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Abstract 

Multimodal Investigation of Brain Network Systems: From Brain Structure and Function to 

Connectivity and Neuromodulation 

Hengda He 

 

 The field of cognitive neuroscience has benefited greatly from multimodal investigations 

of the human brain, which integrate various tools and neuroimaging data to understand brain 

functions and guide treatments for brain disorders. In this dissertation, we present a series of 

studies that illustrate the use of multimodal approaches to investigate brain structure and 

function, brain connectivity, and neuromodulation effects. Firstly, we propose a novel landmark-

guided region-based spatial normalization technique to accurately quantify brain morphology, 

which can improve the sensitivity and specificity of functional imaging studies. Subsequently, 

we shift the investigation to the characteristics of functional brain activity due to visual 

stimulations. Our findings reveal that the task-evoked positive blood-oxygen-level dependent 

(BOLD) response is accompanied by sustained negative BOLD responses in the visual cortex. 

These negative BOLD responses are likely generated through subcortical neuromodulatory 

systems with distributed ascending projections to the cortex. To further explore the cortico-

subcortical relationship, we conduct a multimodal investigation that involves simultaneous data 

acquisition of pupillometry, electroencephalography (EEG), and functional magnetic resonance 



 
 

imaging (fMRI). This investigation aims to examine the connectivity of brain circuits involved in 

the cognitive processes of salient stimuli. Using pupillary response as a surrogate measure of 

activity in the locus coeruleus-norepinephrine system, we find that the pupillary response is 

associated with the reorganization of functional brain networks during salience processing. In 

addition, we propose a cortico-subcortical integrated network reorganization model with 

potential implications for understanding attentional processing and network switching. Lastly, 

we employ a multimodal investigation that involves concurrent transcranial magnetic stimulation 

(TMS), EEG, and fMRI to explore network perturbations and measurements of the propagation 

effects. In a preliminary exploration on brain-state dependency of TMS-induced effects, we find 

that the propagation of left dorsolateral prefrontal cortex TMS to regions in the lateral 

frontoparietal network might depend on the brain-state, as indexed by the EEG prefrontal alpha 

phase. Overall, the studies in this dissertation contribute to the understanding of the structural 

and functional characteristics of brain network systems, and may inform future investigations 

that use multimodal methodological approaches, such as pupillometry, brain connectivity, and 

neuromodulation tools. The work presented in this dissertation has potential implications for the 

development of efficient and personalized treatments for major depressive disorder, attention 

deficit hyperactivity disorder, and Alzheimer's disease. 

 



i 
 

Table of Contents 
 

List of Tables ................................................................................................................................. iv 

List of Figures ................................................................................................................................. v 

Acknowledgments ......................................................................................................................... xx 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Overview ............................................................................................................................... 1 

1.2 Motivation ............................................................................................................................. 5 

1.3 Background ........................................................................................................................... 8 

Chapter 2: Advanced Methods for the Analysis of Structural and Functional MRI and Its 

Applications in Investigating the Negative BOLD Responses ..................................................... 14 

2.1 Overview ............................................................................................................................. 14 

2.2 Landmark-guided Region-based Spatial Normalization (LG-RBSN) for Analyzing 

Structural and Functional MRI ................................................................................................. 16 

2.2.1 Introduction ............................................................................................................. 16 

2.2.2 Methods................................................................................................................... 21 

2.2.3 Results ..................................................................................................................... 35 

2.2.4 Discussion ............................................................................................................... 55 

2.3 Negative BOLD Responses in the Human Visual Cortex .................................................. 63 

2.3.1 Introduction ............................................................................................................. 63 

2.3.2 Methods................................................................................................................... 67 

2.3.3 Results ..................................................................................................................... 78 



ii 
 

2.3.4 Discussion ............................................................................................................... 92 

Chapter 3: Spatiotemporal Dynamics of Functional Brain Networks during Salience Processing 

and Its Associations to the Neuromodulatory System ................................................................ 101 

3.1 Overview ........................................................................................................................... 101 

3.2 An Automatic and Subject-specific Method for Locus Coeruleus Localization and 

Functional MRI BOLD Activity Extraction ........................................................................... 102 

3.2.1 Introduction ........................................................................................................... 102 

3.2.2 Methods................................................................................................................. 103 

3.2.3 Results ................................................................................................................... 109 

3.2.4 Discussion ............................................................................................................. 109 

3.3 Pupillary Response Is Associated with the Reset and Switching of Functional Brain 

Networks during Salience Processing ..................................................................................... 110 

3.3.1 Introduction ........................................................................................................... 110 

3.3.2 Methods................................................................................................................. 113 

3.3.3 Results ................................................................................................................... 126 

3.3.4 Discussion ............................................................................................................. 144 

3.4 Dynamic Causal Modeling of the Locus Coeruleus and preSMA Circuit in Attentional 

Processing ............................................................................................................................... 160 

3.4.1 Introduction ........................................................................................................... 160 

3.4.2 Methods................................................................................................................. 160 

3.4.3 Results ................................................................................................................... 161 

3.4.4 Discussion ............................................................................................................. 164 



iii 
 

Chapter 4: Modulation of Functional Brain Networks using Transcranial Magnetic Stimulation 

and Its Brain-state Dependent Effects ......................................................................................... 166 

4.1 Introduction ....................................................................................................................... 166 

4.2 Methods............................................................................................................................. 167 

4.3 Results ............................................................................................................................... 170 

4.4 Discussion ......................................................................................................................... 174 

Chapter 5: Conclusions and Future Directions ........................................................................... 176 

5.1 Summary ........................................................................................................................... 176 

5.2 Limitations and Future Work ............................................................................................ 179 

References ................................................................................................................................... 185 

 

 

 

 

 

  



iv 
 

 

List of Tables 

Table 2.1: Dice similarity coefficient (DSC) between warped and fixed images of using ANTS and 

LG-RBSN in the simulation cases of (a) aligned and (b) mis-aligned initially. ........ 38 

Table 2.2: Comparison of the HRFs obtained for the cNBR and iNBR (cNBR vs. iNBR; * p < 

0.05; uncorrected). ..................................................................................................... 83 

Table 2.3: Comparison of the HRFs obtained for the PBR and NBRs (* p < 0.05; ** p < 0.01; 

uncorrected). .............................................................................................................. 85 

 

  



v 
 

 

List of Figures 

Figure 2.1: The pipeline for the landmark-guided region-based spatial normalization (LG-RBSN) 

solution. Subject’s T1 image is processed with FreeSurfer for surface reconstruction 

and parcellation. Then, an automatic regional landmark extraction and matching 

approach (Subsection 2.1 Automatic regional landmark extraction and matching) is 

used to extract regional landmarks from the results of surface registration. For each 

region independently, the landmark-guided large deformation diffeomorphic 

registration (Subsection 2.2 Landmark-based large deformation diffeomorphic 

registration via geodesic shooting) is performed resulting in a distinct displacement 

field for that region. We then combine the regional displacement fields together using 

a novel interpolation technique (Subsection 2.3 Inverse distance weighted 

interpolation of neighboring region-based displacement composition) to give a single 

global displacement field for the whole brain. Finally, a residual compensation 

approach is used to enforce bijectivity property into the global deformation field 

(Subsection 2.4 Bijectivity constraints with residual compensation and Demons 

registration). ............................................................................................................... 23 

Figure 2.2: Illustrate our method for automatic landmark extraction and matching for landmark-

based regional non-linear registration with example on superior temporal cortex (STC) 

region. In step a), for STC region (Cyan color), vertices of the GW/WM and GM/CSF 

boundaries triangular meshes are extracted as landmarks (GM/CSF surface vertices 

shown as red dots, GW/WM surface vertices are not showing in the figure); In step b), 

landmarks of STC region are down-sampled by down-sampling the original dense 

surface mesh (green meshes) to a sparser surface mesh (red meshes) and sampled back 

to the original vertices (yellow dots) to keep consistency; In step c), correspondence 

of STC regional landmarks between the MNI template and the subject is established 

through spherical registration (corresponding landmarks in subject space shown as 

yellow dots); In step d), corresponding regional landmarks are initially aligned with 

linear transformations in 3D Euclidean space; In step e), a diffeomorphic non-linear 



vi 
 

landmark-based registration is used to generate regional warping field for STC region. 

The step f) is only showing that STC regional warping field can be used to warp the 

subject’s regional volume onto MNI template space. WM: white matter; GW: grey 

matter; CSF: cerebrospinal fluid. ............................................................................... 26 

Figure 2.3: Combining adjacent regions’ non-linear displacement fields using inverse distance 

weighted interpolation interpolation. For each location in the background and region-

to-region transition area, the displacement is calculated as a normalized weighted 

average of the displacement values in all regional warping fields at that location. The 

weight is based on the inverse of the closest distance between the location and the 

region. 𝒘𝒊(𝒙) is the normalized weight at location 𝒙 for region 𝒊. ........................... 31 

Figure 2.4: Comparison of ANTS and LG-RBSN registration results in cortical gyrus registration 

simulations with cases of moving and fixed images (a) aligned initially and (b) mis-

aligned initially. In experiment (a), ANTS matched the whole gyrus mask perfectly 

but failed to accurately align the underlying 3 regions (yellow and green arrows mark 

the same location across images). In experiment (b), ANTS fell into a local minimum 

and failed to match even the binary mask of the entire gyrus. LG-RBSN matched the 

whole structure mask and regions perfectly in both experiments. ANTS: advanced 

normalization tools; LG-RBSN: landmark-guided region-based spatial normalization.

 ................................................................................................................................... 39 

Figure 2.5: Visualization of LG-RBSN estimated global displacement vector field of one example 

subject. The X, Y, and Z denote the displacement in each direction with a unit of 

millimeter. This displacement vector field has a maximum displacement of 16.1 and a 

minimum displacement of -17.3, and is mostly within a range between -8 to 8. The 

visualization shows that our method is capable to work with large and localized 

displacements. LG-RBSN: landmark-guided region-based spatial normalization. ... 40 

Figure 2.6: Spatial normalized brain qualification evaluation comparison between LG-RBSN and 

ANTS. The first and the last columns illustrate subjects’ brain images rigid aligned 

(showing as moving images) to MNI152 brain images (as fixed images). The second 

and the third columns illustrate subjects’ brain images after ANTS/LG-RBSN non-



vii 
 

linear registration to MNI152 brain images. LG-RBSN shows clearly better 

performance compared to ANTS in red dotted circles highlighted areas. In subject 2, 

ANTS mismatched a Gyrus of the subject’s cerebral cortex to a Sulcus in MNI152 

space, whereas LG-RBSN matched the corresponding Sulci properly. ANTS: 

advanced normalization tools; LG-RBSN: landmark-guided region-based spatial 

normalization. ............................................................................................................ 41 

Figure 2.7: Cortical regional DSC comparison between Affine, ANTS, CVS and LG-RBSN in 

different brain lobes. LG-RBSN shows significantly higher DSC in matching brain 

cortical regions than ANTS and CVS. ANTS: advanced normalization tools; LG-

RBSN: landmark-guided region-based spatial normalization; CVS: combined 

volumetric and surface registration; DSC: Dice similarity coefficient. .................... 44 

Figure 2.8: DSC comparison between Affine, ANTS, CVS and LG-RBSN. LG-RBSN shows 

significantly higher DSC in matching brain cortical regions, sub-cortical regions, and 

cerebral WM than ANTS. LG-RBSN shows significantly higher DSC in matching 

brain cortical regions and cerebral WM than CVS. And LG-RBSN is more robust 

working with both young and older subjects compared to ANTS and CVS, as LG-

RBSN shows less variance of DSC in matching brain cortical regions and cerebral 

WM. ANTS: advanced normalization tools; LG-RBSN: landmark-guided region-

based spatial normalization; CVS: combined volumetric and surface registration; 

DSC: Dice similarity coefficient; WM: white matter. ............................................... 45 

Figure 2.9: Number of non-positive Jacobian voxels decreases along bijectivity constrain iterations 

for (a) forward (subject to MNI152) (b) backward (MNI152 to subject) warping field. 

The red curve and the grey region represent the mean and the standard deviation. .. 47 

Figure 2.10: The processing pipeline for task-based fMRI data. The thick arrows show the transfer 

of 4D fMRI data, the double thin arrow shows the transfer of the 3D data, and the thin 

arrow shows the transfer of the parameters. ANTS: advanced normalization tools; LG-

RBSN: landmark-guided region-based spatial normalization; EPI: echo planar 

imaging. ..................................................................................................................... 49 



viii 
 

Figure 2.11: Distribution of the point estimates for visual task-based fMRI group level visual 

activation in brain contralateral occipital lobe using different spatial normalization 

methods (Left: for stimulating left visual hemifield; Right: for stimulating right visual 

hemifield). ANTS: advanced normalization tools; LG-RBSN: landmark-guided 

region-based spatial normalization; CVS: combined volumetric and surface 

registration. ................................................................................................................ 50 

Figure 2.12: Beta values of tonal task fMRI group level auditory activation in contralateral 

transverse temporal cortex and superior temporal cortex using different spatial 

normalization methods (Left: for stimulating left ear; Right: for stimulating right ear). 

ANTS: advanced normalization tools; LG-RBSN: landmark-guided region-based 

spatial normalization; CVS: combined volumetric and surface registration. ............ 51 

Figure 2.13: ROC curve evaluating spatial normalization methods with visual task-based fMRI 

group level t-statistics activation map compared to FreeSurfer lateral-occipital region 

(Left: for stimulating left visual hemifield; Right: for stimulating right visual 

hemifield). ANTS: advanced normalization tools; LG-RBSN: landmark-guided 

region-based spatial normalization; CVS: combined volumetric and surface 

registration; ROC: receiver operating characteristic. ................................................ 53 

Figure 2.14: ROC curve evaluating spatial normalization methods with auditory task-fMRI group 

level T-statistics activation map compared to FreeSurfer segmented neuroanatomical 

brain contralateral primary auditory mask (Left: for stimulating left ear; Right: for 

stimulating right ear). ANTS: advanced normalization tools; LG-RBSN: landmark-

guided region-based spatial normalization; CVS: combined volumetric and surface 

registration; ROC: receiver operating characteristic. ................................................ 54 

Figure 2.15: a) Illustration of a segment of the time-course of the visual-audio event related task. 

The blue line shows the timing of the auditory stimuli, the red line shows the timing 

of the visual stimuli, and the red stick line shows the subject responses (i.e., each time 

they press the button). In this sample demonstration, subjects were requested to attend 

to the visual stimulus and ignore the auditory stimulus. This is evident by the response 

pattern as the button is pressed twice as soon as the attended stimulus (i.e., visual 



ix 
 

stimulus) is terminated. b) Flashing checkerboard visual stimulus presented on the left 

and right hemifield. .................................................................................................... 69 

Figure 2.16: The preprocessing pipeline for task-based fMRI data. The thick arrows show the 

transfer of 4D fMRI data, the double thin arrow shows the transfer of the 3D data, and 

the thin arrow shows the transfer of the parameters. ................................................. 71 

Figure 2.17: Demonstration of activation/deactivation in response to right visual hemifield 

stimulation from a single subject in the attended condition. Positive BOLD responses 

are color-coded with red/yellow and negative BOLD responses are color-coded with 

blue/cyan. The unilateral visual stimulation induces robust PBR in the contralateral 

(relative to the stimuli) visual cortex accompanied by a robust cNBR in its vicinity, 

and a robust iNBR in the opposite hemisphere. Note that spatial smoothing is carried 

out here only for better illustration. ........................................................................... 79 

Figure 2.18: Linearity of the a) cNBR, b) iNBR, and c) PBR with respect to stimulation duration. 

The blue and red dots show, respectively, the mean amplitudes for negative and 

positive BOLD responses of each subject. The black dots indicate the mean amplitude 

of the BOLD responses (i.e., averaged over all subjects) for each duration category. 

The black dashed lines represent the regression lines. The absolute values of the mean 

cNBR and iNBR amplitudes scale linearly with the stimulus duration. Please note that 

the timeseries have zero mean and unit standard deviation for this analysis, thus the 

relative change between categories carries the information and not the b-coefficient 

value at each category. As a sanity check for the method, we also applied the same 

method to the PBR. As expected, the PBR scales linearly with the stimulus duration.

 ................................................................................................................................... 82 

Figure 2.19: The HRFs of positive BOLD, and contralateral/ipsilateral negative BOLD responses 

to a) attended and b) unattended visual stimuli. The curves are adjusted based on 

average of the HRF for 5 second prior to the stimulus onset. The unit of the magnitudes 

are percent changes (subtracted by mean and then divided by mean). Error bars 

represent the standard error of the mean. As is evident here, the two negative HRFs 



x 
 

are closely similar in terms of their overall dynamics and amplitudes (* p < 0.05; ** p 

< 0.01; Bonferroni correction). .................................................................................. 84 

Figure 2.20: A) The definition of amplitude, time to peak, onset time, falling edge time, and time 

to undershoot of the BOLD responses as illustrated for the PBR case. B-F) Student’s 

t-test of any statistically significant difference between the B) amplitude in percent 

change, C) time to peak, D) onset time, E) falling edge time, and F) time to undershoot 

of the two NBRs and PBR using sinc-interpolation up-sampled subject-wise HRF. 

Error bars represent the standard error of the mean. Statistically significant differences 

are marked with asterisk symbols (* p < 0.05; ** p < 0.01; uncorrected). ............... 86 

Figure 2.21: Correlation of the mean amplitudes of the BOLD responses to the visual stimuli in 

the attended (a, b, and c) and unattended (d, e, f) conditions. The value of the slop, 

Pearson correlation coefficient, the p-value of PCC are presented for each case. The 

dashed black lines represent the regression lines with all the data, and the solid red 

lines represent the regression lines with data after outliers removed. As is depicted, 

regardless of the attention condition, the subject-wise expression of the iNBR and 

cNBR are significantly more correlated with each other than each one with the PBR.

 ................................................................................................................................... 88 

Figure 2.22: Subject-wise interhemispheric functional connectivity between regions with iNBR 

and cNBR are depicted using boxplot alongside the subject-wise functional 

connectivity between regions with iNBR and PBR using Pearson correlation 

coefficient for a) right visual hemifield stimulation, b) left visual hemifield 

stimulation, and c) the mean of the two functional connectivity. The results of the 

group differences are also presented in each plot using Student t-test. ..................... 89 

Figure 2.23: Spatial distribution of PBR, cNBR, and iNBR overlaid on a sphere (inflated brain). 

Boundaries of different visual areas V1 to V4 are depicted using different colors. As 

is demonstrated here, iNBR has a higher spatial correspondence to PBR than to cNBR. 

Note that spatial smoothing is carried out only for better visualization. ................... 91 



xi 
 

Figure 3.1: (a) fMRI data preprocessing and nuisance signal regression. The middle time point EPI 

volume was used as the reference in motion correction. No spatial smoothing was 

applied. Motion parameters include 6 standard head motion parameters, their temporal 

derivatives, and the squares of the above 12 motion parameters. (b) Intra-subject inter-

modality image registration. .................................................................................... 106 

Figure 3.2: LC localization using a predefined LC atlas and the TSE image of each subject. In T1w 

structural space, we use a criterion (Student’s t-test) to determine a coarse LC location. 

Then, either TSE intensities in the LC mask or an LC atlas is transformed to EPI 

functional space for a more precise localization (using trilinear interpolation). The 

result is one of three possible outcomes: 1) we localize the LC structure within 𝑴𝟏𝑺𝑫; 

2) we localize the LC structure within 𝑴𝟐𝐒𝐃; 3) we localize the LC structure with the 

predefined LC atlas (i.e., without using any information from 𝑰𝑻𝑺𝑬). ..................... 108 

Figure 3.3: (a) GLM to estimate and test the contributions of PDB and PR to LC BOLD activity 

(controlling for the variance due to the presence of stimuli). Trial-to-trial variabilities 

of PDB and PR (VPDB and VPR) were modeled as boxcar functions with the 

amplitude of each trial modulated by the pupil measurements. The boxcar functions 

were convolved with a canonical double-gamma hemodynamic response function 

before fitting into the GLM. (b) Group level statistical analysis in testing regression 

weights against zero. *p < 0.05; **p < 0.01. ........................................................... 109 

Figure 3.4: Flow chart illustrating the steps of data acquisition, preprocessing, single-modality 

analyses, and cross-modality analyses. .................................................................... 114 

Figure 3.5: Schematic illustration of auditory oddball paradigm, single-trial analysis, and single-

trial variability EEG-informed fMRI analysis. For each temporal window τ, we applied 

a single-trial analysis with the extracted EEG data in the windows from all the trials, 

where a logistic regressor was trained to learn a weight matrix w maximally 

discriminating the target vs standard trials. From the weighting on the EEG channels 

with matrix w, a EEG discriminating component was computed as a low-dimensional 

representation of the EEG data. For example, two EEG sensors (channel i and j) were 

illustrated in the figure with a hyperplane discriminating target (red dots) and standard 



xii 
 

(yellow dots) trials. Similarly, single-trial analysis was applied to all other temporal 

windows spanning the trial independently with a sliding window approach (step size 

as δ). The EEG discriminating component at each temporal window was used to 

modulate regressors in a general linear model (GLM) to predict fMRI BOLD response 

(convolved with the canonical hemodynamic response function along with other 

regressors). The GLM analysis was applied with each temporal window 

independently. .......................................................................................................... 118 

Figure 3.6: Network nodes definition with HCP-MMP atlas. The nodes (circles) of the SN, DMN, 

and DAN are overlaid with the selected network areas from the HCP-MMP atlas and 

the MNI152 brain image. The group-level region of interest masks (illustrated as 

spatial distribution maps) were obtained from majority vote across subjects. ........ 122 

Figure 3.7: Stimuli-locked pupillary response. The z-scored pupil diameter fluctuations from 500 

ms before the stimulus to 2000 ms following the stimulus were averaged across 

subjects for the oddball (red) and standard (yellow) stimuli. The shaded bands 

represent standard error, and the bottom gray line indicates significant difference 

(Student’s t-test, p < 0.001) between the pupil diameter evoked by the oddball and 

standard stimuli. ....................................................................................................... 126 

Figure 3.8: Stimulus locked event-related potential at the Pz electrode for the standard (blue) and 

oddball (red) trials, from 500 ms pre-stimulus to 2000 ms post-stimulus. The solid 

lines denote the group mean, and the shaded areas denote the standard error across 

subjects. The P300 component was observed with a peak around 390 ms. ............ 128 

Figure 3.9: Axial slices of the thresholded group-level significant activations in the traditional 

fMRI analysis of the oddball effects (contrast as oddball versus standard stimuli). The 

z-statistic maps were displayed on top of the MNI152 template brain image. FMRIB’s 

Local Analysis of Mixed Effects (FLAME) from the FSL software package was used 

for the group-level statistical inference. The group-level statistical parametric maps 

were thresholded with z > 3.1 and corrected cluster significance threshold of p = 0.05 

(Gaussian random field method). Regions in the dorsal attention network, salience 

network, visual and auditory cortex, primary somatosensory cortex, and subcortex 



xiii 
 

were identified as significant clusters. Please be noted that only the significant positive 

effects are shown here, and we did not observe any significant negative effects in the 

regions of the default mode network. The ‘R’ in the figure denotes right side of the 

brain. ........................................................................................................................ 129 

Figure 3.10: Neural correlates of salience processing defined with the EEG single-trial variability 

(STV) informed fMRI analysis. (A) Timing diagram showing significant group-level 

activation clusters (p < 0.05 cluster-wise multiple comparison correction). STV in 

EEG temporal components discriminating the target versus standard trials was used to 

map the spatiotemporally distributed BOLD fMRI correlates spanning the trial. EEG 

STV information was incorporated as BOLD predictors in voxel-wise general linear 

model (GLM) analysis of fMRI, controlling for the variance due to the presence of 

stimuli and response time (RT). Cluster colors denote positive (red) and negative 

(blue) effects. Time is relative to stimulus onset. (B) Definition of salience processing 

nodes. Each node is a sphere centered on the peak voxel of the group-level STV EEG-

informed fMRI analysis results. Centroid of peak locations was used for regions 

involved in more than one temporal windows. Node colors denote timing of 

involvement in the trial from early to late (temporal order: red, orange, yellow, green, 

and blue). All clusters and nodes were overlaid on a 3D Montreal Neurological 

Institute (MNI) 152 brain pial surface for visualization. BOLD, blood-oxygen-level-

dependent; RH, right hemisphere; LH, left hemisphere; A, anterior; P, posterior; S, 

superior; I inferior; SPL, superior parietal lobule; M1, primary motor cortex; S1, 

primary somatosensory cortex; V2, secondary visual cortex; OFC, orbitofrontal 

cortex; IPL, inferior parietal lobule; IFC, inferior frontal cortex; mPFC, medial 

prefrontal cortex; SMA, supplementary motor area. ............................................... 130 

Figure 3.11: Network localization approach to map functional networks underlying salience 

processing nodes. (A) BOLD signals from the nodes (intersected with the grey matter 

mask) were extracted, controlling the nuisance signals (motion-related, ventricle and 

white matter signals). (B) Group-level functional connectivity (FC) results of each 

node (t-value, mixed-effect, p < 0.001 uncorrected). Seed-based FC analysis (with the 

task-related variability regressed out) was used to map network of regions connected 



xiv 
 

to each node location. Colors denote positive (red) and negative (blue) correlations. 

(C) Spatial overlaps in the FC maps of each node identified spatial network 

organizations of salience processing nodes. Colors represent the number of FC maps 

overlapped. lSPL and rSPL, left and right superior parietal lobule; rM1, right primary 

motor cortex; lS1, left primary somatosensory cortex; rV2, right secondary visual area; 

lOFC and rOFC, left and right orbitofrontal cortex; lIPL, left inferior parietal lobule; 

rIFC, right inferior frontal cortex. ............................................................................ 132 

Figure 3.12: Functional connectivity (FC) across salience processing nodes (group averaged z-

score, mixed-effect, p < 0.05 uncorrected). fMRI BOLD signals from the nodes 

(intersected with the grey matter mask) were extracted, controlling the nuisance 

signals (motion-related, ventricle and white matter signals). Pearson’s correlation was 

calculated between BOLD signals from the nodes (with the task-related variability 

regressed out). FC results identified three distinct groups of the nodes, organized by 

the EEG discriminating component time windows, indicating a temporal network 

organization of the nodes: 1) early-time network includes lSPL and rSPL, rM1, rV2, 

and lS1; 2) middle-time network includes lOFC and rOFC, lIPL, and rIFC; 3) late-

time network includes mPFC, SMA, left frontal operculum and temporal pole. .... 133 

Figure 3.13: Group-level mean effective connectivity modulated by the oddball stimuli between 

salience processing nodes (Bayesian parameter averaging; α < 0.05; Bonferroni 

corrected). Please be noted the results here reflect mean group effect. The orange and 

blue color represents positive and negative effective connectivity, respectively. ... 135 

Figure 3.14: Effective connectivity (EC) across salience processing nodes (Bayesian parameter 

averaging, α < 0.05, Bonferroni corrected). (A) positive EC, (B) negative EC. By 

leveraging the high temporal information in the EEG data, an effective connectivity 

state-space model was fit with the salience processing nodes. The arrow and thickness 

of the connecting lines correspond to the directionality and strength of EC, 

respectively. Dominant influence is observed in the connections of lSPL, lOFC and 

mPFC-SMA. The results here reflect mean group effect. Node colors denote timing of 

involvement (early-time: red; middle-time: green; late-time: blue). ....................... 136 



xv 
 

Figure 3.15: Total connection strength of each salience processing node. With the effective 

connectivity results, all the unsigned connection parameters (efferent, afferent and 

self-connection) associated with the node were summed up to compute the total 

connection strength. The results suggest that the lSPL and mPFC-SMA have the 

strongest total connection strength, indicating their roles as hubs in the processing of 

salience stimuli. ....................................................................................................... 137 

Figure 3.16: Brain-pupil relationships of the cortical network-level effective connectivity (EC) and 

task-evoked pupillary response (TEPR) in salience processing. (A) The oddball-

modulated positive EC strength from the late-time to early-time network correlated 

with higher TEPR of oddball trials (p < 0.0035). In (B) and (C), to test the associations 

between pupil measurements and the triple-network model (SN, salience network; 

DAN, dorsal attention network; DMN, default mode network), we computed EC 

across nodes of these networks. (B) The oddball-modulated positive EC strength from 

SN to DAN correlated with higher TEPR of oddball trials (p < 0.0013). (C) The 

oddball-modulated negative EC strength from SN to DMN correlated with higher 

TEPR of oddball trials (p < 0.0060). ....................................................................... 139 

Figure 3.17: Whole brain temporal signal-to-noise ratio (tSNR) analysis was performed to assess 

the fMRI signal quality especially for the BOLD signal in the LC. The tSNR was 

computed for each voxel, by dividing the mean over the standard deviation. (A) 

Group-level mean tSNR map of preprocessed fMRI data (no spatial smoothing). The 

tSNR map of each run was spatially normalized into the MNI152 space, and then was 

averaged across all the runs of subjects. (B) Quantitative analysis and boxplot of tSNR 

distributions across runs in each ROI. The color denotes the tSNR before (red) and 

after (blue) the nuisance signal regression (motion parameters and BOLD signals in 

the 4th ventricle and the left and right hemisphere white matter and lateral ventricles). 

Before the functional connectivity analysis of the LC, we regressed out the BOLD 

signal in the 4th ventricle. The tSNR was computed for each voxel in the subject’s 

native functional space, and then was averaged within the ROI (segmented with 

FreeSurfer). The LC two standard deviation template was used to delineate the LC 
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Chapter 1: Introduction 

1.1 Overview 

The primary goal of this dissertation is to investigate brain network systems with 

multimodal approaches. We aim to utilize a broad spectrum of data modalities to provide 

comprehensive coverage of the structural and functional characteristics of the brain network 

systems. Leveraging computational approaches, multimodal neuroimaging, simultaneous data 

acquisition, and neuromodulation, we will explore the organization and dynamics of brain 

network systems from various aspects including neuroanatomical variability, functional response 

properties, functional brain mapping, connectivity of brain circuits, and brain network 

perturbation. To be specific, we will firstly focus on a novel spatial normalization technique 

based on computational anatomy, to investigate the anatomy variabilities with structural 

magnetic resonance imaging (MRI) data. Secondly, we will examine the properties of the task-

related brain hemodynamic response in the sensory system (i.e. visual cortex with simple visual 

stimuli), by assessing the blood-oxygen-level-dependent (BOLD) signal with functional 

magnetic resonance imaging (fMRI). Then, we will employ an auditory oddball paradigm to 

investigate the cognitive control network systems and their associations with the brainstem 

neuromodulatory system, where we will leverage simultaneous multimodal data acquisition of 

pupillometry, fMRI, and electroencephalography (EEG) to exam the functional organization and 

connectivity of the brain network systems. Lastly, we will explore a multimodal dataset with 

concurrent transcranial magnetic stimulation (TMS), fMRI, and EEG in depression treatment. 

This neuromodulation multimodal approach could potentially provide causal information for 

understanding brain network systems through the approach of probing and measuring. In 

summary, this dissertation will focus on the computational approaches and multimodal data 
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analyses in the investigation of structural anatomy, functional mapping, brain connectivity, and 

neuromodulation of the brain network systems. 

 In Chapter 2, we will describe a novel computational approach for the analysis of 

structural and functional MRI images, with an aim to investigate anatomy variability and develop 

an advanced preprocessing pipeline for neuroimaging studies. Computational anatomy is a 

research field in studying anatomy variability, specifically, it focuses on investigating biological 

variability and shape changes of anatomy in humans and primate monkeys through mathematical 

and computational methods (Grenander and Miller, 1998). As originally proposed by D'Arcy 

Thompson in 1917 (Thompson, 1992), differences in biological forms can be modeled as 

mathematical transformations. Biological forms are most likely to vary not only globally but also 

regionally. For example, brain anatomy variability lies not only in the global structures of 

fissures and lobes, but also local geometric structures like gyri, sulci and cortical folds, typically, 

simple mathematical transformations like rigid or affine transformation couldn’t capture brain 

anatomy variability of differential geometry features in small scale. In this case, brain anatomy 

variability can be better modeled as a deformation field that has local features via a nonlinear 

transformation. The computational approach in the estimation of transformation between images 

to ensure spatial correspondence of homologous structures is called image registration. 

