunction of atoms) then with R |=E A←B it follows R |=E A, for

some head atom A of A←B. From monotonicity of first-order logic with equality, and with R′ ⊇R
it follows R′ |=E A and, trivially, R′ |=E A←B. Hence assume R $|=E B from now on.

17A convergent rewrite system is one that is confluent and terminating.
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By way of contradiction assume R′ |=E B but R′ $|=E A, for any head atom A (of A←B). As R′ |=E B
holds while R |=E B does not hold, there is at least one body equation s& t in B such that R′ |=E s& t
but R $|=E s& t. Because RC is convergent (this follows easily from its construction) and hence also
its subsets R and R′ are convergent, conclude that s& t is joinable by R′ but not by R.

Every rule l→r∈RC is obtained from a ground instance l&r← of a positive unit clause from
the clause set C. From l→r∈ (R′\R) and R⊇RC it follows l→r /∈RC . By definition of RC then
(l&r← )+C. [In fact even (l&r← )*C because these two clauses are different.] This entails
that the head atom l&r (of the unit clause l&r← ) is greater or equal than the body atom s& t,
i.e. {l,r}+{s,s,t,t}. It follows that l is greater than even the maximum of s and t. But then it is
impossible (essentially, by the subterm property of reduction orderings) that the rule l→r can be
used to rewrite the term s or the term t. Because this holds for every rule in (R′\R), the R′- and R-
normalforms of s and t are the same. This leads to a contradiction to the assumption that R′ |=E s& t
holds but R |=E s& t does not hold. Hence, the assumption that R′ |=E B holds but RC |=E A does
not hold must be given up. This entails R′ $|=E B or R′ |=E A, for some head atom A. Equivalently,
R′ |=E A←B. !

Occasionally the following lemma comes in handy.

Lemma A.2
Let C be a clause set and C and D ground clauses. If C*D then RD∪ εD⊆RC .

Proof. By definition RC =⋃
C*E εE and RD =⋃

D*E εE . With C*D it follows εD⊆RC and RD⊆
RC . Together, thus, RD∪ εD⊆RC . !
Proposition A.3 (Model construction)
Let C be a clause set that is saturated up to redundancy and such that ! /∈C. Then, for every ground
instance C of every clause from C the following holds:

(1) If CC |=E C then εC =∅ and RC |=E C.
(2) If CC $|=E C then RC ∪ εC |=E C.

That is, either C is redundant w.r.t. C and RC already satisfies C, or else, when C is not redundant
w.r.t. C, extension of RC by εC will satisfy C. However, the case εC =∅ is possible. For example,
when C =←a&b and CC =∅.

But, in either case the proposition gives RC ∪ εC |=E C.

Proof. The claim is proved by well-founded induction on the ground instances of the clauses from
C. Hence choose arbitrarily any ground instance C of a clause from C and assume that the proposition
holds for all ground instances D of all clauses from C such that C*D.

1. CC |=E C.
Regarding item 1, assume CC |=E C, i.e. C is redundant w.r.t. C. By induction, combining cases 1
and 2, we get RD∪ εD |=E D, for every clause D∈CC . With Lemma A.2 conclude RD∪ εD⊆RC ,
and with Lemma A.1 it follows RC |=E D, for every clause D∈CC . Equivalently, RC |=E CC . With
CC |=E C conclude RC |=E C, as desired. This completes the proof of the second part of item 1.

To show εC =∅ assume, by contradiction, εC ={l→r}, where C = l&r← . Recall we have
just shown RC |=C. As for any convergent rewrite system, two (ground) terms are equal in the
E-interpretation induced by RC iff their normal forms w.r.t. RC are the same. Applied to the situation
here, this means that l and r have the same RC-normal form. In particular, thus, some rule from RC
must be applicable to the larger term (w.r.t. *) of l and r, which is l. But then, by definition we have
εC =∅, which is a plain contradiction. This completes the proof of the first item.
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2. CC $|=E C.
Turning to item 2, suppose from now on CC $|=E C, i.e. C is not redundant w.r.t. C. It follows that no
clause D∈C that C is a ground instance of can be redundant w.r.t. C either. We use this fact below to
enable using items 1–3 of Definition 3.1.

