
Exposing Internal Attentional Brain States using
Single-Trial EEG Analysis with Combined Imaging

Modalities

Jennifer M. Walz

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2014



c©2013

Jennifer M. Walz

All Rights Reserved



ABSTRACT

Exposing Internal Attentional Brain States using
Single-Trial EEG Analysis with Combined Imaging

Modalities

Jennifer M. Walz

The goal of this dissertation is to explore the neural correlates of endogenous task-related at-

tentional modulations. Natural fluctuations in task engagement are challenging to study, primarily

because they are by nature not event related and thus cannot be controlled experimentally. Here

we exploit well-accepted links between attention and various measures of neural activity while

subjects perform simple target detection tasks that leave their minds free to wander. We use mul-

timodal neuroimaging, specifically simultaneous electro-encephalograpy and functional magnetic

resonance imaging (EEG-fMRI) and EEG-pupillometry, with data-driven machine learning meth-

ods and study activity across the whole brain. We investigate BOLD fMRI correlates of EEG

variability spanning each trial, enabling us to unravel a cascade of attention-related activations

and determine their temporal ordering. We study activity during auditory and visual paradigms

independently, and we also combine data to investigate supra modal attention systems. With-

out aiming to study known attention-related functional brain networks, we found correlates of

attentional modulations in areas representative of the default mode network (DMN), ventral at-

tention network (VAN), locus coeruleus norepinephrine (LC-NE) system, and regions implicated

in generation of the extensively-studied P300 EEG response to target stimuli. Our results reveal

complex interactions between known attentional systems, and do so non-invasively to study normal

fluctuations of task engagement in the human brain.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Specific Aims

The main goal of this research is to demonstrate that combined imaging modalities can reveal

more information about endogenous attentional brain states than can any independent modality.

Specifically, we investigated methods of combining electroencephalography (EEG) with functional

magnetic resonance imaging (fMRI) and EEG with pupillometry.

The high temporal resolution of scalp EEG allows observation of dynamic neural processes and

high frequency oscillations, but source localization is an ill-posed problem and skull impedance

results in poor spatial resolution. On the other hand, blood oxygen level dependent (BOLD) fMRI

can provide mm-scale spatial resolution, but its temporal resolution is on the order of seconds due

to the innately sluggish and somewhat ambiguous BOLD response (Logothetis, 2008). By simulta-

neously recording EEG and fMRI, the strengths of each modality can be exploited to compensate

for intrinsic inadequacies. However, a number of challenges exist with removal of cardiac and radio

frequency (RF) gradient artifacts, and optimal approaches to combining the data are yet to be

determined.

Perceptual decisions, even in a simple target detection task, involve a complex cascade of neural

processes including attention, stimulus detection, target recognition/rejection, motor planning,

and response (Philiastides & Sajda, 2007). This begins with modulation of sensory and cognitive

attention by locus coeruleus (LC) activations, which enable humans to optimize the allocation of

our limited attentional resources (Aston-Jones & Cohen, 2005). This allocation plays an important
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role in decision-making, from confidence in one’s perceptual decisions to the ability to solve complex

problems. The LC is a tiny nucleus of cells at the top of the brainstem associated with primitive

physiological processes resulting from arousal, stress, and attention. Its widespread excitatory and

inhibitory projections result in correlated effects on multiple sensory areas, deep brain structures,

and the oculomotor system. We will capitalize on this link by combining EEG with pupillometry.

Hypothesis 1: When attention to a task wanes, there is an increase of attentional allocation in brain

regions not associated with the task.

Aim 1a: Transition previously-used custom-built MR-compatible EEG system

for use in a higher-field 3T scanner.

Traditional fMRI analysis enables observation of the event-related average response evoked by stim-

uli. An oddball paradigm, during which subjects respond only to rare stimuli, can be used to detect

activations associated with exogenous bottom-up shifts of attention (Stevens et al., 2000). However,

task engagement inevitably varies on a single-trial basis throughout the run of the experiment, par-

ticularly during easy tasks that leave the mind free to wander. By recording EEG simultaneously

with fMRI, and exploiting the single-trial variability (STV) of the electrophysiological response

in the general linear model (GLM) of the fMRI data, we can reveal discriminating components

in deep brain structures and more precisely locate cortical components. This was demonstrated

by Goldman et al. (2009), who used simultaneous EEG and 1.5T fMRI with an auditory oddball

paradigm. Our first aim was to replicate the results of Goldman et al. (2009), using a higher field

3T scanner and the same custom-built MR-compatible 34-electrode EEG system (Chapter 3). A

higher static field boosts the SNR of the fMRI data, but the simultaneously-acquired EEG suffers

from increased magnitude of magnetically induced artifacts.
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Aim 1b: Using simultaneous EEG-fMRI and single-trial analysis, observe the

time course of activity linked to the redistribution of attentional resources during

a visual task.

After demonstrating feasibility of these methods in the higher field scanner, our next aim was to

expand upon this auditory experiment using an analogous visual oddball paradigm (Chapter 4). It

is probable that a subset of regions involved in maintaining task-related attention depend on the

sensory input modality of the task.

Aim 1c: Identify brain regions that show common modulatory activity across

auditory and visual tasks.

We next combined auditory and visual task EEG-fMRI data to investigate coupling between supra-

modal attentional systems (Chapter 5). We used the same data-driven single-trial EEG variability

methods to find areas that modulate BOLD activity with task-related attention, in a common

way across the auditory and visual sensory input domains. We expanded upon our findings by

performing a Dynamic Causal Modeling (DCM) analysis (Friston et al., 2003; Stephan et al., 2010)

to investigate directionality of functional connectivity between these regions.

Hypothesis 2: Endogenous attentional state influences evoked EEG and fMRI BOLD responses to

the subsequent stimulus.

Aim 2a: Investigate correlates of prestimulus alpha power variability and fMRI

BOLD response.

Despite the common association of EEG alpha power with attention, not much is known about the

function of these oscillations or the mechanisms and brain structures driving them (Klimesch et al.,

1998; van Dijk et al., 2008). Alpha activity is easily detected using EEG but cannot be studied using

traditional or single-trial fMRI analysis due to the slow nature of the BOLD response. In order

to derive EEG-based regressors for the fMRI GLM, the high-dimensional electrode space must be

reduced. However, the broad posterior distribution characteristic of alpha activity makes electrode

selection arbitrary. To circumvent this we will perform independent component analysis (ICA) to
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determine the projection containing maximum EEG alpha power. We will then generate regressors

for the GLM analysis by finding the alpha power of that projection immediately preceding each

trial. Trials will be grouped by high and low alpha power to investigate effects of prestimulus alpha

activity on strength and spatial distribution of the event-related BOLD response (Chapter 6).

Aim 2b: Investigate correlation of pre-stimulus pupil size with EEG attention

index.

The locus coeruleus (LC) is a widely-projecting nucleus of cells in the brainstem, which plays an

important role in target detection, focused attention, and behavioral responses to sensory stimuli

(Aston-Jones & Cohen, 2005). Two modes of LC activity have been proposed: tonic (i.e. baseline)

and phasic (i.e. event-related) (Aston-Jones & Cohen, 2005). However, due to its tiny size and deep

subcortical location, studies are normally limited to highly invasive experiments in primates. Pupil

diameter has been shown in monkeys to closely track LC activity (Aston-Jones & Cohen, 2005),

and we plan to exploit this link in humans by simultaneously recording EEG and pupillometry

during LC activation. Since tonic LC activity underlies the endogenous state of attention and

arousal, pupil size should be correlated with task engagement (and thus with our EEG attention

index). We will investigate this by correlating the pupil size prior to the onset of the stimuli with

the EEG discriminator output, to temporally and spatially localize components associated with

attention (Chapter 7). Significant correlations would provide further evidence for the role of the

LC in endogenous modulations of arousal and attention.

1.2 Motivation

1.2.1 Scientific Motivation

Humans continuously rely on our ability to optimally allocate our attentional resources. Top-

down attention affects nearly all cognitive processes, from perceptual decision-making to complex

problem-solving. Even healthy individuals are commonly affected by temporary deficiencies in

attention allocation, and attention deficit hyperactivity disorder (ADHD) can have disabling ef-

fects. This may result in decreased task performance (e.g. digesting a journal article) or dangerous

oversights (e.g. inattentive driving).



CHAPTER 1. INTRODUCTION 5

A deeper understanding of the neural mechanisms underlying top-down attention will ultimately

lead to more accurate diagnoses and more effective treatments for ADHD and other impairments.

Our work will enable future research to link deviations from characteristic temporal and spatial

activations to specific pathologies. In the long-term, it may also lead to applications that increase

productivity and learning rate of both diseased and healthy individuals. A brain-computer inter-

face could be developed to detect unwanted changes in attentional allocation, and then alter stimuli

in response. Such a closed-loop system could potentially switch stimulus delivery to another sen-

sory modality to optimize information transfer, or even retain attention to the initial modality to

maximize performance of the task at hand.

1.2.2 Technical Motivation

Internal attentional brain states are challenging to study because their fluctuations are not always

event-related. Traditional event-related neuroimaging analysis methods enable observation of the

average response evoked by stimuli. However, task engagement inevitably varies on a single-trial

basis throughout the run of an experiment. Single-trial EEG analysis enables observation of natural

fluctuations of evoked (phase-locked) responses.

The high temporal resolution of scalp EEG allows observation of dynamic neural processes, but

source localization is an ill-posed problem and skull impedance results in poor spatial resolution. On

the other hand, BOLD fMRI can provide mm-scale spatial resolution, but its temporal resolution is

on the order of seconds due to the complex and indirect nature of the BOLD response (Arthurs &

Boniface, 2002). By simultaneously recording EEG and fMRI, the strengths of each modality can

be exploited to compensate for intrinsic inadequacies. However, optimal approaches to combining

the data are yet to be determined.

Aim 1a is to replicate and expand upon previous simultaneous EEG-fMRI results (Goldman

et al., 2009), acquired at 1.5T, by using a 3T MR System. The higher static field provides a

higher SNR of the fMRI BOLD signal compared to that recorded from the previously used 1.5T

scanner. It also enables us to obtain higher resolution functional images with the same repetition

time. However, it comes at the cost of reduced SNR in the EEG due to increased magnitude of

gradient and BCG artifacts. To remove non-stationary artifacts, many technical difficulties need

to be overcome, including loss of task-relevant EEG frequencies.
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The locus coeruleus (LC) is a nucleus of cells in the brainstem that is closely tied to both exoge-

nous and endogenous attention, but too small and deep for its activity to be studied noninvasively

using currently-existing methods. However, its widespread projections provide a link between mea-

surable responses of the oculomotor system and cortical tissue. Aim 2b exploits these links using

simultaneous scalp EEG and pupil diameter recordings, to study the temporal dynamics underlying

unprovoked attentional modulations.

1.3 Background

1.3.1 Trial-to-trial EEG variability linked to attention

Specific ERP components have been associated with various stages of attentional and perceptual

decision making processes. Exogenously-driven shifts of attention (e.g. resulting from presentation

of target stimuli) can be studied with event-related analyses, and have been known to modulate on

a single-trial basis with the endogenous attentional state of the subject (Key et al., 2005; Polich &

Kok, 1995; Warbrick et al., 2009).

Even a simple target detection task involves a complex cascade of neural processes including at-

tention, stimulus detection, target recognition/rejection, motor planning, and behavioral response.

Linear discrimination using logistic regression (LR) applied to EEG signal amplitude has been suc-

cessfully used to classify and localize the cortical activity correlated with various cognitive tasks

(Parra et al., 2002, 2005; Philiastides & Sajda, 2006, 2007).

Evoked response potentials (ERPs) to sensory stimuli have been extensively studied using scalp

EEG. These neural responses are phase-locked to the onset of the stimulus or the behavioral re-

sponse.

1.3.2 BOLD correlates of attentional modulations using simultaneous EEG and

fMRI

Simultaneous EEG-fMRI is a relatively new tool with proven utility in brain function studies, but

its use comes with many challenges in data collection/quality (Figure 1.1), and there remain open

questions with regard to meaningful analysis methods.

Firstly, EEG data acquired in the scanner are inevitably contaminated with RF gradient arti-
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Figure 1.1: Challenges When Acquiring Simultaneous EEG-fMRI. Additional challenges when acquiring

EEG in the fMRI scanner include complicated hardware setup, auditory noise from the changing magnetic fields, bias

field artifact in the fMRI images due to presence of the EEG wires, and magnetically-induced artifacts in the EEG

data, both from the rapidly changing fields (gradient artifact) and movement of the EEG wires within the static field

(BCG pulsation artifact).
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facts as the changing magnetic field induces current in the wires. Special MR-compatible amplifier

designs and modified electrode cap configurations can help to make these artifacts more manageable

(Hill et al., 1995; Ives et al., 1993). Second, motion artifacts are greatly magnified, since even small

movement of the wires in the strong static field induces unwanted current. It is imperative that

subjects are positioned and padded comfortably in the scanner to minimize movement, with care

taken not to allow subjects to wiggle around during placement in the head coil, since this can re-

sult in impedance increases or even loss of signal. An additional motion-related artifact that is not

present in stand-alone EEG is ballistocardiogram (BCG), which are caused by the tiny movement

of the electrodes with each pulse of the subject (Ives et al., 1993; Muri et al., 1998). RF artifacts

are regular enough to easily remove with simple mean subtraction methods, and only become a

problem when head position changes cause non-stationarities. BCG, on the other hand, is highly

non-stationary and irregular, making template-matching ineffective. ICA methods can reduce this

artifact, but sometimes remove neurologically-relevant frequency content. Furthermore, EEG wires

can cause field inhomogeneities that result in signal dropoff in the fMRI images. Despite these chal-

lenges and due to the development of effective preprocessing techniques and increased availability

of commercial data acquisition systems, EEG-fMRI is growing fast in popularity.

One useful approach is to exploit the single-trial variability of the electrophysiological response in

the fMRI general linear model (GLM) (Fuglo et al., 2012; Warbrick et al., 2009). The event-related

potential (ERP) component measurements vary across electrodes though, leading to a challenge

selecting an electrode subset for the model. On the other hand, independent component analysis

(ICA) can blindly find projections of the EEG data, but the functional meaning of these compo-

nents is unclear. Goldman et al. (2009) demonstrated the utility of single-trial EEG analysis using

machine learning techniques to find a functionally relevant projection of the EEG data, which was

then used to construct the fMRI GLM. This method can reveal meaningful discriminating compo-

nents in deep brain structures and more precisely locate cortical components. Furthermore, analysis

of discriminating components at various latencies allows the study of the temporal progression of

task-relevant neural activity.

In Aim 1b, we expand upon the auditory oddball paradigm results of Goldman et al. (2009), us-

ing an analogous visual oddball paradigm, to further investigate whether decreased task engagement

is due to an increased rationing of attention in task-irrelevant areas or a uniform downregulation
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Figure 1.2: BOLD Correlates of Posterior EEG Alpha. BOLD signals in subcortical and cortical structures

have been shown to (respectively) positively and negatively correlate with natural fluctuations in ongoing posterior

EEG alpha activity. Reproduced from Goldman et al. (2002).

throughout the brain. We used a higher-field 3T scanner, providing a greater signal-to-noise ratio

(SNR) of the fMRI signal and higher resolution functional images. However, this came at the

potential cost of EEG discrimination performance, due to reduced SNR in the EEG caused by

increased magnitude of magnetically-induced artifacts.

1.3.3 Prestimulus EEG alpha power related to endogenous attentional state

One particular EEG frequency band that is commonly associated with attention modulations is

alpha (8–12 Hz); there is a commonly known inverse relationship between posterior alpha power and

attention, both in baseline activity and responses to stimuli (Klimesch et al., 1998; Makeig et al.,

2002; Min & Park, 2010; van Dijk et al., 2008). Many of these studies, however, have analyzed

data with respect to behavioral responses (e.g. segregating correct and error trials and looking at

differences in the power spectrum for these two cases). However, during easy tasks that leave our

minds free to wander (and thus allow greater natural alpha fluctuations to occur), errors are too

rare for these methods to be used. In these tasks, variability in the EEG response, instead of task

performance, can be related to baseline alpha fluctuations (Barry et al., 2000).

Neurophysiological oscillatory activity is too fast to be studied with BOLD fMRI alone, since its

signal comes from the blood flow response to changes in neural activity. The advent of simultaneous

EEG-fMRI has allowed investigators to unveil BOLD correlates of endogenous alpha fluctuations

in brain regions previously associated with vision and attention (Goldman et al., 2002; Laufs et al.,
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Figure 1.3: The Locus Coeruleus Norepinephrine System. The LC is a small nucleus of cells in the dorsal

pons that projects widely to cortical and subcortical structures. Top: diagram of LC projections in the monkey brain.

Tonic LC activity has been shown to closely track pupil diameter changes (left). Phasic activity has been related to

task performance (right). Figures reproduced from Aston-Jones & Cohen (2005).

2006) (see Figure 1.2). However, little has been done to investigate effects of baseline alpha activity

modulations on the event-related BOLD response. In Aim 2a, we use simultaneous EEG-fMRI with

the oddball paradigm to study the effects of EEG alpha power fluctuations on the elicited BOLD

response; we hypothesize that modulations in baseline alpha result in a change in the extent of

cortex necessarily recruited to process the target stimuli.

1.3.4 Pupil diameter strongly linked to attention

Activity of the locus coeruleus (LC) has been shown to modulate electrophysiological and pupillary

responses (phasic mode), and closely track pupil diameter (PD) and attentional fluctuations (tonic

mode) (Aston-Jones & Cohen, 2005; Gilzenrat et al., 2010) (see Figure 1.3). As previously men-

tioned, EEG response variability has been associated with a variety of endogenous states, including

attention (i.e. task engagement) and anticipation (Key et al., 2005; Polich & Kok, 1995; Smit et al.,
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2009; Warbrick et al., 2009). Pupil diameter has also been shown to modulate with these internal

states (Einhauser et al., 2008; Steinhauer & Hakerem, 1992; Waszak & Herwig, 2007).

Since these EEG, pupil diameter, and internal brain state modulations are associated with

underlying LC activity, the LC provides a link between the cortical activity of the central nervous

system (CNS) and the unconscious pupil diameter changes of the peripheral nervous system (PNS),

both of which can be observed non-invasively. In Aim 2b, we exploit the LC’s link between the

CNS and PNS to investigate correlations of EEG discriminating components at various latencies

with measures of attention and anticipation, using PD to index attention on each trial, and number

of pre-target standard trials to index the subjects’ anticipation.
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Chapter 2

Materials and Methods

This chapter describes the core materials and methods that are used repeatedly throughout this

dissertation. Materials and methods specific to individual projects are described within the corre-

sponding chapters.

2.1 Oddball Paradigm

For each of the projects within this thesis, healthy human subjects performed a classic oddball task.

This is a simple and well-studied paradigm that leaves subjects’ minds free to wander while still

maintaining near-perfect behavioral performance, so it was ideal for studying naturally occurring

endogenous shifts of attention. In Chapters 3, 6, and 7 an auditory oddball experiment was used,

in Chapter 4 a visual oddball experiment was used, and in Chapter 5 commonalities across both

sensory input domains were studied. Figure 2.1 diagrams the visual oddball paradigm. The auditory

paradigm was analogous. Both are described below.

All stimuli were presented for 200 ms each with a 2 to 3 s uniformly-distributed variable inter-

trial interval (ITI) and probability of target was 1
5 . The first two stimuli of each run were constrained

to be standards. The visual target and standard stimuli were, respectively, a large red circle and

a small green circle on isoluminant gray backgrounds (3.45◦ and 1.15◦ visual angles). The larger

target stimuli boosted EEG discriminator performance, and did not confound our final results,

since we interpreted only the variability within the target class. Auditory standard stimuli were

a pure 390 Hz tone, and target stimuli were a broadband “laser gun” sound. These choices are
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Figure 2.1: Visual Oddball Paradigm.

explained in Chapter 3, which is focused on transitioning previously used EEG-fMRI single-trial

analysis methods from the 1.5T to higher field 3T scanner. Stimuli were presented to subjects

using E-Prime software (PST, Pittsburgh, PA) for all experiments. Because our study focused on

task-related attentional states, subjects were asked to respond to target stimuli, using a button

press with the right index finger.

In the auditory oddball experiment performed outside of the fMRI scanner (Chapter 7), sounds

were presented through speakers and subjects responded using a gamepad. In the EEG-fMRI

studies, stimuli were presented via a VisuaStim Digital System (Resonance Technology, Northridge,

CA), comprised of headphones and a 600× 800 goggle display. Behavioral responses were acquired

using an MR-compatible button response pad. All subjects gave written informed consent following

the protocol of the Columbia University Institutional Review Board.

2.2 Data Acquisition

All of the studies within this thesis use EEG in combination with other types of neurological data

and explore data fusion methods to study endogenous fluctuations of task-related attention. The

study described in Chapter 7 used simultaneous EEG-pupillometry, and all other studies used

simultaneous EEG-fMRI. The pupillometry data acquisition and preprocessing is described within

Chapter 7, and the simultaneous EEG-fMRI data are described below.
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Figure 2.2: Custom-built MR-Compatible EEG System. Left: 64-channel EEG amplifier and bipolar elec-

trode cap. Right: Subject setup for EEG-fMRI experiment. The (model) subject is standing in front of the 3T MRI

scanner, wearing an electrode cap embedded with 36 EEG electrodes arranged as 43 bipolar pairs (see Figure2.3) as

well as external electro-oculogram (EOG) and echo-cardiogram (ECG) channels.

2.2.1 EEG recorded in the fMRI scanner

We simultaneously and continuously recorded EEG using a custom-built MR-compatible EEG

system (Goldman et al., 2009; Sajda et al., 2010), with differential amplifier and bipolar EEG

cap (Figure 2.2). The caps are configured with 36 Ag/AgCl electrodes including left and right

mastoids, arranged as 43 bipolar pairs (Figure 2.3). Bipolar pair leads are twisted to minimize

inductive pickup from the magnetic gradient pulses and subject head motion in the main magnetic

field. This oversampling of electrodes ensures data from a complete set of electrodes even in

instances when discarding noisy channels is necessary. To enable removal of gradient artifacts

in our offline preprocessing, we synchronized the 1-kHz-sampled EEG with the scanner clock by

sending a transistor-transistor logic (TTL) pulse to a field-programmable gate array (FPGA) card

(National Instruments, Austin, TX) at the start of each of 170 functional image acquisitions. All
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Figure 2.3: MR-compatible EEG cap diagram. The custom-built EEG cap is configured with 36 electrodes

arranged as 43 bipolar pairs. Leads are twisted to minimize induction of current due to magnetic field changes.
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Figure 2.4: fMRI Whole-brain Data Coverage. Example of whole brain EPI data coverage (green) including

cortical and subcortical regions, shown for one subject (overlaid on subject’s structural scan). Headphones and

goggles can be seen in the images.

electrode impedances were kept below 20 kΩ, including 10 kΩ resistors built into each electrode for

subject safety. A comprehensive description of the hardware, along with many of the preprocessing

and analysis methods described throughout the remainder of this section, can be found in Sajda

et al. (2010).