Specifically, image registration techniques can be used to estimate the deformation field between 

two arbitrary biological forms by solving an optimization problem, in which the objective 

function will quantify the distance between the deformed anatomy with the target anatomy, and 

it will also quantify the regularization on the deformation field itself. To reduce the 

dimensionality of the optimization problem, biological landmarks in the anatomy image can be 

utilized to quantify the distance and estimate deformation field. These landmarks are objectively 
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meaningful and reproducible points with existed biological homology counterparts in the 

compared biological forms. In this dissertation, we present a novel spatial normalization 

technique based on computational anatomy, which serves a powerful approach for quantifying 

brain anatomy and a more accurate preprocessing technique for neuroimaging studies. We will 

evaluate this method with an fMRI study involving the sensory systems, and provide a showcase 

example in studying the properties of both positive and negative BOLD responses in the visual 

cortex. 

 In Chapter 3, we will describe a study exploring the spatiotemporal dynamics of brain 

network systems, with a focus on the associations between the cortical networks and the 

brainstem neuromodulatory system. In our daily life, the brainstem plays a crucial role in the 

regulation of mood, consciousness, sleep, respiratory and cardiovascular functions, as well as 

many other autonomic and cognitive functions. Despite the extensive exploration of the cortex, 

the brainstem still remains a Terra incognita, with many aspects yet to be investigated, especially 

its associations with the cortical network systems. For example, it is still unclear how the 

brainstem relates to the organization, connectivity, and dynamics of the cortical networks. In 

Chapter 3, we will focus on the locus coeruleus-norepinephrine (LC-NE) system, which is an 

important brainstem neuromodulatory system with implications for attention, arousal, task 

performance and exploration behaviors. Specifically, we propose to develop an approach for 

localizing the LC and examining the associations and connectivity between the cortical network 

systems and the LC-NE system. The characteristics of such cortico-subcortical relationship are 

extremely important in various cognitive processes and neurological diseases. For example, a 

frontal-vagal network theory for major depressive disorder (MDD) and a noradrenergic theory 

for cognitive reserve have been proposed in the literature (Iseger et al., 2019; Robertson, 2013). 
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Additionally, the LC has been shown as the first brain region in which Alzheimer’s disease (AD) 

related pathology appears (Braak and Del Tredici, 2014). In this proposal, we focus on the 

interactions between the cortical networks and the LC-NE system in the context of salience 

processing. 

 In Chapter 4, we will present a neuromodulation study, exploring the BOLD responses 

and connectivity changes in brain network systems under TMS perturbation. With the 

computational quantification of the TMS effects across brain networks, we aim to investigate the 

network-level effects of TMS, by assessing how the TMS-induced effects propagate to the brain 

network systems that are distal, but interconnected to the stimulation site. We also aim to 

quantify TMS-induced changes in whole-brain network connectivity. TMS over the left 

dorsolateral prefrontal cortex (L-DLPFC) is an FDA-approved treatment for depression. The 

quantification of TMS effects on brain network systems will have important implications for 

understanding the mechanisms of TMS in depression. With the probing of a specific brain region 

or a targeted circuit, and the measurement of the TMS responses across the brain network 

systems, this neuromodulation approach in conjunction with multimodal neuroimaging could 

potentially provide more causal evidence on the organization and dynamics of brain network 

systems, compared with the conventional correlation-based neuroimaging approach. 

Additionally, another important aspect of brain networks systems remains less explored is the 

dependency of the BOLD activity and connectivity on the brain-state. In this dissertation, by 

leveraging the multimodal neuroimaging acquisition of fMRI and EEG, we will examine the 

brain-state dependency of the TMS effects on brain network systems. This type of brain-state 

dependent analysis is important for the future efforts to temporally optimize and personalize 

TMS targeting in the treatment of depression. 
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 This dissertation is organized as follows: We first explain the motivation, purpose of 

studies, and aims in Section 1.2. Then, we give a brief background on the current approaches and 

relevant studies in Section 1.3. In Chapter 2, we will describe the method developments and 

investigations on the brain structural anatomy and functional responses. In Chapter 3, we will 

discuss the connectivity of brain circuits and its associations with the brainstem neuromodulatory 

system. In Chapter 4, we will examine the brain’s responses to neuromodulation, and the brain-

state dependency effects. Finally, we conclude the thesis in Chapter 5 with a discussion on the 

limitations and future work.  

 

1.2 Motivation 

Spatial normalization is an essential pre-processing step in many neuroimaging studies, 

where brain image registration will be performed to quantify the biological anatomy variability 

across individuals. The spatial alignment of brain structures will make between-subjects and 

between-groups comparisons possible by warping each subject’s brain onto a standard space. 

Studying biological anatomy variability can help us understand how disease affects the anatomy 

compared to normal anatomy such as quantifying brain atrophy caused by certain disease like 

Alzheimer’s Disease and multiple sclerosis. Most widely used spatial normalization methods are 

based on registration of the whole brain at once and suffer from local minima problem, resulting 

poor registration of cortical regions due to the complex shape of cerebral cortex and large inter-

subject variability (Klein et al., 2009).  

In Chapter 2, we propose a novel landmark-guided region-based spatial normalization 

approach to accurately quantify the structural anatomy of the brain. Specifically, we locally 

register each cortical region independently based on automatic landmark matching, and regional 
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warping fields are composited and constrained to obtain a single global bijective warping field 

that can accurately match brain cortical regions. We propose to evaluate this approach with the 

functional imaging data, and provide a showcase example in the investigation of hemodynamic 

response in the sensory system to visual stimuli. In a unilateral visual hemifield stimulation, task-

evoked positive BOLD response (PBR) is observed in the contralateral hemisphere, which is 

often accompanied by contralateral (Bressler et al., 2007; Shmuel et al., 2002; A. T. Smith et al., 

2004) and ipsilateral (Tootell et al., 1998) negative BOLD responses (NBRs) in the visual cortex. 

In the second part of Chapter 2, we aim to investigate the temporal and spatial relationships 

between these two types of NBRs.  

In Chapter 3, we aim to investigate the functional organization, connectivity and 

dynamics of the cortical network systems, as well as, their associations with the brainstem 

neuromodulatory system. In the cortical network systems, the interactions between the default 

mode network (DMN), dorsal attention network (DAN), and salience network (SN) reflect a 

fundamental functional aspect of the human brain organization and dynamics (Fox et al., 2005b; 

Menon, 2011; Tsvetanov et al., 2016; Y. Zhou et al., 2018). Here, we use simultaneously 

acquired pupillometry, EEG and fMRI data and an auditory oddball task to study these networks’ 

interactions. The oddball paradigm has been widely used to investigate salience processing, 

where subjects are instructed to detect distinct infrequent targets in a stream of standard stimuli. 

In the previous neuroimaging studies, both the SN and the LC-NE system have been associated 

with P300 event-related potential and task-evoked pupillary response (TEPR) in salience 

processing (Aston-Jones and Cohen, 2005; DiNuzzo et al., 2019; Menon and Uddin, 2010). Even 

though the SN and LC have been well characterized with the switching model (Menon and 

Uddin, 2010) and adaptive gain theory (Aston-Jones and Cohen, 2005), respectively, it is still 
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unclear what their integrated roles are in salience processing. Recently, evidence has emerged 

that neuromodulatory systems are important factors in shaping functional network connectivity 

and reorganization (Zerbi et al., 2019). With TEPR as a psychophysiological marker of the 

phasic LC activity (Joshi et al., 2016), here, we aim to investigate this possibility by assessing 

the interactions between cortical networks and brain-pupil relationships in the context of salience 

processing. We hypothesize that the LC might play a role in the interactions between large-scale 

cortical networks in the processing of salient stimuli. We expect the results will shed light on our 

understanding of the functions of these two important systems and their interactions. 

Additionally, to conduct direct neuroimaging of the LC using fMRI, we propose to develop a LC 

localization approach, where the BOLD signal in the LC will be extracted and we will examine 

the dyanmic causal modeling of the LC and pre-supplementary motor area (preSMA) circuit.  

In Chapter 4, we aim to test the effect of TMS on brain network systems. We hypothesize 

that the single pulse TMS over the left dorsolateral prefrontal cortex will modulate the 

interactions between the brain networks systems. The modulations of the connections between 

specific brain systems might be dependent on the prefrontal EEG oscillation phase in the alpha 

frequency band at the time of TMS pulse delivery, where the phase of prefrontal EEG alpha 

oscillation will be used as an index of brain-state, and we exmaine this type of brain-state 

denpendency effects in brain network perturbation. Neuromodulation in conjunction with 

neuroimaging, for example, concurrent TMS-fMRI technique, has been shown as a powerful tool 

to provide causal information in understanding brain network systems and their interactions. For 

example, in (Chen et al., 2013), the authors found that TMS over the node of central executive 

network (CEN) induced causal downstream effects on the DMN. The combination of 

neuroimaging and causal techniques, such as TMS, allows to make stronger inference on the 
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causal role of these brain network systems (Bergmann et al., 2021; Siddiqi et al., 2022), which is 

essential for the translational research in the treatment of neuropsychiatric disorders. Based on 

the results of Chapter 3, where we exmaine the dynamics and reorganization of brain networks in 

task-related modulation, Chapter 4 will exmine the endogenous cortical network reorganization 

in neuromodulation with concurrent TMS-EEG-fMRI. We believe that these types of 

quantification and investigation of TMS-induced effects along with their brain-state dependency 

have important clinical implications. For example, in a study of TMS mechanisms in alleviating 

depression (Liston et al., 2014), the authors found that the TMS selectively modulates the 

connectivity between the CEN and DMN.  

 

1.3 Background 

In the study of anatomy variability, deformation field can be used to distinguish two 

samples of different forms and quantify the difference, which could be applied to the diagnosis 

of diseases with features of anatomic shape variability. An example was studied in (Bookstein, 

1989) about the abnormality of the biological structures caused by Apert Syndrome. The x-ray 

images of the structures of the joining bones at the base of the brain are compared between 

patients and normal subjects, thin plate spline method was used to estimate the deformation field, 

and the geometry local features of the Apert deformation were found through decomposed 

principal warps of the deformation field. These local features include primarily a vertical 

deformation around landmarks Pterygomaxillary Fissure (Ptm) and Posterior Nasal Spline 

(PNS). Such deformation features can be used to quantify the severity of the disease. And in the 

studies of anatomy changes along time, deformation field can model, quantify and study the 
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features of human anatomy development and growth like brain atrophy, early brain development 

and human anatomy changes caused by disease, aging or under certain treatment.  

Focusing on the field of neuroscience, investigating biological anatomy variability and 

shape changes is important, because studying inter-subject and interspecies brain anatomy 

variability can help identifying corresponded brain anatomy locations between subjects and 

species. Under landmark-guided registration setting, deformation field estimated with 

corresponded anatomy landmarks can drive a rational higher-level alignment of the anatomy. 

With this known correspondence in the anatomy, it can help automatical segmentation of brain 

structural and functional regions and help align the functional neuron activation of the brain for 

group level statistical analysis. In fMRI data preprocessing, deformation field estimation 

between subjects’ native space and a standard space for functional data alignment is called 

spatial normalization. Proper estimation of the deformation field that is capable of quantifying 

the brain anatomy variability can help delineate a clearer group level averaged brain activation 

with a higher statistical power (Miller et al., 2005). For example, in a study of large deformation 

diffeomorphic metric mapping (LDDMM) (Joshi and Miller, 2000), individual variation in the 

cortical topography was studied. Cerebral cortex is a layered and highly folded shell of grey 

matter with complex anatomical and functional regions, and it is of the great interest in studying 

the brain functional organization. In this example, the cortical surface is unfolded onto a 2D flat 

plane. Geometry features associated with deep folds of the sulci and the fundi were used to 

generate the deformation field. And the deformation field was used to compare two different 

methods of cortical surface partition. In the study, another example of macaque brain anatomy 

variability between two macaques was studied with cryo-section images. Gyri and sulci labels 

were identified using geometry features of each brain and used to estimate the deformation field. 
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Besides, this technique was also used for hippocampus segmentation and results were compared 

with manual segmentation. Studying brain anatomy variability across subjects can also be 

applied to build up deformable standard template model which is called brain atlas. For example, 

in (Vaillant et al., 2004), shape variability of hippocampus among 19 normal subjects has been 

studied and applied to build up a mean configuration among these subjects. In the geodesic 

shooting setting of diffeomorphic registration, the representative tangent space is a natural 

setting for studying anatomy shape variability and changes. In this example, the three largest 

variability variances of the hippocampus shapes were extracted with principal component 

analysis applied to the initial momentum in the linear tangent space, that represents the 

diffeomorphism flow of anatomy variability.  

The research problem is to estimate a nonlinear deformation field with nice properties to 

model, quantify and analyze biological anatomy variability and changes via landmark matching. 

The most straightforward way to estimate a smooth deformation field from landmark 

correspondences is by using smoothing spline based interpolation methods such as thin-plate 

spline (TPS) method (Bookstein, 1989), which is commonly used in the field of studying 

biological shape difference and changes. To further estimate the deformation field that accounts 

for the shape variability in a more natural and physical way, regularization of the deformation 

field like diffeomorphism (smooth, invertible and invert smooth) property is pursued to be 

constrained into the deformation. It can be realized through large deformation diffeomorphism 

landmark matching method (Joshi and Miller, 2000), which has strong theoretical guarantees. 

However, as deformation field with diffeomorphism property is modeled through a flow of a 

vector field along time, this nonlinear diffeomorphic shape space is intractable in practice. To 

address this, the Diffeomorphism Deformation Tangent Space Representation (DDTSR) method 
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(Vaillant et al., 2004) used a geodesic shooting approach, which means tangent space 

representation of a geodesic flow on the diffeomorphism group. This linear tangent space at a 

single time point can represent the nonlinear diffeomorphism shape space, and it will make it 

easier to estimate the optimal deformation field and analyze the features of anatomy variability.  

To investigate the functional aspects of the human brain, fMRI has been used for thirty 

years, with a growth in our knowledge of the organizations and functions of the brain. Large-

scale functional brain networks, such as the DMN, DAN, SN, and ventral attention network 

(VAN), along with other networks have been identified and been associated with various 

cognitive processes and neurological diseases. However, brainstem, which plays a crucial role in 

our daily functioning, such as mood, consciousness and sleep, remains Terra incognita. 

Neuroimaging of the brainstem is challenging and often overlooked. Because, the deep brain 

activity is almost invisible in the EEG scalp recordings. Even with the help of fMRI, the signals 

around the brainstem have a poor signal-to-noise ratio and most of the neuroimaging 

preprocessing pipelines were not designed well suitable for the brainstem areas.  

One challenge in the study of brainstem and its associations with the cortex is nuclei 

localization. For example, the LC is a very small nucleus in the brainstem with many other nuclei 

in the vicinity, rendering the challenges in the location of the LC in neuroimaging data. 

Localization approaches based on the LC atlas and neuromelanin-sensitive MRI have been 

developed (Keren et al., 2009; Sasaki et al., 2006). Another measurement that allows us to make 

inference on the neural activity in the LC is pupillometry. Pupil size not only changes in 

response to lighting conditions, but also can be modulated by cognition and mental processes, 

such as effort, arousal, attention, fluid intelligence, and cognitive states (Joshi and Gold, 2020; 

Jason S. Tsukahara and Engle, 2021). Studies have shown that non-luminance changes in pupil 
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diameter covary with LC electrophysiological recordings in non-human primates (Joshi et al., 

2016). Recent studies have shown that the LC is the first brain region in which Alzheimer’s 

disease related pathology appears (Braak and Del Tredici, 2014). The LC-NE system and its 

relationships and connections with cortical systems are critical in the understanding of many 

neurological diseases, such as AD. For example, a recent study has found that the structural 

connectome from the LC to transentorhinal cortex has decreased fiber integrity with increased 

AD severity (Sun et al., 2020). However, these interactions and connections are not fully 

understood. Some interesting hypotheses have been proposed. For example, the LC-NE system 

has been associated with the cognitive reserve (noradrenergic theory of cognitive reserve) 

(Robertson, 2013). Emerging findings seem to support this hypothesis, as the LC-NE system and 

the SN have both been closely related to novelty and efforts (Mather and Harley, 2016). And 

recent studies have associated baseline pupil diameter to fluid intelligence, which is a maker of 

cognitive reserve. It is reasonable to speculate that the connection and interaction between the 

LC-NE system and the SN may play an important role in various cognitive functions and have 

many clinical implications. 

TMS-fMRI is a widely used technique for studying the mechanisms of TMS in 

depression treatment and investigating the causal role of brain network systems. Quantifying 

TMS-induced activity in the brain is important for understanding these mechanisms. One study 

using single-pulse TMS targeted at the left DLPFC showed that TMS involves areas with 

neuroanatomical connectivity to frontal-striatal-thalamic loops (Dowdle et al., 2018). 

Propagation patterns of the TMS-induced activity and inter-subject variability were further 

explored in (Vink et al., 2018). The authors showed that the propagation from the DLPFC to the 

subgenual anterior cingulate cortex (sgACC) is associated with the depression treatment efficacy. 



13 
 

However, substantial inter-subject variability in TMS effects has been widely reported, with 

evidence suggesting that connectivity between DLPFC target and the SN may play a role 

(Hawco et al., 2018). In the studies of TMS neuromodulation, researchers are also interested in 

how induced activity at a targeted local area can influence integrated activity throughout brain 

network systems (Cocchi et al., 2015). TMS in conjunction with multimodal neuroimaging data 

has been used to map the causal circuits underlying the induced effects (Bergmann et al., 2021; 

Chen et al., 2013; Siddiqi et al., 2022; Sydnor et al., 2022). Investigating the downstream causal 

effects of TMS has important clinical implications, as TMS has been shown to normalize the 

abnormal activity and connectivity in brain network systems including the DMN, CEN, and SN 

(Anderson et al., 2016). Additionally, network theories of neuromodulation treatments in 

depression, such as the frontal-vagal network theory (Iseger et al., 2019), have been proposed. 

Multimodal neuroimaging and computational approaches can be used to optimize and 

personalize TMS protocols for depression treatment in terms of spatial and temporal parameters 

(Faller et al., 2022; Fox et al., 2012; Pantazatos et al., 2023). 
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Chapter 2: Advanced Methods for the Analysis of Structural and 

Functional MRI and Its Applications in Investigating the Negative 

BOLD Responses 

2.1 Overview 

As the size of the neuroimaging cohorts being increased to address key questions in the 

field of cognitive neuroscience, cognitive aging, and neurodegenerative diseases, the accuracy of 

the spatial normalization as an essential pre-processing step becomes extremely important. 

Existing spatial normalization methods have poor accuracy particularly when dealing with the 

highly convoluted human cerebral cortex and when brain morphology is severely altered (e.g. 

aging populations). To address this shortcoming, in the first part of Chapter 2, we propose a 

novel spatial normalization technique that takes advantage of the existing surface-based human 

brain parcellation to automatically identify and match regional landmarks. To simplify the non-

linear whole brain registration, the identified landmarks of each region and its counterpart is 

registered independently with topology-preserving deformation. Next, the regional warping 

fields are combined by an inverse distance weighted interpolation technique to have a global 

warping field for the whole brain. To ensure that the final warping field is topology-preserving, 

we used simultaneously forward and reverse maps with certain symmetric constraints to yield 

bijectivity. We have evaluated our proposed solution using both simulated and real (structural 

and functional) human brain images. Our evaluation shows that our solution can enhance 

structural correspondence compared to the existing methods. Such improvement also increases 

the sensitivity and specificity of the functional imaging studies, reducing the required number of 

subjects and subsequent study costs. We conclude that our proposed solution can effectively 
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substitute existing substandard spatial normalization methods to deal with the demand of large 

cohorts which is now common in clinical and aging studies. 

In the second part of Chapter 2, we will utilize this novel spatial normalization approach 

in a task-based fMRI study of brain’s responses in the sensory system. In a unilateral visual 

hemi-field stimulation, the task-evoked positive BOLD response is often accompanied by robust 

and sustained contralateral as well as ipsilateral negative BOLD responses in the visual cortex. 

The signal characteristics and the neural and/or vascular mechanisms that underlie these two 

types of NBRs are not completely understood. In the second part of this chapter, we investigated 

the properties of these two types of NBRs. We first demonstrated the linearity of both NBRs 

with respect to stimulus duration. Next, we showed that the hemodynamic response functions 

(HRFs) of the two NBRs were similar to each other, but significantly different from that of the 

PBR. Moreover, the subject-wise expressions of the two NBRs were tightly coupled to the 

degree that the correlation between the two NBRs was significantly higher than the correlation 

between each NBR and the PBR. However, the activation patterns of the two NBRs did not show 

a high interhemispheric spatial similarity and the functional connectivity between them was not 

different than the interhemispheric functional connectivity between the NBRs and PBR. Finally, 

while attention did modulate both NBRs, the attention-related changes in their HRFs were 

similar. Our findings suggest that the two NBRs might be generated through common neural 

and/or vascular mechanisms located in distal/deep brain regions that project to the two 

hemispheres. 
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2.2 Landmark-guided Region-based Spatial Normalization (LG-RBSN) for 

Analyzing Structural and Functional MRI 

2.2.1 Introduction 

Spatial normalization is an essential pre-processing step in many neuroimaging studies 

that makes between-subjects and between-groups comparisons possible by warping each 

subject’s brain image onto a common or standard space. Spatial normalization is often performed 

by an underlying subject-to-subject or subject-to-standard image registration. Image registration, 

by definition, serves to make all subjects’ neuroanatomical regions correspond to a standard 

space and consequently to each other. Without neuroanatomical correspondences, it is 

challenging if not impossible, to perform any across-subjects univariate or multivariate statistical 

analyses (likely the most essential step in obtaining and interpreting scientific results from 

neuroimaging data). Yet inter-subject registration of the brain, especially the human brain 

cerebral cortex, remains challenging due to its highly convoluted patterns of sulci and gyri with 

large inter-subject morphological variability. For example, cortical folding (e.g. sulci branches) 

is not consistent between subjects in many cortical regions (Van Essen, 2005). This not only 

makes their registration challenging, but also increases the likelihood of false-positive findings in 

neuroimaging studies (Desai et al., 2005; Liu et al., 2017). Better correspondence between 

neuroanatomical regions will improve the statistical power to detect any brain effect and will 

increase spatial specificity, resulting in a reduced number of required subjects and consequently 

study costs (Miller et al., 2005).  

The most commonly employed spatial normalization methods perform either a volume-

based non-linear registration of structural images in 3D Euclidean space, or a surface-based non-

linear registration of the cerebral cortex surfaces in 2D parametric surface space. For example, 
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currently widely-used volume-based brain image registration methods include large deformation 

diffeomorphic metric mapping (Beg et al., 2005; Zhang et al., 2017), advanced normalization 

tools (ANTS) (Avants et al., 2008), Quicksilver (Yang et al., 2017), and VoxelMorph 

(Balakrishnan et al., 2019). Alternatively, commonly used surface-based methods include 

FreeSurfer (Fischl et al., 1999) and spherical demons (Yeo et al., 2010). There are also volume 

and surface hybrid methods available, that extend the cortex correspondence specified using 

surface-based registration to 3D Euclidean space. For example, Joshi et al. and Lepore et al. used 

harmonic mapping, whereas Postelnicu et al. used Navier operator of elastic diffusion for 

extending the surface correspondence to the volumetric space (Guo et al., 2005; Joshi et al., 

2007; Lepore et al., 2010; Postelnicu et al., 2009). 

The following lists the major concerns of volume-based spatial normalization: 1) Human 

neuroanatomical regions are distributed throughout a highly folded surface of the cerebral cortex 

which often makes the Euclidean distance less reliable in segregating adjacent regions with 

completely distinct functionality. For instance, the posterior and anterior banks of the Sylvian 

fissure have completely distinct functionalities, but they could be seen adjacent to each other in 

the Euclidean space. Therefore, even a small misalignment in the Euclidean space can exert 

drastic consequences in matching neuroanatomical regions. 2) There is almost no difference in 

the intensity of the cerebral gray-matter throughout the entire cortex. This makes intensity-based 

similarity measures, used often as the cost function in image registration, less sensitive in 

distinguishing different neuroanatomical regions throughout the cortex, particularly in adjacent 

ones. As we have demonstrated in our simulation, even if volume-based registration were able to 

align the cortical folding patterns between-subjects, it would still be less likely to correspond 

perfectly between different cortical regions along the aligned cortical gray-matter ribbons. 3) 
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Every non-linear image registration method relies on an underlying optimization step. Due to the 

complexity and large inter-subject variability in the cortical morphology of human brain, the 

optimization objective function becomes nonconvex almost at all cases causing many local 

optima that could be detected as the final solution, without providing an accurate correspondence 

between the regions. Thus, even the best performing volume-based non-linear registration 

(ANTS) results in a poor correspondence between the cortical regions (Dice similarity 

coefficient (DSC) of 0.6 to 0.7 (Klein et al., 2009)). Therefore, it is not surprising that even the 

recently-developed deep learning methods still have comparable performance as ANTS 

(Balakrishnan et al., 2019; Yang et al., 2017). Such poor correspondence can attribute the 

location of brain activation to different regions of the standard space in group-level analysis, 

reducing the statistical power available to detect significant effects.  

To address these shortcomings, surface-based methods were proposed to directly align 

brain folding patterns of gyri and sulci based on their underlying curvature instead of relying on 

voxel intensity. For instance, Fischl et al. demonstrated that compared to nonlinear volumetric 

methods, a surface-based method more consistently aligns brain cyto-architectonic boundaries 

(Brodmann areas) (Fischl et al., 2008). Optimization in surface-based methods is more efficient 

as it works in a 2D surface space with fewer degrees of freedom. However, all surface-based 

spatial normalization methods are required to project functional data extracted from gray-matter 

volume to a cortical surface. This mapping process is challenging in practice and potentially 

problematic. For example, cortical surfaces are typically extracted from structural scans and 

projected onto functional image space. Due to excess geometric distortion in fast acquisition 

techniques, such as echo planar imaging (EPI) often used for fMRI acquisition and their low 

resolution, co-registration between functional and structural scans is likely to have inaccuracies 
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that directly result in sampling non-gray-matter regions. By sampling non-gray-matter regions or 

regions from a neighboring gyrus/sulcus onto the cortical surface, functional activation can 

easily get lost and affect the results of the group-level analysis. It has been shown that during 

mapping of functional activation from the volume to the surface, the functional signal can be 

diluted to neighboring gyri. This effect can be consistent across subjects and detected at the 

group-level, resulting in a false-positive cluster of brain activation otherwise absent in volume-

based spatial normalization (Tucholka et al., 2012). Another shortcoming of the surface-based 

methods is that they cannot be applied for registering sub-cortical regions. Finally, almost all 

widely used brain image registration techniques whether volume- or surface-based, or a hybrid 

method, are based on solving the optimization problem of matching the whole brain at once, 

while suffering from the local minimum problem, resulting in poor correspondence between 

brain cortical regions. 

To alleviate the local minimum problem in volume, surface, or hybrid methods, we use a 

region-based local registration technique (Razlighi, 2016), in which each brain’s cortical/sub-

cortical region is independently registered to its corresponding region. The superiority of the 

region-based method is due to the fact that inter-subject variability in each brain region is much 

smaller than the inter-subject variability in their whole brains. We have evaluated this automatic 

landmark-guided region-based local registration technique, which can accurately match brain 

cortical segmented regions with an averaged DSC of 0.8 (He and Razlighi, 2020). However, in 

our previous method and some other ROI-based methods (Miller et al., 2005), applying regional 

warping fields individually to each region will result in overlaps and gaps between regions after 

the warping, which makes it challenging to warp whole brain images and functional activation 

maps covering multiple regions. To overcome this, in this chapter, we propose to combine the 
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regional locally estimated non-linear displacement warping fields to obtain a smooth whole brain 

global displacement field using an inverse distance weighted (IDW) interpolation. However, the 

interpolated global deformation field is not guaranteed to preserve the topology during warping. 

Thus, we propose a residual compensation iterative algorithm to enforce bijectivity and 

topology-preserving properties into the global deformation field, which is also applicable to 

other given non-topology-preserving deformation fields. During the residual compensation 

regularization, to avoid losing the match of brain regions, we applied a region-based demons 

registration to match the cerebral cortex mask and sub-cortical regions at the same time.   

The present study proposes a novel region-based volumetric spatial normalization 

method, which is the first study using regionally and independently estimated local non-linear 

displacement fields to composite a global bijective displacement field for the whole brain. And it 

is also the first study to use dense brain tissue surface vertices as pseudo-landmarks to guide the 

volumetric registration. Compared to volumetric methods, instead of matching voxel intensity, 

we propose to use landmarks guidance as the registration similarity measurement. In our method, 

we directly estimate a volumetric warping field using corresponding vertices on the surface of 

WM/GM (WM: white matter; GW: grey matter) and GM/CSF (CSF: cerebrospinal fluid) 

boundaries as automatically extracted landmarks in the 3D Euclidean space, which allows us to 

incorporate brain anatomical information and features into the volumetric registration process 

with exact correspondence. Compared to the surface-based methods, as our method extend the 

surface-based registration results to the 3D Euclidean space, our solution circumvents the 

projection of volumetric fMRI data onto the cortical surface. And our method is applicable to not 

only the cerebral cortex but also sub-cortical, cerebellar, ventricular, and other brain regions. In 

summary, we propose an automatic algorithm to extract and match the corresponding vertices on 
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the WM/GM and GM/CSF boundary surfaces in each anatomical regions; Next, to estimate a 

topology preserving warping field, we independently estimate a landmark-guided volumetric 

warping field via large deformation diffeomorphisms.  

Section 2.2 is organized as follows: We first explain the detail of the proposed landmark-

guided region-based spatial normalization (LG-RBSN) method in Section 2.2.2. We also explain 

the subjects’ demographics and acquisition parameters used to acquire MRI scans in our 

experiments. In Section 2.2.3, we first used simulated 2D images to illustrate problems 

associated with volume-based methods as well as demonstrating the effectiveness of our 

proposed method in registering these simulated special cases. We then compare our method with 

other non-linear whole brain registration methods using real human brain images. Our results 

show that our method achieves higher DSC than the existing top performing volumetric 

registration method (ANTS) (Klein et al., 2009) and a hybrid registration method (combined 

volumetric and surface registration, CVS) (Postelnicu et al., 2009) in warping the brain’s cortical 

regions, sub-cortical regions, and cerebral WM. In experiments with fMRI spatial normalization, 

our method performs better than ANTS and CVS with regard to the specificity and sensitivity of 

the fMRI activation at the group-level activation statistics. Finally, we include a discussion in 

Section 2.2.4 and we conclude this section in Section 2.2.5. 

 

2.2.2 Methods 

In this section we describe the details of our novel spatial normalization solution, 

specifically focused on accurately matching brain cortical regions, which have complicated 

topological variations. Constituting 40% of total brain mass, cortical regions are of primary 

interest to neuroscience field as the information-processing brain tissue (Saladin and McFarland, 
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2008). Figure 2.1 illustrates a flowchart of different processes required for our proposed LG-

RBSN solution which starts with a surface reconstruction and parcellation of the cerebral cortex 

followed by our automatic regional landmark extraction and matching approach. Then, the 

landmark-guided geodesic shooting large deformation diffeomorphic registration is performed 

independently for each region resulting in a distinct warping field for that region. We then 

combine the regional warping field together using a novel interpolation technique, IDW, to give 

a single global warping field for the whole brain. Finally, the forward and reverse warping fields 

residual compensation is used to enforce bijectivity property into the global deformation field 

with a region-based Demons registration to keep matching of the sub-cortical regions and 

cerebral cortex during regularization. 
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Figure 2.1: The pipeline for the landmark-guided region-based spatial normalization 
(LG-RBSN) solution. Subject’s T1 image is processed with FreeSurfer for surface 

reconstruction and parcellation. Then, an automatic regional landmark extraction and 
matching approach (Subsection 2.1 Automatic regional landmark extraction and matching) is 

used to extract regional landmarks from the results of surface registration. For each region 
independently, the landmark-guided large deformation diffeomorphic registration 

(Subsection 2.2 Landmark-based large deformation diffeomorphic registration via geodesic 
shooting) is performed resulting in a distinct displacement field for that region. We then 
combine the regional displacement fields together using a novel interpolation technique 

(Subsection 2.3 Inverse distance weighted interpolation of neighboring region-based 
displacement composition) to give a single global displacement field for the whole brain. 
Finally, a residual compensation approach is used to enforce bijectivity property into the 

global deformation field (Subsection 2.4 Bijectivity constraints with residual compensation 
and Demons registration). 