We distinguish various cases on the form of C, most of them leading to a contradiction, though,
thus ruling out that these forms are possible (in fact, when C is of any of these forms it will be
redundant w.r.t. C). For the (two) non-contradictory subcases we will show RC ∪ εC |=E C.

2-1. C = (D[x])γ and xγ is reducible w.r.t. RC .
Suppose C =Dγ , for some clause D∈C and some (grounding) substitution γ , such that D contains a
variable x, i.e. D=D[x], and xγ is reducible w.r.t. RC . That is, xγ =xγ [l] for some rule l→r∈RC .

Let γ ′ be the substitution that is the same as γ , except for x, where we set xγ ′=xγ [r]. That is,
γ ′ is like γ but with the rewrite rule l→r applied to xγ . From l*r it follows Dγ ′ ≺Dγ . By the
induction hypothesis RDγ ′ ∪ εDγ ′ |=E Dγ ′. From Dγ ′ ≺Dγ conclude RDγ ′ ∪ εDγ ′ ⊆RDγ . Together
with Lemma A.1 it follows RDγ |=E Dγ ′. Because of l→r∈RC , Dγ =C and by definition of γ ′
conclude with congruence RC |=E C, a plain contradiction to CC $|=E C as assumed above.

2-2. C = (A←s& t,B)γ and sγ = tγ .
If C = (A←s& t,B)γ , for some clause (A←s& t,B)∈C and grounding substitution γ , and sγ = tγ
then there is an inference (A←s& t,B)⇒ref(σ ) (A←B)σ , where σ is a mgu of s and t (and there is
a substitution δ such that γ =σδ).

Neither the clause A←s& t,B nor the clause (A←s& t,B)σ is redundant w.r.t. C. This follows
trivially from the assumption of case 2, that their instance C is not redundant w.r.t. C. By saturation
(Definition 3.1-3), the inference (A←s& t,B)⇒ref(σ ) (A←B)σ is redundant w.r.t. C. In particular,
thus, its ground instance C⇒ref(ε) (A←B)γ is redundant w.r.t. C. By definition of redundancy,
CC |=E (A←B)γ . It follows trivially that CC |=E C, a plain contradiction to CC $|=E C as assumed
above.

2-3. C = (A←s& t,B)γ , sγ * tγ and sγ is irreducible w.r.t. RC .
Assume C = (A←s& t,B)γ for some clause (A←s& t,B)∈C and grounding substitution γ . We may
assume sγ $= tγ because otherwise case 2-2 applies. Without loss of generality let sγ be the larger
side of the equation (s& t)γ , i.e. sγ * tγ . Assume further sγ is irreducible w.r.t. RC . This entails that
sγ and tγ are not joinable w.r.t. RC . Thus, RC $|=E sγ & tγ , which trivially entails RC |=E C. Finally,
as C is not a positive unit clause we trivially have εC =∅, which concludes this case.

2-4. C = (s& t← )γ , sγ * tγ and sγ is irreducible w.r.t. RC .
Assume C = (s& t← )γ for some positive unit clause (s& t← )∈C and grounding substitution γ .
We may assume sγ $= tγ because otherwise the claim follows trivially. Without loss of generality
let sγ be the larger side of the equation (s& t)γ , i.e. sγ * tγ . Further assume that sγ is irreducible
w.r.t. RC . Thus, εC ={sγ → tγ }, which trivially entails RC ∪ εC |=E C.

2-5. C = (A1,...,Am← )γ , for some m≥2.
Assume C =Dγ for some positive non-unit clause D= (A1,...,Am← )∈C, where m≥2, and with
grounding substitution γ . It is not difficult to see that γ can be obtained by composition of some
purifying substitution π for D and some other substitution δ, i.e. γ =πδ. Such a substitution π always
exists, it could be γ itself.

Neither D nor Dπ is redundant w.r.t. C. This follows trivially from the assumption of case 2,
that their instance C =Dγ =Dπδ is not redundant w.r.t. C. By saturation (Definition 3.1-1) the
inference D⇒split(π ) A1π← ,...,Amπ← is redundant w.r.t. C. In particular, thus, its ground instance
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C⇒split(ε) A1γ ← ,...,Amγ ← is redundant w.r.t. C. By definition of redundancy, CC |=E Aiγ ← , for
some i with 1≤ i≤m. It follows trivially CC |=E C, a plain contradiction to CC $|=E C as assumed above.