2.2.2 fMRI

A 3T Philips Achieva MRI scanner (Philips Medical Systems, Bothell, WA) was used to collect

functional echo-planar image (EPI) data continuously with 3 mm in-plane resolution and 4 mm

slice thickness. We covered the entire brain (Figure 2.4) by obtaining 32 slices of 64 × 64 voxels

using a 2000 ms repetition time (TR) and 25 ms echo time (TE). We also acquired a single-volume

high resolution (2 × 2 × 2 mm) EPI image and a 1 × 1 × 1 mm spoiled gradient recalled (SPGR)

image for each subject for purposes of registration.

Great care was taken when placing the subjects in the scanner to ensure subject safety and

maximize data quality. Subjects were instructed to avoid shifting their head in the coil after lying

down on the scanner bed. This would have interfered with the impedances and even disrupted

connections between the posterior electrodes and the scalp. We padded the subjects’ heads as
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much as their comfort allowed, in order to minimize head motion during the scans. Head motion

exceeding half a voxel (1.5 mm) could decrease SNR substantially enough to warrant discarding

the data. Furthermore, even minuscule head movement within the static 3T field was enough to

cause huge deflections in EEG amplitude caused by magnetic induction in the wires. EEG wires

were arranged such that they were as far from the subjects’ heads as possible without penetrating

the cage of the coil (see right side of Figure 2.2) and separated from them with padding.

2.3 Data Preprocessing

2.3.1 Standard EEG data preprocessing

We performed EEG preprocessing offline using Matlab (Mathworks, Natick, MA), using the follow-

ing digital Butterworth filters: 0.5 Hz high pass to remove DC drift, 60 Hz and 120 Hz notches to

remove electrical line noise and its first harmonic, and 100 Hz low pass to remove high frequency

artifacts not associated with neurophysiological processes. These filters were applied together in

the form of a linear phase finite impulse response (FIR) filter to avoid distortions caused by phase

delays.

2.3.2 Additional preprocessing for EEG data acquired simultaneously with fMRI

In addition to standard EEG artifacts, electrophysiological signals recorded inside the MRI scanner

are contaminated with gradient artifacts and ballistocardiogram (BCG) artifacts due to magnetic

induction in the EEG wires. First we removed the gradient artifacts by subtracting the mean

artifact across all functional volume acquisitions. We then applied a 10 ms median filter to remove

any residual spike artifacts. Because we sync the scanner with the EEG we are able to remove the

gradient artifact at the commonly-used 1 kHz sampling rate of stand-alone EEG. Next we removed

standard EEG artifacts, using the filters described above (Section 2.3.1).

BCG artifacts are more challenging to remove, since they share frequency content with EEG

activity. Currently-existing BCG removal algorithms cause loss of signal power in the underlying

EEG, so we performed single-trial classification (described in Section 2.4) on the data prior to

BCG artifact removal. This is a justified practice because our classifier identifies discriminating

components that are likely to be orthogonal to BCG. In order to compute scalp topographies
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of these discriminating components, BCG artifacts were removed from the continuous gradient-

free data using a principal components analysis (PCA) method (Goldman et al., 2009; Sajda et al.,

2010). First the data were low-passed at 4 Hz to extract the signal within the frequency range where

BCG artifacts are observed, and then the first two principal components were determined. The

channel weightings corresponding to those components were projected onto the broadband data and

subtracted out. These BCG-free data were then re-referenced from the 43 bipolar channels to the

34-electrode space to calculate scalp topographies of EEG discriminating components. They were

also necessarily used to calculate the average event-related potentials (ERPs) on each electrode.

We investigated both stimulus-locked and response-locked activity because some cognitive pro-

cesses are more tightly time-locked to stimulus onset and others to behavioral responses (Gerson

et al., 2005; Makeig et al., 2004). We extracted 1000 ms stimulus-locked and response-locked

epochs (with baseline removal on the 200 ms prior to stimulus) from both the 43-channel gradient-

free dataset and the 34-electrode re-referenced dataset. By visual inspection we discarded trials

containing motion or blink artifacts, evidenced by sudden high-amplitude deflections, and also

those with incorrect responses, identically for both datasets. This left approximately 95% of the

target trials remaining. Because the paradigm does not require a behavioral response to standard

stimuli, we randomly assigned reaction times (RTs) to standard trials chosen from the probabil-

ity distribution of target trial RTs (Goldman et al., 2009). This provided a baseline activity for

response-locked single-trial EEG analysis, and it did not affect interpretation of results since we

only viewed results derived from the variability within the target class.

2.3.3 fMRI data preprocessing

Using FSL (Smith et al., 2004), we performed bias-field correction on all images to adjust for ar-

tifacts caused by the EEG wires. We then performed slice-timing correction, motion correction,

0.01-Hz high-pass filtering, and 5-mm full width half max (FWHM) spatial smoothing on the func-

tional data. Motion correction provided motion parameters that were later included as confounds

in the general linear model (GLM). Functional and structural images were registered to a stan-

dard Montreal Neurological Institute (MNI) brain template following brain extraction, and each

subject’s registration was checked manually to ensure proper alignment.
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2.4 Single-Trial Analysis of EEG

Every study within this thesis, with the exception of the EEG alpha study described in Chapter 6,

uses the following EEG single-trial analysis methods.

We applied a linear classifier to the multi-dimensional EEG signal amplitude using the sliding

window method of Parra et al. (2005). Specifically, we find a projection of the multidimensional

EEG signal, xi(t), i = {1...T} (where i indexes trials and T is the total number of trials) within a

short time window that achieves maximal discrimination between target and standard trials. All

time windows had a width of N = 50 ms and the window center, τ , was shifted from 0 ms to

1000 ms relative to stimulus onset, in 25 ms increments. We used logistic regression to learn the

multi-channel spatial weighting, w(τ), that maximally discriminated conditions, arriving at the

projection, yi(τ), for each trial i and a given window τ .

yi(τ) =
1

N

τ+N
2∑

t=τ−N
2

w(τ)Txi(t) (2.1)

Note that we use the average projection in each temporal window, τ , which tends to be less

sensitive to noise. The result is a hyperplane, for each τ , that maximally discriminates the target

vs. standard trials given the EEG amplitudes for each trial (see Figure 2.5).

The classifier output, yi(τ), represents the classifier’s confidence in its prediction based on the

training data and the model. We assessed classifier performance with the area under the receiver

operating characteristic (ROC) curve (Green & Swets, 1966), denoted AUC, using leave-one-out

(LOO) cross validation (Duda et al., 2001). AUC was calculated for multiple temporal windows,

enabling observation of the temporal progression of task-relevant components and localization of

the event-locked time with maximal discrimination between conditions. To obtain a significance

threshold for the AUC values, we used a permutation test in which we randomly permuted the trial

labels and ran the classifier using the LOO approach. We repeated this procedure 1000 times for

each subject to generate a distribution of AUC values from which we computed the null hypothesis

distribution for AUC values and the corresponding AUC threshold for p = 0.01.

For each window τ we also generated the forward model a(τ),

a(τ) =
X(τ)y(τ)

y(τ)Ty(τ)
(2.2)
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Figure 2.5: Method for constructing fMRI regressors from simultaneously-acquired EEG data. A. For

each trial (i), select a training window of EEG data (Xi) with offset τ from the stimulus (or behavioral response).

B. Train linear classifier on EEG data within the time window to estimate a set of spatial weights (w) that maximize

discrimination of the two conditions (shown using only 2 EEG channels for visualization purposes). C. In addition

to traditional event-related average response (ERAR) and reaction time (RT) regressors, construct single-trial EEG

variability (STV) regressors by modulating boxcar height with classifier output (y) for each trial. D. This technique is

repeated for multiple window offsets spanning the epoch to view temporal progression of discriminating components

spanning the trial.
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where we now organize yi(τ) as a vector y(τ), where each row is from trial i, and we organize

xi(t) as a matrix, X(τ), where rows are channels and columns are trials, all for time window τ .

These forward models can be viewed as scalp plots and interpreted as the coupling between the

discriminating components and the observed EEG (Goldman et al., 2009; Parra et al., 2002, 2005;

Sajda et al., 2010). Given that we estimate a linear weighting for temporal windows spanning the

trial, we are able to track the progression of the spatial components across time.

2.5 Traditional fMRI Analysis

We first ran a traditional fMRI analysis, using event-related and RT variability regressors in our

GLM. The event-related regressors were comprised of boxcar functions with unit amplitude and

onset and offset matching that of the stimuli. RT variability was modeled using unit amplitude

boxcars with onset at stimulus time and offset at response time, and these were orthogonalized

to the event-related regressors. Orthogonalization was implemented using FSL, which utilizes

the Gram-Schmidt procedure (Strang, 2003) to de-correlate the RT regressor from all other event-

related regressors. All regressors were convolved with the canonical hemodynamic response function

(HRF), and temporal derivatives were included as confounds of no interest. An event-related target

vs. standards contrast was also constructed. A fixed effects model was used to model activations

across runs, and a mixed effects approach used to compute the contrasts across subjects. Statistical

image results for these traditional analyses were thresholded at z > 2.3, and clusters were multiple-

comparison-corrected at p = 0.05 (Worsley, 2001).

2.6 EEG-Based fMRI Analysis

For the single-trial variability (STV) fMRI analysis, we modeled the variability of the neural re-

sponse using an additional two regressors: one each for targets and standards. These EEG-based

regressors were designed with duration 100 ms, centered on the classifier training window. The

STV regressor height was modulated using the demeaned output ỹi = yi − ymean of the EEG dis-

criminator for each trial (i). These regressors were convolved with the HRF and orthogonalized

with respect to all traditional regressors, with temporal derivatives included as confounds. It was

especially important to regress out the RT variability, since RT is known to be negatively correlated
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with attention (Eason et al., 1969; Weissman et al., 2006), and our aim was to study variability in

task engagement that cannot be detected using an external measure. This entire analysis was run

independently for all stimulus-locked and response-locked EEG training windows exceeding a mean

AUC value of 0.75, which is a common psychophysical threshold used in signal detection theory

and here represents substantial performance of the classifier. To avoid stimulus-type confounds, we

focused on within-class variability, using only the target stimuli STV statistical maps in our results

interpretation.

We used a randomization method motivated by deBettencourt et al. (2011) and threshold-free

cluster enhancement (Smith & Nichols, 2009) to correct for multiple comparisons, by running a

complete STV fMRI analysis after permuting the yτ=450ms values randomly within each class. 100

permutations were run for each subject. We carried these randomization results through to the

group level and thresholded the statistical maps at per-voxel p = 0.005. For each cluster in the

resulting null distribution, we summed the negative logarithm of the p-value over each voxel in the

cluster. This provided a score for each cluster that, while highly dependent on cluster size, also

accounted for some variation in the magnitude of the z-scores within the cluster. We determined a

threshold based on the 99th percentile of these null-distribution cluster scores, or a p-value of 0.01.

We took extra care to investigate the possibility of pulsation artifacts confounding our results,

by constructing fMRI regressors from BCG-artifact pulse timing. This timing was determined using

a peak detection algorithm on temporal lobe EEG channels, which are the channels most strongly

contaminated with BCG artifact. We fit this regressor to the functional data, and thresholded the

resulting maps at an uncorrected p < 0.005. We do not report any results that overlap with these

pulse correlates.
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Chapter 3

Transition of EEG-fMRI Methods

from 1.5T to 3T Scanner

3.1 Introduction

Our group previously demonstrated that single-trial variability (STV) of EEG components recorded

simultaneously with 1.5T fMRI can yield task-relevant BOLD activations that are unobservable

using traditional fMRI analysis methods (Goldman et al., 2009). A higher field MR system provides

greater signal-to-noise ratio (SNR) of the fMRI BOLD signal, and it enables acquisition of functional

images with increased resolution in both time and space. However, this comes at the cost of reduced

SNR in the EEG due to increased magnitude of gradient, BCG, and motion artifacts. Since our

STV method depends upon high fidelity EEG, a major concern was loss of statistical power in the

BOLD correlates due to reduced discrimination of EEG acquired during 3T scanning.

3.2 Methods

Upon completion of preliminary stand-alone EEG tests (purpose and results described below),

seventeen subjects (6 female, mean 27.7 years, range 20–40) participated in three runs of the

traditional auditory oddball paradigm described in Section 2.1. Each run consisted of 100 standard

stimuli and 25 oddball stimuli. Subjects were instructed to keep their eyes closed to minimize eye

movement artifacts in the EEG. All of the EEG-fMRI data acquisition, preprocessing, and analysis
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Figure 3.1: Overcoming the challenges of increased acoustic noise in the higher 3T field scanner.

Left: The 3T scanner sound frequency spectrum, and the positions of the pure tone stimuli used in the previous

experiment at 1.5T. Standard tone was shifted to a trough, and a broadband target stimulus was selected. Right:

EEG discrimination results, comparing broadband target sounds in the auditory oddball task. The laser gun sound

was selected due to its high saliency relative to the background scanner noise, which we played as background noise

during the stand-alone EEG tests.

methods that were employed in this study were described in Chapter 2.

3.3 Results

3.3.1 Transition of methods to higher field strength

As a first test of transition to the higher field 3T scanner, we repeated the auditory oddball EEG-

fMRI experiment of Goldman et al. (2009) and extended the paradigm to include an analogous

visual task (Chapter 4). Because the high dB acoustic noise produced by the 3T scanner can easily

mask the auditory stimuli, we shifted our previously used standard tone to 390 Hz, to fall within

a trough of the scanner sound frequency spectrum (Figure 3.1, left). The auditory oddball target

stimulus was changed from a pure tone to a broadband sound, which increased the saliency of the

target relative to the background scanner sounds (difference in salience between 1.5T and 3T). The

broadband target tone was selected so that EEG single-trial classification classifier performance

was maximized (Figure 3.1, right) and matched that of the visual paradigm in stand-alone EEG
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Figure 3.2: Auditory Oddball Experiment EEG Discrimination. Averages and standard errors of single-

trial EEG discrimination performance across 17 subjects for the auditory oddball paradigm. Results of both the

stimulus-locked (blue) and response-locked (green) analyses are shown, aligned by mean RT. Since we are interested

in the BOLD correlates of single-trial EEG variability, we only consider EEG components with discrimination that

is both significant (AUC > 0.66, p < 0.01) and substantial (AUC > 0.75). Windows resulting in significant positive

and negative BOLD correlations are indicated with magenta diamonds and orange circles, respectively.

tests (i.e. EEG outside the scanner).

3.3.2 EEG discrimination

Despite the increased amplitude of magnetically-induced EEG artifacts, we were able to successfully

remove gradient artifacts. Following artifact removal and standard EEG preprocessing offline, we

utilized our binary logistic regression classifier with the sliding window technique (Parra et al., 2002,

2005) (refer to Section 2.4). For both stimulus-locked and response-locked epochs, we selected a

training window of width 50 ms and varied the window onset in 25 ms increments. Area under

the ROC curve (AUC) with leave-one-out (LOO) cross validation was used to assess classifier

performance.

We were able to discriminate oddball vs. standard EEG trials at a higher AUC level than our

prior results (Goldman et al., 2009) despite the decrease in EEG SNR. We also found a similar
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Figure 3.3: fMRI Correlates of EEG Variability in the Auditory Oddball Experiment. Significant (z-

score p < 0.005, cluster p < 0.01) group mean negative BOLD correlations with EEG single-trial variability for the

(A) stimulus-locked 475 ms window, and (B) response-locked 150 ms window, displayed in radiological coordinates

on an MNI template brain (MNI coordinates are specified).

double-peaked temporal pattern of discrimination (Figure 3.2), which was consistent with the

previous auditory paradigm results. Maximum 17-subject group mean performance of AUC = 0.84

was achieved at 225 ms. Response-locked classification, also similar to previous results (Goldman

et al., 2009), yielded peaks at response time and shortly thereafter, with max AUC = 0.93 at 25 ms.

Traditional fMRI results were consistent with previous findings (Stevens et al., 2000), showing

widespread activations throughout cortical and subcortical structures. In the EEG-based analysis,

we found significant positive and negative BOLD correlations in multiple windows for both tasks

(denoted with magenta diamonds and orange circles on Figure 3.2). We compared our results at

3T to the previous results at 1.5T.
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Figure 3.4: fMRI Results at 1.5T vs. 3T. Superposition of previous 1.5T results (red) and current 3T results

(blue) for similar EEG windows. Negative activations thresholded at p < 0.005 are shown, for clusters in (A)

paracingulate and (B) postcentral gyrus, displayed in radiological coordinates on an MNI template brain. Note that

clusters are displayed as binary masks (i.e. containing no statistical information within each cluster).

3.3.3 BOLD fMRI correlates of EEG STV consistent with previous auditory

task results

Our analysis at 3T revealed activations undetectable at 1.5T, including frontal regions for the

475 ms stimulus-locked window (Figure 3.3), and increased the strength and size of previously

found clusters (Figure 3.4). Most notably, we found bilateral occipital negative correlations for the

response-locked 150 ms window (Figure 3.3). This is consistent with our previous result (not shown)

that found right occipital negative correlations in the same window. Our right occipital cluster

exceeded our previous result in both voxel size (260) and max z-score (3.18) but did not spatially

overlap with it. However, this repeated finding that visual areas are negatively correlated with

endogenous auditory attention further supports our hypothesis of inter-modal latent attentional

modulation (Goldman et al., 2009).
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3.4 Conclusion

In this chapter we demonstrated the feasibility of our previous EEG-fMRI STV analysis methods

in the more challenging environment of the higher-field 3T scanner. We were able to discriminate

the EEG with greater accuracy than our previous results, despite the decreased SNR of the EEG

signal. The increased fMRI SNR improved BOLD correlations, resulting in larger clusters with

higher peak z-scores.
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Chapter 4

A Temporal Cascade of Task Related

and Default Mode Activations During

a Simple Target Detection Task

4.1 Introduction

Internal attentional brain states are challenging to study because their fluctuations are not always

event related and can dynamically ebb and flow at multiple timescales. Traditional blood oxygen

level dependent (BOLD) functional magnetic resonance imaging (fMRI) enables observation of

the average response evoked by stimuli and/or behavioral response. However, task engagement

inevitably fluctuates on a single-trial basis throughout the run of an experiment. Even simple target-

detection perceptual decisions involve a complex cascade of neural processes including stimulus

detection, target recognition/rejection, motor planning, and behavioral response, all of which are

associated with evoked responses that vary on a single-trial basis (Philiastides et al., 2006). Many

of these processes are time locked to stimulus onset, but others are more closely locked to the

behavioral response (Gerson et al., 2005).

The high temporal resolution of scalp EEG allows observation of dynamic neural processes,

but activity in deep subcortical structures is difficult to detect. Furthermore, source localization

is essentially an ill-posed problem, with skull and cerebral spinal fluid (CSF) impedance resulting
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in poor spatial resolution. On the other hand, BOLD fMRI can localize both superficial and deep

sources of activity with mm-scale resolution, but its temporal resolution is limited due to the slow

nature of the BOLD response and the low sampling rate required for acquisition of whole-brain

fMRI data.

Perhaps the most well-studied evoked response to a task-related sensory stimuli is the P3 (also

called P300), which peaks at approximately 450 ms post-stimulus (Key et al., 2005; Linden, 2005;

Polich, 2007). The P3, which is typically measured via electroencephalography (EEG), is known

to have amplitude that is modulated by the endogenous state of the subject (Key et al., 2005;

Polich, 2007). Extensive evidence from intracranial, lesion, and EEG-fMRI studies shows this

response to be generated by a widespread network that includes frontal and temporal-parietal areas

(Linden, 2005; Polich, 2007). Frontal activity has been associated with the earlier novelty-related

P3a subcomponent, and temporal-parietal activity with the later task-related P3b subcomponent,

consistent with their EEG scalp topographies (Polich, 2007).

Endogenous brain states that have been linked to inattention to sensory stimuli are often referred

to as “resting states.” Both functional connectivity analysis and independent component analysis

(ICA) of fMRI data have identified many consistent resting-state networks (De Luca et al., 2006;

Fox & Raichle, 2007). These networks are characterized by “infra-slow” fluctuations on the order of

0.01–0.1 Hz (Palva & Palva, 2012) and can be observed by recording fMRI on undirected subjects

while they lie in the scanner doing no specific task. The most extensively studied of these is the

default-mode network (DMN), a co-activation of the posterior cingulate cortex, medial prefrontal

cortex, and angular gyri that was originally defined to represent a baseline brain state (Raichle et al.,

2001). It is commonly associated with self-monitoring, auto-biographical, and social functions,

reflecting attention to the internal world (Bressler & Menon, 2010). However, recent work has

uncovered evidence for a more active role of the DMN related to task performance (Eichele et al.,

2008), including its deactivation by cognitive load during task engagement (Esposito et al., 2006).

In this project we use simultaneously-recorded EEG and fMRI during a simple visual oddball

task. We investigate the relationship between neural correlates of processing task-relevant sensory

stimuli and brain states reflective of inattention to the task and sensory input. We use the single-

trial analysis methodology of Goldman et al. (2009), whereby machine learning methods are used

to find a maximally discriminative projection of the EEG data, and the single-trial variability of
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that projection is used to construct the BOLD fMRI univariate model. Previous studies of the

BOLD correlates of single-trial event-related EEG variability have focused mainly on the P3 and

only a few other well-known components at selected stimulus-locked latencies, and have often used

an arbitrary selection of electrodes (Benar et al., 2007; Warbrick et al., 2009), and many have

studied this coupling without regressing out the effect of the externally-observable reaction time

variability. Eichele et al. (2005) were one of the first to investigate the spatio-temporal evolution

for BOLD correlates of event-related potential (ERP) components spanning the entire trial. Their

approach, applied to an auditory oddball paradigm, used ICA to de-noise the EEG from which

they then selected a specific subset of electrodes to construct single-trial variability regressors for

well defined ERPs (e.g. P2, N2 and P3).

Instead of a priori defining ERP components of interest, we use a purely data-driven approach to

identify temporally specific, maximally discriminative task-relevant projections of the EEG data.

Specifically, our multivariate discrimination improves identification of task-relevant components

in low signal-to-noise ratio environments, such as EEG recorded during MRI acquisition. It also

enables us to study the BOLD correlates of continuously-evolving components linked to the task (i.e.

defined by trial labels). Since we analyze the BOLD signal by first regressing out the variance linked

to observed stimulus and behavioral events (Feige et al., 2005; Goldman et al., 2009), these methods

also allow us to investigate the BOLD correlates of modulations in task engagement that are

undetectable with traditional methods, and dissociate them from observable behavioral variability.