 

Automatic regional landmark extraction and matching   Landmark-based image registration 

can be an alternative to the volumetric registration that circumvents the use of intensity-based 

similarity measures to estimate a volumetric warping field. Whereas existing landmark-based 

image registrations generate a direct and accurate correspondence between images and generally 

do not face the local minimum problem, they require a manual identification of corresponding 
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landmarks, which is labor intensive, subject to human error, and usually has a limited number of 

landmarks. For example, Anand A. Joshi et al. used manually labeled sulci features as landmarks 

to guide the registration (Joshi et al., 2007, 2005). Durrleman et al. used manually delineated 

sulcal lines, and represented them as currents in the registration (Durrleman et al., 2008). 

Shantanu H. Joshi et al. also used manually delineated sulci, but instead of currents they 

introduced a velocity representation of the sulci curves (Joshi et al., 2012). Auzias et al. applied 

an automatic technique to extract, identify and simplify sulcal landmarks, and the sulcal edges 

were represented as mathematical measures in the registration (Auzias et al., 2011). Here, instead 

of using landmarks only from sulci lines, we define landmarks as dense pseudo-landmarks from 

the vertices of the brain tissue surface triangular meshes to guide the registration, which covers 

both the sulci and gyri of the cortical surface and the white matter surface. And we propose an 

automatic landmark identifying and matching procedure that accounts for approximately 2000 

landmarks per region, with totally around 136,000 landmarks per subject.  

Our method starts with processing subjects’ structural T1-weighted images and MNI152 

template using FreeSurfer pipeline (http://surfer.nmr.mgh.harvard.edu/, RRID:SCR_001847), 

resulting in 68 cortical regions (Fischl et al., 2004). However, using FreeSurfer for initial 

reconstruction and delineation of the human cerebral cortex is just an arbitrary choice, other 

accurate surface reconstruction and delineation methods can also be used for this purpose. The 

framework of landmarks matching and regional registration is illustrated in Figure 2.2. For each 

region, vertices of the WM surface (boundary between GM and WM) and pial surface (boundary 

between GM and CSF) triangular meshes are extracted as landmarks using the labels assigned by 

FreeSurfer's cortical surface parcellation algorithm. The pial surface landmarks of one of the 

cortical regions (superior temporal cortex) are illustrated in Figure 2.2(a). To reduce 
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computation, the landmarks for regions with large number of landmarks are down-sampled. 

Based on the time-accuracy tradeoff, a fixed down-sampling rate is assigned to each region 

varying from 10% to 60%. In our experiment, the down-sampling process only sacrifices a small 

amount of accuracy, but it substantially reduces the computation time. Down-sampled vertices 

are then matched back to the closest vertices on the original sphere mesh to maintain consistency 

between down-sampled vertices and original ones. The down-sampled pial surface landmarks of 

one of the cortical regions (superior temporal cortex) are illustrated in Figure 2.2(c). Next, the 

correspondence of regional landmarks between each subject and the MNI template is established 

through the FreeSurfer spherical registration algorithm (Fischl et al., 1999). Specifically, the 

MNI vertices of each region are transformed into the subject’s spherical surface space using the 

spherical registration. For each projected vertex, the closest vertex of the subject’s original 

vertices is identified as the matching landmark in the subject’s space. 

We then performed two initial linear alignments between corresponding landmarks for 

each region, including a global and a local transformation, independently. First, assuming that 

we have 𝑚 regions 𝑅* 	(𝑖 = 1,… ,𝑚), subject space 𝑆(𝑥), 𝑥 ∈ Ω+ ⊂ ℝ,, and MNI space 

𝑀(𝑥), 𝑥 ∈ Ω- ⊂ ℝ,, the subject’s brain structural image is registered to the MNI brain template 

entirely with an affine transformation 𝐴(𝑥), and subsequently each subject’s cortical region mask 

is separately registered to its corresponding region in MNI space with a translation only 

transformation 𝐴*.(𝑥), 𝑖 = 1,… ,𝑚. In our experiments, translation only transformations generate 

more appropriate linear initial alignments for brain cortical regions without causing any over-

fitting for the subsequent regional non-linear registration. Regional landmarks are transformed 

using these two linear transformations for initial alignment. The final regional warping field is 

the concatenation of two initial linear transformations and the non-linear warping field. 
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Figure 2.2: Illustrate our method for automatic landmark extraction and matching for 
landmark-based regional non-linear registration with example on superior temporal cortex 
(STC) region. In step a), for STC region (Cyan color), vertices of the GW/WM and GM/CSF 

boundaries triangular meshes are extracted as landmarks (GM/CSF surface vertices shown as 
red dots, GW/WM surface vertices are not showing in the figure); In step b), landmarks of 
STC region are down-sampled by down-sampling the original dense surface mesh (green 
meshes) to a sparser surface mesh (red meshes) and sampled back to the original vertices 
(yellow dots) to keep consistency; In step c), correspondence of STC regional landmarks 
between the MNI template and the subject is established through spherical registration 

(corresponding landmarks in subject space shown as yellow dots); In step d), corresponding 
regional landmarks are initially aligned with linear transformations in 3D Euclidean space; In 
step e), a diffeomorphic non-linear landmark-based registration is used to generate regional 

warping field for STC region. The step f) is only showing that STC regional warping field can 
be used to warp the subject’s regional volume onto MNI template space. WM: white matter; 

GW: grey matter; CSF: cerebrospinal fluid. 
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Landmark-based large deformation diffeomorphic registration via geodesic shooting   

Traditional landmark-based non-linear image registration methods are based on smoothing spline 

interpolation with different radial basis functions, such as thin-plate spline (Bookstein, 1989). 

Yet due to their questionable invertibility, spline-based methods often fail when dealing with the 

human brain’s highly convoluted topology, especially in cases that require large deformation, 

dense placement, or curved trajectories of landmarks (Joshi and Miller, 2000). To address the 

problem of large deformation, we use a large diffeomorphic deformation method with geodesic 

shooting (Vaillant et al., 2004) to estimate a valid warping field for each cortical region. With the 

optimal landmarks’ geodesic paths, both forward and reverse diffeomorphic regional 

deformation maps are estimated. Here, we provide a review of the large diffeomorphic 

deformation registration for the sake of completeness. For the initially aligned corresponding 

landmarks 𝑥/ and 𝑦/	(𝑛 in 1,… ,𝑁) in the same coordinate, image warping is described as a 

time-varying flow quantified by a transport equation 01(3,5)
05

= 𝑣(𝜙(𝑥, 𝑡), 𝑡). With time denoted 

by 𝑡 ∈ [0,1], spatial space by 𝑥 ∈ Ω ⊂ ℝ,, a time-dependent flow by 𝜙(𝑥, 𝑡), and a velocity 

vector field by 𝑣(𝑥, 𝑡). This ordinary differential equation has the solution of 𝜙A(𝑥, t) =

∫ 𝑣DE𝜙A(𝑥, 𝑡′), 𝑡′G𝑑𝑡′7
8 + 𝑥, with initial condition 𝜙(𝑥, 0) = 𝑥. The final deformation map is taken 

as the end point of this image warping flow which is 𝜙A(𝑥, 1), and the final displacement vector 

field is denoted as 𝐷*(𝑥) = 𝜙A*(𝑥, 1) − 𝑥 for the 𝑖59 region. 

The deformation map is constrained to be diffeomorphism through a regularization 

penalty on the smoothness of the velocity vector field. Thus, to obtain diffeomorphic registration, 

the optimization objective function becomes the following: 
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𝐽(𝑣) = M M‖𝐿𝑣(𝑥, 𝑡)‖:𝑑𝑥𝑑𝑡
;

<

8
 

 

																																															+P[𝑦/ − 𝜙(𝑥/, 1)]=Σ/><[𝑦/ − 𝜙(𝑥/, 1)]
?

/@<

 (2.1) 

where 𝑥/ and 𝑦/ are moving and fixed landmarks, respectively, and 𝐿 is the linear 

momentum operator defined on a Hilbert space 𝑉 with 𝐿𝑣	(𝑣 ∈ 𝑉) considered as a mapping from 

𝑉 to ℝ,, which satisfies ‖𝑣5‖A: = 𝐿𝑣5(𝑣5). The mapping 𝐿𝑣5 is defined as the momentum of the 

system at time 𝑡. The second term in the objective function is the Mahalanobis distance between 

transformed moving landmarks and fixed landmarks, and Σ/ is the covariance matrix of 

landmarks, quantifying the error of inexact matching of landmarks (as soft correspondences 

between landmarks).   

Under geodesic shooting settings, the geodesic path of landmarks can be represented with 

an initial momentum space at the initial time point and an initial configuration of moving 

landmarks. Considering the conservation law of system momentum, the objective function 

becomes a function of the initial momentum. The optimization problem can be solved with 

typical gradient descent, and the optimal landmarks geodesic path is uniquely specified using the 

Hamiltonian principle with the optimal initial momentum and the moving landmarks 

configuration. The velocity vector field is assumed as Gaussian random fields and is interpolated 

over the entire domain. Finally, the displacement vector field 𝐷*(𝑥), 𝑥 ∈ Ω+ is obtained for each 

region 𝑅* 	(𝑖 = 1,… ,𝑚) with the solution of transport equation at 𝑡 = 1. By interpolating the 

reverse velocity vector field from the reverse of the optimal landmarks geodesic path using the 

same scheme, we obtain a reverse displacement vector field 𝐷*><(𝑥), 𝑥 ∈ Ω-. We use an 

available Matlab script for landmark-based diffeomorphic image registration to perform our 

landmark-guided non-linear regional registration (Sommer et al., 2011). 
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Inverse distance weighted interpolation of neighboring region-based displacement 

composition   To estimate a single smooth global warping field that is applicable to all brain 

regions and can be applied to warp the whole brain all together at once, we propose the IDW 

interpolation method to combine all regional warping fields of the cortical regions. Regional 

displacement fields composition is illustrated in Figure 2.3. First, for region 𝑖, the global initial 

alignment 𝐴(𝑥), regional initial alignment 𝐴*.(𝑥), and non-linear regional displacement vector 

field 𝐷*(𝑥) are concatenated to a single regional displacement vector field 𝑇*(𝑥) = 𝐷*(𝑥) ∘

𝐴*.(𝑥) ∘ 𝐴(𝑥). For interpolation between regions, morphology operations are performed to 

identify the region-to-region transition area in the brain. For example, for region 𝑖 denoted as 𝑅*, 

all other regions 𝑅B 𝑗 = 1,… ,𝑚, 𝑗 ≠ 𝑖 are unioned (⋃ 𝑅BB ) then dilated (E⋃ 𝑅BB G⨁𝑆𝐸) to 

intersect with the dilated region 𝑖 (𝑅*⨁𝑆𝐸) for finding the transition area of the region	𝑖 that is 

[𝑅*⨁𝑆𝐸] ∩ [E⋃ 𝑅BB G⨁𝑆𝐸\, which leads to region 𝑖 without transition area denoted as 𝑅*∗ =

𝑅* − [𝑅*⨁𝑆𝐸] ∩ [E⋃ 𝑅BB G⨁𝑆𝐸\, 𝑗 = 1,… ,𝑚, 𝑗 ≠ 𝑖, where 𝑆𝐸 is the structural element. Here, 

we use a sphere with a radius of two voxels as our 𝑆𝐸. The shortest distance from spatial location 

𝑥 to 𝑅*∗, which is called 𝑑*(𝑥), is used as the weighting factor in our IDW interpolation. Given 

subject space 𝑆(𝑥), 𝑥 ∈ Ω+ ⊂ ℝ, and MNI space 𝑀(𝑥), 𝑥 ∈ Ω- ⊂ ℝ,, the global forward 

displacement vector field 𝑢+-(𝑥) is a normalized weighted sum of regional displacement vector 

fields, 

𝑢+-(𝑥) =P𝑤*(𝑥)𝑇*(𝑥)
D

*@<

 (2.2) 

where 𝑤*(𝑥) is the normalized weight defined as follows: 
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𝑤*(𝑥) =

⎩
⎪
⎨

⎪
⎧ 1										, 𝑥 ∈ 𝑅*∗

0										, 𝑥 ∈ 𝑅B∗, 𝑗 = 1,… ,𝑚, 𝑗 ≠ 𝑖
𝑞*(𝑥)

∑ 𝑞B(𝑥)D
B@<

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.3) 

Here, 𝑞*(𝑥) =
<

0!(3)"
 and ∑ 𝑤*(𝑥)D

*@< = 1. The first derivative of the interpolated global 

forward displacement vector field 𝑢+-(𝑥) is continuous with 𝜇 > 1 (Shepard, 1968), and in our 

method we set 𝜇 = 4. The same IDW interpolation is also applied to the reverse regional 

displacement vector fields 𝑇*><(𝑥) = [𝐴(𝑥)]>< ∘ [𝐴*.(𝑥)]>< ∘ 𝐷*><(𝑥) to obtain the global reverse 

displacement 𝑢-+(𝑥). With the IDW interpolated displacement vector fields 𝑢+-(𝑥) and 

𝑢-+(𝑥), we obtain the corresponded deformation maps 𝑈+-(𝑥) = 𝑥 + 𝑢+-(𝑥) and 𝑈-+(𝑥) =

𝑥 + 𝑢-+(𝑥). Unlike the regional deformation map, after the interpolation, these deformation 

maps are no longer diffeomorphic, and are not invertible. Next, we explain our method to 

overcome this shortcoming in our LG-RBSN method.  
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Figure 2.3: Combining adjacent regions’ non-linear displacement fields using inverse 
distance weighted interpolation. For each location in the background and region-to-region 

transition area, the displacement is calculated as a normalized weighted sum of the 
displacement values in all regional warping fields at that location. The weight is based on the 

inverse of the closest distance between the location and the region. 𝒘𝒊(𝒙) is the normalized 
weight at location 𝒙 for region 𝒊. 

 

Bijectivity constraints with residual compensation and demons registration   During spatial 

normalization the topology of a brain’s anatomical structures should be preserved between 

healthy normal subjects, with connected neighboring morphological structures remain connected 

during deformation. Topology preservation is defined as a homeomorphic map that should be 

continuous, bijective, and inverse continuous. Topology preservation is a desired property for the 

estimated deformation field to perform a valid spatial normalization, because one-to-one and 

bijective correspondences of location structures between one brain and another are necessary 
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requirements for generating biologically meaningful warped brains. A simple and fast solution to 

embed topology preservation into the deformation field is through considering simultaneously 

forward and reverse maps with certain symmetric constraints. Existing topology preserving 

methods use different strategies to achieve this goal. For instance, Thirion used an iteration 

scheme to compensate for half of the residual of the reverse warped forward transformation 

equally to both of the forward and reverse transformations until the residual reaches identity 

transformation (Thirion, 1998). Ashburner et al. used a Bayesian framework with a symmetric 

prior, so that the probability distribution of the forward and reverse deformations is identical 

(Ashburner et al., 1999). Inverse consistency constraint was proposed in (Christensen and 

Johnson, 2001), which used a symmetric cost function. Avants et al. proposed a symmetric 

diffeomorphic registration model where forward and reverse deformations meet at the middle of 

the registration (Avants et al., 2008), whereas Kuang used a cycle-consistent design in a deep-

learning network to learn forward and reverse deformations concurrently (Kuang, 2019).  

In our solution, the deformation field for each region is diffeomorphic with strict bijective 

constraints, but the combined deformation using IDW interpolation will no longer guarantee 

bijectivity. For example, moving local gyrus images needed to be cut to prevent overlap during 

warping (Pitiot et al., 2003). To address invertibility a poly-affine method was proposed that 

composites local velocity vector fields associated with each local affine transformation, rather 

than compositing the displacement (Arsigny et al., 2005). However, this velocity vector field 

parametrization of the displacement is difficult for non-linear deformation in our case. 

Alternatively, our solution uses a residual compensation method to impose bijective property 

into the existing non-bijective global warping fields	𝑈+-(𝑥) and 𝑈-+(𝑥), while using a demons 
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registration to match sub-cortical regions and the cerebral cortex mask. This prevents the 

mismatching of brain structures during residual compensation. 

We use a residual compensation scheme to enforce bijectivity into both the direct forward 

deformation map 𝑈+-(𝑥) = 𝑥 + 𝑢+-(𝑥), 𝑥 ∈ Ω+ from 𝑆 to 𝑀 and the reverse deformation map 

𝑈-+(𝑥) = 𝑥 + 𝑢-+(𝑥), 𝑥 ∈ Ω- from 𝑀 to 𝑆. At the same time, we use a demons registration 

method to match the brain’s sub-cortical regions (𝑆𝑢𝑏𝑅* , 𝑖 = 1,… , 𝑛) and cerebral cortex mask 

(𝐶𝐶). We have initial direct deformation map 𝑈+-
(8)(𝑥) = 𝑥 + 𝑢+-

(8)(𝑥) and initial reverse 

deformation map 𝑈-+
(8)(𝑥) = 𝑥 + 𝑢-+

(8)(𝑥). At each iteration 𝑡, we update both 𝑢+-
(5)(𝑥) and 

𝑢-+
(5) (𝑥) according to following steps: 

   Compute residual displacement 

𝑟+- = 𝑢+-
(5) + 𝑢-+

(5) ∘ 𝑈+-
(5) (2.4) 

𝑟-+ = 𝑢-+
(5) + 𝑢+-

(5) ∘ 𝑈-+
(5) (2.5) 

Compute demons velocity for matching the brain’s cerebral cortex mask 

𝑣+-EE =
p𝐶𝐶+ − 𝐶𝐶- ∘ 𝑈+-

(5)q∇𝐶𝐶+

‖∇𝐶𝐶+‖: + 𝛼p𝐶𝐶+ − 𝐶𝐶- ∘ 𝑈+-
(5)q

: (2.6) 

𝑣-+EE =
p𝐶𝐶- − 𝐶𝐶+ ∘ 𝑈-+

(5)q∇𝐶𝐶-

‖∇𝐶𝐶-‖: + 𝛼p𝐶𝐶- − 𝐶𝐶+ ∘ 𝑈-+
(5)q

: (2.7) 

Compute demons velocity for matching the brain’s sub-cortical regions 

𝑣+-+FGH =P
p𝑆𝑢𝑏𝑅+* − 𝑆𝑢𝑏𝑅-* ∘ 𝑈+-

(5)q∇𝑆𝑢𝑏𝑅+*

t∇𝑆𝑢𝑏𝑅+*t
: + 𝛼p𝑆𝑢𝑏𝑅+* − 𝑆𝑢𝑏𝑅-* ∘ 𝑈+-

(5)q
:

/

*@<

 (2.8) 

𝑣-++FGH =P
p𝑆𝑢𝑏𝑅-* − 𝑆𝑢𝑏𝑅+* ∘ 𝑈-+

(5)q∇𝑆𝑢𝑏𝑅-*

t∇𝑆𝑢𝑏𝑅-* t
: + 𝛼p𝑆𝑢𝑏𝑅-* − 𝑆𝑢𝑏𝑅+* ∘ 𝑈-+

(5)q
:

/

*@<

 (2.9) 

Update displacement fields 
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𝑢+-
(5I<) = 𝑢+-

(5) −𝑤< ∙ 𝛽 ∙ 𝑟+- −𝑤: ∙ 𝐺(𝜎:) ∗ 𝑣+-EE −𝑤, ∙ 𝐺(𝜎.
:) ∗ 𝑣+-+FGH (2.10) 

𝑢-+
(5I<) = 𝑢-+

(5) −𝑤< ∙ 𝛽 ∙ 𝑟-+ −𝑤: ∙ 𝐺(𝜎:) ∗ 𝑣-+EE −𝑤, ∙ 𝐺(𝜎.
:) ∗ 𝑣-++FGH (2.11) 

where, 𝑤<, 𝑤:, and 𝑤, are normalized weight with 𝑤< +𝑤: +𝑤, = 1, 𝐺(𝜎:) is a 

Gaussian kernel with variance 𝜎:. We will show in the experiment section that by using this 

approach we can significantly reduce the number of non-positive Jacobian voxels after IDW 

interpolation.  

 

Subjects and data acquisitions   All research procedures were performed in accordance with 

relevant guidelines and regulations as approved by the Columbia University Institutional Review 

Board. Forty two subjects (27/15 young/older, age (mean ± std) = 25.11 ± 3.24/66.93 ± 3.71 

years) were scanned using a Siemens Prisma 3-Tesla MR scanner. T1-weighted images were 

acquired using a magnetization-prepared rapid gradient-echo (MPRAGE) (TR = 2300 ms; TE = 

2.32 ms; flip angle = 8°, voxel size = 1 mm × 1 mm × 1 mm; matrix size = 256 × 256, and 192 

slices without gap). Task-based functional MRI were acquired using a T2*-weighted multiband 

gradient-echo EPI (TR = 1 s; TE = 30 ms; flip angle = 62°, 64 slices without gap; slice thickness 

= 2 mm; 480 volumes; voxel size 2 mm × 2 mm × 2 mm, multiband factor = 4) pulse sequence. 

Another fMRI scan was acquired in the opposite phase encoding direction, which was used in 

this work solely for geometric distortion correction (GDC). 

We employed an event-related fMRI experimental task design. The task consisted of two 

ongoing stimuli: 1) A maximum contrast flashing checkerboard (i.e., visual stimulus) presented 

on either the right or left side of the screen, and 2) An alternating tone (i.e., auditory stimulus) 

paradigm played on either the right or left ear. The two sensory stimuli were presented with 

random onsets and durations (uniform distribution, range = 1.0 - 5.0 sec). Overlaps between 
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visual and audio stimuli were allowed, however temporal overlapping of the bilateral 

presentation in the same modality was prohibited.  

The data were collected in 2 runs; in the first run, subjects were instructed to attend to 

only one sensory stimulus (i.e., either visual or tonal) while ignoring the other. In the second run, 

they were instructed to attend the other sensory stimulus. Each scan consisted of 120 events: 60 

events for visual and 60 for auditory stimulus. For each modality, 30 events on the right and 30 

events on the left side spaced at inter-stimulus-intervals in the range of 1 - 17 sec were drawn 

from a uniform distribution. Control for attention was achieved by asking the subjects to press a 

button twice with their right/left index finger (depending on the lateralization of the attended 

stimulus) as soon as the attended stimulus terminated. These responses were recorded during the 

entire scans. Throughout the experiment, subjects were required to maintain their gaze on a 

minuscule fixation spot in the center of the screen, and were given feedback on any incorrect or 

out-of-time responses by changing the color of the fixation spot from green to red. Eye fixation 

was monitored by recording the eye position and movement at all times using an eye-tracking 

system. Subjects were trained multiple times outside of the scanner to learn and perform the task 

properly. All subjects learned the task correctly. 

 

2.2.3 Results 

In this section, we evaluate the performance of the proposed LG-RBSN technique using 

simulated and real data. We first generated simulated 2D images of folded ribbons that resemble 

the folding patterns of the human cerebral cortex. Our main goal in this simulation was to show 

how the top performing volumetric normalization methods could fail in registering such simple 

2D scenarios. We then extended our validation to experiments with real MRI and fMRI data 
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targeting both primary visual and auditory regions. Our results were compared to a hybrid 

registration method (CVS) and a volumetric non-linear whole brain registration method (ANTS) 

(http://www.picsl.upenn.edu/ANTS/, RRID:SCR_004757) that is considered the top performing 

non-linear registration algorithm (Klein et al., 2009). 

 

Simulation of cortical gyrus registration   To illustrate the problems associated with 

volumetric whole-brain registrations and to demonstrate the effectiveness of our proposed 

solution to overcome those problems, we simulate a single cortical gyrus registration experiment 

in 2D. To best simulate the real task of cortical regions registration we assumed that both moving 

and fixed gyri have a similar shape and width (4 pixels corresponding to 4 mm in most of the 

currently acquired T1-weighted MRI scans), but are comprised of 3 regions of different lengths 

across the gyrus, as shown in the first column of Figure 2.4 where the 3 cortical regions are 

color-coded for both images. The two rows in Figure 2.4 illustrate two simulated experiments 

with different initial positions: (a) with a relatively aligned initial position, and (b) with a mis-

aligned initial position. Please note that even with initial affine registration of the whole brain, 

many cortical features (sulci and gyri) could still remain completely misaligned. Therefore, the 

simulated initial positions of alignment and mis-alignment between the moving and fixed images 

are very common in most spatial normalization or brain image registration scenarios. We used 

regional landmarks distributed at two sides of the ribbons in each region, as shown in the second 

column of Figure 2.4, to estimate a global bijective warping field using our method LG-RBSN. 

We also applied a modified ANTS non-linear registration pipeline from the half-C to full-C 

registration experiment to match the moving and fixed images (Avants et al., 2014). 
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In experiment (a), both LG-RBSN and ANTS resulted in a comparable overlap between 

the entire gyrus structure (ANTS: 99.11% versus LG-RBSN: 99.86%), shown as a binary mask 

in the third and last columns of Figure 2.4. However, such high correspondence for the entire 

gyrus, did not hold for the 3 comprising regions and the average regional DSC dropped from 

99.91% for LG-RBSN to 86.39% for ANTS. This is because intensity-based volumetric 

registrations, such as ANTS, cannot discriminate adjacent cortical regions. Therefore, the 

underlying 3 regions will not necessarily be registered, as shown in the third column of Figure 

2.4. Alternatively, LG-RBSN almost perfectly aligns the underlying regions, as shown in the last 

column of Figure 2.4.  

In experiment (b), unlike LG-RBSN which generated a perfect correspondence, ANTS 

failed to generate an acceptable overlap even on the binary mask of the entire gyrus (ANTS: 

82.49% versus LG-RBSN: 99.66%), as seen in third and last columns of Figure 2.4. As 

mentioned in the introduction, the ANTS failure is due to its vulnerability to the local minimum 

during optimization. The global affine initial alignment failed to provide a sufficient initial 

alignment of cortical regions, which is often the case in any non-linear registration problem. 

Consequently, the underlying 3 regions drastically failed to correspond when using ANTS 

methods (ANTS: 42.60% versus LG-RBSN: 99.66%), as seen in the third and last columns of 

Figure 2.4. These results highlight the importance of detecting a true optimum point in any non-

linear registration method. 
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Table 2.1: Dice similarity coefficient (DSC) between warped and fixed images of 
using ANTS and LG-RBSN in the simulation cases of (a) aligned and (b) mis-aligned 

initially. 

 

Experiments 

DSC between warped 
moving and fixed binary 

mask of all regions 

Average DSC between 
warped moving and 
fixed image labels 

Number of non-positive 
Jacobian pixels 

ANTS LG-RBSN ANTS LG-RBSN ANTS LG-RBSN 

(a) 99.11% 99.86% 86.39% 99.91% 0 0 

(b) 82.49% 99.66% 42.60% 99.66% 217 0 
 

Jacobian matrix is commonly used to evaluate the diffeomorphic property of the warping 

field, as the local deformation is invertible and preserves the topology only at locations with 

positive Jacobian determinant. Table 2.1 also lists the number of voxels with non-positive 

Jacobians in each registration method. While we enforce all regional warping fields to be 

topology preserving by imposing bijectivity during the regional registration process, the 

combined global warping field is not guaranteed to be topology preserving due to the sharp 

transitions between some neighboring regions. To address this issue, we used residual 

compensation method to impose bijectivity to the obtained global warping field. To evaluate the 

performance of the utilized method, we used the number of voxels with non-positive Jacobian.  

As it seen in the Table 2.1, ANTS produces 217 pixels with non-positive Jacobian determinant in 

experiment (b), whereas all pixels show positive Jacobian determinant when LG-RBSN is being 

used for registration, emphasizing the performance of a residual compensation method in our 

LG-RBSN using simulated data.  
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Figure 2.4: Comparison of ANTS and LG-RBSN registration results in cortical gyrus 
registration simulations with cases of moving and fixed images (a) aligned initially and (b) 
mis-aligned initially. In experiment (a), ANTS matched the whole gyrus mask perfectly but 
failed to accurately align the underlying 3 regions (yellow and green arrows mark the same 

location across images). In experiment (b), ANTS fell into a local minimum and failed to 
match even the binary mask of the entire gyrus. LG-RBSN matched the whole structure mask 
and regions perfectly in both experiments. ANTS: advanced normalization tools; LG-RBSN: 

landmark-guided region-based spatial normalization. 

 

Evaluation using human brain structural images   Using our LG-RBSN solution we estimated 

a global warping field between each subject, described in Section 2.2.2, and the MNI152 

template utilizing regional WM and pial surfaces’s vertices to extract corresponding landmarks. 

Figure 2.5 shows the estimated global warping field between one typical subject and the MNI152 

using LG-RBSN solution. For comparison, we also used ANTS (deformation model: SyN; 

similarity: normalized mutual information; regularization: Gaussian smoothing) to perform the 

same registration. For qualitative evaluation of our method and ANTS, the two obtained global 

warping fields were applied to each subject’s T1-weighted structural brain image, with results 

shown in Figure 2.6 for three selected subjects. LG-RBSN shows a clear improvement in 
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aligning brain cortical regions as highlighted by red dotted circles in Figure 2.6. The arrows in 

Figure 2.6 show how a sulcus can be generated by ANTS where the target image does not have 

such a structure (Subject 1), and how ANTS mismatched a gyrus of the subject to a sulcus in 

MNI152. Our method on the other hand properly matched the corresponding sulcus of the 

subject to the sulcus in MNI152 (Subject 2). This is because of performing optimization in 3D 

Euclidean space to find correspondence of the brain, which is often used in volumetric 

registration methods including ANTS. A small shift in the volume space can mismatch two 

functionally distinct locations of the brain, whereas our solution uses spherical registration to 

find the correspondence that directly matches brain folding patterns in each brain region, 

independently. 

 
 

Figure 2.5: Visualization of LG-RBSN estimated global displacement vector field of 
one example subject. The X, Y, and Z denote the displacement in each direction with a unit of 

millimeter. This displacement vector field has a maximum displacement of 16.1 and a 
minimum displacement of -17.3, and is mostly within a range between -8 to 8. The 
visualization shows that our method is capable to work with large and localized 
displacements. LG-RBSN: landmark-guided region-based spatial normalization. 
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Figure 2.6: Spatial normalized brain qualification evaluation comparison between LG-
RBSN and ANTS. The first and the last columns illustrate subjects’ brain images rigid aligned 
(showing as moving images) to MNI152 brain images (as fixed images). The second and the 
third columns illustrate subjects’ brain images after ANTS/LG-RBSN non-linear registration 
to MNI152 brain images. LG-RBSN shows clearly better performance compared to ANTS in 
red dotted circles highlighted areas. In subject 2, ANTS mismatched a gyrus of the subject’s 
cerebral cortex to a sulcus in MNI152 space, whereas LG-RBSN matched the corresponding 
sulci properly. ANTS: advanced normalization tools; LG-RBSN: landmark-guided region-

based spatial normalization. 

 

For quantitative evaluation, we first evaluate the first two blocks of the algorithm 

(Section 2.2.2 in Figure 2.1), which generate the regional warping fields after the landmark 

matching and regional large deformation diffeomorphic registration. These regional warping 

fields can accurately match brain cortical regions with an averaged DSC of 0.8 (He and Razlighi, 

2020), which validated the accuracy and efficiency of the initial FreeSurfer surface registration, 

landmark down-sampling, automatic landmark-matching and the regional diffeomorphic 

registration steps. Although, these regional warping fields can match cortical regions accurately, 
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but are limited to be only applicable to each region independently instead of the whole brain. As 

independently warping each region can cause overlaps and gaps between regions after the 

deformation, regional warping fields are not ideal for the application of brain structures and the 

functional brain activation patterns, which typically cover multiple brain regions. Thus, we 

introduced the IDW interpolation and bijectivity constraints steps to overcome these problems. 