2-6. C = (D[s])γ and sγ is reducible at a non-variable position.
To make the case analysis exhaustive assume that C does not fall into one of the cases 2-1 – 2-5.
We further analyse the form C can take. Assume C =Dγ for some clause D∈C and grounding
substitution γ .

In the first case D has a non-empty body. Because the cases 2-2 and 2-3 are excluded, D can be
written as A←s& t,B, where sγ * tγ and sγ is reducible w.r.t. RC .

In the second case D has an empty body. Because the cases 2-4 and 2-5 are excluded, and we are
given that C does not contain the empty clause, D must be a positive unit clause and can be written
as s& t← , where sγ * tγ and sγ is reducible w.r.t. RC .

Doing both cases together, consider any rule l→r∈RC that rewrites sγ . Because case 2-1 is
excluded, l→r does not rewrite sγ at or below a variable position of s. That is, any position p such
that sγ [l]p holds is a non-variable position of s.

We continue the proof doing both cases together.
By construction the rewrite rule l→r is obtained from a ground instance of some positive unit

equation from C. Let E = l′ &r′← be a fresh variant of that positive unit equation. Because it is
fresh, we may assume γ has been extended so as to give l′γ = l and r′γ =r.

We must have C*Eγ because otherwise l′γ →r′γ ∈RC (i.e. l→r∈RC) would be impossible.
Therefore we can apply induction to Eγ . If case 1 applies, i.e. CEγ |=E Eγ then εEγ =∅ and so
l′γ →r′γ (= l→r) could not be a rewrite rule in RC and thus neither in RC . Case 1 is thus impossible.
Therefore we must have CEγ $|=E Eγ . In other words, Eγ is not redundant w.r.t. C.

As said above, D can take two different forms. If D is of the form A←s& t,B consider the ground
sup-left inference

(Aγ ←sγ [l′γ ]p& tγ ,Bγ ),Eγ ⇒sup-left(ε) (Aγ ←sγ [r′γ ]p& tγ ,Bγ ) . (1)

Because p is a position of a non-variable term in s, say, l′′, the sup-left inference

(A←s[l′′]p& t,B),E⇒sup-left(σ ) (A←s[r′]p& t,B)σ (2)

exists, where σ is a mgu of l′ and l′′, and γ =σδ for some substitution δ. The ground sup-left
inference (1) then is a ground instance of the sup-left inference (2).
(*) Above we concluded that Eγ is not redundant w.r.t. C. Therefore the more general clause Eσ

cannot be redundant w.r.t. C either. A global assumption in case 2 is that D is not redundant w.r.t. C.
By saturation (Definition 3.1-2) the inference (2) is redundant w.r.t. C. In particular, thus, its ground
instance (1) is redundant w.r.t. C. For economy of notation let F =Aγ ←sγ [r′γ ]p& tγ ,Bγ be the
conclusion of the inference (1).

By definition of redundancy CC ∪ {Eγ } |=E F. By induction, combining cases 1 and 2, we get RG∪
εG |=E G, for every clause G∈CC . With Lemma A.2 conclude RG∪ εG⊆RC , and with Lemma A.1 it
follows RC |=E G, for every clause G∈CC . Equivalently, RC |=E CC .

Because Eγ = (l′ &r′)γ is present as a rewrite rule (l′γ →r′γ )= (l→r)∈RC it trivially follows
that RC |=E Eγ . Together with RC |=E CC and CC ∪ {Eγ } |=E F (by redundancy of the inference, as
mentioned above) conclude RC |=E F. From l→r∈RC conclude by congruence RC |=E C, which is
a plain contradiction to CC $|=E C as assumed to hold for case 2. This case is thus impossible.

Similarly, if D is of the form s& t← consider the ground unit-sup-right inference

(sγ [l′γ ]p& tγ ← ),Eγ ⇒unit-sup-right(ε) (sγ [r′γ ]p& tγ ← ) . (3)
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Because p is a position of a non-variable term in s, say, l′′, the unit-sup-right inference

(s[l′′]p& t← ),E⇒unit-sup-right(σ ) (s[r′]p& t← )σ (4)

exists, where σ is a mgu of l′ and l′′, and γ =σδ for some substitution δ. The ground unit-sup-right
inference (3) then is a ground instance of the unit-sup-right inference (4).