Furthermore, we investigate the correlates of these modulations only for target trials (i.e. identical

stimuli), thus ensuring that the trial-to-trial variation in neural processes is reflecting a latent

state. Despite making no prior assumptions about functional connectivity between brain regions

and without aiming to study functional networks, we find that for this simple target detection task,

regions associated with task-dependent and default-mode networks transiently correlate with the

trial-to-trial variability of the EEG discriminating components, and they do so on a millisecond

timescale with a distinct temporal ordering.
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4.2 Methods

Seventeen subjects (6 female, mean 27.7 years, range 20–40) participated in three runs of the

traditional visual oddball paradigm described in Section 2.1. Each run consisted of 100 standard

stimuli and 25 oddball stimuli. All of the EEG-fMRI data acquisition, preprocessing, and analysis

methods that were employed in this study were described in Chapter 2.

4.2.1 fMRI Analysis for Localizing the DMN

Because our single-trial findings included correlates consistent with DMN, we performed ICA on the

functional image data to locate the DMN, which is an established method used to study resting-state

functional networks not associated with any task (De Luca et al., 2006; Fox & Raichle, 2007). To

prevent investigator bias, we used a template-matching algorithm to automatically determine the

DMN component for each subject (template obtained from the Neurosynth database of Yarkoni

et al. (2011)), and we found the group mean DMN component in MNI space. Manual DMN

component selection was consistent with our algorithm output.

4.3 Results

All subjects responded with high accuracy and speed. 98.4% ± 3.1% of targets were correctly

detected, with 397.2± 38.9 ms RT.

4.3.1 EEG Analyses

Traditional stimulus-locked event-related potentials (ERPs) displayed a strong visual P2 peak over

frontal and posterior sites and a prominent P3 over central sites (Figure 4.1, left), consistent with

previous literature (Hopfinger & West, 2006; Makeig et al., 1999). N1 and N2 responses were also

visible. The response-locked ERPs showed a double peak that was most pronounced at central and

posterior sites (Figure 4.1, right), and which was highly replicable across subjects. This matches

the post-motor theta-band synchronization described by Makeig et al. (2004).

We were able to discriminate target vs. standard EEG trials with highly significant accuracy

(Figure 4.1). We surpassed the corrected p = 0.01 value (AUC = 0.66) for all consecutive stimulus-

locked training windows from l50 to 750 ms and for all analyzed response-locked windows centered
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Figure 4.1: Stimulus-locked (left) and response-locked (right) ERPs recorded at the Pz electrode for targets (red)

and standards (blue). Mean RT and mean stimulus time are denoted with green dashed lines. Our definition of early,

middle, and late window ranges (see main text for discussion) are indicated with shading.

at –250 ms or later. Maximum discrimination of AUC = 0.86 ± 0.04 was reached at 325 ms for the

stimulus-locked classification, with a broad temporal peak. Response-locked classification yielded

even higher AUC values, with a double peak shortly after reaction time. A maximum AUC of

0.93 ± 0.04 was reached at 25 ms following RT, and 0.91 ± 0.07 AUC was reached at 150 ms.

The window ranges exceeding 0.75 mean AUC (and thus subsequently included in the EEG-based

fMRI analysis) were 175 to 600 ms for stimulus-locked and –175 to 375 ms for response-locked

discrimination.

Discriminator output was significantly (p < 0.01) negatively correlated with RT for multiple

stimulus- and response-locked windows. This result demonstrated the need to orthogonalize our

STV fMRI regressors to RT-variability regressors, being that our aim was to study residual variance

not observable with behavioral response.

The grand mean forward models displayed an early frontal positivity that was strongest at the

250 ms stimulus-locked window. They also revealed a central negativity around 325 ms, which

occurred prior to behavioral responses and corresponded to the middle of the broad stimulus-

locked discrimination peak. A posterior positivity first appeared near the RT and slowly became

more centrally distributed, reaching its highest strength late in the trial. The progression of these

discriminating components was consistent with the visual target detection results of Gerson et al.

(2005). We show EEG topographies alongside their corresponding BOLD activations in Figures 4.5,

4.6, and 4.7.
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Figure 4.2: Group mean averages and standard errors of single-trial EEG discrimination performance.

Results of both the stimulus-locked (blue) and response-locked (green) analyses are shown, aligned by mean RT. Since

we are interested in the BOLD correlates of single-trial EEG variability, we only consider EEG components with

discrimination that is both significant (AUC > 0.66, p > 0.01) and substantial (AUC > 0.75). Windows resulting

in significant positive and negative BOLD correlations are indicated with magenta diamonds and orange circles,

respectively. Early, middle, and late windows (as grouped for discussion) are indicated with shading.
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Figure 4.3: Traditional event-related average BOLD response target vs. standard contrast. Group-

level positive activations thresholded at z > 2.3, cluster corrected at p < 0.05. Images are displayed in radiological

coordinates.

4.3.2 Traditional fMRI Analysis

Event-related BOLD responses to target stimuli were present in multiple brain areas, including

bilateral supramarginal gyri, insular cortices, cingulate cortices, angular gyri, precentral gyri, tha-

lamus, cerebellum, and brainstem. Postcentral activations were strong and left-lateralized, consis-

tent with right-handed button press. These activations matched previous visual oddball paradigm

results (Laurens et al., 2005; Stevens et al., 2000; Warbrick et al., 2009), and were even stronger and

more widespread in the traditional event-related target vs. standard contrast (Figure 4.3). This

contrast additionally resulted in right-lateralized clusters in precuneus and middle frontal gyrus.

RT-variability statistical maps (Figure 4.4) showed activations in anterior cingulate cortex (ACC),

supplementary motor area, and right precentral gyrus.

4.3.3 Single-trial EEG Variability fMRI Analysis

Our randomization method, which we used to correct for multiple comparisons, determined a

p = 0.01 threshold which corresponded to a 60-voxel cluster size (24 voxels for p = 0.05). At

the p = 0.01 threshold, the EEG-derived regressors resulted in significant group-level positive

and negative correlations for multiple stimulus-locked and response-locked EEG training windows,

indicated with diamonds and circles on Figure 4.2. Interestingly, all significant clusters correlating
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Figure 4.4: fMRI BOLD correlates of reaction time variability. Group-level positive activations thresholded

at z > 2.3, cluster corrected at p < 0.05. Images are displayed in radiological coordinates.

with single-trial variability in windows prior to the RT were negatively correlated with classifier

output. Near the mean RT, we saw a reversal to positive correlations, and this effect lasted

approximately 100 ms, after which all significant clusters were negative.

Since our analysis separately identifies EEG discriminating components at different time win-

dows relative to the stimuli and responses, we are able to study the temporal cascade of neural

involvement related to modulations of internal attentional states. For simplification and clarity

in the following discussion, we divided our results into three stages (indicated in Table 4.1 and

Figures 4.1 and 4.2): early (prior to behavioral response), middle (at or near RT), and late (after

the response while the subject is waiting for the subsequent stimulus). We based these temporal

ranges on timing of ERP components at the Pz electrode (Figure 4.1) such that the early stage

corresponds to the P2 and N2, the middle stage corresponds to the P3, and our late windows are

those that occur after the P3.

Table 4.1 contains a complete list of activations exceeding multiple-comparison-corrected p = 0.01

with their corresponding EEG windows.

The early stimulus-locked EEG discriminating components revealed negatively-correlated acti-
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Figure 4.5: Significant clusters correlating with EEG single-trial variability early in the trial. Shown for

stimulus-locked (SL, top) and response-locked (RL, bottom) windows. Corresponding EEG discriminant component

scalp projections (forward models) are also shown, where color represents correlation between the discriminating

component and the data (red = positive, blue = negative, green = 0). Note that images are displayed in neurological

coordinates.
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Figure 4.6: Significant clusters correlating with EEG single-trial variability in middle windows. These

activations occurred near the behavioral response time and in the range of the P3, shown for stimulus-locked (SL,

top) and response-locked (RL, bottom) windows. Corresponding EEG discriminant component scalp projections

(forward models) are also shown, where color represents correlation between the discriminating component and the

data (red = positive, blue = negative, green = 0). Note that images are displayed in neurological coordinates.
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Figure 4.7: Significant clusters correlating with EEG single-trial variability late in the trial. These

activations occurred after the subject has made his/her response, for stimulus-locked (SL, top) and response-locked

(RL, bottom) windows. Corresponding EEG discriminant component scalp projections (forward models) are also

shown, where color represents correlation between the discriminating component and the data (red = positive,

blue = negative, green = 0). Note that images are displayed in neurological coordinates.
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STIMULUS-LOCKED

window AUC +/- Nvox max z pcluster MNIx MNIy MNIz hem region

175ms 0.80 neg 66 3.29 0.0094 32 0 38 R precentral gyrus, white mat-

ter

225ms 0.85 neg 69 3.44 0.0083 30 -70 52 R superior lateral occipital

cortex

250ms 0.85 neg 82 3.25 0.0062 48 32 22 R middle frontal gyrus, dorso-

lateral prefrontal cortex

300ms 0.86 neg 89 3.28 0.0052 52 10 28 R middle frontal gyrus, infe-

rior frontal gyrus, precentral

gyrus

375ms 0.84 pos 192 3.65 0.0008 0 -78 56 L/R superior sagittal sinus, L

precuneus

pos 93 3.06 0.0047 -2 -48 2 L posterior cingulate gyrus

pos 74 3.02 0.0083 6 -24 14 L/R white matter, ventricle

400ms 0.85 pos 340 3.70 0.0005 -2 -66 62 L/R superior sagittal sinus

pos 70 3.20 0.0086 -6 10 68 L superior frontal gyrus

500ms 0.81 neg 63 3.33 0.0094 8 48 46 R frontal pole, superior frontal

gyrus

525ms 0.79 neg 293 3.59 0.0005 40 6 44 R middle frontal gyrus

neg 212 3.29 0.0005 2 46 40 L/R superior frontal gyrus,

paracingulate gyrus, R

frontal pole

neg 109 3.74 0.0029 -52 -66 34 L superior lateral occipital

cortex, angular gyrus

neg 90 3.28 0.0047 56 -66 32 R superior lateral occipital

cortex, angular gyrus

550ms 0.78 neg 87 3.23 0.0057 0 48 32 L/R superior frontal gyrus,

paracingulate gyrus

RESPONSE-LOCKED

window AUC +/- Nvox max z pcluster MNIx MNIy MNIz hem region

-175ms 0.75 neg 83 3.34 0.0062 8 32 52 R superior frontal gyrus

-125ms 0.82 neg 63 2.95 0.0104 40 26 26 R middle frontal gyrus

-100ms 0.84 neg 65 3.33 0.0094 52 -60 30 R superior lateral occipital

cortex, angular gyrus

-75ms 0.86 neg 88 3.25 0.0052 60 -44 10 R middle temporal gyrus, au-

ditory cortex

-25ms 0.88 neg 86 3.32 0.0049 -42 -18 36 L postcentral gyrus, precen-

tral gyrus

0ms 0.90 pos 59 3.46 0.0099 16 -58 42 R white matter, precuneus

50ms 0.93 pos 80 3.33 0.0070 2 -48 4 L/R posterior cingulate gyrus

pos 79 3.54 0.0060 20 -48 -48 R cerebellum VIIIb

pos 72 3.25 0.0078 40 -20 -18 R temporal fusiform cortex

pos 69 3.12 0.0091 4 -70 -18 L/R cerebellar vermis

75ms 0.91 pos 82 3.39 0.0065 4 -70 -18 L/R cerebellar vermis

200ms 0.89 neg 184 3.36 0.0010 46 -24 44 R postcentral gyrus, white

matter, hand sensorimotor

neg 71 3.17 0.0083 -38 -16 36 L precentral gyrus, white mat-

ter

Table 4.1: Significant clusters resulting from the stimulus-locked and response-locked EEG-based fMRI analyses.

Dotted lines denote cutoffs between early, middle, and late windows, as per our discussion.
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Figure 4.8: DMN determined independently with EEG single-trial variability and ICA. 525 ms stimulus-

locked window EEG single-trial variability (STV) negative correlates in medial frontal gyrus, bilateral angular gyri,

and posterior cingulate (in blue, with hue representing p-value in the range 0.005–0.001), overlaid with the mean

default-mode network (DMN) as determined using ICA (pink). STV results shown are multiple-comparison corrected

at p < 0.05. An additional cluster in right middle frontal gyrus can also be seen. Note that images are displayed in

neurological coordinates.

vations in the precentral gyrus, superior lateral occipital cortex (LOC), and frontal regions including

dorsolateral prefrontal cortex (DLPFC). Components close to the response time (but not locked to

response) were correlated positively with superior frontal gyrus (SFG) and areas consistent with

draining veins. The later stimulus-locked discriminating components showed additional negative

correlations with regions in the left and right angular gyrus/LOC, the SFG/paracingulate gyrus,

and the right middle frontal gyrus.

The response-locked EEG components revealed an early negative correlate in superior frontal

gyrus, but most of the significant BOLD activations appeared in windows close to the RT. These

included negative activations in LOC, middle temporal and frontal gyri, and precentral and postcen-

tral gyri. We saw positive activations in cerebellum, posterior cingulate, and precuneus immediately

following response time. Later response-locked components revealed additional negative activations

in postcentral and precentral gyri. Supra-threshold negative and positive activations also appeared

in white matter for our response-locked analysis.

The late stimulus-locked windows showed regions consistent with the default-mode network.

Since the DMN is commonly detected using ICA, we confirmed the location of the subject mean

DMN using ICA and template matching on the functional data. Our supra-threshold clusters in

the medial frontal gyrus and angular gyri overlapped with this ICA-determined DMN, as did a
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negative 58-voxel activation in the posterior cingulate that achieved a cluster p-value of 0.0125,

with max z = 3.185 at MNI coordinates (10, –48, 34) (Figure 4.8).

4.4 Discussion

Based on the difference ERPs and the scalp distributions and timing of our EEG discriminating

components, we believe we are tracking variation related primarily to the P2, N2, and P3 responses

(Key et al., 2005), so we discuss our results partly in light of these. More specifically, our topogra-

phies are consistent with discrimination of the target-related P3b, frontal P3f, and post-motor

potential (Pmp) subcomponents of the P3 (Makeig et al., 1999), as expected for our visual oddball

task. Since amplitudes of these components are known to modulate with arousal and attention

(Key et al., 2005; Luck et al., 2000; Nieuwenhuis et al., 2005), we use the classifier output (i.e. its

decision certainty) to index the subjects’ attentional state (i.e. task engagement) during each trial.

Our EEG-based fMRI regressors are thus revealing the BOLD correlates of modulations in task

engagement.

Electrophysiological activity and BOLD responses are coupled in a complex way that is not yet

completely understood. There is evidence to suggest that the sign of the EEG-BOLD correlate is

both a function of space and of frequency, and the sign of the BOLD response itself is affected by the

excitation-inhibition balance within local neuronal circuits (Logothetis, 2008). It has been shown

that low-frequency electrophysiological variations, such as those measured by scalp EEG in the 0–20

Hz range, are negatively correlated with the BOLD response (Goldman et al., 2002; Mukamel et al.,

2005; Scheeringa et al., 2011a). Additionally, commonly-studied fMRI resting state networks have

been shown to correlate with specific frequency bands in magneto-encephalography (MEG) studies

(Brookes et al., 2011; de Pasquale et al., 2010) and show some (though lesser) frequency-dependency

using EEG-fMRI (Mantini et al., 2007). Since there is still some question about the physiological

meaning of directionality of electrophysiological BOLD correlates, the following sections do not

attempt to interpret the sign of the correlation between the BOLD signal and the STV regressor.
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4.4.1 Early EEG discriminating components reveal BOLD correlations in task-

relevant brain areas

Early EEG windows resulted in right-lateralized activations in brain regions associated with task-

relevant neural processes (Figure 4.5). These included frontal activations in DLPFC and posterior

SFG, which are most commonly associated with working memory and higher-level cognitive pro-

cessing during demanding tasks (Fuster, 2001; MacDonald et al., 2000), and the superior LOC.

These areas have been linked to P3 modulations and are discussed further in Section 4.4.2, which

focuses on components in that time range. To the best of our knowledge, BOLD correlates of

variability in the early P2 and N2 ERP components have not been studied in the visual domain;

however, Eichele et al. (2005) found correlates of auditory oddball N2 variability in both of these

areas at similar latencies. Using a visual target detection task, Novitskiy et al. (2011) found these

regions correlated with variability in the even earlier N1 component, but their activations were

left-lateralized.

4.4.2 EEG discriminating components during the P3 and around reaction time

reveal a period of transition from externally driven task-related to internally-

driven processing

Our middle windows, which occurred close to the behavioral response and in the range of the P3,

revealed a superposition of task-related and endogenous attention areas (Figure 4.6). Similar to the

early windows, task-related BOLD correlations were found in right middle frontal gyrus and superior

LOC. We also found an activation in right inferior frontal gyrus, an area associated with reorienting

to salient behaviorally-relevant stimuli and is a main node in the right-hemisphere ventral attention

network (VAN) (Corbetta et al., 2008; Corbetta & Shulman, 2002). Right-hemisphere frontal areas

have been shown by a number of recent EEG-fMRI studies to modulate with P3 amplitude during

visual (Bledowski et al., 2004a) and auditory (Eichele et al., 2005) tasks, and were reported for the

latter case at a similar latency.

Our superior LOC correlate is an expected finding, given its common association with visual

attention (Murray & Wojciulik, 2004). However, similar regions have also been shown to couple

with EEG components in the P3 time range for auditory tasks. Benar et al. (2007) linked the

parieto-occipital junction to P3 modulations during an auditory oddball task. In our previous study
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that used an analogous auditory oddball paradigm and the same EEG discriminating component

methods (Goldman et al., 2009), we also detected a correlate in the right LOC in the P3 range, but

that cluster was located slightly inferior to our current finding. These collective findings suggest a

supra-modal role for the LOC in attention.

An activation also appeared in right temporal fusiform cortex, an area commonly known to be

involved in high-level visual processing. Bledowski et al. (2004b) also found that higher visual areas

in inferior temporal gyrus contribute to the visual P3b, and their correlate appeared at similar

latency. We also detected right-lateralized activations in auditory cortex. This co-activation of

auditory and visual processing areas supports the presence of cross-modal attentional modulations,

suggesting that modulations in auditory-directed attention (e.g. listening to scanner noise) affect

attention to the visual modality.

As expected for EEG windows close to reaction time, we found BOLD correlates in several

regions related to the button press. This included the motor areas of the left precentral and post-

central gyri, which is consistent with a right-handed button press and has previously been associated

with P3 coupling in visual (Bledowski et al., 2004a,b; Warbrick et al., 2009) and auditory (Benar

et al., 2007) tasks. We also saw activations in the cerebellar vermis, which coordinates and monitors

movement (Ghez & Fahn, 1985), and right cerebellum area VIIIb, which plays additional roles in

motor control, coordination, and accurate timing of movements, and which has been particularly

associated with right-handed finger tapping (Stoodley & Schmahmann, 2009; Stoodley et al., 2012).

The precuneus has been associated with a variety of task-relevant cognitive processes, including

attentional orienting, visuo-spatial imagery, coordination of motor behavior, success monitoring,

and self-referential thoughts (Cavanna & Trimble, 2006; Taylor et al., 2009). Eichele et al. (2005)

found precuneus activations correlated with earlier P2 amplitude modulations, though their study

used an auditory task. Our reaction-time precuneus activation supports the idea of a transition from

the exogenous attentional state required for the visual perceptual decision to motor coordination

required for the button press, followed by a reflection on task performance. Activations associated

with other forms of internal thought, including posterior cingulate and SFG, were detected both in

middle and late windows, and these are discussed in Section 4.4.3.

BOLD fMRI literature historically has reported activations mainly in gray matter, partially due

to the common practice of masking white matter during statistical analyses, but growing evidence
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supports the presence of white matter BOLD signals. This is particularly true when single-trial

variability is modeled (Yarkoni et al., 2009). Here, our latent variability feature, the EEG single-

trial discriminating component, revealed BOLD correlates in white matter regions. Since these

activations were adjacent to sensorimotor regions, including right postcentral and precentral gyri

and the left precentral gyrus, they are most closely related to the button press.

Reports of BOLD activations in draining veins are also rare in the literature, due to the high

spatial resolution required to differentiate veins from cortical tissue. However, Biancardi et al.

(2011), using a high-resolution study of visual areas at 7 T, found task-related negative BOLD

correlates in large cerebral veins. We found a remarkable 340-voxel cluster that is adjacent to

the precuneus but appears to track the superior sagittal sinus, a large cerebral vein that drains

widespread areas of cortical tissue. The BOLD signal we detected in cerebral veins is likely due

to a transient misbalance between metabolic demands and increased oxygenated blood, and may

reflect strongly activated cortices that are functionally but not anatomically overlapping across

subjects, but which drain into the same veins. Since the superior sagittal sinus is nearly exclusively

responsible for draining the cerebrum (Mattle et al., 1990), this interpretation does not allow

speculation regarding particular cortices. An alternative idea for the physiological meaning of

this activation is that it reflects a global change in cerebral blood flow. Given the care we took

with image registration, pulsation artifact investigation, and multiple comparison correction, and

the congruency of our cortical results with the literature, we believe these to be true results that

should not be ignored. However, these remain preliminary findings that we are currently validating

in new datasets using diffusion tensor imaging and magnetic resonance venography.

4.4.3 Late EEG discriminating components reveal default mode activity be-

tween subject response and the next stimulus

BOLD correlates of EEG discriminating components late in the trial (Figure 4.7) appeared in

a pattern matching the DMN (Figure 4.8), supporting MEG evidence for a transient nature of

functional networks (de Pasquale et al., 2010). Given that we found an earlier activation in a

region associated with the VAN, this supports the hypothesis for complementary roles of the DMN

and VAN in directed awareness (Boly et al., 2007; Vanhaudenhuyse et al., 2011), and supports

the intracranial EEG finding that transient stimulus-related activations in VAN areas occur earlier
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than those in DMN (Ossandn et al., 2011).

Our finding is in agreement with a number of recent fMRI and combined EEG-fMRI studies

that suggest that the DMN plays an active role in task-related processing. Spontaneous DMN

fluctuations have been shown to affect visual task performance (Eichele et al., 2008) and during rest

have inversely correlated with the frontal theta rhythm (Scheeringa et al., 2008), which is typically

associated with cognitive processing. There is also evidence of transient event-related suppression

of DMN regions related to increased cognitive load during a visual N-back task (Esposito et al.,

2006, 2009) and during motion discrimination (Singh & Fawcett, 2008) and auditory oddball tasks

(Eichele et al., 2005), though in the latter case corresponding to an earlier component. This

converging evidence supports the idea that DMN regions modulate selective attention for optimal

allocation of attentional resources.