Finally, for the quantitative evaluation of the global warping fields after all the steps of the 

algorithm, we used the global warping fields obtained above to warp each subject’s FreeSurfer 

delineated regions, described in Section 2.2.2, onto MNI152 space (cortical regions include: 

banks of superior temporal sulcus, caudal anterior cingulate, caudal middle frontal, corpus 

callosum, cuneus, entorhinal, fusiform, inferior parietal, inferior temporal, isthmus cingulate, 

lateral occipital, lateral orbitofrontal, lingual, medial orbitofrontal, middle temporal, 

parahippocampal, paracentral, pars opercularis, pars orbitalis, pars triangularis, pericalcarine, 

postcentral, posterior cingulate, precentral, precuneus, rostral anterior cingulate, rostral middle 

frontal, superior frontal, superior parietal, superior temporal, supramarginal, frontal pole, 

temporal pole, transverse temporal and insula). As done previously (Balakrishnan et al., 2019; 

Klein et al., 2009; Yang et al., 2017), we have evaluated our registration accuracy using the DSC 

between the regional binary masks of the warped and corresponding target regions. We chose  

FreeSurfer because it has been shown to produce reliable parcellations of the cortex with a high 

accuracy compared to manual delineation of cortical regions (Desikan et al., 2006); However, 

any other consistent parcellation technique can be used for this underlying segmentation of the 

human brain. For comparison, we also applied affine registration (similarity as correlation ratio), 

ANTS (deformation model: SyN; similarity: normalized mutual information; regularization: 

Gaussian smoothing) and CVS (default settings). Figure 2.7 illustrates the distribution of the 
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DSC between corresponding regions for all cortical regions in FreeSurfer using boxplot for 

Affine (in red), ANTS (in black), CVS (in magenta) and LG-RBSN (in blue) categorized in six 

lobar brain segments. As shown in Figure 2.7, LG-RBSN significantly outperforms ANTS and 

CVS in all cortical regions reaching to highest DSC in the insula region with (DSC = 0.9185 ± 

0.0116 (mean ± std); ANTS: improved by 28.35% (p = 1.59e-31); CVS: improved by 20.84% (p 

= 6.24e-39)) and the lowest DSC in the pericalcarine region (DSC = 0.7737 ± 0.0379 (mean ± 

std); ANTS: improved by 140.88% (p = 1.76e-50); CVS: improved by 37.15% (p = 1.77e-43)). 

Compared to ANTS, as for the improvement in lobar segments of the brain, our results show that 

the highest improvement was achieved in the occipital lobe (DSC improved by 108.36%; p = 

1.91e-52) with the least improvement in the insular lobe (DSC improved by 28.35%; p = 1.59e-

31). Compared to CVS, the highest improvement was also achieved in the occipital lobe (DSC 

improved by 38.06%; p = 3.42e-53) with the least improvement also in the insular lobe (DSC 

improved by 20.84%; p = 6.24e-39). As shown in Figure 2.8, in total, using LG-RBSN has 

substantially improved the correspondence between cortical regions (DSC = 0.8558 ± 0.0080 

(mean ± std)), which is significantly higher (DSC improved by 67.30%; p = 1.23e-50) than the 

results obtained by ANTS (DSC = 0.5115 ± 0.0641; mean ± std), and is also significantly higher 

(DSC improved by 29.80%; p = 1.95e-69) than the results obtained by CVS (DSC = 0.6593 ± 

0.0197; mean ± std). Comparing the improvement of cortical regions correspondence in young 

and older subjects, LG-RBSN outperforms ANTS in both groups with a significantly higher 

improvement (p = 0.0042) in older subjects (DSC improved by 75.04%) than the improvement in 

young subjects (DSC improved by 63.25%). 
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Figure 2.7: Cortical regional DSC comparison between Affine, ANTS, CVS and LG-
RBSN in different brain lobes. LG-RBSN shows significantly higher DSC in matching brain 

cortical regions than ANTS and CVS. ANTS: advanced normalization tools; LG-RBSN: 
landmark-guided region-based spatial normalization; CVS: combined volumetric and surface 

registration; DSC: Dice similarity coefficient. 

 

Next, we evaluated the effectiveness of the LG-RBSN for aligning the sub-cortical 

regions and cerebral WM in comparison with the results obtained by using ANTS and CVS 
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(segmented with FreeSurfer, sub-cortical regions include lateral ventricle, ventral DC, 

cerebellum white matter, cerebellum cortex, thalamus, caudate, putamen, pallidum, 

hippocampus, amygdala, third ventricle and brainstem). Figure 2.8 shows the results of this 

evaluation along with the evaluation of all cortical regions obtained above. As shown in Figure 

2.8, our method significantly (p = 8.76e-03) outperformed ANTS in matching sub-cortical 

regions with a higher DSC value (0.8056 ± 0.0267; mean ± std) compared to DSC values when 

using ANTS (0.7840 ± 0.0446; mean ± std). And our method shows comparable performance 

with CVS in matching sub-cortical regions (p = 0.41). Furthermore, our method shows 

significantly improved DSC (0.9387 ± 0.0046; mean ± std) of matching cerebral WM mask 

(ANTS: DSC improved by 25.56%, p = 9.33e-40; CVS: DSC improved by 9.00%, p = 5.48e-53), 

compared to the DSC of using ANTS (0.7477 ± 0.0499; mean ± std) and compared to the DSC 

of using CVS (0.8613 ± 0.0186; mean ± std). 

 
 

Figure 2.8: DSC comparison between Affine, ANTS, CVS and LG-RBSN. LG-RBSN 
shows significantly higher DSC in matching brain cortical regions, sub-cortical regions, and 

cerebral WM than ANTS. LG-RBSN shows significantly higher DSC in matching brain 
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cortical regions and cerebral WM than CVS. And LG-RBSN is more robust working with both 
young and older subjects compared to ANTS and CVS, as LG-RBSN shows less variance of 
DSC in matching brain cortical regions and cerebral WM. ANTS: advanced normalization 

tools; LG-RBSN: landmark-guided region-based spatial normalization; CVS: combined 
volumetric and surface registration; DSC: Dice similarity coefficient; WM: white matter. 

 

Akin to the simulation section, the number of non-positive Jacobian voxels is used to 

quantify the bijectivity property of the global warping field, with a smaller number of non-

positive Jacobian voxels indicates better bijectivity property. To evaluate the last block of the 

algorithm (Figure 2.1), which is the bijectivity constrain step, we calculated the number of non-

positive Jacobian voxels along with iterations. Results are shown in Figure 2.9. The final global 

warping fields estimated by using our solution have 1338.1 ± 404.3 (mean ± std) non-positive 

Jacobian voxels for the forward warping field and 1318.3 ± 405.9 (mean ± std) voxels for the 

backward warping field, compared to ANTS with 1483.2 ± 2121.1 (mean ± std) for the forward 

warping field and 1473.9 ± 2239.1 (mean ± std) for the backward warping field. There is no 

significant difference between the number of non-positive Jacobian voxels between ANTS and 

LG-RBSN for both forward (t = 0.4354; p = 0.6644) and backward (t = 0.4433; p = 0.6587) 

warping fields. Compared with LG-RBSN and ANTS, CVS has a greater number of non-positive 

Jacobian voxels (7204.0 ± 5591.2; mean ± std) with worse bijectivity. However, for LG-RBSN, 

the number of non-positive Jacobian voxels can be lowered even to reach zero by using our 

residual compensation method, with a small cost in the accuracy. We will discuss the tradeoff 

between accuracy and the regularization in the discussion section. 



47 
 

 
 

Figure 2.9: Number of non-positive Jacobian voxels decreases along bijectivity 
constrain iterations for (a) forward (subject to MNI152) (b) backward (MNI152 to subject) 

warping field. The red curve and the grey region represent the mean and the standard 
deviation. 

 

Evaluation using human brain functional images   We have shown in the previous section that 

LG-RBSN significantly improves the regional correspondence between warped and reference 

images. However, that does not necessarily imply that the enhancement will be directly 

transformed to functional imaging data. As we have shown previously in a preliminary study 

(Razlighi, 2016), the improvement in the structural overlap had significantly increased the 

statistics of the group-level brain activations in primary visual cortex, but it did not generalize to 

the group-level activations from the primary auditory cortex. We again applied LG-RBSN to the 

statistical parametric maps obtained from both an auditory and a visual fMRI experiment to 

generate group-level activation maps. 

We have compared the obtained activation maps to those generated using Affine, ANTS 

and CVS, and to the anatomy of the primary visual and auditory cortices, where we expect to 

detect the true-positive activations. The preprocessing pipeline for the task-based fMRI data is 
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illustrated in Figure 2.10. Briefly, slice timing correction was applied to the raw fMRI timeseries 

to account for the difference in the acquisition delay between slices (Parker et al., 2017; Parker 

and Razlighi, 2019a). At the same time, motion parameters were estimated on raw fMRI scans 

using rigid-body registrations performed on all the volumes in reference to the first volume. 

Additionally, the first volumes were extracted from another fMRI scans with opposite phase 

encoding directions to estimate the geometric distortion correction field using a susceptibility-

induced distortions correction technique called topup (Andersson et al., 2003) provided in FSL 

software package (https://fsl.fmrib.ox.ac.uk/fsl, RRID:SCR_002823) (S. M. Smith et al., 2004). 

Then, the estimated motion parameters and geometric distortion field were combined and applied 

to the slice timing corrected fMRI time-series to get the distortion and motion-corrected fMRI 

time-series. First level general linear modeling was performed independently on each voxel 

using multiple regression with four variables of interest (stimuli timing convolved with canonical 

Double-Gamma hemodynamic response function) resulting to 4 different statistical parametric 

maps which will be warped onto a standard space to be able to perform group-level statistical 

analysis. Each subject’s global registration warping field estimated in the previous experiment 

was concatenated with the within-subject functional to structural rigid-body transformation, and 

used to project brain auditory/visual activation statistical maps of that individual into MNI152 

space for group-level analysis. Group-level analysis was done by simple regression where a 

voxel was deemed active if its averaged point-estimates were significantly different from zero.   
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Figure 2.10: The processing pipeline for task-based fMRI data. The thick arrows show 
the transfer of 4D fMRI data, the double thin arrow shows the transfer of the 3D data, and the 

thin arrow shows the transfer of the parameters. ANTS: advanced normalization tools; LG-
RBSN: landmark-guided region-based spatial normalization; EPI: echo planar imaging. 

 

We first compared the actual statistics of the group-level analysis results when LG-RBSN 

was used as the spatial normalization versus the results obtained with using Affine, ANTS and 

CVS. The statistics were quantified as the point estimates (b values) of the 1000 activated voxels 

with highest z-statistics in the brain’s left lateral occipital cortex for stimulating right visual 

hemifield and vice versa. Figure 2.11 illustrates the distribution of the point-estimates in the top 

1000 activated voxels using boxplots (Left: for stimulating left visual hemifield; Right: for 

stimulating right visual hemifield). As seen in Figure 2.11, the mean point estimates of group-

level brain activation using our method (Left: b = 280.20 ± 40.96 Right: b = 315.33 ± 57.34) is 

significantly higher (Left: t = 30.08 p = 0, Right: t = 26.32 p = 0) than that obtained by ANTS 

(Left: b = 229.24 ± 34.54, Right: b = 255.76 ± 42.84), and is also significantly higher than that 

obtained by CVS for the left visual hemifield stimuli (b = 261.90 ± 35.70; p = 8.62e-26) but is 

not significantly higher for the right hemifield stimuli (b = 309.98 ± 64.71; p = 5.06e-2). 
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Figure 2.11: Distribution of the point estimates for visual task-based fMRI group level 
visual activation in brain contralateral occipital lobe using different spatial normalization 

methods (Left: for stimulating left visual hemifield; Right: for stimulating right visual 
hemifield). ANTS: advanced normalization tools; LG-RBSN: landmark-guided region-based 

spatial normalization; CVS: combined volumetric and surface registration. 

 

For auditory stimulation we used combination of two FreeSurfer regions (transverse 

temporal gyrus and superior temporal gyrus) to generate a binary mask for the primary auditory 

cortex. Figure 2.12 illustrates the distribution of the point estimates from the 1000 voxels with 

highest significance level within the binary mask using boxplots and also shows the comparison 

between the point estimates obtained by our LG-RBSN solution and the ones obtained by using 

Affine, ANTS and CVS (Left: for stimulating left ear; Right: for stimulating right ear). As seen 

in this figure, the mean point estimates of the group level brain activation using our method 

(Left: b = 255.22 ± 48.84, Right: b = 236.28 ± 33.02) is significantly higher (Left: t = 12.89, p = 

1.40e-36; Right t = 16.68, p = 0) than that obtained by ANTS (Left: b = 230.46 ± 36.12, Right: b 

= 211.48 ± 33.47). Compared to CVS, the mean point estimates using LG-RBSN is slightly 

higher than that obtained by CVS for the left ear stimuli (b = 253.56 ± 45.97; p = 0.43) but is 
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significantly lower for the right ear stimuli (b = 253.58 ± 39.08; p = 5.79e-26). As compared to 

ANTS, the group level statistics results in both visual and auditory task-based fMRI indicate that 

the magnitude of the fMRI signal will significantly increase if we use a more accurate spatial 

normalization technique (either CVS or LG-RBSN). When comparing CVS and LG-RBSN, 

results indicate that the improvement in the regional correspondence would improve the group-

level activation statistics in visual and left ear auditory stimuli evoked activation, but the regional 

correspondence improvement did not transform to the increase in the group-level activation 

statistics of right ear auditory stimuli evoked activation. This might be due to the misalignment 

between the brain morphology and the underlying functional architecture, which will be 

discussed later in the discussion section.   

 
 

Figure 2.12: Beta values of tonal task fMRI group level auditory activation in 
contralateral transverse temporal cortex and superior temporal cortex using different spatial 
normalization methods (Left: for stimulating left ear; Right: for stimulating right ear). ANTS: 

advanced normalization tools; LG-RBSN: landmark-guided region-based spatial 
normalization; CVS: combined volumetric and surface registration. 
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Improving the group-level statistics in our fMRI experiments shows that the proposed 

spatial normalization technique increases the statistical power to detect smaller effects that may 

not be detectable with the conventional methods such as ANTS. Still, the method does not 

guarantee that the false-positive rate will not increase as well, which is often the case in many 

advanced developments for fMRI processing. To address this problem, we use receiver operating 

characteristic (ROC) curves which associate the cost of improvement in the true-positive rate 

(sensitivity) to the false-positive rate (1-specificity) at different threshold levels for detecting an 

effect. However, using ROC curve for evaluating any fMRI experiment is a challenging task due 

to the lack of gold standard measurement. In this study, we use the masks of the primary visual 

cortex (lateral occipital) and auditory cortex (transverse temporal gyrus and superior temporal 

gyrus), given by FreeSurfer, as the regions that we expect to see activated voxels in and any 

detection of activated voxels outside these masks can be considered as false-positive. Therefore, 

true-positive rate is the number of activated voxels divided by the total number of voxels inside 

the region, and false-positive rate is the number of activated voxels in the vicinity of the regional 

masks (obtained by dilating the same regional masks) divided by the total number of voxels in 

the dilated regions. By changing the threshold for significance (t-statistics ranging from 0 to 15), 

we plot the curve illustrating the association between these two rates. The area under the curve 

(AUC) of the ROC is often used as the main performance metric for quantitative comparison.  

Figure 2.13 illustrates the ROC curves obtained for the two visual stimuli (left plot: for 

stimulating left visual hemifield; right plot: for stimulating right visual hemifield) when LG-

RBSN were used (blue curve) versus Affine (black curve), ANTS (green curve), and CVS (red 

curve). Our LG-RBSN method shows an AUC equal to 0.7124/0.7180 for left/right hemifield 

visual stimulation which demonstrates about 10.24%/8.23% improvement in comparison to the 
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AUC obtained from ANTS ROC (0.6462/0.6634 for left/right visual hemifield stimulation). And 

LG-RBSN also outperforms CVS (0.7022/0.7086 for left/right hemifield visual stimulation). 

This result indicates that such improvement in the sensitivity of our proposed method is not at 

the expense of an increased false-positive rate. 

 
 

Figure 2.13: ROC curve evaluating spatial normalization methods with visual task-
based fMRI group level t-statistics activation map compared to FreeSurfer lateral-occipital 

region (Left: for stimulating left visual hemifield; Right: for stimulating right visual 
hemifield). ANTS: advanced normalization tools; LG-RBSN: landmark-guided region-based 

spatial normalization; CVS: combined volumetric and surface registration; ROC: receiver 
operating characteristic. 

 

Figure 2.14 illustrates the ROC curves obtained for the two auditory stimuli (left plot: for 

stimulating left ear; right plot: for stimulating right ear) when LG-RBSN was used (blue curve) 

versus Affine (black curve), ANTS (green curve), and CVS (red curve). LG-RBSN shows an 

AUC equal to 0.8276/0.8490 for left/right ear auditory stimulation which demonstrates about 

1.47%/5.10% improvement in comparison to the AUC obtained from ANTS ROC 

(0.8156/0.8078 for left/right ear auditory stimulation). As compared to CVS (0.8238/0.8513 for 

left/right ear auditory stimulation), LG-RBSN shows a slightly higher (0.46%) AUC for the left 
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ear auditory stimulation, but a slightly lower (-0.27%) AUC for the right ear auditory 

stimulation. As compared to ANTS, the results again indicates that such improvement in the 

sensitivity of our proposed method is not accompanied by an increase in the false-positive rate. 

But similar to the previous results on the point estimates, when comparing LG-RBSN and CVS, 

regional correspondence improvement did not transform to the increase in the sensitivity and 

specificity for the group-level activation statistics for the right ear auditory stimuli. As discussed 

previously, one reason might be the misalignment between the brain morphology and the 

underlying functional architecture. Due to the lack of gold standard, another explanation might 

be the assumption we made when defining the primary auditory cortex, where we treated as the 

expected location of true-positive activations.  

 
 

Figure 2.14: ROC curve evaluating spatial normalization methods with auditory task-
fMRI group level T-statistics activation map compared to FreeSurfer segmented 

neuroanatomical brain contralateral primary auditory mask (Left: for stimulating left ear; 
Right: for stimulating right ear). ANTS: advanced normalization tools; LG-RBSN: landmark-

guided region-based spatial normalization; CVS: combined volumetric and surface 
registration; ROC: receiver operating characteristic. 

 



55 
 

Taken together, results in Figure 2.13 and Figure 2.14 highlight the superiority of the 

proposed LG-RBSN solution in detecting small effects that were not detectable using 

conventional methods such as ANTS, without increasing the false-positive rate, which is the 

ultimate goal in any advancement in method development for fMRI processing pipeline. Further 

functional evaluation with fMRI data between LG-RBSN and CVS might be needed with more 

detailed brain parcellations such as HCP MMP (Glasser et al., 2016), or using other task stimuli 

with more specific activation patterns such as face stimuli and the fusiform face area. 

 

Coding and execution time   Most of the implementation in this work is done with Matlab 

R2017b. We have shared the code for LG-RBSN solution on our laboratory website 

(https://qnlab.weill.cornell.edu/research/pre-processing-fmri-data) as well as our laboratory 

github repository page (https://github.com/QuantitativeNeuroimagingLaboratory). The current 

implementation of the LG-RBSN takes an average of around 18 hours to be performed on each 

region. However, since the registration of each region is done independently, they all can be 

done in parallel using cluster of high-performance computing with around 100 number of cores. 

Using the cluster makes the total execution time to be around 75 hours for each subject’s brain 

registration. However, applying the obtained warping field takes no more time than applying 

other conventional spatial normalization methods. 

 

2.2.4 Discussion 

We presented a novel region-based volumetric spatial normalization solution for human 

structural and functional brain image processing and statistical analysis. Compared to typical 

volume-based spatial normalization methods that use intensity-based similarity measurements, 
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our solution uses landmark guidance which specifies a concrete spatial correspondence in the 

volumetric space based on matching of the brain cortical folding patterns. To address the local 

minimum problem in optimization steps in most of the whole brain volume- or surface-based, or 

hybrid image registrations, we propose to independently estimate a diffeomorphic warping field 

for each cortical region. Locally-affine and poly-affine registration methods have been 

previously used in medical image registration (Arsigny et al., 2005; Porras et al., 2018). 

However, here we propose a novel region-based nonlinear registration approach and present the 

first study in combing the regional non-linear warping fields. To generate a single smooth global 

warping field with a smooth transition across adjacent regions, we propose to use IDW 

interpolation. Compared to other symmetric registration algorithms (Ashburner et al., 1999; 

Avants et al., 2008; Christensen and Johnson, 2001), which regularize the bijectivity property 

during registration, our proposed residual compensation method is applicable to any given non-

topology-preserving warping fields, as long as both forward and backward warpings are 

available. 

Compared to typical surface-based spatial normalization methods that only warp brain 

cortical surface, our solution extended surface-based methods to estimate a volumetric warping 

field. This method is considered more robust than typical surface-based spatial normalization 

methods, since fMRI brain activations are captured originally in the 3D Euclidean space and thus 

avoiding the projection of the volumetric data onto the cortical surface. Furthermore, surface-

based methods are more susceptible to the inaccuracies that often occur during reconstructions of 

cortical surface due to geometric distortion, especially in high-field and multiband acquisitions. 

While any inaccuracy in the surface reconstruction will cause surface-based method to include 

regions from outside of the brain or the white matter, our solution computes volumetric 
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deformation mappings that are applied to all gray-matter, white-matter, and other brain regions, 

thus preventing loss of fMRI data due to inaccurate surface extraction. In future work, we will 

aim at a quantitative evaluation between our volume-based registration method and other 

surface-based registration methods (e.g. FreeSurfer), however a direct comparison is challenging 

as the group activation results are in different space (Tucholka et al., 2012). The comparison 

between surface-based and volume-based spatial normalization is beyond the scope of this study. 

Evaluating spatial normalization methods has received considerable attention in recent 

years, which are typically evaluated by measuring the overlap between the warped anatomical 

regions and the counterpart regions in the reference brain. Klein et al. evaluated 14 methods with 

four MRI dataset of healthy and young subjects, and showed that these methods perform well in 

warping the sub-cortical regions (average DSC above 80%), but even the top performing method 

ANTS (Avants et al., 2008) and recently-developed deep learning methods generally have poor 

performance in warping cortical regions (average DSC between 60% and 70%) (Balakrishnan et 

al., 2019; Klein et al., 2009; Yang et al., 2017). It is because almost all of the widely used brain 

image registration techniques that work in the 3D Euclidean space, whether volume-based, or 

surface and volume hybrid methods, are based on solving the optimization problem of matching 

the whole brain at once and suffer from the local minimum problem, resulting in poor 

registration of brain cortical regions. Recent advances in intensity-based brain image registration 

methods used both T1 and T2 weighted images to guide inter-subject registration (Simonovsky 

et al., 2016). This multi-modal approach will help the delineation and matching of grey matter 

boundaries. However, intensity-based methods still have the issue of the homogeneous 

intensities between cortical regions within the cortical grey matter, which hinders the matching 

of corresponding cortical regions between subjects. Furthermore, many existing retrospective 
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datasets have limited access to scans from other modalities (only T1-weighted structural scans). 

Spatial normalization is even more challenging to studies of populations with severe brain 

morphology changes. For example, caution should be taken when studying aging population, as 

it has been shown that brain morphology changes along normal aging with grey matter volume 

reduction (Good et al., 2001), especially in prefrontal regions (Tisserand and Jolles, 2003) and in 

the medial temporal lobe (Jack et al., 1997). In these cases, inaccurate spatial normalization can 

transfer population-related residuals to the normalized group-level brain activation, which will 

no longer be a valid representation of the population. Hence, any conclusion drawn with this 

biased representation will heavily be confounded by the residuals. For example, the age-related 

atrophy in the brain of the older participants has shown to further deteriorate the accuracy of the 

spatial normalization, and subsequently interpreted as age-related attenuation of BOLD response 

amplitude (Liu et al., 2017).  

We have evaluated our proposed solution using three different experiments: 1) Using 

simulated 2D images of a single gyrus we demonstrated that our solution not only aligns cortical 

folding patterns, but also keeps an accurate correspondence in its internal regional structures. 

Furthermore, we showed using the simulated images that our solution is more robust to the local 

minimum problem compared to a top performing volumetric registration method ANTS. The 

simulated experiments highlighted the issues with intensity-based whole-brain registration 

methods (e.g. ANTS) even in a simplified 2D scenario. Whereas, our proposed LG-RBSN 

solution addressed these challenges by leveraging the features of using landmark guidance and 

region-based registration. However, it should be noted that these simulated experiments cannot 

substitute the complexities in the registration of real brain images, as human brains have highly 

convoluted folding patterns and large inter-subject shape variability. Thus, in this study, we also 
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validated our method with real structural and functional human brain MRI data. 2) Using 

structural images of human brains, we showed that our solution increases the correspondence 

between cortical regions, sub-cortical regions, and cerebral white matter in comparison to the 

existing top performing volumetric registration method ANTS and a hybrid registration method 

CVS. In Figure 2.8, all methods performed better in the registration of sub-cortical regions than 

cortical regions, which is expected as sub-cortical regions are bounded by the white matter and 

have less complex shapes, rendering an easier case for most of the spatial normalization 

methods. However, only the method proposed in this study performed well in cortical regions, 

which have highly convoluted patterns of sulci and gyri, showing a compelling case for the 

proposed LG-RBSN method. Our solution also showed that the number of non-positive Jacobian 

voxels can be decreases with the utilized residual compensation iterations to the level of ANTS, 

and is much lower than that of CVS. 3) Using functional images of human brains, we first 

showed that improving the correspondence between regional structure not only increases the 

statistical power in detecting smaller activations, but also keeps the false-positive rate low. This 

was measured by AUC of the ROC curves, indicating about 6.3% improvement compared to 

ANTS, and about 1.1% improvement compared to CVS. However, the improvement in the 

regional correspondence did not transform to the increase in the sensitivity and specificity in the 

group level statistics when comparing LG-RBSN and CVS for the right ear auditory stimuli 

condition. Together, our findings suggest that LG-RBSN solution is a more accurate and reliable 

substitute for conventional spatial normalization techniques commonly used in the field.  

We have preliminarily used region-based registration methods to align MRI brain images 

with optimization running separately for each individual brain regional mask instead of the 

whole brain (Razlighi, 2016). This region-based spatial normalization method resulted in a 44% 
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improvement of the correspondence between cortical regions (DSC around 0.75) in comparison 

to the top performing non-linear whole brain registration (ANTS). However, the inter-subject 

variability of cortical regions was still causing the optimization process to fall into local 

minimums especially in regions with severe age-related atrophy and deformations, like temporal 

lobe regions. Additionally, in our previous method, separately warping each region individually 

with its own warping field can introduce gaps and overlaps in-between regions. Edwards et al. 

has also compartmentalized the medical images of the human body into two separate segments in 

which the rigid and deformable structures of the body were registered independently to their 

counterparts, transformed separately, and then combined (Edwards et al., 1995). This method 

improved registration accuracy but was limited for the resultant discontinuity in structural 

boundaries. This limitation was addressed in a following paper (Little et al., 1997) using a single 

global smooth transformation. The global transformation was composited using a modified radial 

basis function and the inverse distance interpolation (Shepard, 1968) based on rigid structures 

within the image. Another similar method used only affine transformations for different 

segments of the brain (Pitiot et al., 2003), where, each gyrus locally registered to its counterpart 

using affine transformation for 2D registration of myelin-stained histological sections of the 

human brain. Local registration methods interpolate locally linear transformation fields, whereas 

our method not only uses topographical landmarks to guide the non-linear registration, but also 

deals with the regional transition by an IDW interpolation method with enforced bijectivity to 

ensure both regional and final global warping field are diffeomorphic and topology preserving 

deformations. 

The tradeoff between regional correspondence and bijectivity regularization (for topology 

preserving deformation) can be tuned to find a balance between the matching of brain structures 
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and number of voxels violating the diffeomorphism. In LG-RBSN, by tuning the weights 

between matching and regularization, the number of non-positive Jacobian voxels can be 

lowered even to reach zero, however, this will cause a decrease in the correspondence between 

the cortical regions (the average DSC of cortical region will drop to around 80%). In our 

experiments, we choose to tolerate 1300 number of voxels (0.0077% of total number of voxels) 

with non-positive Jacobian determinant, to achieve about DSC = 86% correspondence between 

cortical regions, which was the optimal setting in this work, however other applications may 

require further adjustment to obtain their optimal ranges. In addition, in the IDW interpolation 

method we set 𝜇 = 4, which produced acceptable results in our experiments. However, a 

thorough optimization is required in the future to obtain the optimal value for the 𝜇 in each 

registration application.  

In our experiments and results section, the reported DSC for ANTS in this work may 

seem lower than the ones reported in the literature (Klein et al., 2009). This is because; a) healthy 

elderly adults comprise more than one-third of our sample and generally show excessive brain 

atrophy in comparison to younger subjects, particularly in the prefrontal and temporal cortical 

regions (Jack et al., 1997; Tisserand and Jolles, 2003). It has been shown that brain atrophy can 

significantly alter the effectiveness of brain registration accuracy (Avants et al., 2008). b) we 

have evaluated a subject-to-template registration while most of the evaluation in the existing 

evaluation are done with subject-to-subject registration (Klein et al., 2009). This will be even 

more problematic when we have older population in our sample group. In future studies, cerebral 

cortex regions overlap can be further improved with a custom group average template 

specifically designed for use with LG-RBSN.  
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In our experiments, we evaluated our method with both structural (T1-weighted structural 

scan) and functional data (visual and auditory task-based fMRI scans) from human brain, and we 

detected statistically significant improvement and stronger brain activations by using our 

proposed method. This improvement might reduce the required number of subjects to detect the 

group effects in functional imaging studies. However, future studies are needed to evaluate the 

robustness of our method by using a large number of subjects. Furthermore, in this study, the 

samples do not include subjects in the middle-age group. We highlighted the challenges of 

dealing with subjects in the old group by using a conventional method, and the superior 

performance of using our method. We expect that our method will also work well with subjects 

from the middle-age group, as these subjects have been shown to have a less age-related 

morphological alterations in brain structures compared to subjects in the old group (Razlighi et 

al., 2017). Future studies are needed to test our method on subjects in the middle-age group. And 

it is an important topic to investigate the age-related brain variability, however, we feel it is out 

of the scope of this study, as the spatial normalization methods focused on quantifying the inter-

subject brain variability. Our proposed method utilizes the morphometric procedures from 

FreeSurfer, which have been demonstrated to be insensitive to the heterogeneity in the data 

acquired from different scanner platforms (Han et al., 2006; Han and Fischl, 2007; Reuter et al., 

2012). Therefore, we feel confident that our method will have a comparable performance dealing 

with brain images acquired from different scanners. However, future work is warranted to test 

the reliability of our proposed spatial normalization method with multi-scanner imaging data. 

Finally, it would be interesting to evaluate the performance of the LG-RBSN solution for 

multivariate techniques such as group independent component analysis (ICA), or partial least-

squares (PLS). The difference between the evaluation of the multivariate and univariate (voxel-
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based) methods is that multivariate techniques often require warping the actual 4D fMRI data, 

whereas univariate analysis can be performed after the first-level statistical analysis. Therefore, 

one might expect to obtain a different performance in applying LG-RBSN to the multivariate 

data. Furthermore, we only evaluated the LG-RBSN technique on structural and functional MRI 

scans. It would be interesting to assess the effectiveness of this method on other MRI modalities 

such as diffusion weighted imaging, arterial spine labeling, and susceptibility weighted imaging 

amongst others. We also expect that our proposed spatial normalization method could be 

extended to enhance spatial normalization accuracy in the other imaging modalities such as 

positron emission tomography and computed tomography. 