The rest of the proof of this case is the same as from (*) above and is omitted (obviously, F =
(sγ [r′γ ]p& tγ ← ) this time).

In conclusion, the case 2-6 is impossible, too. !
Theorem 3.2 (Static Completeness)
Let C be a clause set saturated up to redundancy. If ! /∈C then C is E-satisfiable.

Proof. Suppose ! /∈C. To show that C is E-satisfiable it suffices we show that RC is an E-model
of C. For this, it suffices to show RC |=E Cγ for an arbitrarily chosen clause C∈C and an arbitrarily
chosen grounding substitution γ for C. To prove RC |=E Cγ , we first use PropositionA.3 and conclude
RCγ ∪ εCγ |=E Cγ . From that, RC |=E Cγ follows immediately by Lemma A.1. !

A.3 Soundness

Lemma A.5
For each of the derivation rules Split, Equality, Del and Simp, if the premise of the rule is
E-satisfiable, then one of its conclusions is E-satisfiable as well.

Proof. Let us first focus on the inference rules sup-left and unit-sup-right. Assume the premises
of such a rule are E-satisfiable and let I be a E-model; from the axioms of congruence we can
immediately conclude for both rules, that I is an E-model for the conclusion as well. For ref the
claim follows directly from reflexivity.

For Equality the claim is an immediate consequence from the above. For Split assume that
there is an E-model I for the premise B. Let A1,··· ,Am← be the selected clause from B. Then
I is an E-model for (A1,··· ,Am←)π where π is the purifying subsitution for A1,...,Am. A1π ,
…,Amπ have no variables in common and all variables are implicitly universally quantified; hence
∀(A1π∨ ...∨Amπ ) is equivalent to ∀A1π∨ ...∨∀Amπ and we conclude that I is an E-model for
∀A1π∨ ...∨∀Amπ .

Hence there is an E-model for one of B·A1π←d ,...,B·Amπ←d .
For Del the claim obviously holds, and for Simp assume an E-model I for the premise.
Let C,D,B and B1 as in the definition of Simp; from condition (1) there, (B·C ·B1) |=E D, we

conclude that D also holds in I . Here we make also use of condition (3) in the definition of Simp,
the rationale behind which was explained in Section 4.2. !
Theorem A.6 (Soundness of E-Hyper Tableaux)
Let C be a clause set that has a refutation. Then C is E-unsatisfiable.

Proof. Let T be the resulting closed tree of the refutation. From the contrapositive of Lemma A.5
we conclude that if a tree Ti of a derivation contains only E-unsatisfiable branches, this holds for its
predecessor Ti−1 as well. The final tableau T of the refutation clearly consists only of E-unsatisfiable
branches and hence by induction of the length of the refutation (which is by definition a finite
derivation), we can conclude that the initial tableau T0, which consists of one branch with the
tableau clauses from C, is E-unsatisfiable. !
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A.4 Completeness

Lemma A.7
Let C1 and C2 be ground clauses and C a set of ground clauses. If (Bj)C1 ∪C |=E C2 for some j<κ

then (B∞)C1 ∪C |=E C2.

Proof. The proof is by well-founded induction. Suppose the result to hold for all ground clauses C′1
such that C′1≺C1.

Suppose (Bj)C1 ∪C |=E C2 holds for some j<κ . Let D′ be a finite subset of (Bj)C1 such that
D′ ∪C |=E C2. Such a set D′ exists by compactness of first-order logic with equality.

The first step is to deal with Del applications applied to Bj,Bj+1, ... that remove a clause by non-
proper subsumption that can be instantiated to a clause in D′. To trace such applications, let initially
D=Bj. Then, for all j,j+1, ..., if Del is applied to Bj to remove a clause by non-proper subsumption
that is also in D then replace in D the removed clause by the non-proper subsuming clause of that
step. It is easy to see that this process maintains the invariant D′ ⊆DC1 . With D′ ∪C |=E C2 this
entails DC1 ∪C |=E C2.

It is a simple inductive consequence of the definition of the Split and Equality derivation rules that
no clause set derived can contain a clause and a variant of it. Hence, in the considered Del application
the non-proper subsuming clause and the subsumed clause cannot be variants. Because the ordering
based on the converse relation, proper generalization, is well-founded, there is a time l such that no
clause that is also in D is removed by non-proper subsumption deletion from Bl,Bl+1, ... . (It is
possible that clauses from D do not occur in these branches at all, because they have been removed
by some prior Del or Simp application.) Together with the definition of D this implies that D is a
set of clauses so that no non-proper subsumption Del step is ever applied to any of them.