Because our correlate appears after the response, our finding suggests an active role for the

DMN in introspective task-relevant processing, such as an active observation of the behavioral

response. Such retrospection is not necessarily overtly conscious so it is challenging to investigate

experimentally (Schooler, 2011). We do not believe this post-response DMN correlate is reflecting

an anticipatory state while subjects await the next stimulus since ERPs (derived from EEG data

that were not high-pass filtered) revealed no effect of contingent negative variation (CNV), a slow

ERP component with magnitude dependent upon level of expectation of the following stimulus

(Palva & Palva, 2012; Scheibe et al., 2010) (data not shown). Previously reported BOLD correlates

of CNV did not include the canonical DMN (Scheibe et al., 2010); combined with our result,

this loosely suggests that suppression of DMN is not related to increased anticipation. Further

evidence for an introspective state late in the trial is an activation in the paracingulate, which has

associations with self awareness and theory of mind, and particularly introspection-related activity

during visual tasks (Goldberg et al., 2006).

Our bilateral angular gyri clusters, which are subregions of the intra-parietal lobules (IPLs),

are consistent with many reports of IPL in P3 coupling (Linden, 2005). Similar to our late (525–

550 ms relative to stimulus) activations, Bledowski et al. (2004a,b) found bilateral IPL correlated

with EEG amplitude variability, reported around 540 ms (in 2004b). Our stimulus-locked correlates

appear later than the peak amplitude of the P3, which suggests that the IPL is more closely linked

to P3 latency variability than amplitude variability. This is consistent with findings that activity
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in parietal areas correlates with P3 latency but not with amplitude (Warbrick et al., 2009).

4.4.4 BOLD coupling with the EEG response is captured by reaction-time vari-

ability for a subset of brain regions

Our results differ from converging evidence of the literature in that we did not find any EEG

variability correlates in the ACC. This region is thought to be involved in both top-down and

bottom-up attentional control related to sensory processing (Crottaz-Herbette & Menon, 2006)

and has been linked to early EEG component modulations. The N1 has been shown to correlate

with ACC activity during auditory discrimination tasks using EEG-fMRI (Mulert et al., 2008) and

fMRI-constrained EEG source localization (Esposito et al., 2009). The latter technique was applied

to both visual and auditory oddball data to find correlates in the early N2b and P3a components

(Crottaz-Herbette & Menon, 2006). However, we did find ACC correlates of RT variability, which

was not regressed out of the single-trial-variability models in these previous investigations. This

finding is in accordance with Warbrick et al. (2009), who used a visual target-detection task to

discover similar ACC correlates for both RT variability and P3 latency variability, but did not tease

these effects apart. We demonstrate that attention-related ACC coupling with EEG components

is reflected in the variability of externally-observable behavioral response events.

Our EEG variability results also differ from the many EEG-fMRI reports of P3-variability

correlates in the insula (Bledowski et al., 2004a,b; Eichele et al., 2005; Warbrick et al., 2009).

However, we did find bilateral insula correlates of the average event-related response, and additional

RT-variability correlates (max z-score 3.78 in right insula and 3.38 in left insula) that were slightly

too small to pass cluster threshold. Using a visual target-detection task, Warbrick et al. (2009)

also found bilateral insula correlates with a traditional analysis, and conversely with P3 amplitude

variability but not RT variability. Together with their findings, our results suggest that variance

of the BOLD signal within the insula can be explained primarily via the average event-related

response, with only minor contributions observable in EEG-component and RT variability.
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4.4.5 Our methods begin to unravel a cascade of neural events associated with

endogenous attentional modulations

Precise temporal localizations are difficult in traditional fMRI studies due to the slow, diffuse, and

indirect nature of the BOLD measurement and to spatial variations in the HRF. Our method of

combining single-trial EEG variability with fMRI was able to circumvent this limitation by find-

ing BOLD correlates of the electrophysiological response at multiple temporal offsets. Because

we used EEG STV in our fMRI model design and orthogonalized to event-related regressors, our

activations reveal the BOLD correlates of endogenous modulations in attention across trials. This

method begins to unravel a complex cascade of neural events, including sensory processing, execu-

tive processing, motor planning, and default-mode activity, in high spatial and temporal resolution.

Due to the simplicity of the task, the subjects’ minds were free to wander, and this enabled

observation of natural fluctuations in task engagement and the underlying spatial redistribution of

attentional resources throughout the duration of each trial. Specifically, our results revealed task-

relevant and primarily right-lateralized frontal areas engaged immediately following the stimuli,

and default-mode-region activations following the behavioral response. These findings are consis-

tent with the role Polich (2007) proposed for the P3 in rapid inhibition of ongoing neural processes

to facilitate the transfer of stimulus information from frontal to temporal-parietal areas. They also

provide evidence for a role of the default mode network in task-related processing. Furthermore,

our findings demonstrate the utility of our methods for non-invasively investigating the temporal

ordering of many widely distributed BOLD activations. We believe these techniques will be impor-

tant in future investigations of brain function, as the information they provide is complementary

to that which can be obtained from intracranial-EEG, MEG, and resting state studies.

4.5 Summary

Focused attention continuously and inevitably fluctuates, and to completely understand the mecha-

nisms responsible for these modulations it is necessary to localize the brain regions involved. During

a simple visual oddball task, neural responses measured by EEG modulate primarily with attention,

but source localization of the correlates is a challenge. In this study we used single-trial analysis of

simultaneously-acquired scalp EEG and fMRI data to investigate the BOLD correlates of modula-
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tions in task-related attention, and we unraveled the temporal cascade of these transient activations.

We hypothesized that activity in brain regions associated with various task-related cognitive pro-

cesses modulates with attention, and that their involvements occur transiently in a specific order.

We analyzed the fMRI BOLD signal by first regressing out the variance linked to observed stimulus

and behavioral events. We then correlated the residual variance with the trial-to-trial variation of

EEG discriminating components for identical stimuli, estimated at a sequence of times during a

trial. Post-stimulus and early in the trial, we found activations in right-lateralized frontal regions

and lateral occipital cortex, areas that are often linked to task-dependent processes, such as atten-

tional orienting, and decision certainty. After the behavioral response we saw correlates in areas

often associated with the default-mode network and introspective processing, including precuneus,

angular gyri, and posterior cingulate cortex. Our results demonstrate that during simple tasks

both task-dependent and default-mode networks are transiently engaged, with a distinct temporal

ordering and millisecond timescale.
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Chapter 5

Temporal Evolution of Coupling

Between Supramodal Cortical

Attention Networks and the

Brainstem

Cortical and subcortical networks have been identified that are commonly associated with attention

and task engagement, along with theories regarding their functional interaction. However, a link

between these systems has not yet been demonstrated in healthy humans, primarily due to data

acquisition and analysis limitations. We record simultaneous EEG-fMRI while subjects perform

auditory and visual oddball tasks, and we investigate the BOLD correlates of single-trial EEG

variability at latencies spanning the trial. We focus on variability along task-relevant dimensions

in the EEG for identical stimuli, and then we combine auditory and visual data at the subject level

to spatially and temporally localize brain regions involved in endogenous attentional modulations.

Specifically, we find that anterior cingulate cortex (ACC) correlates strongly with both early and

late EEG components, whereas brainstem, right middle frontal gyrus (MFG), and right orbito-

frontal cortex (OFC) correlate significantly only with late components. By orthogonalizing with

respect to event-related activity, we find that variability in insula and temporo-parietal junction is

reflected in reaction time variability, OFC and brainstem correlate with residual EEG variability,
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and ACC and MFG are significantly correlated with both. To investigate interactions between

these correlates of temporally-specific EEG variability, we performed dynamic causal modeling

(DCM) on the fMRI data. We found strong evidence for reciprocal effective connections between

the brainstem and cortical regions. Our results support current theories of dynamic interaction

between attention systems, using noninvasive methods to study the healthy human brain. In

particular, our results support the adaptive gain theory of locus-coeruleus-norepinephrine (LC-NE)

function and the proposed functional relationship between the LC-NE system, right-hemisphere

ventral attention network, and P300 EEG response.

5.1 Introduction

Neural and behavioral responses to external sensory input vary, even for identical stimuli and

environmental conditions. Much of this variability is attributable to natural fluctuations in internal

attentional state. Simple tasks requiring minimal working memory and executive processing allow

for greater fluctuations to occur but endogenous modulations of attention occur regardless of the

task difficulty. Some of this internal variation is reflected in behavioral response time (RT), but

residual variability remains that cannot be explained by externally observable events. Thus, purely

event-related analyses that focus on mean responses to a set of identical stimuli are unable to fully

explain the natural waxing and waning of attention.

Evoked responses to sensory stimuli have been studied extensively using electroencephalogra-

phy (EEG). This event-related potential (ERP) amplitude modulates with a number of exogenous

and endogenous factors, and different components are associated with particular tasks and stim-

ulus types (Key et al., 2005). One well-known ERP component, the P300, presents as a positive

deflection over central electrodes, begins around 300 ms and peaks at approximately 450 ms after

stimulus onset (Donchin & Coles, 1988; Hopfinger & West, 2006; Makeig et al., 1999; Picton, 1992).

It appears for both auditory and visual target stimuli, and its amplitude is known to modulate with

attention to the task (Luck et al., 2000; Nieuwenhuis et al., 2005; Polich, 2007)). Despite extensive

study, the mechanism of P300 generation is still not completely understood, though invasive ani-

mal studies suggest it is deep-rooted in the brainstem, involving the locus coeruleus (LC), a tiny

nucleus of cells that projects widely and has been found to play a role in target detection, focused
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attention, and behavioral responses to sensory stimuli (Aston-Jones & Cohen, 2005; Nieuwenhuis

et al., 2005; Sara & Bouret, 2012). Based on results of EEG-fMRI studies using separate auditory

and visual tasks (Benar et al., 2007; Eichele et al., 2008, 2005), the P300 has also been shown to

couple with activity in cortical regions, including anterior cingulate cortex (ACC), insula, and the

right-lateralized frontal and temporo-parietal regions of the ventral attention network (VAN). The

common brain regions found using independent auditory and visual studies suggest their modu-

latory roles are supra-modal. However, to the best of our knowledge such commonalities across

sensory input modalities have not been investigated directly. A strong functional link has been

proposed between the locus coeruleus-norepinephrine (LC-NE) system, the P300 response, and the

VAN (Corbetta et al., 2008), but this hypothesis requires validation in healthy humans.

Dynamic Causal Modeling (DCM) of fMRI data is a useful approach to investigate directed con-

nectivity between brain regions of interest (ROIs) (Friston et al., 2003; Stephan et al., 2010), since

it aims to provide neuro-biologically interpretable estimates of effective connectivity between neural

populations. ROIs and presence of connections between them are specified based on prior knowledge

of brain structure and function. The generative models specify propagation of neural state changes

induced by experimental perturbations (both in space and time). Mapping from neural activity to

observable fMRI BOLD activity is estimated independently for each ROI, accounting for spatial

variability of the hemodynamic response (Stephan et al., 2010). DCM is classically performed on

stand-alone fMRI data, but Nguyen et al. (2013) recently demonstrated the value of incorporat-

ing EEG-derived information into DCMs of simultaneously-acquired fMRI data. EEG-fMRI data

fusion using DCMs remains a promising new research area (Smith, 2012).

In this study, we utilize simultaneous EEG-fMRI to investigate non-invasively in healthy humans

the BOLD correlates of natural fluctuations of attention that generalize across auditory and visual

sensory domains. We use mundane auditory and visual target detection tasks, which leave the

subjects’ minds free to wander, and apply well-established EEG machine learning methods to

estimate linear classifiers that maximally discriminate target from standard stimuli. We then use

the classifier output to index attention to the task on a single-trial basis, and correlate these values

with the fMRI BOLD data via the general linear model (GLM). We use the results as priors

in a DCM analysis that investigates interactions between these attention-related brain regions.

Our findings provide evidence for the role of the LC-NE system in supra-modal attention-related
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modulation of evoked EEG responses, and support the hypothesized functional link between the

LC-NE system, P300, and VAN.

5.2 Methods

Our seventeen subjects (6 female, mean 27.7 years, range 20–40) participated in three runs each of

the analogous visual and auditory oddball paradigms (see Section 2.1). The auditory and visual

runs were interleaved, beginning with the visual experiment for approximately half of the subjects

and the auditory experiment for the other half. There were 375 (125 per run) total stimuli per

task.

We used the same EEG-fMRI single-trial variability methods as in Chapters 3 and 4, and these

methods are described throughout Chapter 2. However, the purpose of the study here was to

investigate commonalities across the auditory and visual sensory input modalities. This required

combining the auditory and visual data.

5.2.1 Traditional fMRI Analyses

We combined individual runs of the experiment at the subject level in three ways: including only

auditory runs (Chapter 3), including only visual runs (Chapter 4), and including all six auditory

and visual runs together. Each of these three analyses was carried through to the group level.

Statistical image results for the traditional analyses were thresholded at z>2.3, and clusters were

multiple-comparison-corrected at p<0.05 (Worsley, 2001). Because it is possible for significant

correlations to be driven much more strongly by a subset of the data (in this case by one task),

we used the subject-level auditory-only and visual-only results to compute paired t-tests and thus

identify any brain regions with BOLD correlates that differed significantly across auditory and

visual runs. We discarded any voxels that achieved an uncorrected voxel-wise p<0.01 from the

statistical maps of the combined analysis, to ensure that our reported findings are common to

both auditory and visual tasks. Note that for its role as exclusion criteria, this is a conservative

threshold.

Since pulsation artifacts in the ventricles have been attributed to false activations near the brain-

stem (Astafiev et al., 2010), we similarly excluded any voxels that were correlated with the BCG
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pulsation artifact present in the EEG. These voxels were determined with a p<0.01 uncorrected

threshold, after incorporating the pulse timing into a GLM and carrying through to group level.

The pulse timing was obtained using a peak detection algorithm on the EEG signals at temporal

electrodes (T7, T8, CP5, CP6), which are the sites most strongly affected by such artifacts.

5.2.2 EEG single-trial variability fMRI Analysis

As in the traditional analysis, we ran the EEG STV fMRI analysis separately three ways: only

auditory runs, only visual runs, and with auditory and visual combined at the subject level. The

latter method was of primary interest, as it was used to investigate BOLD correlates that generalize

across both sensory modalities. As described for the traditional fMRI analysis (Section 2.5), we

used the auditory-only and visual-only results to determine voxels with activation that significantly

differed between the two tasks. These were then excluded from the statistical maps of the combined

analysis, as were any voxels that correlated with BCG pulse timing. This ensured that our reported

findings generalize across the auditory and visual domains.

Note that it was especially important to regress out the RT variability, since RT is known to be

negatively correlated with attention and our aim was to study variability in task-related attention

that cannot be detected using an external measure. This entire analysis was run independently for

all EEG training windows exceeding a mean AUC value of 0.75 for both tasks. We continued to

focus on within-class variability, using only the task-relevant (target) stimuli STV statistical maps

in our results interpretation.

We used the following randomization method to generate a null distribution and correct for

multiple comparisons. We ran the full STV fMRI analysis described above after permuting the

yτ=450ms values randomly within each class. 100 such permutations were done for each subject,

from which we generated 10,000 group-level statistical maps via random samplings from the subject-

level results. Stelzer et al. (2013) demonstrated the validity of this oversampling method. This

null distribution was used to generate family-wise-error (FWE) corrected positive and negative

activation p-value maps within the brainstem (one map for each of the EEG windows).

Cluster-size-thresholding is commonly used to correct for multiple comparisons in cortical re-

gions, because true activations are assumed to be widespread and FWE-correction is often too

strict for such a large number of voxels. To avoid an arbitrarily-selected cluster size threshold in
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our cortical analysis, we applied threshold-free cluster enhancement (TFCE) to account for variable

z-score magnitude within each cluster (Smith & Nichols, 2009). After also applying TFCE to all

maps comprising the null distribution, we used FWE-correction within a grey matter mask. All

corrected maps were thresholded at p = 0.05.

5.2.3 Dynamic Causal Modeling of fMRI Data

The EEG-based fMRI analysis described above provided timing information about the BOLD corre-

lates of endogenous attentional modulations, but it did not allow inference of directed relationships

between these regional activations. We investigated interactions between our temporally-specific

EEG variability correlates by performing an effective connectivity fMRI analysis. In particular, we

implemented single-state linear dynamic causal modeling (Friston et al., 2003; Stephan et al., 2010)

using DCM10 in SPM8.

We used the results of our EEG-based fMRI analysis (Figure 5.5) to select five regions of interest

(ROIs); these were chosen based on supra-threshold significance and particular interest in relation

to previous studies of attentional networks.

• brainstem (BS)

• anterior cingulate cortex (ACC)

• right anterior cingulate cortex (rACC)

• right middle frontal gyrus (rMFG)

• right orbito-frontal cortex (rOFC)

The activations were spread across four different EEG time windows (i.e. correlated with variability

in temporally-specific EEG discriminating components) and some differed in sign of correlation, so

their time series were not necessarily intrinsically correlated. Each ROI was a sphere with 4 mm

radius, centered on the peak voxel of the group-level EEG-based GLM results. Time series were

extracted from individual subjects’ preprocessed functional data in MNI space (down-sampled to

3 × 3 × 3 mm for computational efficiency) by estimation of the first principle component within

each ROI. Auditory and visual runs of the experiment were combined since the focus of our study

was task-related attentional modulations common across sensory input modalities.
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We designed twelve related models (Figure 5.7) to investigate intrinsic directed connectivity

between the five ROIs, focusing on cortical projections to and from the brainstem. In models 1-

9, we varied the direction of the ACC-brainstem connection (including one-way and bidirectional

connections) and the stimulus input region (brainstem, ACC, or both). Directionality of the other

connections was based on known structural projections in primates (Aston-Jones & Cohen, 2005),

including a directed connection from the brainstem to rMFG and bidirectional connections between

brainstem and rACC as well as brainstem and rOFC. Models 10-12 used timing information from

the EEG-based analysis in specification of all the connections, only allowing connections to be

directed forward in time. Input region was varied similarly to the other models.

We used fixed effects Bayesian model selection (BMS) to compare these 12 models both on

a single-subject level and at the group level. BMS balances model fit and complexity, thereby

selecting the most generalizable model. It estimates the relative model evidence and provides a

distribution of posterior probabilities for all of the models considered. We used fixed effects because

focused attention to a simple task involves basic physiological processes that are expected to be

common to a healthy subject population (Stephan et al., 2009, 2010). We also compared families

of similar models (Penny et al., 2010); the model space was divided into three families based on the

direction of connectivity between the brainstem and ACC. Finally, we used Bayesian parameter

averaging (BPA) to provide group-mean intrinsic connection strengths and their probabilities for

the winning model.

5.3 Results

All subjects responded with high accuracy and speed. For the auditory task, 98.3% ± 2.0% of

targets were correctly detected, with 404.1 ± 58.3 ms RT. The visual targets were detected with

98.4%± 3.1% accuracy and 397.2± 38.9 ms RT.

5.3.1 EEG Analyses

Traditional ERPs following target stimuli displayed strong widespread P300 responses for both

the auditory and visual tasks. These were most prominent and discriminative relative to the ERP

response to standard stimuli at the Pz electrode site (Figure 5.1). N200 responses were also strongest
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Figure 5.1: Traditional stimulus-locked ERPs. Target and standard EEG responses at the Fz (top) and Pz

(bottom) electrode sites for both the auditory (left) and visual (right) oddball tasks. Time is in ms relative to stimulus

onset.



CHAPTER 5. TEMPORAL EVOLUTION OF COUPLING BETWEEN SUPRAMODAL
CORTICAL ATTENTION NETWORKS AND THE BRAINSTEM 58

Figure 5.2: Single-trial EEG discrimination results. Group mean discriminator performance for the auditory

(left) and visual (right) oddball tasks. Standard error is indicated with shading. Since we are interested in the BOLD

correlates of single-trial EEG variability, we only consider EEG components with discrimination that is both significant

(AUC > 0.66, p < 0.01) and substantial (AUC > 0.75, p � 0.01). Corresponding EEG discriminant component scalp

projections (forward models) are shown for a subset of the windows with significant classifier performance, where

color represents correlation between the discriminating component and the data (red = positive, blue = negative,

green = 0).

and most discriminative at parietal sites for both tasks. The N100 and P200 components were

largest at medial frontal electrodes for the auditory task. Both of these earlier ERP components

could also be seen for the visual task, but were stronger at parietal sites. The latencies and scalp

topographies were consistent with previous ERP literature (Hopfinger & West, 2006; Key et al.,

2005; Makeig et al., 1999), notably that the auditory N100-P200 complex presents over frontal

regions, whereas the visual N100-P200 presents more strongly over parietal regions.

For both the auditory and visual tasks and for all subjects, we were able to discriminate target

vs. standard EEG trials with highly significant accuracy for multiple EEG windows (Figure 5.2).

Our permutation method determined the p = 0.01 significance corresponded to AUC = 0.66. The

auditory stimulus discrimination resulted in a peak group-mean AUC of 0.84 at 225 ms, with a later

discrimination peak of 0.81 AUC at 375 ms. The visual stimulus discrimination curve displayed

a broad peak with maximum AUC of 0.86 at 325 ms. Discriminator performance exceeded the

more conservative AUC > 0.75 threshold for the 175–475 ms windows for the auditory task, and

175–600 ms windows for the visual task. Thus, all windows from 175 to 475 ms were included in

the fMRI analysis. Importantly, the high discrimination accuracy with similar temporal profiles
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showed the auditory and visual tasks to be well-matched.

The grand mean forward models, which show the scalp distribution of discriminating compo-

nents as they progress across time, are displayed below the discriminator performance curves in

Figure 5.2 for a subset of windows with significant performance. Both auditory and visual EEG data

were most discriminative at medial frontal sites very early in the trial, then at medial central sites

slightly later, and finally the P300 range data were most discriminative at medial posterior sites.

These topographies were consistent with previous reports for auditory (Goldman et al., 2009) and

visual (Gerson et al., 2005) target discrimination. Discriminator output was significantly (p < 0.01)

negatively correlated with RT for multiple EEG windows. This result demonstrated the need to

orthogonalize our STV fMRI regressors to RT-variability regressors given our aim to study residual

variance unobservable with behavioral response.

5.3.2 Traditional fMRI Analysis

The traditional event-related target vs. standard contrast resulted in extensive activations through-

out multiple cortical and subcortical structures. Bilateral activations were observed in cerebellum,

thalamus, insula, ACC, and supra-marginal gyri. Left (i.e. contralateral) motor areas and right

middle frontal gyrus (MFG) were also strongly activated. These were consistent with previous odd-

ball paradigm results (Laurens et al., 2005; Stevens et al., 2000). RT-variability statistical maps

showed strong correlates in anterior and posterior cingulate cortex (PCC), left motor areas, right

MFG, right lateral occipital cortex (LOC), right angular gyrus, and bilateral insula (Figure 5.3).