 

2.3 Negative BOLD Responses in the Human Visual Cortex 

2.3.1 Introduction 

Functional magnetic resonance imaging is the most commonly used modality for in-vivo, 

and non-invasive functional mapping of the human brain based on endogenous BOLD contrast 

(Ogawa et al., 1992). A focal task/stimulus-evoked neuronal activation usually generates a 

localized change in the MR signal of the activated area relative to its pre-stimulus period. The 

shape and properties of this change in MR signal, henceforth referred to as positive BOLD 

response, have been thoroughly investigated and reported as the hemodynamic response function 

(HRF) of the BOLD signal (Mandeville and Marota, 1999; Menon et al., 1995). In addition to the 

PBR, fMRI responses in the opposite direction, which are often referred to as negative BOLD 

response (NBR), have been observed in regions adjacent and remote to the PBR regions (Shmuel 

et al., 2002; A. T. Smith et al., 2004). 
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While much progress has been made towards characterizing the shape of PBRs 

hemodynamics and their underlying mechanisms, the properties of NBRs and their 

corresponding underlying mechanisms are yet to be fully characterized (Liu et al., 2011; 

Logothetis, 2008). Numerous studies have detected NBR during stimulation of sensory and 

motor cortices from regions in the vicinity of the PBR (Shmuel et al., 2006, 2002) and in 

ipsilateral regions relative to a unilateral stimulus (Kastrup et al., 2008; Mullinger et al., 2014; 

Shmuel et al., 2003; S. M. Smith et al., 2004; Stefanovic et al., 2004). However, there is no 

consensus on the origins and properties of these two types of NBRs. Several hypotheses have 

been made with regard to the mechanisms contributing to NBRs: (1) Decreases in neuronal 

activity due to local neuronal inhibition or decreases in afferent neuronal input (Shmuel et al., 

2006, 2002; Smith et al., 2000; S. M. Smith et al., 2004; Stefanovic et al., 2004); (2) Passive 

reduction of cerebral blood flow (CBF) in regions adjacent to PBR, due to shared upstream 

arterial supply (blood steal), independent of changes in neuronal activity and/or neural control 

signals (Harel et al., 2002; Hu and Huang, 2015; Shmuel et al., 2002); (3) Active reduction of 

CBF (blood  flow control) due to neural control signals that cause contraction of smooth muscles 

surrounding arteries and arterioles supplying the NBR regions, to ensure adequate supply to the 

areas of demand (A. T. Smith et al., 2004), and (4) Venous backpressure due to limited drainage 

capacity of venous compartments in response to massive increase in CBF to the PBR region 

(Boas et al., 2008; Goense et al., 2012; Shmuel et al., 2006). However, none of these 

mechanisms has been proposed and/or evaluated considering concurrent observation of NBRs in 

proximity to PBR and in the opposite hemisphere during unilateral sensory stimulation.  While 

some studies have used the observed NBR in the ipsilateral hemisphere as evidence to invalidate 

the blood steal hypothesis (mechanism 2), since the two hemispheres have distinct, and quasi-
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independent arterial supply (Mullinger et al., 2014; Shmuel et al., 2003; A. T. Smith et al., 2004), 

we postulate that inducing concurrent NBR in two opposite hemispheres has not been used to its 

full capacity to provide evidence in support or against of the existing hypotheses.  

Since both contralateral NBR (cNBR) from the vicinity of PBR, and ipsilateral NBR 

(iNBR) from the opposite hemisphere, can be simultaneously induced and detected during 

unilateral visual hemi-field stimulation, it is natural to ask whether a common or distinct 

neural/vascular mechanism/s underlies the cNBR and iNBR? Furthermore, if both NBRs are 

generated through a common mechanism, then it is important to know whether PBR is the 

underlying force for their simultaneous generation. The answer to these questions is of 

paramount importance because they could provide strong evidence for remote but active blood 

flow control (mechanism 3) and against two of the aforementioned hypotheses (blood steal, and 

venous backpressure). It essentially determines whether the two NBRs are regulated locally and 

independently within each hemisphere’s visual cortex, through major inter-hemispheric callosal 

pathway connecting homologues regions, through the reported inter-hemispheric functional 

connectivity in visual cortex, or remotely through an intervening distal region with access to both 

hemispheres. By investigating the temporal and spatial relationships between these two types of 

NBRs and comparing those with the relationship of each NBR with PBR, we aim to provide 

evidence for distal regulation and against local regulatory mechanisms, such as inter-hemispheric 

synchrony through major callosal pathway, or functional connectivity.  

We start by investigating the linearity of the two NBRs in respect to stimulus duration 

since it is the pre-requisite for most of the statistical analysis conducted in fMRI. Even the most 

basic HRF extraction techniques using deconvolution (i.e. finite impulse response (FIR)) is based 

on the linearity assumption.  Linearity of NBR with respect to stimulus duration, to our 
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knowledge, has not been shown previously and without its validation our extracted HRFs for 

NBR and brain statistical maps for NBRs will not be valid. Once linearity was established, we 

extracted the HRFs of both NBRs to investigate any difference between their magnitudes and 

dynamics and compare it with the HRF of the PBR. Furthermore, we investigated the association 

between subject-wise expression of the two NBRs and compared it with the relationship of each 

NBR with PBR. Our results indicate that the HRFs of two NBRs obtained from two opposite 

hemispheres have similar amplitudes and dynamics whereas they both are significantly different 

in comparison to the HRF of the PBR. Furthermore, the subject-wise expression of the two 

NBRs are significantly more correlated with each other than each one with that of PBR. The high 

inter-hemispheric synchrony in the magnitudes, dynamics and inter-subject variabilities of the 

two NBRs motivates the examination of the role of interhemispheric callosal pathway, or 

functional connectivity for facilitating such synchrony. Thus, we first computed interhemispheric 

spatial similarities of the regions showing NBRs and compared it to the interhemispheric spatial 

similarity of the cNBR with PBR. Then, to rule out the effect of interhemispheric functional 

connectivity in inducing coherent NBRs in two hemispheres, we computed the inter-hemispheric 

functional connectivity of the regions showing NBRs and compared it with the inter-hemispheric 

functional connectivity of the cNBR with PBR. Neither interhemispheric callosal pathway nor 

interhemispheric functional connectivity explained the observed synchrony between two NBRs, 

providing evidence for remote blood flow control.  

Finally, we studied the performance correlates of the two NBRs and whether the two 

NBRs were modulated by attention. These experiments are motivated with our recent findings 

that the NBRs detected from DMN regions are attention-specific and are correlated with 

performance (Parker and Razlighi, 2019b). Any difference in the attention and/or performance-
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association highlights the possibility of having a separate underlying neural and/or vascular 

mechanism. Our findings suggest that the cNBR and iNBR share a common neural and/or 

vascular mechanism which is different not only from the ones underlying PBR, but also from the 

mechanism underlying NBR detected from the DMN, and probably regulated by a distant brain 

structure that projects to the two hemispheres and actively controls blood flow distribution of the 

cerebral cortex. 

 

2.3.2 Methods 

Participants   Twenty-seven healthy young subjects (mean age ± SD = 25.11 ± 3.24, 

female/male = 20/7, all right-handed) were recruited using random market mailing approach 

within 50-mile radius of Columbia University Irving Medical Center and were compensated for 

their time spent partaking in this study. All subjects gave their informed written consent prior to 

the scanning sessions. The experimental design of our study and the recruitment process were 

approved by Columbia University institutional review board.  

 

fMRI Experimental Design   We employed an event-related fMRI experimental task design to 

effectively examine the timing and the shape of the extracted HRFs. The task consisted of two 

ongoing stimuli: 1) An almost square checkerboard with alternating luminance between 25% and 

44% of maximum luminance, spatial frequency of 1.17 cycle per degree, and contrast reversal 

rate (temporal frequency) of 6 Hz was presented to the right or left of the screen (with 50% of 

maximum luminance) approximately between 2.29° and 9.14° angle, as shown in Figure 2.15b; 

and 2) An alternating tone paradigm played on either right or left ear via MR compatible 

earphones, with alternating frequency (pure tones at 698.46 Hz and 440.00 Hz with a 0.1 s 
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duration of each tone). The two sensory stimuli were presented with random onsets and 

durations, sampled from a uniform continuous distribution in the range of 1.0-5.0 sec; visual and 

auditory stimuli timings were sampled independently. Overlaps between visual and audio stimuli 

were allowed, however, bilateral overlapping presentation of the same sensory stimulus (left-

visual with right-visual or left-auditory with right-auditory) was prohibited. The data were 

collected in 2 runs; in the first run, subjects were instructed to attend only one sensory modality 

(i.e., either visual or tonal) while ignoring the other. In the second run, they were instructed to 

attend the other sensory modality. Each scan consisted of 120 events: 60 events for visual and 60 

for auditory stimulus; for each modality, 30 events on the right and 30 events on the left side 

spaced at inter-stimulus-intervals drawn from an exponential distribution (center = 5.6, l = 9.8). 

Control for attention was achieved by asking the subjects to press a button twice with their 

right/left index finger (depending on the lateralization of the attended stimulus) as soon as the 

attended stimulus terminated. These responses were recorded during the entire scans. Moreover, 

subjects were required to constantly fix their gaze on a green minuscule fixation spot in the 

center of the screen for the entire period of the scan. Subjects were given feedback on their 

incorrect or out-of-time (> 3 sec) responses (if any) via change in the color of the fixation spot to 

red. Eye fixation was monitored at all times during scans using an eye-tracking system (EyeLink 

1000 Plus). If subjects excessively deviated their eye’s fixation from the central dot, we stopped 

the scan and instructed the participants again and repeated the scan. However, this happened only 

during two fMRI runs. Subjects were first trained outside of the scanner to learn and perform the 

task comfortably and accurately (almost 100% correct) on short training runs. All subjects 

learned the task correctly. An example of the timing and the design of the task is illustrated in 

Figure 2.15. 
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Figure 2.15: a) Illustration of a segment of the time-course of the visual-audio event 
related task. The blue line shows the timing of the auditory stimuli, the red line shows the 

timing of the visual stimuli, and the red stick line shows the subject responses (i.e., each time 
they press the button). In this sample demonstration, subjects were requested to attend to the 
visual stimulus and ignore the auditory stimulus. This is evident by the response pattern as 

the button is pressed twice as soon as the attended stimulus (i.e., visual stimulus) is 
terminated. b) Flashing checkerboard visual stimulus presented on the left and right 

hemifield. 

 

MRI Acquisition Parameters   Imaging was carried out using a 3 Tesla Siemens Magnetom 

Prisma scanner equipped with an 80 mT/m gradient system with a T2*-weighted echo-planar 

imaging sequence using interleaved slice acquisition (TR/TE = 1000/30 ms; flip angle = 62◦; 

field of view (FOV) = 200 × 200 mm; bandwidth = 1852 Hz/px; multiband factor = 4, matrix 

size = 100 × 100; voxel size = 2 × 2 × 2 mm; 64 axial slices with alternating phase encoding 

directions of anterior-posterior or posterior-anterior). Subjects were positioned supine inside the 

magnet bore wearing noise isolating MR safe earbuds to listen to the auditory stimuli. The 

flashing checkerboard visual stimuli placed within a square that was centered at the middle of the 

hemi-field filling up more than half of the hemi-field were projected onto a back-projection 

screen in the scanner. Each task-based fMRI (tb-fMRI) scan lasted 8 minutes (480 volumes). A 

resting-state fMRI (rs-fMRI) scan with the same length and parameters was also acquired for 

every participant. To prevent any bias in visual-attending/tonal-attending task modalities, we 
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alternated the order of fMRI acquisitions between; 1) visual-attending, resting-state, and tonal-

attending; 2) tonal-attending, resting-state, and visual-attending; for each participant. An 

accompanying anatomical T1-weighted structural image was collected for localization and 

registration purposes in the same MRI session (TR/TE = 2300/2.32 ms; flip angle = 8°; field of 

view = 256 × 256 mm; matrix size = 256 × 256; voxel size = 1 × 1 × 1 mm; 196 sagittal slices).  

 

Preprocessing of fMRI Data   The fMRI data were processed using FSL (V5.0.7) and in-house-

developed packages. The preprocessing pipeline for the task-based fMRI data is illustrated in 

Figure 2.16. Briefly, slice timing correction was applied to the raw fMRI timeseries to account 

for the difference in the acquisition delay between slices (Parker et al., 2017; Parker and 

Razlighi, 2019a). At the same time, motion parameters were estimated on raw fMRI scans using 

rigid-body registrations performed on all the volumes in reference to the first volume. 

Additionally, the first volume was extracted from another fMRI scans with opposite phase 

encoding directions to estimate the geometric distortion correction field using a susceptibility-

induced distortions correction technique called topup (Andersson et al., 2003) provided in FSL 

software package (Smith S.M. et al., 2004). Then, the estimated motion parameters and 

geometric distortion field were combined and applied to the slice timing corrected fMRI time-

series to get the distortion and motion-corrected fMRI time-series. In order to enhance the 

precision in the localization of the statistically significant responsive voxels, no spatial 

smoothing was applied. To remove the slow scanner drift, a temporal high-pass filter (> 0.01 Hz) 

was applied to the fMRI timeseries. The pre-processed fMRI data were modeled with 6 

predictors (except for the linearity analysis, which will be discussed later) for the presented 

stimuli and subject responses (i.e., visual left, visual right, audio left, audio right, motor-response 
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left, motor-response right). Predictors were acquired by convolving the visual, auditory, and 

motor boxcar timings with the canonical double-gamma HRF. First-level analysis was performed 

via multiple regression using an in-house-developed software package in Python. Similar pre-

processing was performed to the rs-fMRI data by applying slice-timing correction, spatial 

realignment, geometric distortion correction, and high-pass filtering (> 0.01 Hz). Structural scans 

were processed using Freesurfer (Fischl et al., 2004, 2002). 

 
 

Figure 2.16: The preprocessing pipeline for task-based fMRI data. The thick arrows 
show the transfer of 4D fMRI data, the double thin arrow shows the transfer of the 3D data, 

and the thin arrow shows the transfer of the parameters. 

 

Linearity of the cNBR and iNBR   In this experiment we aimed to assess the linearity of the 

both NBR with regards to the change in the duration of the stimulation. The stimuli were 

categorized into four distinct categories with respect to their duration (i.e., category 1 included 

stimuli with durations between 1 to 2 seconds and in the same way category 2, 3, and 4 included 

stimuli with durations between 2 to 3, 3 to 4, and 4 to 5 seconds, respectively). The time series of 

the preprocessed fMRI data were standardized by subtracting the mean and dividing by the 

standard deviation. To prevent any bias in voxel selection toward any voxel with randomly 

exhibiting linear property, we employed bootstrapping technique where the trials were randomly 

split in half for voxel selection (training) and BOLD response extraction (testing). For a given 

iteration, the training trials’ boxcar (convolved with a canonical HRF) was used in a general 
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linear modeling (GLM) analysis to obtain the significantly responsive voxels (|t| > 3). Once the 

voxels were selected, the training trials were disregarded and only the remaining trials (testing) 

were used for assessing the linearity in the selected voxels. The amplitude of each trial in the 

testing set was also normalized with regard to its duration to make sure it has a unit area under 

the curve in each trial’s boxcar. This was done to maintain the same amplitude in all trials in the 

GLM predictors which essentially enables us to assess the increase in the magnitude of the 

BOLD response using the beta-coefficient of the GLM analysis.  Each trial in the test set was 

then assigned to one of the four different regressors according to their categorized stimuli 

durations. Next, four separate GLM analyses were performed using one of the four regressors; 

Each one estimating the BOLD response magnitude for each duration category. Bootstrapping 

process was repeated with 500 iterations, and the beta-coefficient of each category was averaged 

separately for cNBR and iNBR across all iterations and right and left visual stimuli to compute 

the corresponding BOLD response amplitude. The subject-wise mean beta-coefficient 

(amplitudes) for the four duration categories were then plotted against the corresponding 

duration categories. We performed a least squares linear regression analysis along with t-test of 

the slope to check for significance of the linear relationship (if existed). As a sanity check, we 

also used this method to check the linearity of the PBR.  

 

Generating region of interest   Throughout this work, instead of performing the formal group 

level analysis in standard space, we performed the analysis in the subjects’ native space (unless 

explicitly noted otherwise). Analysis in native space increases the precision of localizing ROIs in 

each subject compared to the regular group level analysis in the standard space. The latter often 

introduces spatial misalignments across different subjects due to lack of precision in non-linear 
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registrations (Klein et al., 2009; Liu et al., 2017; Razlighi et al., 2014). Hence, for each 

individual subject, two ROIs per hemisphere were generated. The first region of interest (ROI) 

was generated for each hemisphere, by selecting the voxels within the visual cortex that showed 

statistically significant PBR (activation) during the unilateral visual stimulation using the z-

statistical map derived from first-level analysis (z > 4). The subject-wise mask of the visual 

cortex was obtained using FreeSurfer. The first ROI was then dilated by a spherical kernel with 

10 mm radius - resulting in a large ribbon surrounding it in each hemisphere - to delineate the 

neighboring voxels required for identifying the NBR in the vicinity of the activated regions 

(cNBR). The union of the two masks on the opposite hemisphere (due to visual stimulation of 

opposite hemi-field) was used as the ROI to identify voxels with iNBR. Any intersection with 

the inferior parietal and precuneus regions was eliminated from the two generated ROIs, since 

they might be part of the NBR from the default mode network which may have different 

characteristics and/or underlying mechanism. Finally, in order to eliminate any possible 

misalignment or interhemispheric leakage due to a rather smooth point spread function of the 

fMRI BOLD signal, the two bilateral ROIs were constrained to be within each brain hemisphere 

(hemisphere mask delineated by using FreeSurfer software). This was also done to avoid any 

possible overlap between the ROIs from the two hemispheres. 

 

Hemodynamic response functions of cNBR and iNBR   The goal of this experiment was to 

extract and compare the shapes of the HRFs of the two task-evoked cNBR and iNBR obtained 

from the visual cortex. Since we are investigating the shape of the HRF, voxel selection cannot 

be performed using a canonical double Gamma HRF. This is to prevent any bias toward a pre-

selected HRF shape. Hence, we used a set of optimized basis functions known as FMRIB's linear 
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optimal basis set (FLOBS) to perform our voxel selection for this experiment (Woolrich et al., 

2004). FLOBS technique does not impose a fix timing and/or dynamic for the BOLD response; 

Thus, voxels exhibiting response with completely unique shape and dynamics can be selected as 

responsive voxels for a given stimuli timing. We selected the significantly responsive voxels 

according to the F statistics |F| > 6 within the predefined ROI masks. An initial response function 

for each voxel was computed by a weighted average of the FLOBS basis functions according to 

the estimated beta-coefficient in the first-level FLOBS GLM analysis. Then, we integrated the 

initial response function for the first 10 seconds interval to obtain the sign of the area under the 

curve, and we classified the significantly responsive voxels into either positive or negative 

responsive voxels. Once the negatively and significantly responsive voxels are identified within 

the generated ROIs, the time courses of the selected voxels were given to the FIR deconvolution 

technique, which to our knowledge is the least constrained approach for extracting the shape of 

the impulse response function in fMRI (Goutte et al., 2000). We extracted the voxel-wise HRFs 

of each subject for cNBR and iNBR for both attended and unattended stimuli. Subsequently, the 

extracted HRFs were averaged across all responses to the right and left visual stimuli to obtain 

the mean subject-wise HRFs for cNBR and iNBR for both attended and unattended stimuli (i.e., 

HRFJKLM#$$, HRFNKLM#$$, HRFJKLM%&#$$, and HRFNKLM%&#$$). For comparison purposes, the 

positive BOLD HRF was also extracted using the same procedure and the time-series were 

converted to percent change (subtracted by the mean and then divided by the mean). 

We subtracted the mean signal of the pre-stimulus period (time points within 5 seconds 

before the onset of the stimulus) from the subject-wise HRF. Then, we up-sampled the subject-

wise HRF with sinc-interpolation. In order to compare the magnitudes and dynamics of the 

extracted HRFs for cNBR, and iNBR, as well as for PBR, subject-wise extracted HRFs were 
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used to obtain onset time, time to peak, amplitude, falling edge time, and time to undershoot of 

the BOLD responses. As shown in Figure 2.20A for illustrating the PBR case, time to peak was 

defined as the first instance where the HRF reached its maximum magnitude starting from time 

zero (stimulus onset). The onset time was defined as the first time point where the HRF exceeded 

10% of the maximum amplitude. The falling edge time was defined as the time duration between 

the peak time and the time at which the HRF reached back to its estimated average pre-stimulus 

magnitude. The time to undershoot was defined as the time that it took the HRF to reach its 

maximum opposite magnitude after falling back to the baseline, starting from time zero. For each 

characteristic, we removed measurements outside three standard deviations from the mean to 

eliminate the influence of outliers. Finally, Student’s t-test was used to test for the significance of 

the difference (if any) between magnitude, time to peak, onset time, falling edge time, and time 

to undershoot of the HRFs obtained for cNBR, and iNBR, as well as for PBR. 

 

Subject-wise expression of cNBR and iNBR   The aim of this analysis was to assess the 

relationship between the subject-wise expression of different BOLD responses which could 

potentially hint at the underlying driver of NBRs. Using the previously generated ROI masks, the 

statistically significant voxels were selected inside each ROI using a z-statistics threshold of 

above +4 and below -3 for the positive and negative BOLD responses, respectively (not 

corrected for multiple comparisons correction). The NBR is usually a weaker signal than PBR, 

hence, we chose a slightly lower threshold for NBR to add more negatively responsive voxels. 

The subject-wise expression of cNBR and iNBR were calculated by averaging the beta-

coefficient from the significantly responding voxels to the right and left visual stimuli. For 

comparison, subject-wise expressions of PBR were also obtained similarly. For each pair of the 
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BOLD responses (i.e., PBR vs cNBR, PBR vs iNBR, and cNBR vs iNBR), Pearson correlation 

coefficient (PCC) was used to assess the association (if any) between the BOLD amplitudes 

separately for the attended and unattended cases. Outliers were removed based on median 

absolute deviation and PCC was computed again to make sure the results were not an influence 

of outlier. The test of the difference between two correlation coefficients was used to test the 

significance of the difference in the correlation amplitude (use the absolute value of PCC) 

between pairs of the BOLD responses. 

 

Functional connectivity between cNBR and iNBR   In this analysis, we aimed to investigate 

the inter-hemispheric functional connectivity in the visual cortex between regions showing 

BOLD responses during unilateral visual stimulation (i.e., iNBR vs PBR, and iNBR vs cNBR). 

The similarly pre-processed rs-fMRI data were transformed to the tb-fMRI space using 6 degrees 

of freedom intra-subject registration (Jenkinson et al., 2002). A binary mask of the regions with 

significant PBR, iNBR, and cNBR was intersected with each participant’s left/right hemisphere’s 

visual cortex mask (delineated by using the FreeSurfer software) to obtain the mean time-series 

for the regions with PBR and NBRs from rs-fMRI data. The PCC was used to compute 

functional connectivity between the regions. Any significant difference between functional 

connectivity was assessed with the Student’s t-test.  

 

Interhemispheric spatial similarities between cNBR and iNBR   The goal of this analysis was 

to investigate the topographical similarities between the spatial patterns of the BOLD responses 

that belong to two distinct hemispheres (i.e., iNBR vs PBR, and iNBR vs cNBR), elicited during 

unilateral visual stimulation. Similar to the HRF extraction analysis, our spatial similarity 
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analysis was within previously generated ROIs that exceed the selected significance threshold 

(i.e., |F| > 6) in the first-level FLOBS GLM analysis, and voxels were classified into positively 

and negatively responsive voxels based on the area under the curve during the first 10 seconds 

interval of the HRF. Spatial pattern similarity was measured by Dice similarity coefficient 

between regions showing significant cNBR and iNBR, and for comparison between iNBR and 

PBR. In order to compute the spatial pattern similarity between regions located in two different 

hemispheres, these ROI masks were required to be transferred into MNI standard space. To this 

end, the first EPI volumes from fMRI data (as the reference volume in preprocessing) were 

registered to their T1-weighted structural image using a rigid-body transformation and 

normalized mutual information. Then, each subject’s T1-weighted structural image was 

registered to the standard MNI space using Landmark Guided Region Based Spatial 

Normalization (He and Razlighi, 2022). Combination of the two (i.e., the rigid-body 

transformation and the non-linear warping filed) was used to transfer the obtained ROI masks 

into MNI space. Next, the transferred ROI masks were flipped around mid-sagittal plane (i.e., 

mirrored) to be able to use DSC overlap measurement to quantify the spatial pattern similarities 

between iNBR and PBR, as well as iNBR and cNBR. To assess for significance in the difference 

(if any) between the DSC of iNBR vs PBR, and iNBR vs cNBR, t-test was used across the 

obtained DSC measurements.  

 

Behavioral correlates of the cNBR and iNBR   To assess the relationship between the NBRs 

and task performance, we used subject-wise median response-time as a measurement of 

performance, and subject-wise expression of NBRs, as explained above, as the strength of BOLD 

response. For comparison, we also investigated the relationship between PBR and performance 
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using the same method. The response-time was defined as the time interval between the end of 

the attended stimulus and the instance when the first corresponding button was pressed by 

subjects. Using PCC, we tested for any association between the median response-time of each 

subject and the corresponding expression for PBR, cNBR, and iNBR.  

 

Attention dependency of the cNBR and iNBR   In this analysis, the goal was to check the 

effect of attention on the negative BOLD signals. We used the difference in the amplitudes and 

dynamics of the previously extracted HRFs between the attended and unattended/ignored stimuli 

as a measure of attention dependency. Student t-test was used to assess the significance in the 

difference (if any) between the attended and unattended cases at every second after the start of 

the stimulus, multiple comparisons correction was performed using Bonferroni correction 

method.  

 

2.3.3 Results 

The visual stimulation induced statistically significant PBR in lower visual areas within 

the occipital lobe of all subjects. In addition, sustained, statistically significant NBRs ipsilateral 

and contralateral to the visual stimuli were observed in all subjects, for both attended and 

unattended cases. Participants responded correctly on 98.0/96.0% of the visual/audio stimulus 

presentations, where a correct response is defined as a button press within 3 seconds of the 

attended stimulus termination. Figure 2.17 illustrates the spatial pattern of a typical subject’s 

PBR, cNBR, and iNBR to unilateral right hemifield presentation of attended visual stimuli using 

z-statistics overlaid on three orthogonal slices of the participant T1-weighted structural MRI 

image.  
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Figure 2.17: Demonstration of activation/deactivation in response to right visual 
hemifield stimulation from a single subject in the attended condition. Positive BOLD 

responses are color-coded with red/yellow and negative BOLD responses are color-coded 
with blue/cyan. The unilateral visual stimulation induces robust PBR in the contralateral 
(relative to the stimuli) visual cortex accompanied by a robust cNBR in its vicinity, and a 

robust iNBR in the opposite hemisphere. Note that spatial smoothing is carried out here only 
for better illustration. 

 

While we did not impose any overlap between the timings of the visual and auditory 

stimuli, the event-related designs of the two sensory stimuli were independent, with the timing of 

the stimuli randomized separately for visual and auditory stimuli. This design resulted in some 

overlapping visual and auditory stimulations, as seen in Figure 2.15. To make sure the 

overlapping stimuli had negligible influence on our results, we categorized the stimuli according 

to their temporal overlap between each visual stimulus and the left or right auditory stimuli. 

Based on this, the visual stimuli trials were classified into two classes: 1) high visual and 

auditory stimuli overlap (overlap larger than 50%) and 2) low visual and auditory stimuli overlap 

(overlap smaller than 50%). We performed Student's t-test between the mean response time of 

these two classes’ trials across subjects and found that there was no significant difference (t = -

0.76; p > 0.45) between them. And there was also no significant difference between the bimodal 

stimuli overlapping rate between left and right presentations (t = 1.54; p > 0.13). The mean 
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bimodal stimuli overlapping rates of the left and right visual stimuli presentations were 0.63 and 

0.61, respectively. 

 

Eye gaze deviation quantification results  We first performed the quantification of eye gaze 

deviation. For 20 healthy young subjects with eye tracking data available, left/right absolute gaze 

deviation from the screen center is 1.3920 ± 1.5777 (mean ± std) degree, and the median is 

0.9922 degree. Mean of the subjects’ absolute gaze deviation was within 1 degree in 71.37% of 

the time, between 1 to 2 degree in 11.37% of the time and more than 2 degree in 17.25% of the 

time. Next, we quantified the gaze deviation prior and during presentation of visual stimuli. The 

average gaze deviation during the pre-stimulus period of the visual stimuli (five seconds before 

to the onset of the stimuli) is -0.4959 ± 1.7376 (mean ± std) degree for the left visual field 

presentation and -0.3195 ± 1.4754 (mean ± std) degree for the right visual field presentation. The 

average gaze deviation during the presentation of the visual stimuli is -0.8580 ± 2.0645 (mean ± 

std) degree for the left visual field presentation and 0.0836 ± 0.9869 (mean ± std) degree for the 

right visual field presentation. The negative and positive values represent the deviation is 

towards left and right, respectively. To quantify the amount of gaze deviation, we computed the 

absolute value of these subject-wise average gaze deviation. There is no significant difference 

between the amount of gaze deviation during the presentation of the left and right visual field 

stimuli (t = 0.9927; p = 0.3271). And no significant difference was found between the amount of 

gaze deviation during the baseline period of left and right visual stimuli (t = 0.1017; p = 0.9196). 

Lastly, we performed correlation analysis of the gaze deviation quantifications and the BOLD 

response. There is no significant correlation between the left/right gaze absolute deviation and 

the subject-wise mean amplitudes (beta-weight) of BOLD response (PBR: r = 0.0669, p > 
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0.7793; iNBR: r = -0.2601, p > 0.2680; cNBR: r = -0.0747, p > 0.7544). There is no significant 

correlation between the absolute amount of gaze deviation during the presentation of visual 

stimuli and the subject-wise mean amplitudes (beta-weight) of BOLD response for the left (PBR: 

r = 0.1253, p > 0.5988; iNBR: r = -0.1203, p > 0.6133; cNBR: r = -0.0073, p > 0.9755) and right 

(PBR: r = 0.3354, p > 0.1483; iNBR: r = -0.2131, p > 0.3670; cNBR: r = -0.1785, p > 0.4514) 

visual field stimuli. No significant correlation between the gaze deviation quantifications and the 

major characteristics of the BOLD responses was observed. In all analysis above, eye blink 

detection was performed with the EyeLink 1000 Plus system during the scan. The gaze position 

data during eye blinks were removed before the analyses. 

 

Stimulus duration linearly scales the magnitude of cNBR and iNBR   In this experiment, we 

aimed to assess the relationship between the magnitude of the task-evoked negative BOLD 

signals (i.e., cNBR and iNBR) and the stimuli duration. To this end, we averaged the beta-

coefficient of the first-level GLM analysis fitted separately for each categorized stimuli duration. 

Results of the right and left visual stimulations are also averaged for this analysis. We then 

assessed the relationships between mean beta-coefficient and the categorized stimuli durations 

using linear regression. Figures 2.18a, 2.18b, and 2.18c show the averaged beta-coefficient as the 

BOLD response amplitude in terms of stimulus duration for cNBR, iNBR, and PBR, 

respectively. As illustrated in Figures 2.18a and 2.18b, the amplitudes of both cNBR and iNBR 

showed significant linear relationships with the stimulus duration (cNBR: β = -0.312, p < 0.009; 

iNBR: β = -0.169, p < 0.017) ranging from 1 to 4 seconds. These results provide evidence for 

linear relationships between the NBR amplitudes and stimulation duration, suggesting that the 

longer a stimulus duration is, the higher is the magnitude of both induced NBRs in the visual 
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cortex (i.e., amplitudes get more negative). Since the linearity of PBR has been already shown 

(Boynton et al., 1996), as a sanity check, we applied the same test of linearity to the PBR (β = 

0.845, P < 6.116e-4; Figure 2.18c), confirming the linear relationship in the PBR for the same 

range of the stimuli durations. 

