849 research outputs found

    Spatiotemporal dynamics of attention networks revealed by representational similarity analysis of EEG and fMRI

    Get PDF
    The fronto-parietal attention networks have been extensively studied with functional magnetic resonance imaging (fMRI), but spatiotemporal dynamics of these networks are not well understood. We measured event-related potentials (ERPs) with electroencephalography (EEG) and collected fMRI data from identical experiments where participants performed visual and auditory discrimination tasks separately or simultaneously and with or without distractors. To overcome the low temporal resolution of fMRI, we used a novel ERP-based application of multivariate representational similarity analysis (RSA) to parse time-averaged fMRI pattern activity into distinct spatial maps that each corresponded, in representational structure, to a short temporal ERP segment. Discriminant analysis of ERP-fMRI correlations revealed 8 cortical networks-2 sensory, 3 attention, and 3 other-segregated by 4 orthogonal, temporally multifaceted and spatially distributed functions. We interpret these functions as 4 spatiotemporal components of attention: modality-dependent and stimulus-driven orienting, top-down control, mode transition, and response preparation, selection and execution.Peer reviewe

    EEG To FMRI Synthesis: Is Deep Learning a Candidate?

    Get PDF
    Advances on signal, image and video generation underly major breakthroughs on generative medical imaging tasks, including Brain Image Synthesis. Still, the extent to which functional Magnetic Ressonance Imaging (fMRI) can be mapped from the brain electrophysiology remains largely unexplored. This work provides the first comprehensive view on how to use state-of-the-art principles from Neural Processing to synthesize fMRI data from electroencephalographic (EEG) data. Given the distinct spatiotemporal nature of haemodynamic and electrophysiological signals, this problem is formulated as the task of learning a mapping function between multivariate time series with highly dissimilar structures. A comparison of state-of-the-art synthesis approaches, including Autoencoders, Generative Adversarial Networks and Pairwise Learning, is undertaken. Results highlight the feasibility of EEG to fMRI brain image mappings, pinpointing the role of current advances in Machine Learning and showing the relevance of upcoming contributions to further improve performance. EEG to fMRI synthesis offers a way to enhance and augment brain image data, and guarantee access to more affordable, portable and long-lasting protocols of brain activity monitoring. The code used in this manuscript is available in Github and the datasets are open source

    Spatiotemporal Dynamics of Attention Networks Revealed by Representational Similarity Analysis of EEG and fMRI

    Get PDF
    The fronto-parietal attention networks have been extensively studied with functional magnetic resonance imaging (fMRI), but spatiotemporal dynamics of these networks are not well understood. We measured event-related potentials (ERPs) with electroencephalography (EEG) and collected fMRI data from identical experiments where participants performed visual and auditory discrimination tasks separately or simultaneously and with or without distractors. To overcome the low temporal resolution of fMRI, we used a novel ERP-based application of multivariate representational similarity analysis (RSA) to parse time-averaged fMRI pattern activity into distinct spatial maps that each corresponded, in representational structure, to a short temporal ERP segment. Discriminant analysis of ERP-fMRI correlations revealed 8 cortical networks—2 sensory, 3 attention, and 3 other—segregated by 4 orthogonal, temporally multifaceted and spatially distributed functions. We interpret these functions as 4 spatiotemporal components of attention: modality-dependent and stimulus-driven orienting, top-down control, mode transition, and response preparation, selection and execution.</p

    Single-Trial EEG-fMRI Reveals the Generation Process of the Mismatch Negativity

    Get PDF
    Although research on the mismatch negativity (MMN) has been ongoing for 40 years, the generation process of the MMN remains largely unknown. In this study, we used a single-trial electro-encephalography (EEG)-functional magnetic resonance imaging (fMRI) coupling method which can analyze neural activity with both high temporal and high spatial resolution and thus assess the generation process of the MMN. We elicited the MMN with an auditory oddball paradigm while recording simultaneous EEG and fMRI. We divided the MMN into five equal-durational phases. Utilizing the single-trial variability of the MMN, we analyzed the neural generators of the five phases, thereby determining the spatiotemporal generation process of the MMN. We found two distinct bottom-up prediction error propagations: first from the auditory cortex to the motor areas and then from the auditory cortex to the inferior frontal gyrus (IFG). Our results support the regularity-violation hypothesis of MMN generation

    Safety and data quality of EEG recorded simultaneously with multi-band fMRI

    Get PDF
    Simultaneously recorded electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is highly informative yet technically challenging. Until recently, there has been little information about EEG data quality and safety when used with newer multi-band (MB) fMRI sequences. Here, we measure the relative heating of a MB protocol compared with a standard single-band (SB) protocol considered to be safe. We also evaluated EEG quality recorded concurrently with the MB protocol on humans. We compared radiofrequency (RF)-related heating at multiple electrodes and magnetic field magnitude, B_(1+RMS), of a MB fMRI sequence with whole-brain coverage (TR = 440 ms, MB factor = 4) against a previously recommended, safe SB sequence using a phantom outfitted with a 64-channel EEG cap. Next, 9 human subjects underwent eyes-closed resting state EEG-fMRI using the MB sequence. Additionally, in three of the subjects resting state EEG was recorded also during the SB sequence and in an fMRI-free condition to directly compare EEG data quality across scanning conditions. EEG data quality was assessed by the ability to remove gradient and cardioballistic artifacts along with a clean spectrogram. The heating induced by the MB sequence was lower than that of the SB sequence by a factor of 0.73 ± 0.38. This is consistent with an expected heating ratio of 0.64, calculated from the square of the ratio of B_(1+RMS) values of the sequences. In the resting state EEG data, gradient and cardioballistic artifacts were successfully removed using traditional template subtraction. All subjects showed an individual alpha peak in the spectrogram with a posterior topography characteristic of eyes-closed EEG. The success of artifact rejection for the MB sequence was comparable to that in traditional SB sequences. Our study shows that B_(1+RMS) is a useful indication of the relative heating of fMRI protocols. This observation indicates that simultaneous EEG-fMRI recordings using this MB sequence can be safe in terms of RF-related heating, and that EEG data recorded using this sequence is of acceptable quality after traditional artifact removal techniques
    • …
    corecore