5.3.3 Single-trial EEG Variability fMRI Analysis

The EEG-derived regressors resulted in significant group-level activations for multiple stimulus-

locked EEG training windows, including positive correlates for the 200 ms window and negative

correlates for the 425-475 ms windows. The early (200 ms) positive activations were observed in

ACC and left caudate. EEG variability within all windows from 425 to 475 ms correlated neg-

atively with BOLD activity across right middle and inferior frontal gyrus (MFG/IFG). Negative

correlates were also found in right precentral and postcentral gyri for the 425 and 475 ms win-

dows. Right-lateralized negative activations were also detected in paracingulate/ACC at 425 ms,

and temporal and frontal poles, including lateral orbito-frontal cortex (OFC), at 475 ms. A neg-
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Figure 5.3: fMRI BOLD correlates of reaction time variability. Group-level positive activations thresholded

at z > 2.3, and cluster corrected at p < 0.05. All voxels correlating significantly (p < 0.01 uncorrected) with the BCG

pulse timing are excluded. Also excluded are all voxels with significantly different activation strength for the auditory

vs. visual tasks (paired t-test, p < 0.01 uncorrected). Note that images are displayed in neurological coordinates.
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window Nvox +/- min p MNIx MNIy MNIz hem region

200ms 273 pos 0.0217 2 8 34 L/R anterior cingulate gyrus

23 pos 0.0217 -14 2 24 L caudate

4 pos 0.0482 -60 4 14 L precentral gyrus

2 pos 0.0491 -64 -14 -12 L middle temporal gyrus (posterior, anterior, su-

perior)

425ms 578 neg 0.0242 52 26 26 R middle frontal gyrus, inferior frontal gyrus

211 neg 0.0377 42 -2 58 R precentral gyrus, middle frontal gyrus

49 neg 0.0340 12 22 34 R paracingulate gyrus, anterior cingulate gyrus

11 neg 0.0449 48 -18 44 R postcentral gyrus

8 neg 0.0487 32 26 46 R middle frontal gyrus, superior frontal gyrus

450ms 59 neg 0.0402 52 26 26 R middle frontal gyrus, inferior frontal gyrus

21 neg 0.0018 0 -28 -20 L/R brainstem

475ms 758 neg 0.0161 44 36 26 R middle frontal gyrus, precentral gyrus, frontal

pole

213 neg 0.0381 44 40 0 R frontal pole, inferior frontal gyrus, frontal op-

erculum cortex

207 neg 0.0260 50 -20 34 R postcentral gyrus, precentral gyrus, anterior

supramarginal gyrus

72 neg 0.0367 40 42 -16 R frontal pole, orbito-frontal cortex

43 neg 0.0418 56 10 -26 R temporal pole

Table 5.1: BOLD Correlates of EEG Variability Common to Auditory and Visual Tasks. Shown for each

cluster are center of stimulus-locked EEG training window, number of voxels in cluster, sign of correlation, minimum

FWE-corrected p-value within cluster and its coordinates in MNI template space, hemisphere, and anatomical brain

region. FWE correction was performed independently within a grey matter mask following TFCE and within the

brainstem.
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Figure 5.4: BOLD fMRI correlate of EEG single-trial variability detected in brainstem. EEG discrim-

inating component variability in the 450 ms window correlated negatively with a 21-voxel cluster in the midbrain.

Minimum FWE-corrected p-value of 0.0018 was located at MNI coordinates (0, –28, –20). Note that images are

displayed in neurological coordinates.

ative 21-voxel activation in the brainstem was observed for the 450 ms window (Figure 5.4); this

cluster had a minimum corrected p-value of 0.0018 at MNI coordinates (0, –28, –20). Table 5.1

contains a complete list of activations exceeding multiple-comparison-corrected p = 0.01 with their

corresponding EEG windows. Figure 5.5 shows axial slices through the peak voxel of each of these

clusters. Despite the high EEG discrimination accuracy in the middle window range, we did not

detect significant activations at those latencies (225–400 ms) in this supra-modal analysis, which

used a paired t-test to exclude areas that were more strongly correlated with EEG during one task

(either auditory or visual).

In addition to the stimulus-locked analysis, we investigated response-locked activity, as some

cognitive processes and subcomponents of the P300 are more tightly time-locked to behavioral

responses than stimulus presentation (Gerson et al., 2005; Makeig et al., 2004; O’Connell et al.,

2012). Although discrimination performance for response-locked EEG windows exceeded that of the

stimulus-locked analysis, we were unable to detect significant BOLD correlates of response-locked

discriminating activity common to both auditory and visual tasks.
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Figure 5.5: BOLD fMRI correlates of EEG single-trial variability spanning the trial. Timing diagram

showing axial slice through peak voxel of each significant cluster. Time is in ms relative to stimulus onset. Red-yellow

denotes positive correlation with the single-trial EEG classifier output (attentional index), and blue-cyan denotes

negative correlation. MNI z-coordinate is specified to lower right of each slice. Note that images are displayed in

neurological coordinates.
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5.3.4 Separating BOLD correlates of RT variability and latent EEG variability

Using our methods we were able to separate variance in the BOLD data explainable purely by

RT variability from that explainable by single-trial EEG variability. Figure 5.6 summarizes these

results. Specifically we find strong bilateral insula correlates of RT variability, but no significant

correlates of the EEG variability in these regions. We also found right angular gyrus/TPJ cor-

related with RT variability, but not with single-trial EEG variability. Conversely, other regions

that have been associated with P300 correlated significantly with EEG variability but not RT.

This included right precentral and postcentral gyri and left caudate. Lastly, we find that the ACC

and MFG/IFG regions correlate significantly with both RT variability and the residual EEG dis-

criminating component variability, suggesting that some but not all of ACC and MFG/IFG BOLD

response variation is observable in the RT variation.

5.3.5 DCM Selection and Parameter Estimation

Across the 17 individual subjects, Model 4 (Figure 5.8) was the DCM chosen most frequently by

the Bayesian model selection method (5 wins), with Model 5 in 2nd place (3 wins). Both of these

models were members of the bidirectional model family, which was defined based on the presence

of a bidirectional connection between the ACC and brainstem. All other connectivity was specified

identically for these two models (with drives from BS to all other ROIs, and connections directed

toward the BS from ACC, rACC, and rOFC). The only difference was the input region for the

stimulus events, which was the brainstem for Model 4 and the ACC for Model 5.

On the group level, Bayesian model selection chose Model 4 as an overwhelming winner, with

posterior probability 0.9997. Model 5 placed a distant 2nd with probability 0.0003. When BMS was

applied to the partitioned model space, the bidirectional family won with a posterior probability of

1.0000 on the group level. (The other two partitions, which were defined by unidirectional ACC-BS

connections, were each estimated to have probabilities less than 10−9.)

All group-mean coupling and input parameters estimated by Bayesian parameter averaging of

Model 4 (Figure 5.8) achieved a posterior probability greater than 0.9975. Input parameters for the

target and standard stimuli were 0.10 and -0.04, respectively. Connectivity internal to each of the

4 cortical ROIs was negative (representative of self-inhibition), whereas brainstem self-connectivity

had a low-magnitude positive coupling parameter estimate. Connectivity parameters from the
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Figure 5.6: Reflection of neural activity in reaction time is region-specific. By regressing out RT vari-

ability from EEG variability in our fMRI model, we find that single-trial BOLD activity in a subset of attention-

or P300-linked regions is reflected in the behavioral response. Listed are regions where BOLD signal significantly

(p < 0.05 corrected) correlates with RT single-trial variability, latent early-window EEG single-trial variability,

the late-window EEG variability, or their intersections. Common associations within the literature are indicated.

TPJ = temporoparietal junction, LOC = lateral occipital cortex, PCC = posterior cingulate cortex, preCnt = pre-

central, postCnt = postcentral, ACC = anterior cingulate cortex, MFG = middle frontal gyrus, IFG = inferior frontal

gyrus, OFC = orbitofrontal cortex.
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Figure 5.7: Dynamic Causal Models. We designed, estimated, and compared 12 related models. 5 ROIs were

selected from results of the EEG-based fMRI analysis, and therefore were correlated with temporally-specific EEG

discriminating component variability. Red circles represent ROIs positively correlated with the EEG variability, and

blue negative. Diagram is arranged such that these EEG correlates are in temporal order from left to right. See

Table 5.1 and Figure 5.5 for cluster details. Event timing for target (ut) and standard (us) stimuli were used as

input to the DCMs, applied either to ACC, BS, or both. ROIs: BS = brainstem, ACC = anterior cingulate cortex,

rACC = right anterior cingulate cortex, rMFG = right middle frontal gyrus, rOFC = right orbito-frontal cortex.

Model space was partitioned for family analysis based on ACC-BS connectivity. ACC to BS: models 1, 2, 7, 10, 11,

12; BS to ACC: models 3, 6, 8; bidirectional connectivity: models 4, 5, 9.
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Figure 5.8: Group Average DCM for the Optimal Model. Results of Bayesian parameter averaging for Model

4 (see Figure 5.7), which won the Bayesian model selection on the group level (posterior probability 0.9997) and had

more wins than any other model on the individual subject level. Intrinsic connection strengths are displayed next to

their corresponding connectivity arrows; all values had posterior probability exceeding 0.9975. Time axis and circle

color relate the model to the EEG-based fMRI results (see Figure 5.5), from which these ROIs were derived.
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brainstem directed to all ROIs were positive (excitatory), ranging from 0.56–1.04 Hz. Strongest

coupling strength was estimated for the “earliest” ROI (i.e. derived from correlates of early EEG

variability) and monotonically decreased to the lowest strength for the “latest” ROI. The ACC and

rOFC connections directed toward the brainstem had negative (inhibitory) coupling parameters

(–0.94 Hz and –0.43 Hz, respectively), and the rACC showed a positive value (0.69 Hz).

5.4 Discussion

5.4.1 Our methods reveal BOLD correlates of attentional modulations

Our aim in this study was to tease apart the cascade of neural involvement related to natural

fluctuations in focused attention using the high temporal resolution of EEG to find fMRI correlates

of task-related EEG-components derived from a weighted average of all electrodes. Previous studies

investigating BOLD correlates of single-trial event-related EEG variability have focused on only a

few well-known ERP components at selected latencies and electrodes (Benar et al., 2007; Esposito

et al., 2006; Fox & Raichle, 2007), though some work has investigated ERP components spanning

the trial (Eichele et al., 2005; Goldman et al., 2009). These single electrode measurements can be

particularly noisy when recorded simultaneously with fMRI due to scanner-related artifacts.

Our method uses EEG discrimination to separately identify the most task-relevant data projec-

tions of the entire EEG dataset at different event-locked time windows. We are thus able to study

activity related to stimulus detection, target recognition/rejection, motor planning, and behavioral

response as these processes evolve following the stimulus (Philiastides & Sajda, 2006). Further we

regress out the variance correlated with RT (Feige et al., 2005; Goldman et al., 2009), so that we

are investigating only BOLD correlates of modulations in focused attention that are not reflected

in externally-observable behavioral events. Finally, because we combine data from analogous audi-

tory and visual tasks, our methods reveal activity that generalizes across sensory input modalities.

We take care to ensure that our results are not driven by activity related to only one task or to

physiological artifacts in the images.

We do not attempt here to interpret the sign of fMRI correlates of EEG single-trial variability,

since the BOLD response is related to electrophysiological activity in a complex way that is not yet

completely understood (Arthurs & Boniface, 2002; Brookes et al., 2011; de Pasquale et al., 2010;
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Goense et al., 2012; Goldman et al., 2002; Logothetis et al., 2010; Mantini et al., 2007; Mukamel

et al., 2005; Scheeringa et al., 2011a).

5.4.2 fMRI correlate of EEG variability in brainstem supports LC adaptive

gain theory

The LC-NE system is commonly associated with optimization of task performance by engaging

and refocusing attention (Aston-Jones & Cohen, 2005; Bouret & Sara, 2005; Dayan & Yu, 2006;

Sara & Bouret, 2012). Current theories of its specific functional role rely heavily on animal studies,

with confirmation in humans needed. Brainstem imaging using fMRI poses a number of challenges,

notably close proximity to pulsatile vessels, proper image alignment, and the small size of brainstem

nuclei relative to BOLD spatial resolution. Nevertheless, fMRI activations in midbrain nuclei have

been previously reported (D’Ardenne et al., 2008; Payzan-Lenestour et al., 2013; ?), including EEG-

fMRI evidence for an effective relationship between ACC and brainstem during a simple auditory

target detection task (Crottaz-Herbette & Menon, 2006). Our brainstem correlate of the 450-ms

EEG variability lies between and in close proximity to LC (Astafiev et al., 2010; Keren et al., 2009)

and ventral tegmental area (VTA) (Carter et al., 2009). Since the LC strongly innervates other

nearby neuromodulatory midbrain nuclei and receives their projections to a lesser extent (Sara &

Bouret, 2012), our cluster of activation likely arises from LC activity. The LC also projects to

multiple subcortical structures and broadly across the cortex (Loughlin et al., 1986), but its only

cortical inputs come from the ACC and OFC, which receive information from sensory cortices.

These prefrontal regions are thought to regulate LC activity both by directly driving its phasic

responses and via changes to baseline excitatory drive (Aston-Jones & Cohen, 2005).

Our methods revealed BOLD correlates of EEG variability in ACC for the 200-ms and 425-

ms windows, consistent with multiple reports of ACC coupling with various components of the

evoked EEG response. In previous EEG-fMRI studies, the ACC was shown to couple with the

N100 component during auditory tasks (Esposito et al., 2009; Mulert et al., 2008), and fMRI-

constrained ERP-source-modeling suggested that it is the major generator of the N2b and P3a

components during both auditory and visual tasks (Crottaz-Herbette & Menon, 2006). Note that

our early ACC cluster is not representative of sensory-evoked activity that differs between targets

and standards; we do not study the discriminating projection of the EEG data itself but instead
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investigate BOLD correlates of single-trial variability along that projection. We also only interpret

results within the target class to avoid stimulus-type confounds. O’Connell et al. (2012) minimized

the potential confound of early sensory-evoked processing using a gradual evidence accumulation

target detection task. They studied EEG activity related to general supra-modal decision processes

and found a relationship with the P300, which given their experimental design was expectedly locked

to behavioral response. However, keep in mind that the P300 has many specialized subcomponents

linked to multiple processes; some are more stimulus locked and some more response locked (Gerson

et al., 2005).

As part of the adaptive gain theory, modulatory drive from the ACC and OFC to the LC is

proposed to result from outcome of decision processes (Aston-Jones & Cohen, 2005), an idea which

stems from known latency of the LC and P300 responses and evidence to suggest that LC activity

is more tightly locked to RT than stimulus presentation (Clayton et al., 2004). We might therefore

expect to find significant correlates of response-locked EEG variability (which we did not detect

here common to auditory and visual tasks). However, since variability in response-locked EEG

components is highly correlated with RT variability (O’Connell et al., 2012), orthogonalization of

the EEG-based regressors to RT regressors left too little residual variance for response-locked EEG

correlates to achieve significance.

Our late correlates in right ACC, brainstem, and right OFC all occur in the range of the P300

(respectively at 425, 450, and 475 ms), and are all coupled with modulations of discriminating

components closely related to the P300 ERP component (see scalp distribution of discriminating

components in Figure 5.2). Their latency supports the decision outcome hypothesis of the adaptive

gain theory and provide support for the role of ACC and OFC in direct modulation of the LC phasic

response. Furthermore, they show that modulatory activity in ACC occurs prior to that in OFC.

The late ACC activation is also consistent with previous reports that link it to P300 modulations

(Benar et al., 2007; Bledowski et al., 2004b; Crottaz-Herbette & Menon, 2006; Linden, 2005); OFC

is not commonly associated with ERP variability. Note, however, that our early ACC correlate

suggests that it also has a role in tonic (i.e. baseline) modulation, which occurs prior to the decision.

Our inability to detect correlates for middle EEG windows suggests that in the middle time range

EEG and BOLD are coupled only in regions specific to the sensory input modality.

According to the adaptive gain theory of LC-NE function, behavioral performance is optimal
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during states of intermediate tonic activity, which result in a maximal phasic response to sensory

stimuli. Changes in tonic activity drive transitions between high and low attentional states, where

very low or high activity results in inattentive or distractible states, respectively. The phasic LC

response only occurs for task-relevant stimuli, but is not specific to sensory modality (Aston-Jones

et al., 1994). Because pupil diameter is closely tracked by tonic LC activity (Aston-Jones & Cohen,

2005) and pupil size to single-trial EEG variability (Murphy et al., 2011), we hypothesize that

our midbrain correlates of EEG variability reflect underlying LC tonic activity and subsequent LC

phasic response and the P300. The concurrent EEG-pupillometry study of Murphy et al. (2011)

found a relationship between baseline pupil diameter and variability of the P300 EEG response to

auditory targets; that finding was also interpreted as support for the adaptive gain theory. Similar

studies using simultaneous EEG, pupillometry, and fMRI would be of great benefit to this field.

There are limited reports of caudate coupling with P300 in both auditory (Crottaz-Herbette &

Menon, 2006) and visual (Warbrick et al., 2009) tasks. Because the caudate is highly innervated

by dopaminergic neurons (mainly from the VTA and substantia nigra within the midbrain), this

cluster provides further support for the adaptive gain theory, which proposes that the LC-NE

system interacts with many other brain circuits and works in synergy with the dopaminergic system

(Aston-Jones & Cohen, 2005).

5.4.3 Right hemisphere cortical activations provide link between LC-NE sys-

tem, VAN, and P300

The LC phasic response has also been theorized to drive transitions that refocus attention in a

more complex way, by facilitating an interruption (Dayan & Yu, 2006) and reset (Bouret & Sara,

2005) of the current endogenously-driven target network and the LC tonic activity, thus reorienting

attention to an updated task. This switch is facilitated by the right-lateralized VAN, which is

activated by salient behaviorally-relevant stimuli (Bouret & Sara, 2005; Corbetta et al., 2008;

Corbetta & Shulman, 2002; Fox et al., 2006). Since the VAN, P300 potentials, and LC phasic

responses all similarly show enhanced responses to behaviorally-relevant stimuli in multiple sensory

modalities, a functional link between them has been proposed, both in relation to tonic transitions

of attention and to phasic responses (Corbetta et al., 2008).

We found correlates of P300-range EEG variability in the right MFG/IFG, a main node in the
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VAN. This region has been previously implicated in P300 modulations (Benar et al., 2007; Bledowski

et al., 2004a,b; Eichele et al., 2005), as were the activations we detected in right precentral gyrus

(Bledowski et al., 2004b; Crottaz-Herbette & Menon, 2006; Eichele et al., 2005) and postcentral

gyrus (Crottaz-Herbette & Menon, 2006; Eichele et al., 2005) for the same windows. Nearly all

our significant correlates of EEG STV were right-lateralized, consistent with the VAN and other

reports showing the majority of regions coupling with EEG responses are in the right hemisphere

(Eichele et al., 2005). Bilateral precentral gyrus is commonly associated with a more goal-driven

and dorsal attention network, but the right precentral gyrus has also been linked to exogenous

processing (Corbetta et al., 2008; Kincade et al., 2005).

Our concurrent brainstem, ACC, OFC, and right MFG/IFG activations, which all occur in the

P300 range, provide evidence for a strong link between the LC-NE neuromodulatory system, VAN,

and the P300. They support the hypothesis that VAN suppression during focused attention is

partly due to decreased tonic activity of the LC-NE system (Corbetta et al., 2008).

5.4.4 Dynamic interactions underlie task-related attentional modulations

ROIs for fMRI DCM analyses are commonly selected based on peaks within traditional event-

related GLM statistical maps. One obvious approach to incorporate single-trial EEG variability

into a DCM analysis is to build a bilinear model that includes single-trial EEG measurements as

modulators to connectivity strength. However, two issues arise with this approach. Firstly, voxels

selected by a traditional GLM contrast are not necessarily affected by the trial-to-trial variability

of interest and may instead have variability dominated by noise (Smith, 2012). Secondly, the

trial-to-trial variability of the EEG response differs across the temporally-specific components of

the response. One EEG component may be of particular interest for certain task-specific studies

(e.g. the face perception study of Nguyen et al. (2013), but selection of a single component is

insufficient to study modulations of attention that generalize across simple tasks in multiple sensory

domains. To circumvent these issues, we utilized the results of our EEG-based fMRI analysis to

define ROIs for our DCM analysis. We selected a subset of our supra-threshold clusters that were of

particular interest based on previous literature. These included the ACC correlate of early (200 ms)

EEG variability, a non-spatially-overlapping rACC P300-range correlate, other cortical P300-range

correlates in rMFG and rOFC, and the brainstem cluster. Single-trial variability within these ROIs



CHAPTER 5. TEMPORAL EVOLUTION OF COUPLING BETWEEN SUPRAMODAL
CORTICAL ATTENTION NETWORKS AND THE BRAINSTEM 73

was thus meaningful for the effective connectivity we aimed to study.

Our DCM analysis of 12 competing models resulted in substantially greater evidence (0.9997

posterior) for a model with multiple reciprocal (bidirectional) intrinsic connections. Furthermore,

the only two models that showed consistently large model evidence on the individual subject level

both belonged to the model family with bidirectional connection between the brainstem and early

ACC clusters. These results provide support for the idea that dynamic interactions between at-

tentional systems play a role in modulations of task-related attention during simple tasks. Other

DCM studies have reported interactions of attention systems, but these focused on linking the VAN

with the dorsal attention network during tasks related to spatial attention (Vossel et al., 2012) and

attentional reorienting (Diquattro et al., 2013), and these studies did not incorporate EEG-derived

information.

Connectivity parameter magnitudes and signs (determined by Bayesian parameter group aver-

aging) suggest that the brainstem’s role in these modulations is excitatory across the duration of

the trial and multiple cortical regions, whereas the rOFC plays an inhibitory role late in the trial.

The integral role of the ACC in attentional modulations is likely more complex, with dependencies

both in space (bilateral ACC vs. right paracingulate/ACC region) and time (early 200 ms vs.

later 425 ms post-stimulus). Specifically, activity within bilateral ACC may act to inhibit evoked

brainstem activations early in the trial, but then rACC may drive this activity later in the trial.

Studies specifically designed to investigate causality will be required to validate such claims. Our

DCM results further support the adaptive gain theory of the LC-NE system, and together with the

EEG-based GLM results they expand upon it by providing additional information regarding the

timing of involvement of these regions.

5.5 Conclusions

Using machine learning, we tracked variability in temporally-specific task-relevant projections of

EEG data, and spatially localize their BOLD correlates. We investigated neural response variability

for identical target stimuli, and then combined fMRI data to report regions involved in endoge-

nous attentional modulations that generalize across auditory and visual sensory input. Without

restricting our investigation to regions traditionally associated with attention, we found numerous
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activations almost entirely within the LC-NE system, VAN, and areas previously implicated in

P300 generation. We show that the attentional fluctuations observable via single-trial reaction

time are region-specific, but not specific to the attention network. A final DCM analysis expanded

upon these results to demonstrate effective connectivity between these regions. Our results shed

light on the complex dynamic links between these systems in the human brain, and the relative

timing of their involvement, when performing even the simplest auditory and visual tasks.
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Chapter 6

Pre-stimulus EEG Alpha Oscillations

Modulate fMRI BOLD Responses

6.1 Introduction

The amount of attention allocated to any external task (e.g. listening to a thesis defense) affects

the extent to which incoming sensory information is processed and the efficiency of that neural

processing. Internal attentional states such as task-related attention are by nature difficult to

study. Since they are by definition not event-related, any experimental paradigm attempting to

control them would be confounded. Instead it is necessary to obtain a measure of this naturally

fluctuating state.