 
 

Figure 2.18: Linearity of the a) cNBR, b) iNBR, and c) PBR with respect to stimulation 
duration. The blue and red dots show, respectively, the mean amplitudes for negative and 

positive BOLD responses of each subject. The black dots indicate the mean amplitude of the 
BOLD responses (i.e., averaged over all subjects) for each duration category. The black 

dashed lines represent the regression lines. The absolute values of the mean cNBR and iNBR 
amplitudes scale linearly with the stimulus duration. Please note that the timeseries have zero 

mean and unit standard deviation for this analysis, thus the relative change between 
categories carries the information and not the beta-coefficient value at each category. As a 

sanity check for the method, we also applied the same method to the PBR. As expected, the 
PBR scales linearly with the stimulus duration. 

 

The cNBR and iNBR have similar HRFs   The goal of this experiment was to compare the 

magnitudes and dynamics of the HRFs obtained for the two NBRs. As mentioned in the methods 

section, we used the FIR deconvolution technique to extract the HRFs associated with the cNBR, 

iNBR, and PBR. The extracted HRFs for the attended and unattended cases are shown in Figure 

2.19a and 2.19b, respectively. As is evident in these figures, in both attended and unattended 

conditions, the overall shapes of cNBR and iNBR are closely similar. To quantify this similarity, 

we tested for any statistically significant difference between the onset time, time to peak, 
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amplitudes, falling edge time and time to undershoot of the two NBRs with subject-wise up-

sampled HRF. As shown in Figure 2.20 and Table 2.2, there was no significant difference 

between the cNBR and iNRB regarding their onset time in both the attended (Δt = -0.1601 s, p > 

0.3770) and the unattended conditions (Δt = -0.0040 s, p > 0.9827), and there was no significant 

difference in the time to peak of cNBR and iNBR in the attended (Δt = -0.0580 s, p > 0.7813) 

and unattended (Δt = 0.1015 s, p > 0.7104) conditions, suggesting that the cNBR and iNBR 

HRFs start to rise and reach to their peak magnitude at approximately same time. We also 

observed no significant differences between the amplitudes of the two NBRs in both the attended 

(Δ = -0.0578, p > 0.1969) and the unattended (Δ = -0.0219, p > 0.5512) condition. We did not 

find any significant difference in the falling edge time of the two NBRs in the attended (Δt = -

0.3181 s, p > 0.6289) condition, whereas there is a significant difference in the unattended (Δt = 

-1.5770 s, p < 0.0472) condition, but it did not survive multiple comparison correction. Finally, 

no significant difference was observed between the cNBR and iNBR in terms of their time to 

undershoot for either of the attentional conditions (attended: Δt = -1.3289 s, p > 0.2427; 

unattended: Δt = -0.2268 s, p > 0.8018). These findings suggest that there is no significant 

difference in the magnitude and dynamics of the HRFs extracted for the iNBR and cNBR after 

multiple comparisons correction. This evidence suggests that possibly common mechanism/s 

underlie the contralateral and ipsilateral NBRs while they are induced in two separate 

hemispheres of the human visual cortex. 

 

Table 2.2: Comparison of the HRFs obtained for the cNBR and iNBR (cNBR vs. iNBR; 
* p < 0.05; uncorrected). 

Measurements Attended Unattended 
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Onset time Δt = -0.1601 s, p > 0.3770 Δt = -0.0040 s, p > 0.9827 

Time to peak Δt = -0.0580 s, p > 0.7813 Δt = 0.1015 s, p > 0.7104 

Amplitude Δ = -0.0578, p > 0.1969 Δ = -0.0219, p > 0.5512 

Falling edge time Δt = -0.3181 s, p > 0.6289 Δt = -1.5770 s, p < 0.0472 (*) 

Time to undershoot Δt = -1.3289 s, p > 0.2427 Δt = -0.2268 s, p > 0.8018 

 

 
 

Figure 2.19: The HRFs of positive BOLD, and contralateral/ipsilateral negative BOLD 
responses to a) attended and b) unattended visual stimuli. The curves are adjusted based on 
average of the HRF for 5 seconds prior to the stimulus onset. The unit of the magnitudes is 
percent change (subtracted by mean and then divided by mean). Error bars represent the 

standard error of the mean. As is evident here, the two negative HRFs are closely similar in 
terms of their overall dynamics and amplitudes (* p < 0.05; ** p < 0.01; Bonferroni correction).  

 

To assess for any differences between the magnitudes and dynamics of the positive and 

negative BOLD HRFs, as seen in Figure 2.20 and Table 2.3, we compared the two negative 

BOLD HRFs to the positive one. In the attended condition, the positive BOLD HRF reached to 

its peak magnitude almost one second later than both negative BOLD HRFs (PBR vs. cNBR: Δt 
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= 0.8773 s, p < 0.0001; PBR vs. iNBR: Δt = 0.8193 s, p < 0.0008). The amplitude of the positive 

BOLD HRF was significantly larger than both negative BOLD HRFs’ (PBR vs. cNBR: Δ = 

0.2914, p < 8.2659e-08; PBR vs. iNBR: Δ = 0.2336, p < 8.7143e-08). Furthermore, the PBR 

HRF returned to baseline only slower than the cNBR (Δt = 1.2499 s, p < 0.0182). The time to 

undershoot was only significantly larger for the PBR HRF compared to cNBR HRFs (Δt = 

2.5450 s, p < 0.0098). In the unattended condition, similar to attended case, we observed the 

same trend in time to peak (PBR vs. cNBR: Δt = 1.0369 s, p < 0.0037; PBR vs. iNBR: Δt = 

1.1384 s, p < 0.0031). The amplitude of the positive BOLD HRF is still significantly larger than 

both negative BOLD HRFs’ (PBR vs. cNBR: Δ = 0.4315, p < 3.6432e-15; PBR vs. iNBR: Δ = 

0.4095, p < 1.5076e-13). Unlike the results in the attended condition, there was only significant 

difference in the falling edge time between PBR HRF and iNBR HRFs (Δt = -1.8553 s, p < 

0.0017), and finally the PBR HRF time to undershoot was not significantly different from both 

negative BOLD HRFs’ (PBR vs cNBR: Δt = 0.3628 s, p > 0.6663; PBR vs iNBR: Δt = 0.1360 s, 

p > 0.8792).  

 

Table 2.3: Comparison of the HRFs obtained for the PBR and NBRs (* p < 0.05; ** p < 
0.01; uncorrected). 

Measurements Attended Unattended 

Onset time 
PBR vs. cNBR Δt = 0.1703 s, p > 0.2384 Δt = 0.0301 s, p > 0.8619 
PBR vs. iNBR Δt = 0.0102 s, p > 0.9539 Δt = 0.0261 s, p > 0.8575 

Time to 
peak 

PBR vs. cNBR Δt = 0.8773 s, p < 0.0001 (**) Δt = 1.0369 s, p < 0.0037 (**) 
PBR vs. iNBR Δt = 0.8193 s, p < 0.0008 (**) Δt = 1.1384 s, p < 0.0031 (**) 

Amplitude 
PBR vs. cNBR Δ = 0.2914, p < 8.2659e-08 (**) Δ = 0.4315, p < 3.6432e-15 (**) 
PBR vs. iNBR Δ = 0.2336, p < 8.7143e-08 (**) Δ = 0.4095, p < 1.5076e-13 (**) 

Falling 
edge time 

PBR vs. cNBR Δt = 1.2499 s, p < 0.0182 (*) Δt = -0.2783 s, p > 0.6386 
PBR vs. iNBR Δt = 0.9318 s, p > 0.0547 Δt = -1.8553 s, p < 0.0017 (**) 

PBR vs. cNBR Δt = 2.5450 s, p < 0.0098 (**) Δt = 0.3628 s, p > 0.6663 
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Time to 
undershoot PBR vs. iNBR Δt = 1.2161 s, p > 0.1999 Δt = 0.1360 s, p > 0.8792 

 

 
 

 
 

Figure 2.20: A) The definition of amplitude, time to peak, onset time, falling edge time, 
and time to undershoot of the BOLD responses as illustrated for the PBR case. B-F) Student’s 
t-test of any statistically significant difference between the B) amplitude in percent change, C) 
time to peak, D) onset time, E) falling edge time, and F) time to undershoot of the two NBRs 

and PBR using sinc-interpolation up-sampled subject-wise HRF. Error bars represent the 
standard error of the mean. Statistically significant differences are marked with asterisk 

symbols (* p < 0.05; ** p < 0.01; uncorrected). 

 

Subject-wise expressions of cNBR and iNBR are tightly coupled   The primary goals of this 

experiment were to investigate whether PBR observed in the visual cortex is the underlying force 

behind either or both cNBR and iNBR. To address this question, we examined the strength of the 

relationship between PBR and both cNBR and iNBR, and compared it with the strength of their 
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own relationship (between two NBRs). We compared the subject-wise expressions of the BOLD 

responses that were computed by averaging the beta-coefficient of the significant voxels within 

the generated ROIs. If PBR was the underlying force to induce cNBR and/or iNBR, then one 

would expect that the subject-wise expression of the PBR has a higher correlation with the 

expressions of cNBR and/or iNBR, than the corresponding correlation between the two NBRs’ 

subject-wise expressions. On the other hand, if the iNBR was correlated more strongly with 

cNBR than PBR, then it is less likely that PBR would be the solo driving force of the iNBR or 

cNBR. Figure 2.21 shows the scatter plots of the subject-wise mean expressions of 1) iNBR 

versus cNBR, 2) PBR versus cNBR, and 3) PBR versus iNBR, for both attended (a, b, and c) and 

unattended (d, e, and f) unilateral visual hemifield stimulation. As depicted in Figure 2.21, the 

subject-wise expressions of the cNBR and iNBR were highly correlated with each other in both 

the attended (r = 0.8580, p < 1.0605e-08) and unattended (r = 0.8693, p < 8.2796e-09) 

conditions. The PBR was also shown to be significantly associated with cNBR (attended: r = -

0.6408, p < 4.2085e-4, and unattended: r = -0.6466, p < 3.5784e-4) and iNBR (attended: r = -

0.6131, p < 8.6863e-4, and unattended: r = -0.7032, p < 6.1550e-5). Although the cNBR and 

PBR were obtained from adjacent regions located in the same hemisphere, the cNBR showed 

significantly higher correlation with the iNBR (in the opposite hemisphere) than with the PBR 

(attended: z = 1.8037, p < 0.0357, and unattended: z = 1.9016, p < 0.0287; one-tailed), 

suggesting that PBR is less likely to directly associate with either of the two NBRs. These 

findings suggest that the two NBRs might not be associated exclusively by the PBR. Together 

with the results in the previous section, they indicate that the two NBRs have a common 

underlying neural and/or vascular mechanisms which might be different than the ones give rise 

to PBR.  
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Figure 2.21: Correlation of the mean amplitudes of the BOLD responses to the visual 
stimuli in the attended (a, b, and c) and unattended (d, e, f) conditions. The value of the slop, 
Pearson correlation coefficient, the p-value of PCC are presented for each case. The dashed 
black lines represent the regression lines with all the data, and the solid red lines represent 

the regression lines with data after outliers removed. As is depicted, regardless of the 
attention condition, the subject-wise expression of the iNBR and cNBR are significantly more 

correlated with each other than each one with the PBR. 

 

Functional connectivity is not responsible for the high coupling between cNBR and iNBR   

Results in previous sections provided evidence that cNBR and iNBR are more significantly 

coupled to each other (similar HRFs and highly correlated subject-wise expression) than each 

one with the PBR, highlighting the possibility of having similar underlying mechanism. In this 

experiment, we investigated whether the inter-hemispheric functional connectivity in the visual 

cortex could account for observing such high coupling between the two NBRs. While the regions 

with PBR and NBR responded to the external stimuli with opposite direction, they showed a 

strikingly high positive resting-state functional connectivity in all participants. Furthermore, 

there was no significant difference in the interhemispheric functional connectivity of the regions 
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with NBRs (iNBR and cNBR) versus the interhemispheric functional connectivity of the iNBR 

with regions of PBR (|t| < 0.38, p > 0.70; two hemifields data aggregated), see Figure 2.22 for 

more detail. In other words, the strong coupling between the two NBRs cannot be explained by 

the existing interhemispheric functional connectivity between them since the same level of 

functional connectivity holds between iNBR and PBR. The same relationship holds when the 

unilateral stimuli presented on the left hemifield (|t| < 0.24, p > 0.81), and also when the stimuli 

presented on the right hemifield (|t| < 0.50, p > 0.61), as shown in Figure 2.22. Furthermore, it 

should be noted that the relationship between the subject-wise expression of PBR and iNBR is in 

the opposite direction of the relationship between their FC. In other words, in the resting-state 

data increasing MR signal in the regions with PBR is associated with increase of the MR signal 

in the regions with NBR in the other hemisphere, whereas in the task-evoked response the task-

related increase in MR signal (PBR) is associated with the task-related decrease in MR signal 

(iNBR) in the other hemisphere.  

 
 

Figure 2.22: Subject-wise interhemispheric functional connectivity between regions 
with iNBR and cNBR are depicted using boxplot alongside the subject-wise functional 

connectivity between regions with iNBR and PBR using Pearson correlation coefficient for a) 
right visual hemifield stimulation, b) left visual hemifield stimulation, and c) the mean of the 
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two functional connectivity. The results of the group differences are also presented in each 
plot using Student t-test. 

 

Spatial pattern of iNBR is more similar to PBR than cNBR   Considering the substantially 

high correlation between the subject-wise expressions of iNBR and cNBR, and their similar 

HRFs, it is natural to examine whether the major callosal pathways which often connect 

interhemispheric homotopic regions can facilitate the creation of the two synchronized NBRs in 

the opposing hemisphere, or PBR being the underlying force for creation of iNBR through these 

interhemispheric pathways, as it has been postulated in the past (Bocci et al., 2014; Fabri et al., 

2011; Schäfer et al., 2012). To this end, the interhemispheric spatial pattern similarities between 

the BOLD signals (both positive and negative) belonging to two opposite hemispheres were 

quantified and measured using DSC. If the interhemispheric callosal pathway was the reason 

behind observing such high coupling between the iNBR and cNBR, then the spatial patterns of 

the observed cNBR and iNBR should be significantly overlapping interhemispherically. On the 

other hand, if PBR/cNBR was the underlying force for creation of iNBR on the opposite 

hemisphere facilitated through major callosal pathway, then it should demonstrate significantly 

high interhemispheric spatial similarities with the spatial pattern of the iNBR. To visualize the 

interhemispheric spatial similarity between PBR, cNBR, and iNBR, Figure 2.23 shows the 

spatial pattern of the BOLD responses in the two opposite hemispheres of a single subject, 

projected on the inflated surface of the cerebral cortex, and subsequently on the spherical surface 

for a typical subject, during the attended unilateral visual stimulation. The approximate 

boundaries of different visual areas are delineated using a FreeSurfer extension (Benson et al., 

2014) for this specific subject, to qualitatively examine any relationship between the extent of 

the iNBR and cNBR and retinotopic regions of the visual cortex. Since we did not perform actual 
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retinotopic mapping in our fMRI task, we did not anticipate to see any quantitatively verified 

relationship.  

 
 

Figure 2.23: Spatial distribution of PBR, cNBR, and iNBR overlaid on a sphere 
(inflated brain). Boundaries of different visual areas V1 to V4 are depicted using different 
colors. As is demonstrated here, iNBR has a higher spatial correspondence to PBR than to 

cNBR. Note that spatial smoothing is carried out only for better visualization. 

 

The interhemispheric spatial similarity between regions of iNBR and cNBR was very low 

(DSC = 0.0532 ± 0.0324; mean ± SD) and even significantly lower (p < 0.0084) than the 

interhemispheric spatial similarity between regions of iNBR and PBR (DSC = 0.0720 ± 0.0402; 

mean ± SD) for the attended condition. This result suggests that it is unlikely that the coupling of 

the two NBRs is facilitated through interhemispheric structural connection such as callosal 

pathways. Therefore, different regulatory mechanism with access to both hemispheres (probably 

in distal regions) are more likely to be responsible for such high coupling between two NBRs.  
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Performance correlates and attention dependency of the cNBR and iNBR   The aim of this 

analysis was to examine whether either the cNBR or the iNBR has any significant association 

with the task performance. We previously reported that the NBRs detected from the DMN are 

attention-specific and correlated with task performance (Parker and Razlighi 2019). Here we aim 

to: 1) examine whether the same characteristics hold for NBRs detected from ipsilateral and/or 

contralateral visual cortex, 2) assess whether attention modulates both the iNBR and cNBR in a 

similar manner, and 3) compare the possible dependence of the cNBR and iNBR on attention to 

the corresponding dependence of the PBR. Using PCC between subject-wise expression of 

BOLD signal and median response-time, we found that the expression of the PBR, cNBR and 

iNBR did not show any statistically significant relationship with performance (details in (He et 

al., 2022)). We next assessed whether attending or ignoring a visual stimulus modulates the 

magnitudes and dynamics of the cNBR and/or iNBR in anyway in the visual cortex. We found 

that attention increased the magnitude of the NBRs’ HRFs around 3-4 seconds following the 

onset of stimulus, and shortened the return time to the baseline (details in (He et al., 2022)). The 

results indicate that unlike the NBR detected from DMN, the iNBR and cNBR are not attention 

specific however attention modulates both iNBR and cNBR similarly suggesting common 

underlying mechanisms. 

 

2.3.4 Discussion 

In Section 2.3, we investigated the characteristics of the NBRs elicited simultaneously in 

the human visual cortex contralateral and ipsilateral to a unilateral visual stimulation. To the best 

of our knowledge, investigating the spatial and temporal properties of the cNBR and iNBR due 
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to the same visual stimulation has not been reported before. First, we demonstrated that the 

magnitudes of both NBRs increased linearly with the duration of the visual stimulus. While the 

linearity of PBR with respect to the stimulus duration has been previously investigated (Boynton 

et al., 1996; Dale and Buckner, 1997; Huettel and McCarthy, 2000), investigations of such 

linearity in the NBR are rare (see (Shmuel et al., 2002) for cNBR in visual cortex, and (Klingner 

et al., 2010) for iNBR in somatosensory cortex). To the best of our knowledge, assessment of 

linearity with respect to stimulus duration for simultaneous iNBR and cNBR has not been 

reported previously. Demonstrating the linearity is of paramount importance since most of the 

existing data analysis methods used in fMRI are conditioned on an underlying linearity 

assumption to extract the BOLD response including the GLM and FIR deconvolution methods 

used in this work.  

Next, we found no significant difference between the amplitudes and dynamics of the 

HRFs extracted from the cNBR and iNBR after multiple comparison correction. In contrast, we 

found significant differences in both amplitudes and dynamics of the PBR HRFs and the two 

NBRs. Similar to our findings, Shmuel et al. demonstrated the difference between the falling 

edge time of the PBR and cNBR in the visual cortex (Shmuel et al., 2002). Liu et al. reported 

differences in the onset and falling edge times of the iNBR and PBR in the somatosensory cortex 

(Liu et al., 2011). Furthermore, consistent with the results of (Shmuel et al., 2002), we also found 

significant correlations between the expression of the cNBR and PBR. However, strikingly, the 

subject-wise expression of cNBR was correlated with iNBR (obtained from the opposite 

hemisphere) with a significantly higher correlation than with the PBR (obtained from adjacent 

regions), which has not been reported before. The fact that the HRF of the cNBR is different than 

the PBR which is detected in its proximity but similar to iNBR detected from the opposite 
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hemisphere suggests that there is a common force underlying both NBRs; However, PBR is less 

likely to be the underlying force since the subject-wise expression of the two NBRs are 

correlated significantly more than each NBR with PBR. Furthermore, our results suggest that 

while there is a strong interhemispheric functional connectivity between regions of iNBR and 

cNBR, the same level of functional connectivity also exists between the regions of iNBR and 

PBR; thus the functional connectivity is unlikely to be the underlying common mechanism for 

such strong coupling between the two NBRs.  More interestingly, we demonstrated and reported 

a new finding that the regions with iNBR have a very small interhemispheric topographical 

spatial correspondence with both PBR regions (<6% on DSC) and cNBR (<5% on DSC) on the 

opposite hemisphere. While the spatial correspondence of iNBR was significantly higher with 

PBR than with cNBR, they were both too small to justify being part of interhemispheric 

homotopic regions.  This finding suggests that the two NBRs with almost identical magnitudes 

and dynamics detected from two different hemispheres cannot be regulated by the 

interhemispheric callosal pathways, otherwise the spatial similarity between the two NBRs 

should have been higher than the one between iNBR and PBR regions.  

We also found no significant relationship between task performance and NBRs while 

PBR showed a non-significant correlation trend with the response-time. While behavioral 

correlates of PBR have been shown previously (Pessoa et al., 2002), reports on the behavioral 

correlates of the NBR are inconsistent. Kastrup et al., reported significant correlation between 

the task performance and the iNBR in human somatosensory cortex during unilateral median 

nerve stimulation (Kastrup et al., 2008). However, Schäfer et al. did not find statistically 

significant correlation under the same conditions (Schäfer et al., 2012). In our experiment, the 

two NBRs showed no significant correlation with the task performance. This could possibly be 
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due to the lower magnitude of the NBRs (thus lower signal to noise ratio) relative to the PBR. 

Therefore, a study with larger number of subjects is warranted to address this question in the 

future. 

Finally, we showed that attending to visual stimuli, slightly but significantly increased the 

peak magnitude of the ipsilateral NBR. This finding is consistent with the existing works mostly 

reporting an enhancement in the overall magnitude of the NBR with attention (Bressler et al., 

2013; Heinemann et al., 2009; Müller and Kleinschmidt, 2004). However, in our results, the peak 

amplitude of PBR did not change with attention. This is in contrast with previous reports on 

attentional modulation of the PBR (Bressler et al., 2013; Buracas and Boynton, 2007; Gandhi et 

al., 1999). Furthermore, by analyzing each time point of the extracted HRFs, we found 

significant attentional modulations on the HRFs of cNBR in the return to baseline around 8 sec 

after stimulus onset. Similarly, by comparing the dynamics of the HRFs, we also found 

significant attentional modulations on the HRFs of iNBR in the falling edge time. Additionally, 

we found release from inhibition-like time-courses in the negative BOLD signals in the attended 

condition (results shown in the supplementary figures of (He et al., 2022)). Specifically, the 

falling edge following the cessation of the stimulus in the attended condition takes place earlier 

than their counterparts in the unattended condition. This attentional modulation in human visual 

cortex is similar to the release from inhibition demonstrated in macaque monkey visual cortex by 

(Shmuel et al., 2006), in the negative neurophysiological response associated with the NBR. 

Together, these findings highlight the different influence of attention on the PBR in comparison 

to NBRs. 

The human brain hemodynamic response to any extrinsic stimulation is often more 

negative than positive. However, depending on the regions where the NBRs are detected, unlike 
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PBR, the neuronal and/or vascular mechanism underlying NBR might be different. For instance, 

the NBR often observed in the DMN may have completely different mechanism than the one 

observed in the sensory or motor cortices. Our main focus in this study was on the NBRs 

detected from visual cortex. We have previously reported the attention specificity of the NBR 

from the DMN regions, and its association with task performance (Parker and Razlighi, 2019b). 

While in the current study we observed that attention slightly modulated the magnitude of the 

NBR in the visual cortex, the disengagement from the task did not completely eliminate neither 

of the iNBR nor cNBR, as it did for the NBR detected from DMN regions. In addition, in 

contrast to the correlation of task performance with the NBR in the DMN, the subject-wise 

expression of the NBR in the visual cortex was not correlated with task performance. All 

together, these findings suggest that NBRs extracted from different regions of the brain may 

have different underlying neuronal and/or vascular mechanisms. Therefore, it is important for 

future studies to delineate what type of NBR they are investigating to remove any confusion 

about their results.   

Our moderate size pool of samples may seem insufficient to detect any differences 

between the magnitudes and dynamics of the NBRs HRF. While we cannot rule out this 

possibility, we emphasize that with the same sample size we did detect significant differences 

between the magnitudes and dynamics of the two NBRs when compared with the PBR HRFs. 

Therefore, even if there is any significant difference between the HRF of the two NBRs, it 

should be substantially smaller than the difference observed between NBRs and PBR HRFs. 

Furthermore, we performed power analysis which showed that we have more than 85% power to 

detect significant differences between amplitude of the two NBR HRFs for differences as small 

as half a size of differences observed between two NBRs and PBR. On the same note, one might 
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also argue that the lack of correlation between the NBRs (as well as PBR) and performance 

might be due to the limited sample size of this study. Again, we emphasize that with similar 

sample size we were able to show previously that the NBR detected in the DMN was correlated 

with performance (Parker and Razlighi, 2019b). Future replication of our findings with a higher 

number of samples is warranted to ultimately rule out the effect of moderate sample size on our 

findings. 

More recently Zhou et al. reported a non-linearity in the PBR for stimuli duration ranging 

from 17 ms to 533 ms (J. Zhou et al., 2018). Their results do not contradict our findings 

since our stimuli durations are longer and our study focus is on NBR; However, their results call 

for future studies to assess the linearity of the NBRs for stimuli duration shorter than 1 

sec. While we used bootstrapping to prevent any bias in our voxel selection for evaluating the 

linearity of the NBRs, and we normalized each trial regressor to have unit area under curve, we 

feel that our task design is not optimal to test the linearity. Thus, we cannot completely rule out 

the possibility of having different HRF shape at different stimuli durations. Future studies with 

long inter-stimulus-interval (> 20 sec) are required to be able to completely address this 

concern. Finally, since we were only interested in the laterality of the visual and auditory 

stimulations in this study, we did not use a retinotopically-oriented visual task. While our 

preliminary results did not reveal any association between the NBRs and different visual area, 

we believe that future studies with optimal retinotopic mapping are required to examine the 

existence of any association between the NBRs and different visual areas. 

 

On the origin of NBR  Several hypotheses have been made with regard to the mechanisms 

underlying NBRs. Here, we discuss how our findings are in agreement or disagreement with or 
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suggest modifications to the existing hypotheses. As was reported previously by (Chen et al., 

2005; Kastrup et al., 2008; Liu et al., 2011; Mullinger et al., 2014; Schäfer et al., 2012; Shmuel 

et al., 2003; A. T. Smith et al., 2004), passive vascular/blood steal hypothesis (Boas et al., 2008; 

Harel et al., 2002) cannot account for the observed task-evoked iNBR in the ipsilateral 

hemisphere, because the arterial systems of the two hemispheres are quasi-independent. 

The venous back-pressure hypothesis (Boas et al., 2008; Goense et al., 2012; Shmuel et 

al., 2006) assumes that the increase in CBF to the PBR region increases the pressure in adjacent 

draining veins, thus slowing down the draining of blood from NBR regions adjacent to the PBR. 

However, for the venous back-pressure to be responsible for iNBR detected in the opposite 

hemisphere, the increased pressure needs to be generated at the level of the sagittal sinus. This 

means that the compliance of the sagittal sinus has to be sufficiently sensitive to react to the 

partial activation of the visual cortex. In addition, one might expect that any changes in the 

pressure of the sagittal sinus should evenly affect the ipsilateral hemisphere’s regions adjacent to 

the sinus, which is not the case for the observed iNBR in this study.      

Suppression of neuronal activity (Mullinger et al., 2014; Schäfer et al., 2012; Shmuel et 

al., 2006; A. T. Smith et al., 2004) could be responsible for observing the almost identical 

bilateral NBRs (i.e., iNBR and cNBR) facilitated by the existence of major interhemispheric 

pathways through corpus callosum, as reported previously (Bocci et al., 2014; Fabri et al., 2011; 

Schäfer et al., 2012). However, our findings indicate that the regions with iNBR and cNBR do 

not have the required homotopic spatial pattern similarity to be connected with major callosal 

pathways, making the suppression of neuronal activity hypothesis less likely to be the only force 

underlying the NBRs. Another possibility is that the region showing PBR induces the two NBRs 

via afferent signal of similar magnitude to both hemispheres to suppress activity in the 
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unstimulated visual regions. However, neither iNBR nor cNBR covers the entire unstimulated 

visual areas (see Figures 2.17 and 2.23). In addition, any similar or different retinotopic regions 

on the two hemispheres can be stimulated simultaneously and the associated PBR can be 

detected in the corresponding retinotopic regions. Therefore, it is uncertain how the visual cortex 

in one hemisphere would know whether the other hemisphere’s visual cortex or even which 

retinotopic region of it has been stimulated at the same time to exclude it. Having said that we 

cannot rule out the possibility that the neural suppression is the underlying force for the two 

NBRs. In fact, we believe it is not even possible to rule out the neural suppression hypothesis 

using only fMRI. Nevertheless, we have shown evidence that if neuronal suppression is the 

underlying mechanism, it is possible that this mechanism is similar for both NBRs and they tend 

to be regulated through distal regions with access to both hemispheres.  

Finally, a neurally controlled active blood regulation mechanism, as proposed in the 

“blood flow control” hypothesis (A. T. Smith et al., 2004), raises the possibility of having highly 

developed neural system for controlling and redistributing CBF throughout the entire brain. Our 

results are supportive of this hypothesis and indicate that at least the blood flow to the two 

hemispheres’ visual cortices is regulated with a distal/deep brain structure with access to both 

hemispheres. If such a system exists, then it should have the capacity to tightly control the CBF 

across the two hemispheres, to generate highly coupled BOLD responses with similar 

magnitudes and dynamics as we have shown in this study. It has been previously reported that 

small clusters of neurons in the brainstem, basal forebrain, and thalamus have long projections of 

unmyelinated axons that are directly or indirectly (through GABA interneurons) innervate 

intracortical arterioles (Cipolla, 2009). Neuromodulators such as noradrenaline, serotonin, 

dopamine, and acetylcholine from these neurons are shown to influence CBF. For instance, 
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stimulation of cells with acetylcholine as their neurotransmitter in the basal forebrain dilated 

intracortical vessels within the cortex but did not alter the upstream pial arteries, causing drastic 

changes in CBF distribution throughout the whole brain (Iadecola et al., 1997). Altogether, this 

evidence and our results suggest that the brain CBF distribution is not driven entirely by 

activated or deactivated neurons but might be rather strategically coordinated and regulated 

through a separate subsystem with access to both hemispheres. However, the existence of such a 

system should not be considered as evidence against neuronal suppression hypothesis. Instead, 

we believe that it is unlikely that this system would restrain the blood flow to a brain region 

without any level of neuronal suppression. Future studies are warranted to investigate the 

mechanisms that harmonize this system that regulates the distribution of the blood flow in the 

brain and brain neural activation/suppression.    
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Chapter 3: Spatiotemporal Dynamics of Functional Brain Networks 

during Salience Processing and Its Associations to the 

Neuromodulatory System 

3.1 Overview 

In this chapter, we aim to investigate the functional organization and connectivity of the 

brain network systems in the context of salience processing. In a perceptual experience, the brain 

is constantly processing internal goals and salient events in the environment. The interface 

between these two types of cognitive processes involves various top-down processes. Previous 

studies have identified multiple brain areas for salience processing, including the salience 

network, dorsal attention network, and the LC-NE system. Here, we propose to use a multimodal 

neuroimaging approach, to identify spatiotemporally dissociable brain networks, which might 

potentially reflect distinct cognitive processes in salience processing. In the literature, it is 

thought that the salience network and the LC-NE system have a central role in salience 

processing. However, interactions among these systems in the context of salient events 

processing remain unclear. In Section 3.3, we describe a study with simultaneously recorded 

pupillometry, EEG, and fMRI during an auditory oddball paradigm. The analyses of EEG and 

fMRI data uncovered spatiotemporally organized target-associated neural correlates. By 

modeling the target-modulated effective connectivity, we found that the target-evoked pupillary 

response is associated with the network directional couplings from late to early subsystems in the 

trial, as well as the network switching initiated by the SN. These findings indicate that the SN 

might cooperate with the pupil-indexed LC-NE system in the reset and switching of cortical 

networks.  
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In Sections 3.2 and 3.3, we utilized changes in pupil diameter as a surrogate for neural 

activity within the LC-NE neuromodulatory system. Our results provide evidence of the 

associations between the SN and the LC-NE system, which might collaboratively facilitate the 

reorganization between internal and external cognitive processes during salience processing. 