If DC1⊆ (B∞)C1 then the claim follows from the monotonicity of first-order logic with equality
and DC1 ∪C |=E C2, as concluded above.

Otherwise let B′ :=D′\(B∞)C1 be those clauses from D′ that are not an instance of any persisting
clause in B∞. Choose any clause C′ ∈B′ arbitrarily. By construction, it is a ground instance of some
clause C∈D such that C /∈B∞. This means that C has been removed from the clause set Bk labeling
the node Nk of the branch B, for some k <κ . In other words, the Del or Simp derivation rule has
been applied to Bk with selected clause C. However, as argued above, by the definition of D this
cannot have been a non-proper subsumption deletion Del application.

Hence, by definition of the Del and Simp derivation rules, the clause C, and hence its instance
C′ is redundant w.r.t. a specific subset B′ ⊆Bk+1.18 That subset B′ is specified in the definition of
the Del and Simp derivation rules. For our purpose the only important fact is that with B′ ⊆Bk+1
it (trivially) follows that C′ is redundant w.r.t. Bk+1 as well.

That C′ is redundant w.r.t. Bk+1 means by definition of redundancy (Bk+1)C′ |=E C′. This implies by
monotonicity of first-order logic with equality (Bk+1)C′ ∪C |=E C′.With C′ ∈B′ ⊆D′ ⊆DC1 it follows
C′ ≺C1. By the induction hypothesis then

(B∞)C′ ∪C |=E C′ . (5)

18This argument uses the fact that Del and Simp can be applied to clauses within the same ‘decision level’ only, as
explained in Section 4.2. Formally, the conditions (2) and (3) in Del and Simp, respectively, ensure that these rules do
not touch a clause in a different branch in the derivation tree, a branch that would not provide the required justification by
redundancy or non-proper subsumption, as stated in the other applicability conditions of Del and and Simp.
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From C′ ≺C1 it easily follows that (B∞)C′ ⊆ (B∞)C1 . Together with (5) and by monotonicity of
first-order logic with equality it follows

(B∞)C1 ∪C |=E C′ . (6)

Recall from above D′ ∪C |=E C2. Because C′ ∈D′ we can replace in this entailment C′ in D′ by the
stronger set (B∞)C1 ∪C. More formally, D′ ∪C |=E C2 and (6) entail

((B∞)C1 ∪C)∪ (D′\{C′})∪C |=E C2 . (7)

Repeating this procedure for each of the (finitely many) members of B′ allows to conclude

((B∞)C1 ∪C)∪ (D′\B′)∪C |=E C2 . (8)

Recall that B′=D′\(B∞)C1 , which implies by elementary set theory D′\B′ ⊆ (B∞)C1 . But then,
(B∞)C1 ∪C |=E C2 follows from (8) immediately. !
Lemma A.8
If C is redundant w.r.t. Bj, for some j<κ then C is redundant w.r.t. B∞.

Proof. Suppose C is redundant w.r.t. Bj, for some j<κ . Let D be an arbitrarily chosen ground
instance of C. By definition, D is redundant w.r.t. Bj, which means (Bj)D |=E D. With Lemma A.7
it follows (B∞)D |=E D. In other words D is redundant w.r.t. B∞. Because D was chosen as an
arbitrary ground instance of C, C is redundant w.r.t. B∞. !
Lemma A.9
If R |=E C and C is redundant w.r.t. C then R |=E C.

Proof. Suppose R |=E C and C is redundant w.r.t. C. Let D be an arbitrarily chosen ground instance
of C. It suffices to show R |=E D. Since C is redundant w.r.t. C, by definition, its ground instance D is
redundant w.r.t. C. Equivalently, CD |=R D, which entails R |=E D provided R |=E CD holds. The latter
however follows immediately from R |=E C and the trivial fact that CD is a subset of the set of all
ground instances of all clauses from C. !
Lemma A.10
Let C be a clause and D a positive unit clause. Then, any inference C,D⇒R(σ ) E, where R∈
{sup-left,unit-sup-right}, or C⇒ref(σ ) E that is redundant w.r.t. Bj, for some j<κ , is redundant
w.r.t. B∞.

