12 research outputs found

    3DMADMAC|AUTOMATED: synergistic hardware and software solution for automated 3D digitization of cultural heritage objects

    Get PDF
    In this article a fully automated 3D shape measurement system and data processing algorithms are presented. Main purpose of this system is to automatically (without any user intervention) and rapidly (at least ten times faster than manual measurement) digitize whole object’s surface with some limitations to its properties: maximum measurement volume is described as a cylinder with 2,8m height and 0,6m radius, maximum object's weight is 2 tons.  Measurement head is automatically calibrated by the system for chosen working volume (from 120mm x 80mm x 60mm and ends up to 1,2m x 0,8m x 0,6m). Positioning of measurement head in relation to measured object is realized by computer-controlled manipulator. The system is equipped with two independent collision detection modules to prevent damaging measured object with moving sensor’s head. Measurement process is divided into three steps. First step is used for locating any part of object’s surface in assumed measurement volume. Second step is related to calculation of "next best view" position of measurement head on the base of existing 3D scans. Finally small holes in measured 3D surface are detected and measured. All 3D data processing (filtering, ICP based fitting and final views integration) is performed automatically. Final 3D model is created on the base of user specified parameters like accuracy of surface representation and/or density of surface sampling. In the last section of the paper, exemplary measurement result of two objects: biscuit (from the collection of Museum Palace at Wilanów) and Roman votive altar (Lower Moesia, II-III AD) are presented

    Impact of Antennas on the Anchor-less Indoor Localization of a Static IR-UWB Pair

    Get PDF
    International audienceThis paper investigates the impact of realistic antennas on joint anchor-less localization and indoor characterization based on Impulse Radio (IR) Ultra Wideband (UWB) communications. In this frame, the Maximum Averaged Likelihood (MAL) algorithm and its extended version are considered, both relying on a tree approach consisting in two stages. The first part of the process, which is common to both algorithms, exploits the cross-correlation between received and locally predicted paths. The second stage calculates the averaged likelihood of measured path parameters obtained in the previous step, but different measurements are used for MAL and extended MAL (eMAL). In the first algorithm, only the Angle of Incidence (AoI) and the Time of Arrival (ToA) are considered, whereas the eMAL tree algorithm also accounts for two couples of Angles of Departure (AoDs) and Angles of Arrival (AoAs). The estimation errors of both nodes coordinates and room dimension obtained with the two algorithms are compared for three realistic UWB antennas. Finally, the remaining algorithm-independent ambiguities (i.e. resulting from scenario and geometry) are discussed

    4CNet: A Confidence-Aware, Contrastive, Conditional, Consistency Model for Robot Map Prediction in Multi-Robot Environments

    Full text link
    Mobile robots in unknown cluttered environments with irregularly shaped obstacles often face sensing, energy, and communication challenges which directly affect their ability to explore these environments. In this paper, we introduce a novel deep learning method, Confidence-Aware Contrastive Conditional Consistency Model (4CNet), for mobile robot map prediction during resource-limited exploration in multi-robot environments. 4CNet uniquely incorporates: 1) a conditional consistency model for map prediction in irregularly shaped unknown regions, 2) a contrastive map-trajectory pretraining framework for a trajectory encoder that extracts spatial information from the trajectories of nearby robots during map prediction, and 3) a confidence network to measure the uncertainty of map prediction for effective exploration under resource constraints. We incorporate 4CNet within our proposed robot exploration with map prediction architecture, 4CNet-E. We then conduct extensive comparison studies with 4CNet-E and state-of-the-art heuristic and learning methods to investigate both map prediction and exploration performance in environments consisting of uneven terrain and irregularly shaped obstacles. Results showed that 4CNet-E obtained statistically significant higher prediction accuracy and area coverage with varying environment sizes, number of robots, energy budgets, and communication limitations. Real-world mobile robot experiments were performed and validated the feasibility and generalizability of 4CNet-E for mobile robot map prediction and exploration.Comment: 14 pages, 10 figure

    Advanced Techniques for Fast and Accurate Heritage Digitisation in Multiple Case Studies