EEG power in the alpha band (8–12 Hz) is commonly associated with endogenous attention,

with high power known to correlate with decreased task engagement. This “alpha rhythm” peaks

around 10 Hz and is the dominant ongoing oscillation recorded by scalp EEG. While it is widespread,

posterior alpha is the most commonly studied, mainly due to its high power in scalp EEG recordings.

This component of the alpha rhythm has a scalp distribution over parietal and occipital regions

(Min & Park, 2010). Extensive evidence shows that the power of alpha oscillations prior to stimulus

correlates negatively with behavioral performance related to visual perceptual ability (Hanslmayr

et al., 2007; Mazaheri et al., 2009; van Dijk et al., 2008). Many studies also show a similar correlation

with visuo-spatial attention (Kelly et al., 2009; Thut et al., 2006) and multi-sensory attention

(Banerjee et al., 2011; Lange et al., 2013). In addition to correlation, a causal effect has been
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demonstrated using transcranial magnetic stimulation (TMS) (Romei et al., 2008).

Amplitude of EEG responses is also affected by alpha magnitude (Rajagovindan & Ding, 2011),

but evidence suggests the phase of alpha at stimulus onset has a greater effect (Fellinger et al.,

2011; Mathewson et al., 2009). Alpha phase has also been associated with behavioral performance

related to visual perception (Dugue et al., 2011; Mathewson et al., 2009).

fMRI BOLD activity has also been shown to correlate with EEG alpha. Resting-state EEG-

fMRI studies have suggested that the EEG alpha is driven by thalamo-cortical loops (Liu et al.,

2012), in particular showing a negative correlation with posterior regions and positive with thalamic

regions (Goldman et al., 2002). Three published studies have explored the correlates of the EEG

alpha rhythm and the visually-evoked fMRI response, both with respect to power (Becker et al.,

2011; Mayhew et al., 2013; Scheeringa et al., 2011b) and phase (Scheeringa et al., 2011b). These

studies all focused on task-irrelevant stimulus processing and were limited to the BOLD response

within visual regions of interest (ROIs). Until now, the role of prestimulus alpha oscillations on

the BOLD response to auditory stimuli has not been explored.

Here we investigate the effects of endogenous attention on the evoked BOLD response to au-

ditory stimuli, and hypothesize that the distribution of recruited brain regions depends on the

prestimulus brain state. We use prestimulus EEG alpha to represent the subjects’ task engage-

ment on each trial, and contrast the BOLD response for the high and low attention conditions.

In contrast to previous studies, we investigate not just stimulus-processing but also task-relevant

processing related to perceptual decision making.

6.2 Methods

6.2.1 EEG-fMRI Data

The auditory oddball simultaneous EEG-fMRI data used in Chapter 3 was also used in this study.

Data from two of the seventeen subjects were discarded due to a slow EEG alpha power drift across

the entire experiment, which left us with an incomplete fMRI model for some runs of the experiment.

Demographics of the fifteen remaining subjects were: 6 female, mean 27.5 years, range 20–40. We

used only the auditory task data because posterior EEG alpha power is highly confounded by visual

stimulus presentation. Furthermore, power in this frequency band is higher with the eyes-closed
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Figure 6.1: Construction of fMRI Model Based on EEG Alpha Activity. EEG was collected in the fMRI

scanner while subjects performed an auditory oddball task (top). ICA was run on the continuous EEG data, and

an “alpha component” was selected based on its power spectra and scalp topography. A Hilbert transform was used

to decompose the alpha-band-passed alpha component into magnitude and phase. Trials were then grouped within

class into 3 bins based on high, medium, or low alpha magnitude prior to each stimulus (bottom). These groups

were modeled separately so contrasts could be computed. In a separate but similar alpha phase analysis, trials were

binned into 4 groups according to instantaneous phase at stimulus onset (refer to Figure 6.2).
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condition of the auditory experiment compared to the eyes-open visual experiment (Liu et al.,

2012), which gave us a boost to the SNR. This was especially helpful since BCG artifacts contain

high alpha power and heavily contaminate EEG recorded in the MRI scanner.

6.2.2 Prestimulus EEG Alpha Estimation

We first preprocessed the EEG data using the methods described in Section 2.3.2. Figure 6.1 shows

a diagram of the remainder of our methods, which are described below.

To estimate the alpha in the multi-dimensional EEG data and determine a projection con-

taining the alpha activity of interest, we performed an independent component analysis (ICA) by

implementing the FastICA algorithm (Hyvarinen, 1999) in Matlab. This method was chosen over

individual electrode selection to boost SNR of the EEG signal. We selected a single “alpha com-

ponent” based on three main criteria: (1) high alpha power, in particular relative to surrounding

frequency bands, (2) no peak in the 1 Hz range, which would represent a contaminant from the

BCG pulsation artifact, and (3) typical posterior scalp distribution.

Evaluation of these selection criteria involved the following. To each component’s time series

we applied a 2nd order Butterworth bandpass filter with cutoffs at 8 and 12 Hz, and then estimated

the mean power in the alpha band by squaring and summing the resulting signal. We estimated the

mean broadband EEG power similarly, using cutoff frequencies at 5 and 20 Hz. Next we calculated

the ratio of mean alpha power to mean broadband power for each component, and ranked the

components according to this ratio. Spatial topographies of the top five components were displayed

to manually select the alpha component with typical posterior distribution, i.e. heavy weighting on

occipito-parietal electrodes.

We took care to ensure that the selected component was not contaminated with BCG artifacts.

The top five ranked “BCG components” were chosen using a similar method to that just described

for selecting the alpha component, but using a 0.5–2 Hz pass band. These components had heavy

lateralized weighting on the electrodes, as expected since temporal electrodes (sites T7, T8, CP5,

CP6) are most strongly affected by such pulsation artifacts.

Once the final alpha component was confirmed, we repeated the alpha bandpass filtering with

cutoffs at ±2 Hz around the subject-specific peak alpha frequency. This modal frequency was

selected by visual inspection of the power spectral density of that unfiltered component. There was
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Figure 6.2: Method for Prestimulus Alpha Phase Binning. Trials were grouped into 4 bins according to the

instantaneous phase of the alpha oscillation at stimulus onset. Red: −π to −π
2

(negative, waxing, decreasing). Black:

−π
2

to 0 (negative, waning, increasing). Green: 0 to π
2

(positive, waxing, increasing). Blue: π
2

to π (positive, waning,

decreasing). These groups were then used in construction of the BOLD model (refer to Figure 6.1). Reproduced from

Scheeringa et al. (2011b).

a further BCG pulse contaminant check here to ensure no peak was present in the 1 Hz range.

We computed the Hilbert transform of this band-passed alpha component to decompose the

alpha oscillation into its magnitude and phase. This provided a single envelope of alpha activity

across the run of the experiment. For each trial we computed the mean alpha envelope in the

half second prior to stimulus onset, and within each of the two stimulus classes we grouped trials

according to high, medium, or low prestimulus alpha magnitude.

For the phase analysis, we divided trials into four groups according to their instantaneous phase

at stimulus onset time, as was done previously by Scheeringa et al. (2011b) (see Figure 6.2). This

was equivalent to categorizing based on the sign (positive or negative), derivative (increasing or

decreasing), and direction of deviation from zero (waxing or waning), giving the following four

groups:

• 0 to π
2 – positive, waxing, increasing

• π
2 to π – positive, waning, decreasing

• π to 3π
2 – negative, waxing, decreasing

• 3π
2 to 2π – negative, waning, increasing
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6.2.3 Effect of EEG Alpha Oscillations on Auditory Stimulus Processing

We first preprocessed the auditory oddball fMRI data and ran the traditional fMRI analysis that

was described in Chapter 2, specifically Sections 2.3.3 and 2.5.

The fMRI model for the EEG alpha investigation of this chapter (bottom of Figure 6.1) differed

from the traditional analysis in two ways. Firstly, RT variability was not incorporated into the

model but instead included as noise regressors. Secondly and key to this study, trials were grouped

by alpha (see Section 6.2.2) and each group modeled in separate regressors. The alpha magnitude

and alpha phase analyses were performed independently, involving three and four groups of trials,

respectively.

We computed a high vs. low alpha contrast within the target class to observe the effect of

prestimulus alpha magnitude on the BOLD response to identical target stimuli. We investigated

phase effects similarly by contrasting positive vs. negative, waxing vs. waning, and increasing vs.

decreasing phase at stimulus onset.

A randomization test was used to generate a null distribution of cluster activations and correct

for multiple comparisons. For each subject, we randomly grouped trials 100 times and carried each

of the randomizations through to group level. Each of these randomization maps were thresholded

at p < 0.005 to provide a null distribution of clusters. Within each of these clusters we summed the

negative log of each voxel’s p-value to create a null distribution of cluster p-values, from which we

calculated the p < 0.05 cluster threshold. This method of integrating statistics within each cluster

is closely related to a cluster size thresholding, but gives a higher weighting to clusters with stronger

voxel-wise statistical strength. These randomizations were run independently for the magnitude and

alpha phase analyses to generate distributions based on three and four random groups, respectively.

The alpha magnitude randomizations resulted in a null distribution of 3955 clusters, and the phase

randomizations resulted in a null distribution of 4691 clusters. The pcluster < 0.05 threshold was

approximately 24 voxels for the magnitude analysis and 26 voxels for the phase analysis.

6.2.4 Effect of EEG Alpha Oscillations on Task-specific Processing

Scheeringa et al. (2011b) suggested that a correlation between the underlying BOLD signal and

slow alpha fluctuations could confound the analysis described above (high vs. low contrast), so

we also investigated the effect of prestimulus alpha on task-specific stimulus-related processing.
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Figure 6.3: Group Mean Alpha Component Topography Across 15 Subjects A typical posterior distribu-

tion is seen, without any visible contribution from BCG artifact, which would be evident from a bilateral weighting

at temporal sites.

For each of the trial groups (magnitude investigation: high alpha, low alpha; phase investigation:

positive waxing increasing, positive waning decreasing, negative waxing decreasing, negative waning

increasing) we computed target vs. standard contrasts to give maps of the most task-relevant

fMRI activity for each subject. This included areas involved in processes such as target detection,

perceptual decision making, and response planning. We then performed paired t-tests to identify

effects of prestimulus alpha oscillations on task-relevant BOLD activity. One t-test was performed

for the prestimulus alpha magnitude analysis: high vs. low alpha. These results were thresholded at

z > 2.3, and clusters were FWE multiple-comparison-corrected at p < 0.05 (Worsley, 2001). Three

t-tests were performed for the phase analysis: positive vs. negative, waxing vs. waning, increasing

vs. decreasing.

6.3 Results

All fifteen included subjects responded with high accuracy and speed: 98.8%±2.1% of targets were

correctly detected, with 403.0±60.1 ms RT. As reported in Chapter 3 the mean event-related BOLD

response to target stimuli was consistent with previous findings (Stevens et al., 2000), showing the

largest activations in thalamus, auditory cortex, insular cortex, and supplementary and primary

motor areas.
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MAGNITUDE

contrast Nvox max z pcluster MNIx MNIy MNIz hem region

low > high 190 3.69 0.0003 -6 -82 50 L superior lateral occipital cortex, pre-

cuneus cortex

low > high 71 3.44 0.0053 -2 -62 60 L precuneus cortex, superior lateral oc-

cipital cortex

low > high 63 3.20 0.0073 -32 -88 26 L superior lateral occipital cortex, occip-

ital pole

low > high 54 2.99 0.0116 -48 -70 -22 L inferior lateral occipital cortex, inferior

temporal gyrus

low > high 51 3.44 0.0116 -2 -86 -20 L/R lingual gyrus, occipital fusiform gyrus

low > high 48 3.39 0.0129 28 -88 -4 R lateral occipital cortex, occipital

fusiform gyrus, occipital pole

low > high 35 3.12 0.0240 -2 -78 -4 L lingual gyrus, intracalcarine cortex, oc-

cipital fusiform gyrus

low > high 33 2.97 0.0291 -20 -94 0 L occipital pole, lateral occipital cortex

low > high 29 3.06 0.0362 -4 -44 8 L/R posterior cingulate gyrus

low > high 26 3.27 0.0369 14 -42 -4 R posterior cingulate gyrus, lingual

gyrus, parahippocampal gyrus

high > low 25 3.02 0.0448 -38 -60 -42 L cerebellum

Table 6.1: Effect of Prestimulus EEG Alpha Magnitude on BOLD Response to Auditory Targets.

Per-voxel thresholded at p < 0.005 then cluster-corrected at p < 0.05.

6.3.1 EEG Alpha Components

The subjects’ modal alpha frequencies ranged from 9.5–12 Hz, with mean 10.6 Hz and median

10.5 Hz. The mean scalp topography of the EEG alpha components across the 15 subjects is shown

in Figure 6.3. A typical posterior distribution is clearly seen, without any visible contribution from

BCG artifact, which would be evident from a bilateral weighting at temporal sites.

6.3.2 Effect of alpha magnitude on BOLD response to target stimuli

Negative correlation between BOLD signal and prestimulus alpha magnitude was found throughout

posterior regions for the high vs. low alpha contrast of the response to target stimuli (Figure 6.4).

These regions included left and right lateral occipital cortices (LOC) and lingual gyri, as well as

left precuneus and occipital pole. We also found a positive correlate in the left cerebellum. A

complete list of activations exceeding the FWE cluster corrected p < 0.05 threshold can be found

in Table 6.1.
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Figure 6.4: Event-Related Average BOLD Response to Targets for Low vs. High Prestimulus Al-

pha Conditions. An inverse correlation between prestimulus alpha magnitude and the BOLD response was seen

throughout many posterior regions. Results shown were per-voxel thresholded at p < 0.005 then cluster-thresholded

at p < 0.05 and are displayed in radiological coordinates on an MNI template brain.

6.3.3 Effect of alpha phase on BOLD response to target stimuli

BOLD correlates of phase at stimulus onset were less extensive, though a few activations exceeded

the cluster threshold (Table 6.2). The positive vs. negative phase contrast resulted in positive

activations in right precuneus and left cerebellum as well as negative correlates in left and right

thalamus. The increasing vs. decreasing phase contrast resulted in a negative BOLD correlate in

the left middle frontal gyrus.

PHASE

contrast Nvox max z pcluster MNIx MNIy MNIz hem region

positive > negative 112 3.19 0.0028 6 -56 56 R precuneus

negative > positive 109 3.54 0.0028 -18 -18 8 L thalamus

positive > negative 80 3.09 0.0043 -38 -78 -26 L cerebellum, occipital

fusiform gyrus

negative > positive 43 3.25 0.0192 14 -16 6 R thalamus

decreasing > increasing 39 3.20 0.0233 -38 -4 60 L middle frontal gyrus, pre-

central gyrus

Table 6.2: Effect of Prestimulus EEG Alpha Phase on BOLD Response to Auditory Targets. Per-voxel

thresholded at p < 0.005 then FWE-cluster-corrected at p < 0.05.
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Figure 6.5: BOLD Correlates of Alpha Magnitude and Decision-Related Processing. Results of paired t-test

comparing the target vs. standard contrast for low vs. high alpha magnitude prior to stimulus. Images are shown in

radiological coordinates on an MNI template.

6.3.4 Effect of prestimulus alpha magnitude on task-related processing

We found a greater difference in the BOLD response to targets as compared to standards (i.e.

target vs. standard contrast) in cingulate and contralateral motor areas for the high alpha (low

attention) condition (Figure 6.5). Ipsilateral motor areas were also activated, but less extensively.

Right inferior, middle, and superior frontal gyri and left LOC were also activated. A complete list

of all clusters containing at least 10 voxels can be found in Table 6.3.

6.3.5 Effect of alpha phase on task-related processing

Table 6.4 contains a complete list of all clusters containing 10 or more voxels for the alpha phase

paired t-tests of the target vs. standard contrast. For the paired t-test of waxing vs. waning phase

(refer to Figure 6.2) we found positive correlates in precuneus, frontal pole, left occipital pole, left

superior LOC. Small correlates were detected in left (contralateral) motor areas and right superior

temporal gyrus. The positive vs. negative phase t-test (i.e. trough vs. peak) revealed positive

correlates in left superior LOC and precuneus. Large negative correlates were found in bilateral

thalamus (121 voxels for left and 61 for right, Figure 6.6) along with a smaller correlate in the



CHAPTER 6. PRE-STIMULUS EEG ALPHA OSCILLATIONS MODULATE FMRI BOLD
RESPONSES 85

MAGNITUDE

paired t-test Nvox max z MNIx MNIy MNIz hem region

high > low 254 3.77 -6 -4 46 L/R cingulate gyrus

high > low 105 3.22 -34 -22 46 L postcentral gyrus, precentral gyrus

high > low 88 3.41 48 40 4 R frontal pole, inferior frontal gyrus

high > low 86 3.11 -32 -18 70 L precentral gyrus, postcentral gyrus

high > low 57 3.28 -34 -36 48 L postcentral gyrus

high > low 51 2.97 50 10 30 R precentral gyrus

high > low 43 2.87 28 -38 54 R postcentral gyrus

high > low 32 3.21 -16 -84 26 L superior lateral occipital cortex

high > low 30 3.09 42 6 38 R middle frontal gyrus, precentral gyrus, inferior

frontal gyrus

high > low 30 2.96 16 -14 62 R precentral gyrus

high > low 29 3.32 30 -6 64 R precentral gyrus, superior frontal gyrus, middle

frontal gyrus

high > low 28 3.10 24 -16 72 R precentral gyrus, superior frontal gyrus, postcen-

tral gyrus

high > low 27 3.23 -2 -14 60 L/R precentral gyrus

high > low 25 2.98 56 -6 -24 R middle temporal gyrus

high > low 24 3.19 -52 10 34 L middle frontal gyrus, precentral gyrus, inferior

frontal gyrus

high > low 21 2.90 -60 -28 22 L anterior supramarginal gyrus, postcentral gyrus

high > low 18 3.23 -34 -48 70 L superior parietal lobule, superior lateral occipital

cortex, postcentral gyrus

high > low 17 2.82 -54 18 8 L inferior frontal gyrus, precentral gyrus

high > low 16 2.83 -36 -62 -42 L cerebellum

high > low 16 2.94 52 -28 48 R supramarginal gyrus, postcentral gyrus

high > low 13 2.88 -12 -92 38 L occipital pole, superior lateral occipital cortex

high > low 12 2.75 42 0 -22 R planum polare, anterior superior temporal gyrus,

insular cortex

high > low 12 2.93 -38 -38 30 L supramarginal gyrus

high > low 12 2.99 32 10 38 R middle frontal gyrus, precentral gyrus

high > low 12 3.08 -22 -16 48 L precentral gyrus, superior frontal gyrus

high > low 11 2.84 62 -18 26 R anterior supramarginal gyrus, postcentral gyrus

high > low 10 2.87 -16 -18 62 L precentral gyrus, superior frontal gyrus

Table 6.3: Effect of Prestimulus EEG Alpha Magnitude on Task-related Auditory Processing. Per-voxel

thresholded at p < 0.005 then cluster size thresholded at 10 voxels.
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Figure 6.6: BOLD Correlates of Alpha Magnitude and Decision-Related Processing. Results of paired t-test

comparing the target vs. standard contrast for trough vs. peak alpha alpha phase at stimulus onset. Images are

shown in radiological coordinates on an MNI template.

brainstem, which was very slightly right lateralized. The increasing vs. decreasing t-test resulted in

a positive correlate in right hippocampus and negative correlates in left middle frontal gyrus and

paracingulate.

6.4 Discussion

We discuss our results mainly as they relate to the existing but limited EEG-fMRI literature investi-

gating how prestimulus EEG alpha affects the BOLD response to visual stimuli. In this context, the

novelty of our study is fourfold. Firstly we investigated stimulus processing in the auditory domain

using an auditory oddball paradigm. Secondly we explored task-relevant stimulus processing (as

opposed to stimuli that subjects ignored). Thirdly, we additionally investigated decision-related

processing by contrasting the target vs. standard BOLD responses, and then performing paired

t-tests. Fourthly we did not limit our investigation to ROIs, instead exploring the whole brain.

Furthermore, only one previous published study (Scheeringa et al., 2011b) has investigated how the

phase of the alpha oscillation at stimulus onset correlates with the BOLD response in addition to

studying the prestimulus strength of alpha.
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PHASE

paired t-test Nvox max z MNIx MNIy MNIz hem region

waxing > waning 287 3.39 0 -74 36 L/R precuneus cortex, cuneal cortex, supe-

rior lateral occipital cortex

negative > positive 121 3.30 -18 -18 8 L thalamus

waxing > waning 97 3.24 4 60 4 L/R frontal pole, paracingulate gyrus

waxing > waning 74 3.20 -10 -94 6 L occipital pole, supracalcarine cortex,

negative > positive 61 2.97 14 -16 8 R thalamus

decreasing > increasing 35 2.93 -40 -2 58 L middle frontal gyrus, precentral gyrus,

superior frontal gyrus

increasing > decreasing 28 3.29 20 -14 -18 R hippocampus, amygdala, parahip-

pocampal gyrus

decreasing > increasing 26 2.91 -12 44 8 L paracingulate gyrus, anterior cingulate

gyrus

waxing > waning 19 2.85 -20 -80 34 L superior lateral occipital cortex

waxing > waning 17 2.80 62 -8 0 R superior temporal gyrus

negative > positive 16 2.91 4 -24 -24 R brainstem

positive > negative 15 2.90 -48 -26 32 L postcentral gyrus, supramarginal gyrus

waxing > waning 14 3.07 -44 -6 34 L precentral gyrus, postcentral gyrus,

middle frontal gyrus

waxing > waning 13 2.96 -6 -72 48 L precuneus cortex, superior lateral oc-

cipital cortex

positive > negative 12 3.20 -6 -86 50 L superior lateral occipital cortex, pre-

cuneus cortex

increasing > decreasing 11 2.92 48 -42 34 R supramarginal gyrus

decreasing > increasing 11 2.81 66 4 14 R precentral gyrus, central opercular cor-

tex

decreasing > increasing 10 2.84 22 2 28 R caudate

Table 6.4: Effect of Prestimulus EEG Alpha Phase on Task-related Auditory Processing. Per-voxel

thresholded at p < 0.005 then cluster size thresholded at 10 voxels.
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6.4.1 Strength of EEG alpha activity correlates with BOLD activity following

behaviorally-relevant auditory stimuli

We found an inverse correlation between prestimulus EEG alpha magnitude and the BOLD re-

sponse throughout occipital areas and a positive correlate in the cerebellum (Table 6.1). These are

consistent with what is seen in resting-state data (Goldman et al., 2002; Liu et al., 2012). Similar

results have also been reported for visual task data (Becker et al., 2011; Mayhew et al., 2013), but

Scheeringa et al. (2011b) found that after accounting for the underlying intrinsic correlation of the

BOLD signal and ongoing alpha oscillations there was no significant effect of prestimulus alpha

power on the BOLD response. Their study was able to remove this confound by subtracting the

mean “pseudo trial” response (to no stimulus) from the mean “real trial” time courses within visual

ROIs. This method was not reasonable in our study given our short (2–3 s) ITI between stimuli

that were all relevant to the binary decision making task; our data contained no sufficiently long

enough time series segments without task-relevant stimuli from which to create “pseudo trials.” We

instead addressed this potential confound in a different way, and that is discussed in Section 6.4.3.