Proof. Suppose an inference C,D⇒R(σ ) E, where R∈{sup-left,unit-sup-right}, redundant w.r.t.
Bj, for some j<κ . Let γ be an arbitrary ground substitution for C and D such that γ =σδ for some
substitution δ and such that Cγ ⇒R(ε) Eδ is a ground instance of C,D⇒R(σ ) E. Because chosen
arbitrarily, it suffices to show that this ground instance Cγ ⇒R(ε) Eδ is redundant w.r.t. B∞.

Because the inference C,D⇒R(σ ) E is redundant w.r.t. Bj, its instance Cγ ⇒R(ε) Eδ is redundant
w.r.t. Bj. By definition of redundancy this means

(Bj)Cγ ∪ {Dγ } |=E Eδ . (9)

By Lemma A.7 then
(B∞)Cγ ∪ {Dγ } |=E Eδ , (10)

which, by definition, means that the inference Cγ ⇒R(ε) Eδ is redundant w.r.t. B∞, which was to be
shown.
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The proof of the case of an inference C⇒ref(σ ) E is similar and is omitted. !
Lemma A.11
Let C be a positive clause and π a purifying substitution for C. If the inference C⇒split(π ) A1←
,...,Am← is redundant w.r.t. Bj, for some j<κ , then it is redundant w.r.t. B∞.

Proof. Suppose an inference C⇒split(π ) A1← ,...,Am← that is redundant w.r.t. Bj, for some j<κ .
Let γ be an arbitrary ground substitution for C such that γ =πδ for some substitution δ and such
that Cγ ⇒split(ε) A1δ← ,...,Amδ← is a ground instance of C⇒split(π ) A1← ,...,Am← . Because
chosen arbitrarily, it suffices to show that the ground inference Cγ ⇒split(ε) A1δ← ,...,Amδ← is
redundant w.r.t. B∞.

Because the inference C⇒split(π ) A1← ,...,Am← is redundant w.r.t. Bj, its instance Cγ ⇒split(ε)
A1δ← ,...,Amδ← is redundant w.r.t. Bj. By definition of redundancy this means that Aiδ← is
redundant w.r.t. Bj, for some i with 1≤ i≤m. By Lemma A.8 then Aiδ← is redundant w.r.t. B∞.
It follows immediately that the ground inference Cγ ⇒split(ε) A1δ← ,...,Amδ← is redundant w.r.t.
B∞, which remained to be shown. !
Proposition A.12 (Exhausted branches are saturated up to redundancy)
If B is an exhausted branch of a limit tree of some fair derivation then B∞ is saturated up to
redundancy.

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. According to
Definition 3.1 it suffices to choose arbitrarily a clause C∈B∞ that is not redundant w.r.t. B∞ and to
prove the properties 1-3 claimed there for C.

Before doing that, notice that if there is a j<κ such that C is redundant w.r.t. Bj, then by LemmaA.8
the clause C is redundant w.r.t. B∞ and nothing remains to be shown for C. Hence suppose from
now on that C is not redundant w.r.t. Bj, for all j<κ .

1. C⇒split(π ) A1← ,...,Am←
Suppose there is an inference C⇒split(π ) A1← ,...,Am← . It suffices to show that this inference is
redundant w.r.t. B∞, or that Cπ is redundant w.r.t. B∞.

If there is a j<κ such that Cπ is redundant w.r.t. Bj, then by Lemma A.8 Cπ is redundant
w.r.t. B∞, and nothing remains to be shown. Hence suppose that Cπ is not redundant w.r.t. Bj,
for all j<κ .

It suffices to show that an arbitrarily chosen ground instance of the inference C⇒split(π ) A1←
,...,Am← is redundant w.r.t. B∞. Hence let γ be an arbitrary ground substitution for C such that
γ =πδ for some substitution δ, and such that Cγ ⇒split(ε) A1δ← ,...,Amδ← is a ground instance
of the inference C⇒split(π ) A1← ,...,Am← . We will show that this ground inference is redundant
w.r.t. B∞.