    Get PDF
    All elements of heritage are exposed to more or less predictable risks. Even though they are in a good state of conservation with economic support for their repair or maintenance, they can suffer sudden accidents leading to their imminent destruction. It is therefore necessary to safeguard them in all scenarios, regardless of the respective scale or state of conservation. That process must at least be based on complete and accurate 3D digitisation. The evolution of devices, software/hardware and platforms nowadays allows such information to be gathered in a sustainable manner. Various existing resources were tried and compared at several heritage sites of different scales with dissimilar risk and protection, following the guidelines of different ICOMOS (International Council on Monuments and Sites) committees. Each case study addresses the choice of digitisation techniques and the characteristics of the end product obtained. The most suitable modality for each situation is analysed, depending on different factors such as accessibility and risks faced. Although the 3D laser scanner is clearly a very fast and very accurate resource, automated photogrammetry is one of the more accessible and affordable resources; along with the potential of UAVs (unmanned aerial vehicles), this enables the digitisation to be sustainably completed

    A graph-theory-based C-space path planner for mobile robotic manipulators in close-proximity environments

    Get PDF
    In this thesis a novel guidance method for a 3-degree-of-freedom robotic manipulator arm in 3 dimensions for Improvised Explosive Device (IED) disposal has been developed. The work carried out in this thesis combines existing methods to develop a technique that delivers advantages taken from several other guidance techniques. These features are necessary for the IED disposal application. The work carried out in this thesis includes kinematic and dynamic modelling of robotic manipulators, T-space to C-space conversion, and path generation using Graph Theory to produce a guidance technique which can plan a safe path through a complex unknown environment. The method improves upon advantages given by other techniques in that it produces a suitable path in 3-dimensions in close-proximity environments in real time with no a priori knowledge of the environment, a necessary precursor to the application of this technique to IED disposal missions. To solve the problem of path planning, the thesis derives the kinematics and dynamics of a robotic arm in order to convert the Euclidean coordinates of measured environment data into C-space. Each dimension in C-space is one control input of the arm. The Euclidean start and end locations of the manipulator end effector are translated into C-space. A three-dimensional path is generated between them using Dijkstra’s Algorithm. The technique allows for a single path to be generated to guide the entire arm through the environment, rather than multiple paths to guide each component through the environment. The robotic arm parameters are modelled as a quasi-linear parameter varying system. As such it requires gain scheduling control, thus allowing compensation of the non-linearities in the system. A Genetic Algorithm is applied to tune a set of PID controllers for the dynamic model of the manipulator arm so that the generated path can then be followed using a conventional path-following algorithm. The technique proposed in this thesis is validated using numerical simulations in order to determine its advantages and limitations

    Perception Based Navigation for Underactuated Robots.

    Full text link
    Robot autonomous navigation is a very active field of robotics. In this thesis we propose a hierarchical approach to a class of underactuated robots by composing a collection of local controllers with well understood domains of attraction. We start by addressing the problem of robot navigation with nonholonomic motion constraints and perceptual cues arising from onboard visual servoing in partially engineered environments. We propose a general hybrid procedure that adapts to the constrained motion setting the standard feedback controller arising from a navigation function in the fully actuated case. This is accomplished by switching back and forth between moving "down" and "across" the associated gradient field toward the stable manifold it induces in the constrained dynamics. Guaranteed to avoid obstacles in all cases, we provide conditions under which the new procedure brings initial configurations to within an arbitrarily small neighborhood of the goal. We summarize with simulation results on a sample of visual servoing problems with a few different perceptual models. We document the empirical effectiveness of the proposed algorithm by reporting the results of its application to outdoor autonomous visual registration experiments with the robot RHex guided by engineered beacons. Next we explore the possibility of adapting the resulting first order hybrid feedback controller to its dynamical counterpart by introducing tunable damping terms in the control law. Just as gradient controllers for standard quasi-static mechanical systems give rise to generalized "PD-style" controllers for dynamical versions of those standard systems, we show that it is possible to construct similar "lifts" in the presence of non-holonomic constraints notwithstanding the necessary absence of point attractors. Simulation results corroborate the proposed lift. Finally we present an implementation of a fully autonomous navigation application for a legged robot. The robot adapts its leg trajectory parameters by recourse to a discrete gradient descent algorithm, while managing its experiments and outcome measurements autonomously via the navigation visual servoing algorithms proposed in this thesis.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58412/1/glopes_1.pd
    corecore