6.4.2 Phase of alpha oscillation at stimulus onset affects distribution of BOLD

response to auditory target stimuli

We also looked at the relationship of the alpha phase at stimulus onset to the BOLD response to

target stimuli, by grouping the trials into 4 phase bins as was done by Scheeringa et al. (2011b)

(see Figure 6.2). Our phase analysis shows that the phase of the alpha oscillation at stimulus

onset affects the distribution of the BOLD response related to task-relevant stimulus processing.

It is difficult to interpret the phase itself, but we see that when alpha oscillation is in one phase

(peak/positive amplitude) the thalamus is recruited more strongly than when it is in the opposite

phase (trough/negative amplitude). In the case of the trough phase of the alpha wave at stimulus

onset, grey matter (right precuneus and left cerebellum) is recruited more strongly than in the

peak phase condition. Scheeringa et al. (2011b), whose focus was task-irrelevant visual stimulus

processing within visual cortex, found that the BOLD response in BA 17 and BA 18 was significantly

greater when stimuli were presented during the trough vs. the peak of the alpha oscillation. We

did not detect any supra-threshold (cluster-corrected p < 0.05) effect in that area for this auditory

task.
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6.4.3 Low task-engagement requires recruitment of additional brain regions for

decision-related processing

Since the results discussed above (Section 6.4.1) were not directly interpretable based on a possible

confound between low frequency BOLD signal fluctuations and the alpha rhythm, we performed

an additional investigation. We analyzed the data in such a way that would remove this confound

and also include more of the higher level processing such as decision-making, motor planning, and

error monitoring. We first contrasted the BOLD response to target vs. standard stimuli, separately

for each prestimulus alpha magnitude group (high, medium, low). Significant activations for this

traditional type of analysis reveal the brain regions involved in the perceptual decision-making

process, along with motor planning and behavioral performance monitoring. We then performed a

paired t-test of these target vs. standard contrast for the high vs. low prestimulus alpha conditions,

which reveals the effect of alpha on task-related processing.

We found that the main differences are in supplementary motor area (SMA) of the cingulate

cortex and contralateral motor areas. These motor area activations are not an effect of RT vari-

ability, since RT was not correlated with prestimulus EEG alpha magnitude and we included RT

as an additional noise regressor in our fMRI BOLD model. All of our activations resulting from the

high vs. low t-test were positive in sign, interpreted as stronger decision-related response when the

subject is less engaged in the task prior to the stimulus. This suggests that when task-engagement

is low, target stimuli play greater role in refocusing attention to the task. Since the cingulate

is commonly associated with self-monitoring of task performance, this large cluster (254 voxels

at a p < 0.005 per voxel threshold) may represent increased awareness and error checking of the

behavioral response following a less-attended target stimulus.

6.4.4 Support for thalamo-cortical loop provided by alpha phase analysis of

perceptual decision processes

Although phase is not confounded by any intrinsic correlation of underlying alpha power fluctua-

tions, we performed the same task-related processing investigation as we did for alpha magnitude

(Section 6.4.1). We similarly grouped trials (this time into the 4 phase bins, and contrasted tar-

get vs. standard BOLD responses. We performed three paired t-tests of these contrasts: positive

vs. negative (i.e. peak vs trough), increasing vs. decreasing (i.e. growing more positive or more
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negative), and waxing vs. waning (i.e. alpha oscillation moving away from zero vs. toward zero).

We found that the decision-related BOLD response in bilateral thalamic regions was stronger

when the stimulus was presented during the trough vs. the peak of the alpha wave. Though results

shown (Figure 6.6, Table 6.4 are not thresholded based on cluster size, these activations were both

large: 121 voxels in left thalamus and 61 in right thalamus, after a p = 0.005 per voxel threshold.

This strongly supports the idea of a thalamo-cortical loop for modulation of the alpha rhythm, since

here it is the phase of the cortical alpha that is modulating the BOLD response in the thalamus.

The specific location appears to be the medial dorsal nuclei, which is consistent with a resting state

study (Liu et al., 2012) that aimed to link cortical alpha to specific regions of the nuclei. However,

given the resolution of our functional images we cannot identify specific nuclei with certainty.

6.5 Conclusion

The purpose of this study was to explore the influence of our internal attentional state on the neural

processing required for a task. We used an easy auditory oddball task that left subjects’ minds

free to wander, and we simultaneously recorded EEG with fMRI. Our approach was to exploit the

known link between attention and EEG alpha activity, treating EEG alpha magnitude prior to

each stimulus as an index of task engagement on each trial. We used the fMRI BOLD response

as a measure of neural activity related to the auditory task. The aim was then to investigate the

relationship between the posterior alpha rhythm and the BOLD response to task-relevant auditory

stimuli. Our results are largely consistent with previous findings for visual stimuli but extend to

the auditory domain. We additionally investigated the BOLD response related to the perceptual

decision making process and found stronger activity in SMA and contralateral motor areas when

subjects were in a less attentive state. We conclude that for the high alpha (low attention condition),

the subsequent auditory target stimuli pull subjects’ attention back to the task, causing them to

attend more to their responses and reflect on their performance. We additionally explored the

relationship of alpha phase at stimulus onset to the BOLD response, and the activity revealed in

bilateral thalamus provides support for a thalamo-cortical loop in attentional modulations.
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Chapter 7

Pre-stimulus Pupil Diameter

Correlates with Post-stimulus EEG

Dynamics

Pupillary measures have been linked to arousal and attention as well as activity in the brainstem’s

locus coeruleus norepinephrine (LC-NE) system. There is also evidence that evoked EEG responses,

such as the P3, might have LC-NE activity as their basis. Since it is not feasible to record electro-

physiological data directly from the LC in humans due to its location in the brainstem, an open

question has been whether pupillary measures and EEG variability can be linked in a meaningful

way to shed light on the nature of the LC-NE role in attention and arousal. In this study we used

a data-driven approach to learn task-relevant projections of the EEG for an auditory oddball task,

temporally localizing the projections across the entire trial. We correlated the variability of the EEG

along these projections with pre-stimulus (baseline pupil diameter) and post-stimulus (maximum

evoked pupil dilation) pupillary measures. We found that baseline pupil diameter correlates with

early (175–200 ms) and late (350–400 ms) EEG component variability, suggesting a relationship

between baseline (tonic) LC-NE activity and evoked EEG. Surprisingly we found no correlation

between EEG variability and evoked pupil dilation, which is often associated with evoked (phasic)

LC activity. After regressing out reaction time (RT), we found that the correlation between EEG

variability and baseline pupil diameter remains, suggesting that such correlation is not explainable
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by RT variability. We also investigated the relationship between these pupil measures and pre-

stimulus EEG alpha activity, which has been reported as a marker of attentional state, and found

a negative correlation with evoked pupil dilation. In summary, our results demonstrate significant

correlations between pre-stimulus and post-stimulus neural and pupillary measures, provide further

evidence for tight coupling between attentional state and evoked neural activity, and also the role

of cortical and subcortical networks underlying the process of target detection.

7.1 Introduction

The locus coeruleus (LC) is a small nucleus located in the dorsal pons. LC is known to have

widespread ascending projections throughout the brain, and is the sole source for cortical nore-

pinephrine (NE) (Aston-Jones & Cohen, 2005). Traditional studies have linked the LC- NE system

with arousal and attention (Benarroch, 2009). Aston-Jones & Cohen (2005) proposed an adaptive

gain theory of LC-NE function that suggests it plays an important role in modulating the trade-off

between exploitation and exploration, which ultimately optimizes behavioral performance (Aston-

Jones & Cohen, 2005). During the phasic LC mode, LC activity exhibits a strong phasic increase in

response to task-relevant stimuli. Conversely, during tonic LC mode, LC experiences an increased

level of baseline activity and absence of phasic responses (Abercrombie et al., 1988; Aston-Jones &

Cohen, 2005).

In order to further investigate the links between the LC-NE system and brain function in

humans, recent studies have suggested using pupil diameter as an index of LC activity (Nieuwenhuis

et al., 2010). Although a direct anatomical connection between the LC and pupillary dilator muscle

is yet to be determined, baseline pupil diameter has been found to closely track the dynamics of

tonic LC activity in monkeys (Rajkowski et al., 1993). Pupil dilation has also been linked with

phasic LC activity in previous studies (Gilzenrat et al., 2010).

While simultaneous pupil and fMRI recording enables inferences the relationship between LC

activity and activity in spatially localized cortex (Critchley et al., 2005), the limited temporal reso-

lution of fMRI makes it difficult to infer timing relationships in neural processing. While its spatial

resolution is limited, scalp electroencephalography (EEG) provides millisecond-range temporal res-

olution to make such temporally precise inferences. However, with one notable exception (Murphy
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et al., 2011), there have been no studies that examine the relationship between LC activity (indexed

by pupillary measures) and scalp EEG. Thus potential correlations between LC activity and neural

processing at specific post-stimulus times have remained largely unexplored.

While the study of Murphy et al. (2011) investigated links between pupil diameter and two

event related potential (ERP) components (the N1 and P3), our present study utilized a data-

driven approach to learn the most task-relevant EEG projections, spanning the entire trial, and

correlates EEG fluctuations along these projections with pupil diameter. By exploiting this EEG

single-trial variability, we were able to identify temporally specific task-relevant EEG components

that are significantly correlated with pupil diameter, uncovering key timing information for inferring

connections between specific post-stimulus neural processes and LC activity. We also investigated

how pre-stimulus neural activity, specifically variability in the magnitude of alpha oscillations, cor-

relates with post-stimulus pupil dilation. EEG alpha power has been shown to negatively correlate

with attention and subjects’ task engagement prior to each trial (Babiloni et al., 2006; Ray & Cole,

1985; van Dijk et al., 2008). In this way we provided further insight regarding the link between

pre-stimulus and post-stimulus cortical and subcortical processes underlying target detection.

7.2 Methods

7.2.1 Subjects and Behavioral Paradigm

Fifteen subjects (7 female; mean age 26.8, range = 20–44 years) participated in the experiment.

One participant was excluded because of excessive artifacts in the EEG data. All participants

had normal or corrected-to-normal vision and no history of psychiatric illness or head injury. An

auditory oddball paradigm with 80% standard and 20% oddball (target) stimuli was used (as

described in Section 2.1). This simple target detection task allowed subjects’ minds to wander

while maintaining near-perfect behavioral response accuracy.

7.2.2 Simultaneous EEG and Pupil Data Acquisition

Experiments were performed in a dark electro-magnetically shielded room, and thus controlled

for visual sensory input that might affect the pupil diameter. Throughout the entire experiment,

subjects’ pupil diameter was measured at a rate of 1 kHz with an EyeLink-1000 infrared eye-tracker
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(SR Research, Mississaugu, ON, Canada). Subjects were instructed to fixate on a central white

cross for the duration of each run. Subjects’ EEG was simultaneously recorded using a 64 scalp

electrode ActiveTwo system (Biosemi, The Netherlands) with electrodes in the standard 10/20

configuration. EEG was recorded with at a sampling rate of 2048 Hz.

7.2.3 EEG and Pupil Data Pre-processing

For continuous EEG data, a 0.5 Hz high-pass filter was used to remove DC drift, and 60 Hz

and 120 Hz notch filters were used to remove electrical line noise. After standard EEG filtering

(Section 2.3.1), the EEG data were re-referenced to the average, run through an anti-alias filter,

and down-sampled to 1 kHz to match the sampling rate of the pupil data. For continuous pupil

diameter data, periods of blinks were detected using Eyelink’s on-line parsing system, and then

linearly interpolated in Matlab (The Mathworks, Natick, MA, USA). In order to compare within

and across subjects, the pupil trace for each trial was normalized to the mean pupil diameter of

the corresponding subject, resulting in a percentage pupil diameter change.

EEG and pupil diameter data were epoched identically, from 1 s prior to 2 s following each

stimulus, with baseline removal using the last 200 ms prior to stimulus onset. Trials with large

amplitude deflection were excluded from future analyses. We also rejected trials on which subjects

failed to respond to target stimuli or responded to standard stimuli.

7.2.4 Single-trial EEG Analysis

We used the same logistic regression sliding window method described in Section 2.4.

7.2.5 Pupil Diameter Analysis

We examined two pupil diameter measurements, namely the baseline pupil diameter and the evoked

pupil dilation. The baseline pupil diameter was defined as pupil diameter at stimulus onset time.

The evoked pupil dilation was defined as the maximum percentage deviation from baseline pupil

diameter within each epoch.
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Figure 7.1: Method for correlating EEG single-trial variability with baseline pupil diameter. A. We

first estimate w, which is a linear weighting on the EEG sensors that maximally discriminates stimulus conditions:

targets (red) vs. standards (green), shown in two dimensions for illustration purposes. This determines a task- relevant

projection of the data, where the distance to the decision boundary reflects the decision certainty of the classifier.

B. From w we compute ỹi, which is the demeaned classifier output, ỹi = w>xi − ymean, for each target trial, i.

(In the text we refer to this variable as post-EEGcomp). C. Given the ỹ’s (post-EEGcomp) and their corresponding

stimulus-onset time points, we compute the correlation with D. baseline pupil diameter. This entire method was

applied independently for multiple temporal windows, τ , spanning the trial.
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7.2.6 Magnitude of Pre-stimulus Alpha Oscillations

Apart from baseline pupil diameter, we also investigated the magnitude of EEG alpha oscillations

as another pre-stimulus measurement. Estimation of the alpha activity was performed similarly to

Chapter 6 and is described below.

To estimate the magnitude of pre-stimulus alpha oscillations for each target trial, we first

performed an independent component analysis (ICA) on the EEG data. We selected a single “alpha

component” based on two criteria: (1) the component with the highest ratio of mean power in the

8–12 Hz alpha band relative to mean power in adjacent bands (5–8 Hz theta band and 12–20 Hz

beta band) which (2) also had a posterior scalp topography. We estimated the alpha activity from

this component using a band-pass filter (with a bandwidth of 4 Hz) centered on the subject-specific

alpha frequency, which was determined based on the peak in the power spectral density of the

unfiltered EEG. A Hilbert transform (Duoandikoetxea, 2001) was used to construct the envelope

of alpha oscillations across time. Lastly, the magnitude of pre-stimulus alpha oscillations for each

trial was obtained by averaging this envelope in the –500 to 0 ms time range prior to the stimulus.

7.2.7 Correlation Analysis and Statistics

For each time window, τ , between 0 ms and 1000 ms post-stimulus onset, we correlated the de-

meaned output, ỹi = yi − ymean, of the EEG discriminator for each trial, i (see Figure 7.1), with

the following four measurements that we described in the preceding sections.

• reaction time (RT)

• magnitude of pre-stimulus alpha oscillations (pre-EEGα)

• baseline pupil diameter (pre-PD)

• evoked pupil dilation (post-PD)

We refer to the EEG discriminating component variability as post-EEGcomp. Specifically, Pearson

correlation was used for testing the linear relationships between the ỹ’s and the four measurements.

For each correlation test, we obtained a vector of correlation coefficients for the different time

windows, τ , resulting in a progression of correlations over time.
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In order to estimate the significance level of these correlations and correct for multiple compar-

isons, we applied threshold-free cluster enhancement (TFCE) (Smith & Nichols, 2009). The use

of TFCE on the time series of correlation values ensured detection of both diffuse, low-amplitude

correlations (i.e. weak but long-lasting) and sharp, local correlations (i.e. strong but short-lived).

For each of the four measures we tested, we constructed null distributions of TFCE scores by per-

muting the vector of single-trial measurements 1000 times, computing the correlation tests, and

applying TFCE. We used family-wise error (FWE) correction to determine the corrected p<0.05

threshold.

In order to tease apart correlates that were observable in RT from latent variability in the

post-EEGcomp, we repeated the correlation analyses after linearly regressing out RT from the dis-

criminating component variability ỹ.

Our primary analyses focused on correlations between the EEG discriminating component vari-

ability of target trials with RT, pre-EEGα, pre-PD and post-PD. We also investigated pairwise

correlations between these attention-related measures. In this way, we were able to study the

relationships between behavioral, neural and pupillary measurements both before and after the

stimulus.

7.3 Results

7.3.1 Behavioral Performance

All fourteen subjects performed the task at high accuracy with 99.3% ± 0.2% of targets correctly

detected. Average reaction time (RT) was 398.4± 23.9 ms.

7.3.2 Trial-averaged Evoked Analysis

We first analyzed trial-averaged event-related potentials (ERPs) and evoked pupil responses for

both target and standard trials, quantifying the magnitude of the differences in the average evoked

activity. Figure 7.2 shows the resulting ERPs. The N1-P2 complex can be seen at fronto-central

electrode sites (Fz, Cz), followed by the N2 component, which was larger for targets than standards

on posterior scalp sites (shown on Pz). In contrast, anterior N2 was larger for standards than

targets, as seen from frontal and central electrodes (Fz, Cz). This is consistent with results from
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Figure 7.2: Grand mean ERPs at electrodes Fz, Cz and Pz. Shown are grand average (N=14) stimulus-

locked curves from 200 ms pre-stimulus to 1000 ms post-stimulus for target (red) and standard (green) stimuli, with

shaded bands indicating standard error.
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Figure 7.3: Evoked pupil dilation. Grand average (N=14) stimulus-locked curves from 200 ms pre-stimulus to

2000 ms post-stimulus for target (red) and standard (green) stimuli, with shaded bands indicating standard error.

Traces have units of percentage change from the mean.
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many oddball paradigms (Folstein & Van Petten, 2008). Lastly, the P3 component was evident and

most prominent on the parietal (Pz) electrode, peaking at approximately 350 ms post-stimulus.

Both target and standard stimuli evoked pupil diameter increases (Figure 7.3). An early dilation

peak was seen at 500–600 ms post-stimulus for both standard and target trials. This is consistent

with the results of Steinhauer & Hakerem (1992), who described pupil dilations caused by inhibi-

tion of parasympathetic pathways. The primary dilation, i.e. the maximum pupil dilation evoked

by target stimuli, was reached at approximately 1350 ms. Consistent with well-established pupil-

lometry findings, the pupil dilation following target stimuli was larger than the dilation following

standards (Steinhauer & Hakerem, 1992).

7.3.3 Single-trial Task-relevant EEG Components

We next analyzed the single-trial EEG in order to correlate fluctuations in pupil diameter with the

temporally localized task-relevant EEG. Group mean single-trial EEG discriminator performance

(shown in Figure 7.4A) was significant for all consecutive windows between 75 ms and 850 ms

post-stimulus (p < 0.01 for AUC > 0.62, computed via permutation test). The subject-averaged

performance reached its peak of AUC = 0.91 at 350 ms. Corresponding forward models for a subset

of windows with significant discrimination are shown in the top row of Figure 7.4C. Discriminating

activity around 200 ms was strongest at central sites and more negative for targets compared to

standards. This spatial distribution and peak latency was characteristic of the N2 component. In

addition, strong positive activity at parietal sites lasted from 350 ms to 500 ms and was consistent

with the P3.

7.3.4 Correlation Analysis

We next conducted our correlation analysis between post-stimulus EEG discriminant component

variability for target trials (which we refer to as post-EEGcomp, representing ỹi’s for target trials for

each window τ) and behavioral and pupil diameter measurements. First we considered correlations

between post-EEGcomp and RT. Figure 7.4B indicates significant negative correlation between these

two measurements for all but two consecutive windows from 150 ms to 575 ms. Previous work has

shown that much of the LC activity and the late phases of the P3 response are locked to reaction

time (Aston-Jones & Cohen, 2005; Gerson et al., 2005). In order to capture variability that is unique
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Figure 7.4: Correlation between RT, baseline pupil diameter (pre-PD) and EEG component variability

(post-EEGcomp). Shown are group-level results for EEG windows spanning the trial, with shaded regions denoting

p<0.05 (corrected) significance. A. EEG classifier performance as defined by area under the ROC curve (blue trace).

p = 0.01 (AUC = 0.61) threshold is indicated with a red dotted line. B. Correlation coefficients between RT and post-

EEGcomp (classifier output y) as a function of window time. C. Subset of scalp topographies generated using y (top

row) and residual y (after regressing out RT, bottom row). Color represents correlation between the discriminating

component and the data (red = positive, blue = negative, green = 0). D. Correlation coefficients between pre-PD

and post-EEGcomp before (purple trace) and after (orange trace) regressing out RT.
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Figure 7.5: Statistical differences between forward models before and after regressing out RT. Pairwise

t-tests were conducted on each electrode using forward models before and after regressing out RT, with h denoting

the test decision (0 or 1) and p denoting the significance level. Shown are –log(p) and –log(p) × h values (top and

bottom row, respectively) for selected windows.
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Figure 7.6: Pairwise correlations between RT, baseline pupil diameter, evoked pupil dilation and

magnitude of pre-stimulus alpha. Shown are correlation coefficients between the four measurements: RT, pre-

PD, post-PD and pre-EEGα. Standard error bars are across subjects (N=14). Significant correlations (p < 0.01) are

denoted by double asterisks, with dashed line at zero correlation.
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to the EEG latent states and not attributable to behavioral measures, such as RT, we regressed

out RT from post-EEGcomp. The bottom row in Figure 7.4C shows the resulting forward models

after the linear contribution of RT variability was removed. The major difference between these

scalp topologies and the ones prior to decorrelating with respect to RT was seen during the P3

time window of 350 ms to 500 ms. Regressing out RT significantly reduced the posterior activations

typically associated with the P3b, while making more apparent the frontal contributions associated

with the frontal P3 (P3f) (see Figure 7.5). These results are consistent with the findings of Gerson

et al. (2005); they showed a fronto-parietal transition of the P3 complex that begins with a stimulus

locked P3f and ends with a classic response locked parietal P3b topography.

Figure 7.4D shows the results of correlating pre-PD with post-EEGcomp before and after regress-

ing out RT from post-EEGcomp. Though regressing out RT did significantly change the forward

models, it did not significantly change the correlations between pre-PD and post-EEGcomp (compare

orange vs. purple curves in Figure 7.4D). The timing of significant correlations between pre-PD

and post-EEGcomp aligned with the latencies of the N2 and P3 ERPs.