From C∈B∞ it follows there is an i<κ such that for all j≥ i with j<κ it holds C∈Bj. Because
of C⇒split(π ) A1← ,...,Am← Split is applicable (in particular) to Bi with underlying inference
C⇒split(π ) A1← ,...,Am← unless Aj← , for some j with i≤ j≤m is contained as a variant in Bi.
In this case, by virtue of the ground instance Ajδ← of Aj← it follows that the ground instance
Cγ ⇒split(ε) A1δ← ,...,Amδ← is redundant w.r.t. Bi and nothing remains to be shown.

Recall we are considering the case that Cπ is not redundant w.r.t. Bj, for every j<κ .
But then, by Definition 4.2-1 there is a k < κ such that the inference C⇒split(π ) A1←,...,Am←

is redundant w.r.t. Bk . By Lemma A.11 then, this inference is redundant w.r.t. B∞. Therefore,
in particular its (ground) instance Cγ ⇒split(ε) A1δ← ,...,Amδ← is redundant w.r.t. B∞, which
remained to be shown.
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2. C,D⇒R(σ ) E, where R∈{sup-left,unit-sup-right}
This case is concerned with Equality inferences. More precisely, suppose there is an inference
C,D⇒R(σ ) E, where R∈{sup-left,unit-sup-right} and where D is a fresh variant of a positive unit
clause from B∞ and σ is some substitution.

It suffices to show that this inference is redundant w.r.t. B∞, or that Cσ or Dσ is redundant
w.r.t. B∞.

If there is a j<κ such that Cσ is redundant w.r.t. Bj, then by Lemma A.8 Cσ is redundant w.r.t.
B∞, and nothing remains to be shown. Hence suppose that Cσ is not redundant w.r.t. Bj, for all
j<κ . By exactly the same argumentation, this time applied to Dσ , we may assume that Dσ is not
redundant w.r.t. Bj, for all j<κ .

It suffices to show that an arbitrarily chosen ground instance of the inference C,D⇒R(σ ) E is
redundant w.r.t. B∞. Hence let γ be an arbitrary ground substitution for C and D such that γ =σδ for
some substitution δ, and such that Cγ ,Dγ ⇒R(ε) Eδ is a ground instance of the inference C,D⇒R(σ )
E. Hence we will show that this ground inference Cγ ,Dγ ⇒R(ε) Eδ is redundant w.r.t. B∞.

From C∈B∞ it follows there is an i<κ such that for all j≥ i with j<κ it holds C∈Bj. Likewise,
from D being a variant of a clause in B∞ it follows there is an i′ such that for all j′ ≥ i′ it holds D
is a variant of a clause in Bj′ . Without loss of generality assume i≥ i′. It follows D is a variant of a
clause in Bj, for all j≥ i.

From the just said, and because of C,D⇒R(σ ) E, Equality is applicable (in particular) to Bi with
underlying inference C,D⇒R(σ ) E unless E is contained as a variant in Bi. In this case, the inference
C,D⇒R(σ ) E is redundant w.r.t. Bi and nothing remains to be shown.

Recall that we are currently considering the case of neither Cσ nor Dσ being redundant w.r.t. Bj,
for every j<κ .

But then, by Definition 4.2-2 there is a k <κ such that the inference C,D⇒R(σ ) E is redundant
w.r.t. Bk . By Lemma A.10 then, this inference is also redundant w.r.t. B∞. Therefore, in particular
its (ground) instance Cγ ,Dγ ⇒R(ε) Eδ is redundant w.r.t. B∞, which remained to be shown.

3. C⇒ref(σ ) E
This case is concerned with an Equality inference, more precisely with an application of the ref rule.
The proof is done analogously to case 2 and is omitted. !
Theorem 4.5 (Completeness of E-Hyper Tableaux)
Let C be a clause set and D a fair derivation of C. If D is not a refutation then C is E-satisfiable.

Proof. Suppose that D is not a refutation. Therefore its limit tree T has an exhausted branch. Let B
be any such exhausted branch.

By PropositionA.12 the clause set B∞ is saturated up to redundancy. Moreover, B∞ cannot contain
the empty clause, because if it did, then B would also contain the empty clause, but no exhausted
branch can contain the empty clause.

With Theorem 3.2 it follows B∞ is satisfiable. Moreover, the proof of Theorem 3.2 gives us a
convergent rewrite system RB∞ such that RB∞ |=E B∞.