Building on the LC localization approach established in Section 3.2 and the Cortico-Subcortical 

Integrated Network Reorganization (CS-INR) model proposed in Section 3.3, we introduce a 

study in Section 3.4 that employs direct neuroimaging of the LC-NE system and investigates 

dynamic causal modeling of the connectivity between the critical nodes in the CS-INR model, 

specifically, the LC and the preSMA. Given that preSMA serves as a crucial node within the 

salience network, the findings of this chapter will provide valuable insights into the relationship 

between cortical networks and the brainstem neuromodulatory system during salience 

processing. Additionally, this research may have implications for various cognitive processes 

and neurological disorders beyond the attentional processing investigated in this chapter.  

 

3.2 An Automatic and Subject-specific Method for Locus Coeruleus Localization 

and Functional MRI BOLD Activity Extraction 

3.2.1 Introduction 

With broad projections to the cortex, the LC has been implicated in arousal, attention, 

task performance and exploration behaviors (Aston-Jones and Cohen, 2005). In most fMRI 

studies, LC localization is based on a functional activation map (Gilam et al., 2017; Minzenberg 

et al., 2008), a predefined atlas (Hubbard et al., 2011; Morey et al., 2015) or both (Murphy et al., 

2014). Since the LC is a small brainstem nucleus surrounded by other nuclei, these methods lack 

specificity in the anatomical evidence of the nucleus’ location (Astafiev et al., 2010), and tend to 
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ignore individual variability in the LC's shape and location (Tona et al., 2017). To address this, 

some studies perform manual segmentation based on neuromelanin-sensitive Turbo Spin Echo 

(TSE) images (de Gee et al., 2017; Krebs et al., 2018). TSE images tend to localize the LC more 

accurately, although the images need to be manually inspected on a subject-by-subject basis. 

Here, by using both subject-specific TSE images and a predefined atlas, we develop an automatic 

localization method to extract BOLD activity in the LC. Given substantial evidence that pupil 

diameter and LC covary with one another (Aston-Jones and Cohen, 2005; Gilam et al., 2017; 

Gilzenrat et al., 2010; Joshi et al., 2016), we evaluated the quality of our results and compared 

them to alternative approaches by computing the trial-to-trial correlation between the extracted 

LC BOLD activity and simultaneously recorded pupil diameter. 

 

3.2.2 Methods 

Participants and experimental design   Twenty-five healthy young subjects were recruited in 

this study and six of them were excluded from further analyses due to 1) missing neuroimaging 

data; 2) abnormality in the acquired neuroimaging data; 3) excessive movement; 4) inability to 

complete the task. Exclusion criteria were pre-established. Data from the remaining nineteen 

subjects (mean age ± SD = 25.9 ± 3.6 years, female/male = 13/6) were included in the analyses. 

All subjects had normal or corrected-to-normal vision and no history of psychiatric illness or 

head injury. The experimental design of our study and the recruitment process were approved by 

Columbia University institutional review board. All participants have provided informed consent 

to participate in the study, and written consent was obtained from the participants. We used a 

convenience sampling procedure through recruiting volunteer subjects from Columbia 

University and nearby areas. The sample size was based on previously published simultaneous 



104 
 

EEG-fMRI studies using a visual oddball task with seventeen subjects (Walz et al., 2014) and a 

decision-making task with twenty-one subjects (Muraskin et al., 2018). 

An auditory oddball paradigm with 80% standard and 20% oddball (target) stimuli was 

performed, where standard stimuli were pure tones with a frequency of 350 Hz, and the oddball 

stimuli were broadband (laser gun) sounds. We chose an auditory (instead of visual) oddball 

paradigm to avoid the effects of luminance changes on the measurements of task-evoked 

pupillary response. We randomized the presentation of oddball and standard trials and trial order. 

The inter-trial intervals were in the range between 2 s and 3 s drawn from a uniform distribution, 

and each stimulus lasted for 200 ms. Subjects were first trained outside of the scanner to learn 

and perform the task comfortably and accurately on short training runs. All subjects performed 

the task correctly during training. During the data acquisition, stimuli were presented through 

MR compatible earphones, and subjects were instructed to maintain the fixation on the screen to 

a fixation target, and press a button (MR-compatible button box; PYKA, Current Designs, PA, 

USA) with their right index finger as soon as they heard the oddball sound. And subjects were 

instructed to ignore standard tones. Every subject was scheduled to complete five runs (105 trials 

per run), with an average of 4.7 runs per subject (range from three to five, SD = 0.7 runs) 

acquired in the experiment. The auditory oddball experimental task paradigm is illustrated in the 

first row of Figure 3.5, where the first five trials were constrained to be standard stimuli, and no 

consecutive oddball trials was allowed. 

 

Data acquisition and preprocessing   A 3T Siemens Prisma scanner was used to acquire 

pupillometry, EEG and fMRI with a 64-channel head coil. Pupillometry was recorded with a 

MR-compatible EyeLink 1000 Plus in Long Range Mount, at a sampling rate of 1 kHz. EEG was 
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recorded with a 64 channel BrainAmp MR Plus system (Brain Products, Germany), at a 

sampling rate of 5 kHz. The 64 channels include 63 cap electrodes and 1 ECG electrode in an 

extended 10-20 configuration with ground electrode at AFz and reference electrode at FCz. 

Functional MRI data were collected with T2*-weighted echo planar imaging interleaved slice 

acquisition (TR = 2100 ms; TE = 25 ms; voxel size 3 × 3 × 3 mm; Matrix Size = 64 × 64 × 42; 

150 volumes). For localization and registration purposes, we collected T1-weighted structural 

image (MPRAGE, TR = 2300 ms; TE = 3.95 ms; voxel size = 1 × 1 × 1 mm; Matrix Size = 176 

× 248 × 256) and T2*-weighted high-resolution EPI (TR = 6000 ms; TE = 30 ms; voxel size 2 × 

2 × 3 mm; Matrix Size = 96 × 96 × 42; single-volume). For the localization of the LC, we also 

collected neuromelanin-sensitive MRI data using T1-weighted turbo-spin-echo acquisition (TR = 

600 ms; TE = 14 ms; voxel size 0.43 × 0.43 × 6 mm; Matrix Size = 416 × 512 × 5). The fMRI 

data were processed using FSL (S. M. Smith et al., 2004) with preprocessing pipeline shown in 

Figure 3.1(a) and inter-modality registration as in Figure 3.1(b) (Greve and Fischl, 2009; 

Jenkinson et al., 2002). MR-compatible EyeLink 1000 Plus in Long Range Mount was used for 

pupillometry, with pupil diameter preprocessed as in (Urai et al., 2017). More details of 

pupillometry, EEG and fMRI data preprocessing are included in Section 3.3.2.  
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Figure 3.1: (a) fMRI data preprocessing and nuisance signal regression. The middle 
time point EPI volume was used as the reference in motion correction. No spatial smoothing 
was applied. Motion parameters include 6 standard head motion parameters, their temporal 

derivatives, and the squares of the above 12 motion parameters. (b) Intra-subject inter-
modality image registration. 

 

Data acquisition specifications (along with the rigorous measures taken to ensure data 

quality) were described in detail in (Hong et al., 2022). Specifically, proper synchronization 

between EEG recording and MR imaging was ensured via Brain Products’ SyncBox. The 

SyncBox receives pulses coming from the scanner’s gradient clock board directly, and can 

therefore synchronize the sampling rate of the amplifier with the scanner clock system (Brain-

Products., 2019). And to ensure subject safety during simultaneous EEG and fMRI acquisition, 

the scalp and ECG electrodes were embedded with series resistors of 10 kOhm and 20 kOhm, 

respectively. During the experiment, electrodes’ impedances were kept under 25 kOhm 

(including the built-in resistors on each electrode) to minimize the noise in EEG acquisition. 

 

Localization of the LC and LC BOLD activity extraction   We used a combination of a 

predefined LC atlas (Keren et al., 2009) and subject-specific TSE images to determine the spatial 
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distribution of the LC in subjects' structural space, and then performed a more precise 

localization in functional space. Specifically, the LC atlas includes both one standard deviation 

(SD) and two SD estimates of the peak LC signal in standard space, and can be used as a 

template to map the spatial location of the LC in the brainstem. We first transformed the atlas to 

the structural space (Andersson et al., 2007), denoting these 1SD and 2SD LC masks as 𝑀<+O 

and 𝑀:+O. We denote the TSE images as 𝐼=+P. Next as shown in Figure 3.2, and contrary to other 

studies (Gilam et al., 2017; Hubbard et al., 2011; Murphy et al., 2014) which localized LC in 

standard space, we first identified the spatial distribution of the LC in the structural space in 

order to eliminate resampling of the fMRI signal. As the LC shows a hyperintensity in TSE 

images (Sasaki et al., 2006), voxels within the LC structure exhibit high intensity compared to 

voxels which are outside of the nucleus. We used subject-specific 𝐼=+P alongside 𝑀<+O and 𝑀:+O 

to develop a quantitative criterion. This criterion compares the intensities of voxels, 𝐼=+P, in the 

LC mask and intensities of voxels in the vicinity of the mask. This localization strategy results in 

three outcomes, summarized in Figure 3.2.  
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Figure 3.2: LC localization using a predefined LC atlas and the TSE image of each 
subject. In T1w structural space, we use a criterion (Student’s t-test) to determine a coarse LC 

location. Then, either TSE intensities in the LC mask or an LC atlas is transformed to EPI 
functional space for a more precise localization (using trilinear interpolation). The result is 

one of three possible outcomes: 1) we localize the LC structure within 𝑴𝟏𝑺𝑫; 2) we localize the 
LC structure within 𝑴𝟐𝑺𝑫; 3) we localize the LC structure with the predefined LC atlas (i.e., 

without using any information from 𝑰𝑻𝑺𝑬). 

 
 

After identifying the spatial distribution of LC in the structural space, we fine-tuned the 

localization of LC in functional space by transforming 𝐼=+P ∙ 𝑀<+O, 𝐼=+P ∙ 𝑀:+O, or 𝑀<+O to 

functional space, respectively for the three outcomes given in Figure 3.2. We included both two-

voxel and six-voxel versions of the LC in functional space. Voxel intensity within these fine-

tuned LC masks were then normalized to represent the probability of each voxel being inside the 

LC structure. These probability maps were then applied to BOLD signal at LC, and produced 
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weighted average LC BOLD signals. Signals in the two-voxel and six-voxel LC masks are 

denoted as core-LC and entire-LC BOLD, respectively. 

 

3.2.3 Results 

LC BOLD activity extraction was evaluated by correlating LC BOLD signal to trial-to-

trial variability of pupil diameter baseline (PDB) and pupillary response (PR) (see Figure 3.3(a)). 

Correlation analyses were carried out using a general linear model, with PDB and PR as the 

explanatory variables, and LC BOLD as the response variable. On the group level, we used a one 

sample t-test to determine if parameter estimates were significantly different than zero. As shown 

in Figure 3.3(b), BOLD activity extracted from core-LC with our method has a higher correlation 

with trial-to-trial variability of PDB (t = -3.499; p < 0.003) compared to activity extracted with 

an atlas-based method (t = -2.378; p < 0.029) or a local maximum-based method (t = 1.476; p > 

0.157). 

 
 

Figure 3.3: (a) GLM to estimate and test the contributions of PDB and PR to LC BOLD 
activity (controlling for the variance due to the presence of stimuli). Trial-to-trial variabilities 
of PDB and PR (VPDB and VPR) were modeled as boxcar functions with the amplitude of each 

trial modulated by the pupil measurements. The boxcar functions were convolved with a 
canonical double-gamma hemodynamic response function before fitting into the GLM. (b) 

Group level statistical analysis in testing regression weights against zero. *p < 0.05; **p < 0.01. 

 

3.2.4 Discussion 
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The locus coeruleus is a small nucleus in the brainstem whose function is integral to 

regulating cognitive arousal. Despite the LC’s importance in cognitive processing, localizing it in 

functional space is challenging. Here, we developed a method that uses both subject-specific 

TSE images and a predefined atlas to automatically localize and extract BOLD activity from the 

LC. Using correlation to pupil dynamics as a metric, we compared our method to competing 

approaches. We found that core-LC BOLD activity extracted with our method had a stronger and 

more significant correlation with trial-to-trial variability of baseline pupil diameter, an important 

metric since non-luminance changes in pupil diameter have been shown to covary with LC 

electrophysiological recordings in non-human primates (Joshi et al., 2016). Given the substantial 

interest in how the LC modulates cortical brain dynamics to affect human cognition, we believe 

our approach would have utility for those interested in relating LC BOLD to cortical dynamics 

and behavior. 

 

3.3 Pupillary Response Is Associated with the Reset and Switching of Functional 

Brain Networks during Salience Processing 

3.3.1 Introduction 

To navigate complex and dynamic environments our brains cannot allocate attention to 

everything, but instead must continuously mark and process salient objects (Uddin, 2015). For 

example, when we are walking on a busy street, we will likely direct attention to the traffic 

lights, a siren, and our planned route. In psychology and neuroscience, the term ’salience’ refers 

to a noticeable or important object that stands out from the surroundings or background. Salience 

is usually accompanied by unexpectedness, novelty, and infrequency (Harsay et al., 2012). 

Typically, salience processing involves two general mechanisms (Menon, 2011): 1) bottom-up 
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processing that includes filtering and amplifying the sensory information; 2) top-down 

processing in support of anticipation, cognitive control, and goal-directed behaviors. To 

investigate salience processing, one of the widely used experimental paradigms is the oddball 

task, where subjects are instructed to detect distinct infrequent target stimuli in a stream of 

standard stimuli. In previous fMRI studies, a variety of brain areas have been identified as 

correlates of salience processing, including regions in the dorsal attention network, salience 

network, sensory cortex, primary somatosensory cortex (S1), and subcortex (Downar et al., 2002, 

2000; Harsay et al., 2012; Kim, 2014). However, it is challenging to dissociate and interpret the 

distinct cognitive processes underlying these spatially distributed regions. Even though 

functional connectivity analyses have been used to dissociate brain networks (Seeley et al., 

2007), the lack of time scales and the directionality in the couplings of these brain regions and 

networks still hinder the inference of their roles in salience processing. 

Besides cortical networks, the locus coeruleus, as the primary source of norepinephrine, 

has also been associated with salience processing. The phasic LC activity has been shown to 

produce the P300 event-related potential (ERP), which typically appears robustly following 

target stimuli (responds weaker following standard stimuli) in oddball paradigms (Aston-Jones 

and Cohen, 2005; Vazey et al., 2018). Besides the P300 ERP, pupil diameter has also been used 

as a psychophysiological marker of the LC activity (Murphy et al., 2011). For example, in a 

single-unit recording study, both the spiking activity in the LC and pupil diameter are evoked 

following unexpected auditory stimuli (Joshi et al., 2016). Trial-by-trial associations were also 

observed between the pupillary response magnitude and LC responses. The association between 

the activity in the LC and pupil diameter fluctuations has also been shown in an fMRI study with 

oddball paradigm (Murphy et al., 2014). Together, these findings indicate the reliability of LC-
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pupil relationships during neural processes of salient stimuli in the oddball paradigm. Pupil 

diameter fluctuations reflect salience, attention, surprise, efforts, and arousal (Joshi and Gold, 

2020). In the oddball paradigm, target-driven pupil dilation reflects not only bottom-up 

processes, but also top-down cognitive processes of decision-making and task demands (Joshi 

and Gold, 2020). 

Both the cortical network dynamics and the LC-NE system have been well characterized, 

such as the network switching model of the SN and DAN (Menon, 2011), and the network reset 

and the adaptive gain theory of the LC (Aston-Jones and Cohen, 2005; Bouret and Sara, 2005; 

Gilzenrat et al., 2010). Even though the SN, DAN, and the LC-NE system have been closely 

related to each other (Aston-Jones and Cohen, 2005; Corbetta et al., 2008; Hermans et al., 2011; 

Mäki-Marttunen and Espeseth, 2021) and all centrally positioned in salience processing, it is still 

unclear what their integrative roles are in the cognitive processes of salient events. Hence, it 

would be valuable to investigate the cortico-subcortical associations between the cortical 

network dynamics and pupil-indexed neuromodulatory systems, such as the LC-NE system. 

Critically, a better understanding requires the assessment of the directional couplings between 

cortical networks, and their associations with the pupil measurements (brain-pupil relationships) 

in the context of salience processing. 

Emerging evidence from the recent literature indicates that neuromodulatory systems, 

such as the LC-NE system, are important factors in shaping functional network connectivity, 

reorganization, and dynamics (Brink et al., 2016; Shine, 2019; van den Brink et al., 2019; Zerbi 

et al., 2019). Thus, in this study, we explored this possibility using simultaneous recordings of 

pupillometry, EEG, and fMRI in an oddball paradigm. We first used a single-trial variability 

(STV) EEG-informed fMRI analysis, which allowed us to map the neural cascade underlying 
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salience processing. Second, with the functional connectivity (FC) analyses of the fMRI data, we 

were able to map dissociable spatiotemporal functional network organizations of these neural 

correlates. Then, by leveraging the temporal dynamics of EEG, we further characterized the 

directional interactions between these regions with an effective connectivity state-space model 

(Tu et al., 2019). Finally, we assessed brain-pupil relationships, which indicate the cortico-

subcortical associations between the cortical network dynamics and the pupil-indexed LC-NE 

system. Specifically, we hypothesized that the pupil-indexed LC activity is associated with the 

effective connectivity of salience processing functional networks. Our results suggest that pupil-

indexed LC-NE system and the SN share an integrative role in the reset and switching of 

functional brain networks in salience processing. 

 

3.3.2 Methods 

In this section, we describe the analyses of the multimodal pupillometry-EEG-fMRI data, 

specifically focused on data preprocessing, EEG single-trial analysis, EEG-informed fMRI 

analysis, fMRI functional connectivity analysis, EEG effective connectivity analysis, and brain-

pupil correlation analysis. We used the same multimodal neuroimaging dataset as described in 

the section 3.2, and the details of participants, experimental design, and simultaneous 

pupillometry-EEG-fMRI data acquisition were described in details in the section 3.2.2. A flow 

chart is included in Figure 3.4 to illustrate the steps of data processing and single-modality/cross-

modality data analyses. 
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Figure 3.4: Flow chart illustrating the steps of data acquisition, preprocessing, single-
modality analyses, and cross-modality analyses. 

 

Pupillometry data preprocessing and epoching   The preprocessing pipeline was adapted from 

the approach in (Urai et al., 2017). Firstly, blink detection was performed with Eyelink software, 

and then the blinks were padded by 150 ms and linearly interpolated. Additional blinks were 

further removed with a peak detection algorithm. We computed pupil diameter from the pupil 

area data, and then the pupil diameter time series were filtered with a bandpass second-order 

Butterworth filter (0.01 Hz to 10 Hz). Then, the pupil diameter data of each run were z-scored 

independently, and down-sampled to 500 Hz (the same sampling rate of the preprocessed EEG 

data). The preprocessed pupil diameter data were epoched from 500 ms before the stimulus to 

2000 ms following the stimulus. Two pupil diameter measurements were examined including the 

prestimulus baseline pupil diameter (BPD) and the task-evoked pupillary response (TEPR). The 

BPD was defined as the averaged pupil diameter from 500 ms before the stimulus to the onset of 

the stimulus, and TEPR was defined as the maximum percentage deviation from BPD within 

each epoch. 
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EEG preprocessing   Visual inspection was first performed, to make sure the raw EEG signal 

was not contaminated by confounding factors, including TR volume jitter and data saturation. An 

average artifact template subtraction approach was then used to remove the gradient artifact with 

Brain Products’ Analyzer2 data processing software (Abreu et al., 2018; Allen et al., 2000). The 

data were then down-sampled to 500 Hz. After the gradient artifact removal, a tenth order 

median filter was applied, to reject any residual gradient artifact. Then, the EEG data were 

filtered with a fourth order bandpass Butterworth filter (0.5 Hz to 50 Hz), to remove DC drift and 

high frequency noise. After filtering, each subject's EEG data were concatenated over runs for 

the application of ballistocardiogram artifact (BCG) removal. Specifically, QRS detection was 

first carried out, and then the BCG was removed with EEGLAB’s FMRIB plugin (simple mean 

approach). The BCG removed data were then re-referenced to the common average. The final 

step of preprocessing is blink artifact removal, where independent component analysis (ICA) 

was performed using EEGLAB’s ICA function to compute ICs, manually identify and remove 

the blink ICs (Jung et al., 2000). The preprocessed EEG data were epoched identically as the 

pupillometry data from 500 ms before stimulus to 2000 ms following the stimulus. Then, 

baseline correction was carried out by removing the mean baseline value, which was computed 

from 500 ms before the stimulus onset to the stimulus onset for each epoch. We performed a trial 

rejection using a probability distribution-based criterion. Specifically, we rejected trials where 

the EEG signal from a single channel that is outside of 6SD, and the EEG signals from all 

channels that are outside of 2SD. We also rejected trials where subjects incorrectly responded or 

failed to respond. 
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Structural and functional MRI preprocessing   The fMRI data were processed using FSL 

(V6.0) (S. M. Smith et al., 2004). Briefly, motion correction was performed using rigid-body 

registrations on all the volumes in reference to the middle time point volume (Jenkinson et al., 

2002). Then, slice timing correction was carried out with Fourier-space time-series phase-

shifting. The non-brain tissues were removed using BET (Smith, 2002). After that, grand-mean 

intensity normalization was applied by scaling the entire 4D data with a multiplicative factor. 

Lastly, a high-pass filtering (Gaussian-weighted least-squares straight line fitting, cut-off 

frequency 0.01 Hz) was carried out. No global signal regression was applied, since the global 

signal includes neuronal-related signals, and global signal regression has shown to introduce 

artificial negative correlations in the functional connectivity (Caballero-Gaudes and Reynolds, 

2017). In the spatial normalization, the middle time point EPI volume head image of the fMRI 

data was rigidly registered (cost function as correlation) to the high resolution T2*w head image. 

Then, the T2*w head image was rigid registered (Boundary-based method) (Greve and Fischl, 

2009) to the T1w head image. Lastly, the subject's T1w brain image was initially affine 

transformed and then non-linearly registered to the MNI152 (the nonlinear 6th generation atlas 

from FSL) brain image using FLIRT (Jenkinson et al., 2002) and FNIRT (Andersson et al., 

2007) from the FSL software package. The structural T1w images were processed using 

FreeSurfer pipeline (Fischl et al., 2004), which resulted in brain tissue segmentations and 

surfaces reconstruction. The FreeSurfer segmentations of the T1w images include grey matter, 

white matter, lateral ventricles, brain masks, etc. And each subject's T1w image was also used to 

construct the volumetric head model and the source model using the FieldTrip toolbox 

(Oostenveld et al., 2011) for the effective connectivity state-space model. 
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EEG single-trial analysis   A single-trial analysis with the sliding window approach was 

performed on the preprocessed EEG signal amplitude (Parra et al., 2005). Specifically, with a 

linear classifier maximally discriminating the target versus standard trials, a hyper-plane was 

learnt to project the multidimensional EEG signal into lowdimensional EEG single-trial 

variability discriminating components. Given the EEG signal, yN(t) at time 𝑡, where 𝑖	 =

	1,2… , 𝑇 denotes trial index, logistic regression was used to learn the projection weights 𝑤(τ). 

The lowdimensional EEG STV discriminating components will be:  

 𝑑*(τ) =
<
?
∑ 𝑤(τ)=
QI'(
5@Q>'(

𝑦*(𝑡), (3.1) 

where 𝑁 = 50	𝑚𝑠 denotes window width, the window center τ was shifted from 0 to 

1000 ms with respect to the stimulus onset in 25 ms increments. For each temporal window, the 

classifier performance was assessed with the AUC using leave-one-out (LOO) cross-validation. 

A permutation test was used to obtain the significance threshold for the AUC (100 times of 

permutations for each subject), where trial labels were randomly permuted and LOO was carried 

out. The null distribution of AUC values was generated and a threshold of p < 0.01 was used. 

Details of the STV analysis are illustrated in the Figure 3.5. 
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Figure 3.5: Schematic illustration of auditory oddball paradigm, single-trial analysis, 
and single-trial variability EEG-informed fMRI analysis. For each temporal window τ, we 

applied a single-trial analysis with the extracted EEG data in the windows from all the trials, 
where a logistic regressor was trained to learn a weight matrix w maximally discriminating 

the target vs standard trials. From the weighting on the EEG channels with matrix w, an EEG 
discriminating component was computed as a low-dimensional representation of the EEG 
data. For example, two EEG sensors (channel i and j) were illustrated in the figure with a 
hyperplane discriminating target (red dots) and standard (yellow dots) trials. Similarly, 

single-trial analysis was applied to all other temporal windows spanning the trial 
independently with a sliding window approach (step size as δ). The EEG discriminating 

component at each temporal window was used to modulate regressors in a general linear 
model (GLM) to predict fMRI BOLD response (convolved with the canonical hemodynamic 

response function along with other regressors). The GLM analysis was applied with each 
temporal window independently. 
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STV EEG-informed fMRI analysis   We fit a GLM for each EEG STV time window. First-

level GLM was performed independently on each voxel using multiple regression with five 

variables of interest. The regressors included: 1) event-related regressors with unmodulated 

height, and both onset and duration matched to the presence of the stimulus (one each for targets 

and standards); 2) RT variability regressor with unmodulated height, onset matched to the 

stimulus onset, and duration matched to the RT of the trial (orthogonalized with respect to the 

targets event-related regressor); 3) EEG STV regressors with height parametrically modulated 

using the demeaned EEG STV discriminating component, onset set to the time of interest τ, and 

duration fixed to 100 ms (one each for targets and standards, orthogonalized with respect to the 

corresponding event-related regressor, oddball EEG STV regressor was also orthogonalized to 

RT regressor); 4) confounds (motion parameters, temporal derivatives of the variables of 

interest). At each time window τ, the demeaned output of the logistic regression classifier, as the 

EEG STV discriminating component 𝑑R� (τ) = 𝑑*(τ) − 𝑑DST/(τ) was used to modulate the height 

of the EEG STV regressor boxcar function. All regressors were convolved with canonical 

Double-Gamma hemodynamic response function (HRF). The preprocessed fMRI data were 

spatially smoothed with a Gaussian kernel of FWHM 5 mm, then were fit with the GLM 

resulting to five different statistical parametric maps which will be warped onto a standard space 

(i.e. MNI152) to be able to perform group-level statistical analysis. For group-level statistical 

inference, we used FMRIB’s Local Analysis of Mixed Effects (FLAME) from the FSL software 

package, where a mixed effect model was carried out, and the group-level statistical parametric 

maps were thresholded (z > 2.3, corrected cluster significance threshold of p = 0.05, threshold-

free cluster enhancement; Gaussian random field method). As the oddball EEG STV regressor 

was the primary regressor of interest (i.e., the regressor indicative of task-relevant processing), 
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we only used cortical regions whose BOLD signal covaries with this particular regressor in the 

subsequent analyses. 

 

Salience processing node definition   The oddball EEG STV related GLM statistical maps at 

each time of interest from the STV EEG-informed fMRI analysis were extracted for defining the 

nodes associated with the processing of oddball trials. At the peak voxel of each group-level 

significant cluster, a spherical region of interest (10 mm radius) centered on the voxel was 

generated. Centroid of peak locations was used for regions involved in more than one temporal 

windows (i.e. lS1, rSPL, and mPFC-SMA). After excluding one cluster with the peak voxel 

outside of the brain mask, ten ROIs were included for the subsequent analyses. The 

neuroanatomical localizations of the nodes were referred to the Human Connectome Project 

Multi-Modal Parcellation (HCP-MMP) (Glasser et al., 2016). Specifically, to alleviate inter-

subject variability in the cortical surface reconstruction, instead of mapping the HCP-MMP 

cortex parcellation to the volumetric space, the ROI masks in each subject's native structural 

space were projected to the subject's cortical surface. After surface-based spatial normalization to 

the FreeSurfer fsaverage template cortical surface (Fischl et al., 1999), a majority vote was 

caried out across subjects to obtain the group-level ROI surface areas, which were compared to 

the HCP-MMP parcellation for the naming of the anatomical locations of the nodes.  

 

SN, DMN, and DAN node definition   The locations of the nodes in the salience network, 

default mode network, and dorsal attention network were defined with the HCP-MMP atlas. The 

SN comprised three nodes: right and left anterior insula (AI) (each side includes area anterior 

agranular insular complex and middle insular area) and dorsal anterior cingulate cortex (ACC) 
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(includes area dorsal 32, anterior 32 prime, and p32 prime; details of area naming in (Glasser et 

al., 2016)). The DMN comprised five nodes: posterior cingulate cortex (includes RSC, 23d, 23c, 

d23ab, v23ab, 31a, 31pv, 31pd, POS1, POS2, 7m, DVT, ProS), precuneus (includes PCV), right 

and left angular gyrus (each side includes PGi, PGs, and PGp), and medial prefrontal cortex 

(includes 8BM, 9m, 10r, and 10v). The DAN comprised four nodes: right and left SPL (each side 

includes LIPv, LIPd, VIP, AIP, MIP, 7PC, 7AL, 7Am, 7PL, 7Pm, IP0, IP1, and IP2), and right 

and left frontal eye fields. The HCP-MMP atlas was transformed to each subject's cortical 

surface through surface-based registration using FreeSurfer. Then, the selected ROI surface areas 

were projected into the volumetric space. The ROI masks were warped into the MNI152 

template space with the previously estimated registration parameters. A majority vote was caried 

out across subjects to obtain the group-level ROI masks. After thresholding the ROI masks (0.5 

overlap rate across subjects), we extracted a weighted center of gravity for each ROI region. 

Similar to the previous analysis, a spherical ROI (10 mm radius) centered on that voxel was 

generated. Finally, these twelve nodes were used for the subsequent EEG effective connectivity 

state-space modeling. Details of the SN, DMN, and DAN nodes are illustrated in the Figure 3.6. 
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Figure 3.6: Network nodes definition with HCP-MMP atlas. The nodes (circles) of the 
SN, DMN, and DAN are overlaid with the selected network areas from the HCP-MMP atlas 
and the MNI152 brain image. The group-level region of interest masks (illustrated as spatial 

distribution maps) were obtained from majority vote across subjects. 

 

fMRI functional connectivity analysis   To control for physiological and motion-related noise, 

we regressed out motion-related nuisance signals from the preprocessed fMRI data (motion 

parameters included six standard head motion parameters, their temporal derivatives, and the 

squares of the above twelve motion parameters), as well as the signals in the left and right 

hemisphere white matter and lateral ventricles. To circumvent the error in spatial normalization 

and smoothing, we extracted the BOLD time series of the regions of interest (ROIs) in each 

subject’s native functional EPI space. The ROI masks were transformed and warped into the 

subjects’ EPI functional space with the estimated registration parameters. For each ROI, only the 
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grey matter BOLD signal was extracted by computing the intersection between the ROI masks 

and the grey matter mask. And we extracted a single BOLD time series from each ROI by 

averaging the time series of all the voxels within the intersected mask. No spatial smoothing was 

carried out. Before computing the FC, to remove the effects of the task, we regressed out task-

evoked activations (both standard and target) from the ROIs BOLD signals. In the seed-based FC 

analysis for network localization, we used a mixed effects model. The first-level seed-based FC 

was calculated based on the Pearson correlation between the time series of each ROI and the 

time series of each voxel in the brain. Then, each subject’s FC map was transformed into z-score 

with Fisher’s Z transformation. And the FC z-score map was thresholded at p < 0.01. In the 

group-level, one sample student’s t-test was performed to obtain the significant seed-based FC 

map of each ROI (p < 0.001 uncorrected). Similarly, in the node-by-node FC analysis, the first-

level FC was computed based on the Pearson correlation across the time series of ROIs. Then, 

the FC matrix was transformed into z-score, and carried out to the group-level one sample 

student’s t-test to obtain the significant FC matrix across ROIs (p < 0.05 uncorrected). To assess 

functional connectivity between the locus coeruleus and salience processing nodes, we localized 

the LC in each subject’s functional space with a predefined LC atlas (Keren et al., 2009) and the 

subject’s TSE image, and then the LC BOLD signal was extracted. Specifically, we first 

performed a rough localization by estimating the spatial range of the LC location in each 

subject’s structural T1-weighted space, where a statistical criterion was used along with the TSE 

image intensity spatial distribution and the LC atlas. Then, the TSE image intensity within the 

estimated range was transformed into the subject’s functional EPI space for a precise localization 

of the LC. The LC BOLD signal was extracted by averaging the voxel-wise BOLD time series, 

weighted by the TSE image intensities. Details are in (He et al., 2021). Functional connectivity 
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was computed with Pearson correlation between the BOLD signals extracted from the LC and 

salience processing nodes (mixed effect, p < 0.05 uncorrected). 