We investigated several additional correlations in our analysis. First we looked at whether

pre-stimulus alpha (pre-EEGα) covaried with post-EEGcomp. Previous work has suggested a link

between pre-stimulus oscillatory measures and post-stimulus evoked responses (Rajagovindan &

Ding, 2011). We found no significant correlations between pre-EEGα and post-EEGcomp (highest

correlation at τ = 450ms, p > 0.05). However we did find significant correlations between pre-

EEGα and post-PD (see Figure 7.6). Figure 7.6 also shows pairwise correlations between the four

measurements. Notably, post-PD is negatively correlated with pre-EEGα .

7.4 Discussion

Our study investigated relationships between pre-stimulus and post-stimulus pupil and EEG mea-

surements that have all been independently linked to attention, arousal, or anticipation. A summary

of our findings is shown graphically in Figure 7.7. We based our analysis only on target trials (i.e.

for identical stimuli), so the obtained EEG variability was driven purely by endogenous factors,

primarily instantaneous attention to the task and anticipation for upcoming target stimuli. There-

fore our results enable inferences of functional interactions between pre-stimulus and post-stimulus
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Figure 7.7: Summary of pairwise relationships between pupil and EEG measures. All measures are

aligned according to their temporal order. Pre-stimulus measures of endogenous attentional state include baseline

pupil diameter and magnitude of pre-stimulus EEG alpha oscillations. Post-stimulus measures (evoked responses)

include EEG discriminating components at different window offsets (early ≈200 ms, middle ≈300 ms, late ≈400 ms)

and evoked pupil dilation. Significant (p<0.05, corrected) findings are shown with solid lines, where red indicates

positive correlation and blue negative. Dotted lines denote relationships that were hypothesized based on previous

literature but not detected in our study.

neural processes that are known to modulate with various endogenous brain states.

Consistent with previous literature (Kammer et al., 1999), we found that much of the post-

stimulus evoked EEG single-trial variability is reflected in the RT (Figure 7.4B). This demonstrated

the need to regress out the RT variability, in that our goal was to study latent brain states.

Within Section 7.4, unless otherwise noted, post-EEGcomp refers to the residual y’s of targets after

regressing RT out of the classifier output.

7.4.1 Baseline pupil diameter correlates with early and late neural responses

Prior work using highly invasive neurophysiological recordings in primates has demonstrated a close

link between pre-stimulus pupil diameter and tonic LC activity (Aston-Jones & Cohen, 2005), which

can be exploited to make inferences about LC activity in humans (Murphy et al., 2011). In contrast

to the work of Murphy et al. (2011), which investigated single-trial pupil diameter correlates with

only N1 and P3 ERP components, our study utilized the most task-relevant EEG projections

spanning the entire trial and investigated their pupil diameter correlates. This approach enabled

us to temporally localize specific task- related EEG components that are significantly correlated
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with pupil measures, teasing them apart from EEG components that do not possess such pupil

correlates.

We found negative linear relationships between post-EEGcomp and pre-PD within two post-

stimulus time ranges. The late post-EEGcomp, at 350–400 ms, are closely related to the P3 ERP

component, as evidenced by the ERP traces and forward models. Significant correlations between

pre-PD and late post-EEGcomp suggest a relationship between underlying tonic LC activity (index-

ing arousal) and decision- related processing. We found no significant correlations between middle

post-EEGcomp and pre-PD, suggesting that tonic LC activity does not influence task-related neural

processing around 300 ms post-stimulus.

The early post-EEGcomp around 175–200 ms are representative of the N2 ERP component,

which has not yet been studied in relation to pupil measurements. Our study found no correlations

between pre-PD and neural responses at the typical N1 time, consistent with the findings of Murphy

et al. (2011). Nevertheless, the correlation we found between pre-PD and EEG activity at 200 ms

possibly indicates the influence of pre-stimulus tonic LC activity on early sensory processing of

target stimuli.

7.4.2 Evoked pupil dilation correlates with pre-stimulus pupil diameter but not

evoked EEG responses

As described by Aston-Jones & Cohen (2005), the fluctuations of tonic LC activity are known to

affect the stimulus-driven phasic responses. In this study, we found that maximum pupil dilation is

negatively correlated with baseline pupil diameter, which is consistent with the reports of Gilzenrat

et al. (2010) and Murphy et al. (2011). Since our experiment was conducted in a dark room with

the fixation cross supplying only very low ambient light, it was likely that the observed post-PD

responses reached the physiological limit of the pupil. Therefore, the negative correlation between

pre-PD and post-PD might have resulted simply because the pupil could not dilate any further

on trials with high pre-PD (Lacey, 1956), an artifact caused by the limited dynamic range of the

pupil. We also observed negative correlations between post-PD and pre-EEGα ; further discussion

regarding this relationship can be found below.

Since phasic LC activity has been linked to both evoked pupil dilations and the P3 ERP com-

ponent, we initially expected to observe correlations between our post- PD measurement and post-
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EEGcomp. However, although we found both post-PD and post-EEGcomp to be significantly corre-

lated with pre-PD, our analysis did not detect any correlation between these two measures (refer to

dotted red lines in Figure 7.7). Prior work also failed to detect such expected correlations between

P3 ERP component variability and pupil dilations (Murphy et al., 2011). Multimodal studies with

simultaneous pupillometry, EEG, and fMRI recording may be required for better understanding

why this correlation is not seen with EEG and pupil measures alone. (Murphy et al., 2011) dis-

cussed possible sources of variance that obscured a more direct relationship between pupil dilation

and P3 ERP component. One of the measurement issues mentioned is that pupil dilation and P3

have markedly contrasting latencies, and it is possible that they may reflect different combinations

of distinct information processing stages.

As discussed in the previous section, decision-related cognitive processing may act as an early

(prior to the P3) mediating factor in a chain of processes, while internally-driven performance mon-

itoring after the behavioral response likely acts as a later mediator of neural activity. Furthermore,

as Murphy et al. (2011) pointed out, the pupil dilation occurs on a much longer time scale than

evoked neural responses, which allows additional endogenous processes to participate and influence

the response. These mediating factors can potentially add enough variance to obscure a more direct

connection between pupil dilation and neural responses.

7.4.3 RT is not closely linked with baseline pupil diameter

Previous animal studies have reported an inverted U-shaped relationship between tonic LC activity

and task performance (Aston-Jones & Cohen, 2005), in which task performance is optimal during

intermediate states of tonic LC activity. Murphy et al. (2011) reported this inverted U-shaped

relationship between pre-stimulus pupil diameter and RT coefficient of variation, and thus suggested

this quadratic relationship between pupil diameter and task performance supported the hypothesis

that pre-stimulus pupil diameter is a valid proxy for tonic LC activity in humans. However, our

study found no significant correlations between RT and pre-PD. One possible explanation is that

while baseline pupil diameter fluctuates from trial to trial, RT does not exhibit much variability

since all subjects responded quickly and achieved near-perfect accuracy throughout the experiment.

We conclude that RT can hardly be treated as task performance in easy tasks such as oddball

detection, and for that reason, this lack of correlation between pre-stimulus pupil diameter and RT
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also suggests that tonic LC activity is not likely the source of RT variability.

Although we found no linear relationship between pre-PD and RT, we observed negative cor-

relations between RT and post-EEGcomp for the majority of windows spanning the trial, which

was expected based on previous findings on negative correlations between RT and ERP amplitudes

(Gajewski et al., 2008). We also observed that large pupil dilations were linked with longer RTs.

7.4.4 Pre-stimulus alpha modulations correlate with evoked pupil dilation

It is well known that power in the EEG alpha band (8–12 Hz) is negatively correlated with attention

to the task (Vazquez et al., 2001). High pre-stimulus alpha (i.e., low attention) has been linked

with decreased behavioral response accuracy, but not with longer RTs. Consistent with previous

literature, we found no correlation between pre-stimulus alpha and RT, but we did find a significant

negative correlation between the magnitude of pre-stimulus alpha oscillations and the evoked pupil

dilation. To the best of our knowledge, pupil measures have not been studied in relation to EEG

alpha until now. Since pupil dilation has been proposed to index phasic LC activations (Murphy

et al., 2011), our observed negative correlation between post-PD and pre-EEGα could represent a

connection between pre-stimulus attentional state and post-stimulus phasic LC activation.

Since we found evoked pupil dilations to have strong negative correlations with both pre-EEGα

and pre-PD, we might expect to find a relationship between these two measures of pre-stimulus

attentional states. However, we did not find any significant correlation between pre-PD and pre-

EEGα . A possible explanation is that although both measures reflect endogenous attentional

state to some extent, pre-PD is more closely tracking general arousal while pre-EEGα is tracking

task-related attention.

7.5 Conclusions

In this study, we used a data-driven analysis to investigate the complex dynamic relationships be-

tween pupillary measures and EEG variability. Specifically, we investigated correlations between

pre-stimulus (baseline pupil diameter, magnitude of EEG alpha oscillations) and post-stimulus

(evoked pupil dilation, temporally-specific EEG components) physiological variables that have all

been independently linked to attention. Here by identifying correlates of temporally specific post-
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EEGcomp with pre-PD, we provide key timing information regarding functional relationships be-

tween specific post-stimulus endogenous processes and pre-stimulus tonic LC activity. We believe

our findings will promote future studies on utilizing noninvasive measurements to further investigate

and index LC activity in a more direct way.
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Chapter 8

Conclusions

8.1 Significance

No one is able to maintain fully focused attention to a task, and mind wandering is particularly

inevitable during mundane tasks. In daily life for normal humans, the outcome of these attentional

fluctuations is often limited to decreased productivity (e.g. slow or poor digestion of a journal

article) but in rare cases the result can be deadly (e.g. inattentive driving leading to a fatal accident).

The ability to track waning attention before it affects behavioral performance could thus lead to

development of brain computer interfaces (BCIs) that optimize task performance and improve

safety. This thesis work took steps toward a clearer understanding of the function and interaction

of various attentional systems in healthy humans, which will lead to investigations of disordered

attention networks. This work has even greater implications for the diagnosis and treatment of

neurological disorders that affect task-engagement and general attention, including attention-deficit

hyperactivity disorder (ADHD), Alzheimer’s disease, Parkinson’s disease dementia, traumatic brain

injury, and stroke.

8.2 Summary

This thesis focused on the neural activity associated with naturally-fluctuating task-related atten-

tion, and investigated this activity non-invasively in healthy human subjects. Such endogenous

modulations of attention are by definition not related to external events, so any attempt to control
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them would negate the experiment. To overcome this challenge, we exploited well-known links

between EEG and pupil measurements and endogenous attention. The EEG and pupil measure-

ments provided a way to index internal attentional state during each trial of the experiments.

We used multi-modal neuroimaging, namely simultaneous EEG-fMRI and EEG-pupillometry, and

investigated correlates of these measurements in the simultaneously-acquired data.

In the EEG-fMRI studies of Chapters 3, 4, and 5, we used the amplitude of event-related EEG

responses to represent attention to the tasks on each trial, and we used this to construct regressors

for the fMRI general linear model (GLM). This approach required dimensionality reduction from

the original 43-channel EEG space, which we achieved by applying machine learning methods to the

EEG data to find the most task-relevant projections. The linear classifier output one scalar value

for each trial, which served as an index of task-related attention. Results of the EEG-based fMRI

analysis revealed brain regions with activity that modulates with attentional state. The fMRI data

provided these correlates in both cortical and deep subcortical structures at high spatial resolution.

Since multiple event-related EEG components with various latencies are known to have amplitude

that modulates with attention, we repeated this analysis for narrow windows of EEG data spanning

each trial, and this provided information about the temporal cascade of attention-related activity

at high temporal resolution.

Since the behavioral response time (RT) is also highly correlated with endogenous attention,

we first regressed out any variability correlated with RT, and this enabled us to study fluctuations

of attention that are not observable in external events. We found that many brain regions previ-

ously shown to couple with EEG responses have variance that is completely reflected in the RT,

while the variability in other areas is latent. We investigated these correlates specific to auditory

(Chapter 3) and visual tasks (Chapter 4), as well as those that generalize across sensory input do-

mains (Chapter 5). This enabled us to tease apart the temporal order and functional significance

of the activations. Without aiming to study functional networks, which are commonly studied in

resting-state fMRI data, we found correlates of EEG single trial variability in the default-mode net-

work (DMN), ventral attention network (VAN), locus coeruleus norepinephrine (LC-NE) system,

and areas previously implicated in the P300 target-related EEG response. Our DMN finding was

specific to the visual domain and the others were shown to generalize.

In the novel supra-modal investigation that combined auditory and visual data at the subject
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level (Chapter 5), we expanded upon our results by performing dynamic causal modeling (DCM) on

the fMRI data. Using our EEG-based GLM clusters as regions of interest (ROIs), we designed and

tested models to further investigate functional interactions between these attention systems. We

found strong evidence for reciprocal connections between cortical networks and the brainstem. In

addition to providing support for this theorized link using non-invasive methods in healthy humans,

our results suggest that ACC activity early in the trial influences the phasic response of the LC,

which then modulates activity in a number of attention-related cortical regions.

In the EEG-fMRI study described in Chapter 6, we used EEG activity to index endogenous

attention in a different way. Power of the ongoing posterior EEG alpha oscillation is commonly

associated with attention, so we used an estimate of its magnitude immediately prior to stimulus

onset as a surrogate for attentional state on each trial. We contrasted the BOLD response related to

the simple auditory perceptual decision for low vs. high attentional state to investigate the influence

of subjects’ internal attentional state on the neural processing required for a task. Our activations

in primary and supplementary motor areas suggest that during periods of waning attention, target

stimuli act to re-focus subjects’ attention and lead them to monitor their behavioral performance.

We additionally explored the relationship of EEG alpha phase at stimulus onset to the BOLD

response, and the activity revealed in bilateral thalamus provides evidence for a thalamo-cortical

loop in attentional modulations. Our findings are largely consistent with the limited alpha-EEG-

fMRI literature, which all investigates task-irrelevant visual stimulus processing, but we extend our

work to task-relevant decision-related processing in the auditory domain. Furthermore, we do not

limit our fMRI analysis to ROIs, allowing us to make inferences regarding correlates of attentional

fluctuations across the brain.

Finally, the EEG-pupillometry study of Chapter 7 exploited the close link between pupil size

and activity in the LC-NE system, which modulates arousal and attention. Neural activity within

the LC nucleus is particularly difficult to study in humans due primarily to its location within the

brainstem. We used pupil diameter prior to stimulus as a surrogate for tonic LC activity since

these have been shown to closely track each other in monkey studies. We again used our machine

learning methods and our alpha EEG methods to generate EEG-based measures of attention. We

then investigated pairwise correlations between attention-related EEG measurements and pupil

diameter measurements, some of which were post-stimulus responses to target stimuli and some of
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which were pre-stimulus measures of underlying attentional state. The sliding EEG window method

enabled us to separately investigate correlates of attention at multiple temporal offsets spanning

the trial, to determine which specific components of the evoked EEG response are influenced by

LC activity. We again regressed out the affect of RT variability to focus our study on latent brain

states. We found that both early and late (but not middle time range) EEG components correlate

negatively with pupil diameter prior to stimulus onset, suggesting these components are modulated

by tonic LC activity. We also found a negative correlation between the pre-stimulus EEG alpha

magnitude and the evoked pupil response to auditory target stimuli, which can be related to the

phasic LC response.

All of the studies described within this thesis investigated neural activity related to simple

perceptual decision making tasks, and in particular how this activity is modulated by endogenous

attentional state. We focus on fluctuations that are not detectable in behavioral response and not

related to individual stimulus properties. Our data-driven multimodal methods were able to reveal

information regarding temporally-specific functional interactions between known attention systems,

some of which generalize across sensory input modality.

8.3 Pitfalls and Limitations

One of the first steps in this thesis work was to transition the auditory oddball EEG-fMRI study

of Goldman et al. (2009), which used a 1.5T scanner, and expand upon it to include a visual task.

We used a higher-field 3T scanner, providing a greater signal-to-noise ratio (SNR) of the fMRI

signal and higher resolution functional images. However, this came at the potential cost of EEG

discrimination performance, due to reduced SNR in the EEG caused by increased magnitude of

magnetically-induced artifacts. This sacrifice in SNR, if large enough to decrease discrimination

performance, would decrease the significance of the BOLD activations. We were able to overcome

this limitation by increasing the saliency of our auditory and visual target stimuli.

Precise temporal localizations are difficult in traditional fMRI studies due to the slow, diffuse,

and indirect nature of the BOLD measurement and to spatial variations in the HRF. Our method of

combining single-trial EEG variability with fMRI was able to circumvent this limitation by finding

BOLD correlates of the electrophysiological response at multiple temporal offsets. Despite the
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temporal information it provides, our EEG-based GLM method is unable to infer causality. While

effective connectivity fMRI analysis techniques such as DCM aim to infer causal relationships in

a physiologically meaningful way, interpretation of the results are controversial. Hypothesis-based

models compete against each other, and the winning model is used to make inferences about neural

activity. The winning model is not necessarily a well-fit model—just the best fitting of the models

that were tested. It is unrealistic if not impossible to test every permutation of intrinsic connectivity

between the selected ROIs; even when including a small number of ROIs (� 10) the number of

possible models is enormous.

Our EEG-based fMRI analysis methods reveal BOLD correlates of modulations in task engage-

ment. We would intuitively expect positive activations to appear in areas that are more active

when the subject is task-engaged and negative activations to appear when the subject is mind-

wandering. However, it has been shown that low frequency electrophysiological variations, such as

those measured by scalp EEG, are negatively correlated with the BOLD response (Mantini et al.,

2007; Mukamel et al., 2005; Scheeringa et al., 2011a). The open question about the physiologi-

cal meaning of directionality of electrophysiological BOLD correlates remains, and this leads to

challenges in the interpretation of results.

Another challenge when using simultaneously-acquired EEG data to model the fMRI signal

is dimensionality reduction. There are too many EEG channels to simply input their signals

as individual GLM regressors. Additionally, the mismatched sampling rates of EEG and fMRI

(milliseconds vs. seconds) as well as the very different timescales of the signals being measured

(electrophysiology vs. hemodynamic activity) would render such a model essentially meaningless.

Selection of a subset of electrodes or independent component analysis (ICA) projections can be

arbitrary. Our machine learning methods were able to determine the most task-relevant projection

of the EEG data and thus avoid an arbitrary electrode selection. Since this was performed for

multiple windows of EEG data spanning the trial, it also avoided an arbitrary selection of ERP

components at various latencies, which is common method reported in the literature. In the alpha

analysis we selected our ICA projection based on specific criteria and were confident that we were

investigating a meaningful attention-related projection of the EEG data. However, there exist

multiple independent component projections possessing high ongoing alpha power, but which are

out of phase with each other. For this reason, BOLD contrasts related to alpha phase at stimulus
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onset must be interpreted with caution. Results can be viewed as a comparison between opposite

phase conditions but inferences should not be made about the particular phase of the oscillation.

The EEG-pupil study described here investigated linear correlations between pre-stimulus and

post-stimulus measures of attentional state; however, there is evidence to suggest existence of

nonlinear relationships between LC activity and attention. Therefore, our negative findings cannot

exclude the possibility of more complex relationships between these metrics.

8.4 Future Work

Follow-up studies beyond the scope of this thesis should use spectral analysis of EEG to explore

the EEG frequency and BOLD directionality relationship. It would be particularly interesting

to explore whether EEG spectral dynamics are responsible for the sign reversals we observed in

the visual task results near RT and then shortly after the response. Frequency-dependencies of

our numerous activations should also be investigated independently, since common resting-state

networks have been associated with specific EEG frequency bands (Mantini et al., 2007) and some

are anti-correlated with each other. The community should not neglect BOLD signals detected

in white matter and draining veins, since they can provide a clearer understanding of the neural

activity occurring upstream. Future studies should utilize diffusion tensor imaging (DTI) or arterial

spin labeling (ASL) and co-registration with high resolution anatomical and functional MRI to

investigate the EEG-based fMRI correlates we found in draining veins.

While this dissertation work made great strides toward understanding interactions between

attention systems, causality remains an open question. Transcranial magnetic stimulation (TMS)

is the optimal method to investigate causal relationships between neural activity in specific brain

regions, since it is noninvasive and can thus be performed on healthy humans. Future studies

should use TMS to test causal relationships and provide confident conclusions about dynamic

causal interactions.

High SNR is valuable in all signal analyses, and particularly in fMRI where BOLD changes are

tiny relative to the underlying signal. Future EEG-fMRI studies in our lab will use an upgraded

and more user-friendly MR-compatible EEG system to provide greater quality EEG data. This

new system can be used with a multiple channel MRI gradient coil, which will increase the SNR
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of the fMRI data. Together this will enable studies of more complex tasks, including difficult

decision-making tasks involving more natural stimuli.

The EEG-fMRI data of this thesis is proving its utility in the development and exploration

of new data fusion methods, due to the simplicity of the auditory and visual oddball tasks and

the special care taken during data acquisition. A fast bootstrapping and permutation testing

technique for assessing reproducibility and interpretability of multivariate fMRI decoding models

(called FaSTGLZ) has already been developed (Conroy et al., 2013a,b). Techniques of linking EEG

and fMRI classifiers are also currently being explored.

An obvious next step in the EEG-pupil research project is to investigate quadratic relationships

between pupil diameter and EEG measurements, and this work is already in progress. We believe

our EEG-pupil work will promote future studies that use noninvasive measurements to further

investigate and index LC activity. Simultaneous EEG, fMRI, and pupillometry experiments specif-

ically designed to test hypotheses of LC-NE system behavior have the potential to provide much

needed insight into the mechanistic role of this system.
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Appendix B

List of Abbreviations

General

BOLD blood-oxygen level dependent

EEG electro-encephalography

fMRI functional magnetic resonance imaging

ICA independent components analysis

ITI inter-trial interval

PCA principal components analysis

PD pupil diameter

RT reaction time

EEG Analyses

AUC area under the ROC curve

EOG electro-oculogram

ERP event-related potential

LR logistic regression

RL response-locked

SL stimulus-locked

STV single-trial variability
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fMRI Analyses

BCG ballisto-cardiogram

BMS Bayesian model selection

BPA Bayesian parameter averaging

DCM dynamic causal model

EPI echo-planar imaging (functional data)

FWE family wise error

GLM general linear model

HRF hemodynamic response function

MNI Montreal Neurological Institute (brain template)

RF radio frequency

ROI region of interest

SPGR spoiled gradient recalled (structural data)

TE echo time

TFCE threshold-free cluster enhancement

TR repetition time

Brain Regions

ACC anterior cingulate cortex

BS brainstem

DLPFC dorso-lateral prefrontal cortex

DMN default-mode network

IFG inferior frontal gyrus

LC locus coeruleus

LOC lateral occipital cortex

MFG middle frontal gyrus

NE norepinephrine

OFC orbito-frontal cortex

PCC posterior cingulate cortex

SFG superior frontal gyrus

SMA supplementary motor area

VAN ventral attention network
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