To prove the theorem it suffices to show RB∞ |=E C. To show that, let C be any clause from C, and
it suffices to show RB∞ |=E C. By definition of derivation, C∈B0, where B0 is the (single) branch of
the initial tableau T0 of the derivation D.

As a first step we trace possible Del applications that remove C by non-proper subsumption. More
formally, let C0 =C, and for all j=0,1,..., if Del is applied to Bj with selected clause Cj then
let Cj+1 be the non-proper subsuming clause of that Del application, and otherwise let Cj+1 =Cj.
Clearly, to show RB∞ |=E C it suffices to show RB∞ |=E Cj, for any j≥0.
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As an easy inductive consequence of the definition of the Split and Equality derivation rules,
no clause set B0,B1, ... ever derived can contain both a clause and a variant of it. Hence, if
Cj is removed by non-proper subsumption, Cj must be a proper instance of Cj+1. Because the
ordering based on the converse relation, proper generalization, is well-founded, there is a time l
such that Cl is a tableau clause in Bl (the case l=0 is possible) that is not removed from any
branch Bl,Bl+1, ... by non-proper subsumption (Cl it could be removed by some other Del or Simp
application, though).

If Cl∈B∞ then with RB∞ |=E B∞ immediately conclude RB∞ |=E Cl, and so RB∞ |=E C. Hence
suppose Cl /∈B∞ from now on.

From Cl∈Bl and Cl /∈B∞ it follows that Cl has been removed at some time k <κ from the clause
set Bk by an application of the Del or the Simp derivation rule. We deal with both cases at once. But
notice we have already excluded the possibility that Cl has been removed in a Del application by
means of non-proper subsumption.

This means, Cl is redundant w.r.t. a specific subset B′ of the derived branch Bk+1, where B′ is
specified in the definition of the Del and Simp derivation rules.19 Because B′ ⊆Bk+1 it trivially
follows that Cl is redundant w.r.t. Bk+1.

By LemmaA.8, Cl is redundant w.r.t. B∞. With RB∞ |=E B∞ and LemmaA.9 it follows RB∞ |=E Cl,
and so RB∞ |=E C, which remained to be shown. !
Proposition 7.2 (Correctness of FDd)
Let C be a clause set and d a non-negative integer. Then C has a finite model with d domain elements
if and only if FDd(C) is E-satisfiable.

Proof. For the soundness direction suppose that FDd(C) is E-satisfiable. We have to show that C
has a finite model with d domain elements. The proof is easiest done by exploiting the soundness
and completeness results of E-Hyper tableaux, Theorems A.6 and 4.5.

Consider any fair derivation D of FDd(C). Because FDd(C) is E-satisfiable, by Theorem A.6 the
derivation D cannot be a refutation. By Theorem 4.5 and the comments following it, D contains
an exhausted branch B. It is clear from inspection of the clause set FDd(C) and how the calculus
works, that the persistent clauses B∞ of B contain the clauses (1) and (2) from the definition of
FDd above (we make the assumption, though, that the domain elements 1,...,d are the smallest
terms in the ordering). Further, as per scheme (3), for every n-ary function symbol f in C and any
n integers i1,...,in with 1≤ i1,...,in≤d, there is a k with 1≤k≤d such that B∞ contains the clause
f (i1,...,in)&k← . These clauses together define a finite interpretation Id for all function symbols
occurring in C on the domain {1,...,d} in the obvious way.

Again with the completeness theorem and the underlying model construction, all ground instances
of all clauses (4) in FDd(C) are satisfied in the E-Herbrand interpretation induced by B∞. In particular,
thus, all those ground instances that can be obtained by instantiating with domain elements 1,...,d
only are satisfied by that interpretation. Because 1,...,d are exactly the domain elements of Id it is
not difficult to see that Id is a (non-Herbrand) E-model of C.

For the completeness direction suppose there is a finite model Id of C with d domain elements.
Let 1,...,d be these elements. It is clear from inspection, that Id satisfies the clauses (1), (2) and (3)
from the definition of FDd . Because Id satisfies C, Id trivially also satisfies the clauses (4). Together,
thus Id satisfies FDd(C). In other words, FDd(C) is E-satisfiable, which was to be shown. !
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19For this fact to hold, the same argument as in the proof of Lemma A.7 on ‘decision levels’ is implicitly used here.