 

EEG effective connectivity analysis: state-space modeling of the latent neural activity   A 

state-space model was used to infer the latent brain dynamics across the nodes. To infer the 

activity in the EEG source space, a volumetric source model was used, where EEG sources 

(denoted as 𝑥5 at time 𝑡) are assumed to be uniformly distributed on a 3D grid inside the brain. 

Given the observations of the scalp EEG measurements 𝑦5, a linear EEG forward model was 

used: 𝑦5 = 𝐿𝑥5 + 𝑒5, where 𝐿 is the lead field matrix and 𝑒5 is a Gaussian channel noise vector. 

We defined the latent state variables as 𝑠5, where 𝑥5 = 𝐺𝑠5 + ϵ5, 𝐺 is a binary indicator matrix, 

and ϵ5 is a Gaussian noise vector. The influences across the latent states of neural dynamics were 

modeled as a multivariate autoregressive (MVAR) process as 𝑠5 = 𝐴𝑠5>< +∑ 𝐵UV
U@< 𝑚5

U𝑠5>< +

𝐷𝑢5 +ω5, where 𝐴 is the intrinsic connectivity matrix, 𝐵U is the 𝑘59(𝑘 = 1,2, …𝐾) modulatory 

connectivity matrix, 𝑚5
U is the modulatory input, u7 is the external input, D is a diagonal matrix 

denotes the strength of 𝑢5, and ω5 is a Gaussian state noise vector. As for the model inference, 

the mean-field variational Bayesian approximation was used to make inference on the posterior 

distributions of the latent space variables and model parameters, during which the evidence 

lower bound was maximized. The model is described in detail elsewhere (Tu et al., 2019). In this 

study, we first used the ten salience processing nodes defined from the STV EEG-informed 

fMRI analysis results. Then, another model was fit with the twelve nodes of SN, DAN, and 

DMN defined from the HCP-MMP atlas. The ROIs were transformed into each subject's native 

structural space. The state-space model was fit to each run separately. The modulatory inputs 

were modeled as a unit height boxcar function with a sequence of events (one each for targets 



125 
 

and standards). Here, the model evidence lower bound (ELBO) was also used to quantify the 

quality of the model fitting. For the data of the runs failed in model fitting, we excluded those 

runs from subsequent analyses. Specifically, 11 out of 90 runs failed in the model fitting with 

salience processing nodes, and 7 out of 90 runs failed in the model fitting with SN, DAN, and 

DMN nodes. The estimated posterior distributions of model parameters in the first-level analysis 

were summarized for group-level Bayesian posterior inference using Bayesian parameter 

averaging (BPA) (Neumann and Lohmann, 2003), which computes a group-level joint posterior 

probability for the effect of interest. Compared to the conventional statistical null hypothesis 

significance tests (NHST), the Bayesian posterior inference is considered more robust as the 

influence from each run is weighted by the precision. The significant group-mean EC was 

estimated, where a posterior probability criterion of α < 0.05 (Bonferroni correction) was used to 

threshold the group-level posterior distribution for the inference of significant EC.   

 

Brain and pupil correlation analysis   To assess the relationship between the network-level 

interactions and pupillary response, we characterized the network-level connectivity in the 

positive and negative connections. Specifically, we defined positive and negative network 

interaction strength as the sum of all positive and negative connection parameters from one 

network node set to the other network node set (or to itself as self-connection network strength), 

respectively. And we also computed the mean TEPR across all the oddball trials for each subject. 

Therefore, we performed a correlation analysis across all subjects between the network 

interaction strength and the mean TEPR (Pearson correlation). As a control analysis, we also 

regressed out the median RT and the mean ELBO from the mean TEPR and network interaction 

strength, respectively, before performing the same analysis across subjects. 
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3.3.3 Results 

All subjects responded to the task correctly with an accuracy of 99.4% ± 0.1% (mean ± 

SD; SD, standard deviation) in detecting oddballs, and the response time (RT) is 403.5 ± 66.9 

(mean ± SD) ms. 

 

Pupillometry analysis   We used an MRI-compatible eye-tracking camera to track pupil 

diameter fluctuations in parallel to simultaneous recordings of EEG and fMRI which measured 

brain activity. Pupil diameter data were then preprocessed and epoched (see Section 3.3.2 for 

details). The stimuli-locked grand average pupil diameter fluctuations are shown in Figure 3.7. 

We observed a slow pupil dilation evoked by the target oddball stimuli peaking around 1.4 s 

after the stimulus. To quantify the pupil dilation elicited by the salient stimuli, we extracted the 

maximum percentage pupil diameter change within each trial as task-evoked pupillary response. 

 
 

Figure 3.7: Stimuli-locked pupillary response. The z-scored pupil diameter 
fluctuations from 500 ms before the stimulus to 2000 ms following the stimulus were 

averaged across subjects for the oddball (red) and standard (yellow) stimuli. The shaded 
bands represent standard error, and the bottom gray line indicates significant difference 
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(Student’s t-test, p < 0.001) between the pupil diameter evoked by the oddball and standard 
stimuli. 

 

Single-trial EEG-informed fMRI analysis   To identify the neural correlates involved in the 

salience processing cascade, we performed a single-trial EEG-informed fMRI analysis. Briefly, 

this method extracts the EEG components discriminating target versus standard trials at different 

temporal windows spanning the trial, and these are used to map the temporally evolved brain 

activities that are correlates of salience processing using the fMRI data. The area under the 

receiver operating characteristic curve (AUC) was used to evaluate the performance of the 

single-trial discrimination, and the AUC value is above 0.75 between 200 to 700 ms. More 

details are in the Methods Section 3.3.2 and Figure 3.5. As a sanity check, traditional EEG 

stimulus-locked ERP and traditional fMRI analysis results are included in the Figure 3.8. and 

Figure 3.9. We observed the P300 component with a peak around 390 ms in the ERP analysis, 

and regions in the DAN, SN, visual and auditory cortex, S1, and subcortex were identified as 

significant clusters in the traditional fMRI analysis of oddball effects. In the EEG-informed 

fMRI analysis, from the resulting group-level whole-brain BOLD activation maps, we identified 

significant clusters (p < 0.05, cluster corrected) at specific windows as shown in Figure 3.10A. 

These results revealed brain regions associated with salient stimuli processing: left superior 

parietal lobule (lSPL) (225 ms; positive cluster), left S1 (lS1) (250, 275, 350, and 375 ms; 

positive cluster), left orbitofrontal cortex (lOFC) (375 ms; negative cluster), left inferior parietal 

lobule (lIPL) (375 ms; negative cluster), left frontal operculum and temporal pole (600 ms; 

negative cluster), right primary motor cortex (rM1) (225 ms; positive cluster), right secondary 

visual cortex (rV2) (275 ms; positive cluster), right SPL (rSPL) (275 and 300 ms; positive 

cluster), right OFC (rOFC) and inferior frontal cortex (rIFC) (375 ms; negative cluster), and 
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supplementary motor area (SMA) and medial prefrontal cortex (mPFC) (400, 425, and 600 ms; 

negative cluster). These results indicate a coordinated task-related neural cascade, representing 

the spatiotemporal dynamics of the neural correlates in salience processing. 

 
 

Figure 3.8: Stimulus locked event-related potential at the Pz electrode for the standard 
(blue) and oddball (red) trials, from 500 ms pre-stimulus to 2000 ms post-stimulus. The solid 
lines denote the group mean, and the shaded areas denote the standard error across subjects. 

The P300 component was observed with a peak around 390 ms. 
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Figure 3.9: Axial slices of the thresholded group-level significant activations in the 
traditional fMRI analysis of the oddball effects (contrast as oddball versus standard stimuli). 

The z-statistic maps were displayed on top of the MNI152 template brain image. FMRIB’s 
Local Analysis of Mixed Effects (FLAME) from the FSL software package was used for the 

group-level statistical inference. The group-level statistical parametric maps were 
thresholded with z > 3.1 and corrected cluster significance threshold of p = 0.05 (Gaussian 

random field method). Regions in the dorsal attention network, salience network, visual and 
auditory cortex, primary somatosensory cortex, and subcortex were identified as significant 
clusters. Please be noted that only the significant positive effects are shown here, and we did 
not observe any significant negative effects in the regions of the default mode network. The 

‘R’ in the figure denotes right side of the brain. 
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Figure 3.10: Neural correlates of salience processing defined with the EEG single-trial 
variability (STV) informed fMRI analysis. (A) Timing diagram showing significant group-
level activation clusters (p < 0.05 cluster-wise multiple comparison correction). STV in EEG 
temporal components discriminating the target versus standard trials was used to map the 

spatiotemporally distributed BOLD fMRI correlates spanning the trial. EEG STV information 
was incorporated as BOLD predictors in voxel-wise general linear model (GLM) analysis of 

fMRI, controlling for the variance due to the presence of stimuli and response time (RT). 
Cluster colors denote positive (red) and negative (blue) effects. Time is relative to stimulus 

onset. (B) Definition of salience processing nodes. Each node is a sphere centered on the peak 
voxel of the group-level STV EEG-informed fMRI analysis results. Centroid of peak locations 

was used for regions involved in more than one temporal windows. Node colors denote 
timing of involvement in the trial from early to late (temporal order: red, orange, yellow, 

green, and blue). All clusters and nodes were overlaid on a 3D Montreal Neurological 
Institute (MNI) 152 brain pial surface for visualization. BOLD, blood-oxygen-level-

dependent; RH, right hemisphere; LH, left hemisphere; A, anterior; P, posterior; S, superior; I 
inferior; SPL, superior parietal lobule; M1, primary motor cortex; S1, primary somatosensory 

cortex; V2, secondary visual cortex; OFC, orbitofrontal cortex; IPL, inferior parietal lobule; 
IFC, inferior frontal cortex; mPFC, medial prefrontal cortex; SMA, supplementary motor area. 

 

Network organization of brain regions associated with salience processing   Following this 

observed neural cascade associated with salience processing, a natural question we asked was 

about the organization of these spatiotemporally distributed regions. Specifically, we aimed to 

assess the network organization and connectivity between these brain regions. Thus, we defined 
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10 nodes: lSPL [x = -34, y = -52, z = 64; Montreal Neurological Institute (MNI) coordinates], 

lS1 (x = -46, y = -28, z = 52), lOFC (x = -40, y = 60, z = 4), lIPL (x = -48, y = -60, z = 50), left 

frontal operculum and temporal pole (x = -54, y = 16, z = -6), rM1 (x = 18, y = -22, z = 76), rV2 

(x = 8, y = -94, z = 22), rSPL (x = 38, y = -42, z = 60), rOFC-rIFC (x = 42, y = 46, z = -8), 

mPFC-SMA (x = 4, y = 18, z = 56) as shown in Figure 3.10B (see Section 3.3.2 for details of 

salience processing node definition). 

Given the emerging evidence that indicates the relevance between task activation and the 

intrinsic network organization of the brain (Cole et al., 2016), we hypothesized that the 

previously identified nodes might represent organized underlying brain networks involved in 

salience processing. To test this hypothesis, a network localization approach was performed to 

map the brain regions functionally connected with each node (see Methods Section 3.3.2 for 

details; results in Figure 3.11). In the earliest time windows (225 to 275 ms), as expected, node 

rM1 was localized within the sensory motor network, and rV2 was part of the visual network. 

lSPL, rSPL, and lS1, which are spatiotemporally heterogeneous regions in the salience 

processing cascade, were mapped to a single brain network, i.e. DAN. Similarly, lOFC, rOFC-

rIFC, and lIPL, which are all correlated with the EEG discriminating components at 375 ms post-

stimulus, fell within the executive control network (ECN) (Seeley et al., 2007). Finally, in the 

latest time windows (400 to 600 ms), we found the nodes correlated with the late discriminating 

components, i.e. mPFC-SMA, left frontal operculum and temporal pole, were part of the SN. 

Overall, this observation suggests that these distributed nodes are spatially organized into 

intrinsic brain networks, indicating that the temporal evolution of different task activation 

regions (Figure 3.10A) spanning the trial might be supported by a specific set of brain networks 

(Figure 3.11). 
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Figure 3.11: Network localization approach to map functional networks underlying 
salience processing nodes. (A) BOLD signals from the nodes (intersected with the grey matter 

mask) were extracted, controlling the nuisance signals (motion-related, ventricle and white 
matter signals). (B) Group-level functional connectivity (FC) results of each node (t-value, 

mixed-effect, p < 0.001 uncorrected). Seed-based FC analysis (with the task-related variability 
regressed out) was used to map network of regions connected to each node location. Colors 
denote positive (red) and negative (blue) correlations. (C) Spatial overlaps in the FC maps of 

each node identified spatial network organizations of salience processing nodes. Colors 
represent the number of FC maps overlapped. lSPL and rSPL, left and right superior parietal 

lobule; rM1, right primary motor cortex; lS1, left primary somatosensory cortex; rV2, right 
secondary visual area; lOFC and rOFC, left and right orbitofrontal cortex; lIPL, left inferior 

parietal lobule; rIFC, right inferior frontal cortex. 

 

Following these results that distinct nodes might fall within a common network, our next 

objective was to directly examine the functional connectivity between the nodes. As shown in 

Figure 3.12 (p < 0.05, uncorrected), in line with the previously observed spatial organization of 

the nodes revealed by network connectivity (Figure 3.11), we found strong connections across 

the nodes within each network. For example, lSPL, rSPL, and lS1 showed a stronger within 

network (i.e. nodes of DAN) connectivity compared to their connections with other nodes. 

Furthermore, the functional connectivity results clearly identified three distinct groups of the 

nodes, organized by the EEG discriminating component time windows, indicating a temporal 

organization of the nodes. Thus, to assess the brain networks involved in the task-related neural 
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cascade, we defined three intrinsically connected salience processing networks, i.e. early-time 

(nodes: lSPL, rM1, rV2, rSPL, and lS1), middle-time (nodes: lIPL, lOFC, and rOFC-rIFC), and 

late-time (nodes: mPFC-SMA, left frontal operculum and temporal pole) networks. 

 
 

Figure 3.12: Functional connectivity (FC) across salience processing nodes (group 
averaged z-score, mixed-effect, p < 0.05 uncorrected). fMRI BOLD signals from the nodes 
(intersected with the grey matter mask) were extracted, controlling the nuisance signals 

(motion-related, ventricle and white matter signals). Pearson’s correlation was calculated 
between BOLD signals from the nodes (with the task-related variability regressed out). FC 
results identified three distinct groups of the nodes, organized by the EEG discriminating 

component time windows, indicating a temporal network organization of the nodes: 1) early-
time network includes lSPL and rSPL, rM1, rV2, and lS1; 2) middle-time network includes 

lOFC and rOFC, lIPL, and rIFC; 3) late-time network includes mPFC, SMA, left frontal 
operculum and temporal pole. 

 

Modulated effective connectivity by salience processing   In the functional connectivity 

analyses of fMRI data described above, we examined the spatial organizations of the salience 
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processing nodes. Our next step was to investigate the temporal dependence and directional 

interaction between these nodes, by fitting EEG data with a state-space effective connectivity 

(EC) model (see Methods Section 3.3.2 for details). In the group-level analysis, results for the 

significant salient stimuli modulated EC (Bayesian parameter averaging; α < 0.05; Bonferroni 

corrected) are shown in Figure 3.13, with positive and negative connections shown in Figure 

3.14. To quantify the connection strength of each node, we computed the total connection 

strength (Figure 3.15), which is the sum of all the unsigned connection parameters (afferent, 

efferent and self-connection) associated with the node. These results showed that the mPFC-

SMA and lSPL have the highest afferent and efferent connection strength, respectively, 

suggesting that the mPFC-SMA and lSPL are the hubs in the processing of salient stimuli. 
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Figure 3.13: Group-level mean effective connectivity modulated by the oddball stimuli 
between salience processing nodes (Bayesian parameter averaging; α < 0.05; Bonferroni 

corrected). Please be noted the results here reflect mean group effect. The orange and blue 
color represents positive and negative effective connectivity, respectively. 
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Figure 3.14: Effective connectivity (EC) across salience processing nodes (Bayesian 
parameter averaging, α < 0.05, Bonferroni corrected). (A) positive EC, (B) negative EC. By 
leveraging the high temporal information in the EEG data, an effective connectivity state-

space model was fit with the salience processing nodes. The arrow and thickness of the 
connecting lines correspond to the directionality and strength of EC, respectively. Dominant 

influence is observed in the connections of lSPL, lOFC and mPFC-SMA. The results here 
reflect mean group effect. Node colors denote timing of involvement (early-time: red; middle-

time: green; late-time: blue). 
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Figure 3.15: Total connection strength of each salience processing node. With the 
effective connectivity results, all the unsigned connection parameters (efferent, afferent and 
self-connection) associated with the node were summed up to compute the total connection 

strength. The results suggest that the lSPL and mPFC-SMA have the strongest total 
connection strength, indicating their roles as hubs in the processing of salience stimuli. 

 

Relationship between effective connectivity and pupillary response Having demonstrated the 

directional interaction between the nodes modulated by salient stimuli, we next investigated the 

network-level EC, based on previously defined salience processing networks. To characterize the 

network-level connectivity in the positive and negative connections, for each subject, we 

computed positive and negative network connection strength as the sum of all positive and 

negative connection parameters from one network node set to the other network node set (or to 

itself as self-connection network strength), respectively. Next, we assessed the relevance of 

network-level EC strength to TEPR, by computing the Pearson correlation between positive (or 

negative) network connectivity strength and TEPR at the between-subject level. The significance 

level was set as α < 0.05 with Bonferroni correction. We found a significant correlation between 

the late-to-early positive network connectivity strength and TEPR (r = 0.6352, p = 0.0035; 

Figure 3.16A; after controlling RT and ELBO r = 0.6347, p = 0.0035; ELBO was used as an 

evaluation of model fitting), whereas other network interactions did not show a significant 

correlation. In detail, for the positive connections, the other network connectivity strength did not 
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show any statistically significant relationship with TEPR (Early-to-early: r = 0.4290, p = 0.0668; 

Early-to-middle: r = 0.3708, p = 0.1181; Early-to-late: r = 0.0916, p = 0.7091; Middle-to-early: r 

= 0.1163, p = 0.6354; Middle-to-middle: r = 0.1219, p = 0.6191; Middle-to-late: r = 0.1058, p = 

0.6665; Late-to-middle: r = 0.1404, p = 0.5665; Late-to-late: r = -0.1568, p = 0.5214). For the 

negative connections, none of these network connections strength showed significant correlation 

with TEPR. The observed significant relationship (between the late-to-early positive network 

connectivity strength and TEPR) still holds at the between-run level, if the runs were pooled 

across all subjects (r = 0.4124, p = 0.0002). This outcome suggests that the TEPR is associated 

with the positive network couplings from the late-time network to the early-time network in the 

processing of salient stimuli, indicating a TEPR associated brain networks excitatory feedback 

(late-to-early) signal. 
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Figure 3.16: Brain-pupil relationships of the cortical network-level effective 
connectivity (EC) and task-evoked pupillary response (TEPR) in salience processing. (A) The 
oddball-modulated positive EC strength from the late-time to early-time network correlated 

with higher TEPR of oddball trials (p < 0.0035). In (B) and (C), to test the associations between 
pupil measurements and the triple-network model (SN, salience network; DAN, dorsal 

attention network; DMN, default mode network), we computed EC across nodes of these 
networks. (B) The oddball-modulated positive EC strength from SN to DAN correlated with 
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higher TEPR of oddball trials (p < 0.0013). (C) The oddball-modulated negative EC strength 
from SN to DMN correlated with higher TEPR of oddball trials (p < 0.0060). 

 

Involvement of locus coeruleus in salience processing   Given substantial evidence that pupil 

diameter is tightly coupled to the neuronal activity in the LC (Aston-Jones and Cohen, 2005; 

Joshi et al., 2016), pupil diameter has been used as an index of the LC activity (Gilzenrat et al., 

2010). With the observed correlation between late-to-early network feedback signal and TEPR 

(Figure 3.16A), we therefore hypothesized that the LC might play a role in the interactions 

between large-scale cortical networks. To test the involvement of the LC in salience processing, 

we first examined the functional connectivity between the LC and salience processing nodes (see 

Section 3.2.2 for details of the LC localization and BOLD signal extraction). The LC showed 

significant functional connectivity with lSPL, lS1 and mPFC-SMA (lSPL: t = 2.64, p = 0.017; 

lS1: t = 3.80, p = 0.001; mPFC-SMA: t = 3.15, p = 0.006), however, there were no significant 

results between the LC and the other salience processing nodes (rM1: t = 0.73, p = 0.476; rV2: t 

= -1.15, p = 0.267; rSPL: t = 1.48, p = 0.156; lIPL: t = -0.45, p = 0.660; lOFC: t = -0.56, p = 

0.579; rOFC-rIFC: t = -1.92, p = 0.071; Left frontal operculum: t = 0.96, p = 0.351). As a sanity 

check, whole-brain temporal signal-to-noise ratio analysis was performed with results in Figure 

3.17, and the seed-based whole-brain FC results of the LC are included in Figure 3.18. With the 

functional couplings to the nodes of both early-time and late-time networks, this result indicates 

that the LC might be an important factor in the directional interactions between these two 

networks. This result is also consistent with the observation that lSPL and mPFC-SMA are the 

hubs in the modulated EC, rendering their importance in salience processing. 
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Figure 3.17: Whole brain temporal signal-to-noise ratio (tSNR) analysis was 
performed to assess the fMRI signal quality especially for the BOLD signal in the LC. The 

tSNR was computed for each voxel, by dividing the mean over the standard deviation. (A) 
Group-level mean tSNR map of preprocessed fMRI data (no spatial smoothing). The tSNR 
map of each run was spatially normalized into the MNI152 space, and then was averaged 
across all the runs of subjects. (B) Quantitative analysis and boxplot of tSNR distributions 

across runs in each ROI. The color denotes the tSNR before (red) and after (blue) the nuisance 
signal regression (motion parameters and BOLD signals in the 4th ventricle and the left and 

right hemisphere white matter and lateral ventricles). Before the functional connectivity 
analysis of the LC, we regressed out the BOLD signal in the 4th ventricle. The tSNR was 
computed for each voxel in the subject’s native functional space, and then was averaged 

within the ROI (segmented with FreeSurfer). The LC two standard deviation template was 
used to delineate the LC ROI (Keren et al., 2009). The tSNR in the LC is above the standard 

cut-offs (tSNR > 30) (Grueschow et al., 2021). 

 

 
 

Figure 3.18: T-statistic maps of the LC seed-based whole-brain functional connectivity 
results. We used a mixed effects model for group inference. Each subject’s FC map was 
transformed into z-score with Fisher’s Z transformation. And the FC z-score map was 

thresholded at p < 0.01. In the group-level, one sample student’s t-test was performed to 
obtain the significant seed-based FC map of the LC (p < 0.001 uncorrected). Significant 
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clusters were identified in the cerebellum, supplementary motor area (SMA), right and left 
anterior insula (AI), left postcentral gyrus, right precentral gyrus, and thalamus. 

 

Following these results on the involvement of the LC with the late-to-early network 

feedback signal and the nodes of both DAN and SN (lSPL, lS1 and mPFC-SMA), and given the 

vast amount of literature on the triple-network model (Menon, 2011) of the DAN, SN, and 

default mode network, the final question we asked was whether this feedback signal reflects the 

network switching function of the SN, and whether pupil-indexed LC system is associated with 

the interactions between these three large-scale cortical networks. Thus, we fit the EEG data with 

the effective connectivity state-space model including the nodes of SN, DAN, and DMN, defined 

by the HCP-MMP (Human Connectome Project Multi-Modal Parcellation) atlas (Glasser et al., 

2016) (see Section 3.3.2 and Figure 3.6 for details of SN, DAN, and DMN nodes definition; EC 

results in Figure 3.19). The significance level was set as α < 0.05 with Bonferroni correction. As 

expected, we found a significant positive correlation between the salient stimuli modulated SN-

to-DAN positive network EC strength and TEPR (r = 0.6804, p = 0.0013; Figure 3.16B; after 

controlling RT and ELBO: r = 0.5949, p = 0.0072). This finding aligns with our previous results 

on the involvement of the LC in the late-to-early network feedback signal and the nodes of both 

DAN and SN. Interestingly, we also observed a significant negative correlation between the 

salient stimuli modulated SN-to-DMN negative network EC strength and TEPR (r = -0.6055, p = 

0.0060; Figure 3.16C; after controlling RT and ELBO: r = -0.6820, p = 0.0013). These 

significant relationships still hold at the between-run level, if the runs were pooled across all 

subjects (SN-to-DAN connection: r = 0.4051, p = 0.0002; SN-to-DMN connection: r = -0.2311, 

p = 0.0356). To eliminate the possibly alternative models that differ in the direction of 

information flow between SN, DAN, and DMN, we performed the same analysis between TEPR 
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and all the other inter-network connections, and there is no significant relationship between 

them. In detail, for the positive connections, whilst the SN-to-DAN network strength showed a 

significant correlation with TEPR, the other network connectivity strength did not show any 

statistically significant relationship with TEPR (DAN-to-DMN: r = -0.2710, p = 0.2616; DAN-

to-SN: r = -0.0800, p = 0.7447; DMN-to-DAN: r = 0.4827, p = 0.0363; DMN-to-SN: r = 0.0570, 

p = 0.8167; SN-to-DMN: r = 0.3780, p = 0.1106). For the negative connections, whilst the SN-

to-DMN network strength showed a significant correlation with TEPR, the other network 

connectivity strength did not show any statistically significant relationship with TEPR (DAN-to-

DMN: r = 0.0244, p = 0.9209; DAN-to-SN: r = 0.0864, p = 0.7248; DMN-to-DAN: r = -0.4895, 

p = 0.0334; DMN-to-SN: r = -0.2279, p = 0.3478; SN-to-DAN: r = -0.2849, p = 0.2370). These 

results are in line with the previous studies on the function of SN for the switching between 

anticorrelated networks (Menon and Uddin, 2010; Uddin, 2015; Y. Zhou et al., 2018). In 

summary, the results indicate that the LC is involved in the switching between cortical networks.  
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Figure 3.19: Group-level mean effective connectivity modulated by the oddball stimuli 
between the nodes of DMN, SN and DAN (Bayesian parameter averaging; α < 0.05; 

Bonferroni corrected). The orange and blue color represents positive and negative effective 
connectivity, respectively. 

 

3.3.4 Discussion 

Spatiotemporal brain networks in salience processing   We used EEG-informed fMRI 

analysis to map the spatiotemporal dynamics of neural substrates in salience processing. 

Specifically, the STV temporal information in the EEG was extracted at different time windows 

spanning the trial to explain the variance in the fMRI signal. This approach has been widely used 

to study a broad range of cognitive functions and human behaviors (Philiastides et al., 2021; 

Walz et al., 2013). Compared to conventional fMRI analyses, EEG-informed fMRI analysis 
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allows us to temporally dissociate the stimuli-evoked brain activation, or even identify regions 

absent in the conventional analyses (canceled out due to a temporal integration effect) (Goldman 

et al., 2009; Philiastides et al., 2021). This work extends this approach by introducing the 

functional connectome into the framework for mapping the underlying spatiotemporal network 

organizations of these neural substrates. Functional connectome has been shown as a reliable 

approach in elucidating intrinsic brain organizations (Fox et al., 2005a) and modeling cognitive 

task activation (Cole et al., 2016). In this study, based on the STV EEG-informed fMRI analysis 

and functional connectome network localization, we observed a spatiotemporal intrinsic network 

organization of the neural substrates in salience processing (Figure 3.20). The involvement of 

these nodes and networks in an auditory oddball task is consistent with prior studies: DAN, 

motor network, ECN and SN (Kim, 2014), and visual network (Goldman et al., 2009). In this 

study, the FC analysis was used only to map network organizations of brain areas, instead of 

making inference on the interactions, due to its correlation nature and the low temporal 

resolution of fMRI data. Thus, we performed EC analysis with EEG data. Comparison between 

the functional and effective connectivity with simultaneous EEG-fMRI is interesting, however, it 

is out of the scope of this study. 
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Figure 3.20: Neural cascades of salience processing and the spatiotemporal network 
organizations of salience processing nodes. Previous seed-based and node-by-node functional 
connectivity results suggest both spatial and temporal network organizations of the identified 
salience processing nodes, respectively. We hypothesized that the node-specific involvement 

of these functional networks might indicate a crucial role of these nodes in the temporally 
evolved processes of salience signal and the relationships between these networks. ECN, 

executive control network. 

 

Given these observations, we inferred that the brain flexibly recruited specific nodes of 

distinct networks at different time windows spanning the trial according to the demand of 

specific cognitive processes and behavior responses. In the early-time windows, we observed a 

sustained activation of DAN subsystem from 225 ms to 375 ms, along with the rM1 at 225 ms 

and rV2 at 275 ms. Literatures have shown that DAN is associated with goal-driven attention and 

the role of linking them to appropriate motor responses (Corbetta et al., 2008). The observed 

activation of the early-time network might reflect the functions of these systems in salience 

processing. For example, the coactivation of rM1 and lSPL at 225 ms might reflect the 

relationship between DAN and the motor network, and their role in linking stimuli and 

responses. Based on the previous evidence that DAN exhibits top-down influences on the 

sensory cortex (Corbetta et al., 2008), we hypothesized that the involvement of the visual 
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network areas might indicate the modulation of attentional resources distribution (Shomstein and 

Yantis, 2004). This hypothesis was also supported by the observed self-inhibition EC in rV2 

(Figure 3.14B). Similar to the reported temporal components underlying a visual spatial attention 

task in a Magnetoencephalography (MEG) study (Simpson et al., 2011), we also observed the 

involvement of ECN nodes (375 ms) right after the early activation of parietal and visual areas. 

This network’s node-specific involvement might indicate a crucial role of these nodes in the 

network and salience processing. For example, prior studies suggest the existence of common 

nodes (left orbital frontoinsula, mPFC, and right dorsolateral prefrontal cortex) between the ECN 

and SN (Seeley et al., 2007). Thus, the observed involvement of the left frontal operculum and 

mPFC-SMA in the late time might reflect their roles in the relationship between ECN and SN, 

which might facilitate the temporal transition from ECN to SN in the late time of the trial. Future 

studies are needed to investigate the specific functions of these nodes in the relationship between 

brain networks. 

 

Cognitive control in salience processing   Based on the anatomical locations of the nodes in the 

network, ECN and SN have also been named lateral frontoparietal network (L-FPN) and 

midcingulo-insular network (M-CIN), respectively (Uddin et al., 2019). Previous studies have 

shown that the ECN/L-FPN and SN/M-CIN are two prominent cognitive control networks, 

supporting the goal-directed cognition and behavior (Cole et al., 2013; Fair et al., 2007). In these 

studies, L-FPN and M-CIN were named as frontoparietal network and cingulo-opercular 

network. To keep the terminology of the brain networks consistent in this study, we referred to 

ECN/L-FPN and SN/M-CIN following the guidelines in (Uddin et al., 2019). SN (cognitive 

domain name) and M-CIN (anatomical name) contains these core regions: bilateral anterior 
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insula and anterior midcingulate cortex. ECN (cognitive domain name) and L-FPN (anatomical 

name) contains these core regions: lateral prefrontal cortex, anterior inferior parietal lobule, and 

intraparietal sulcus. ECN/L-FPN and SN/M-CIN are coactivated together as the task-activation 

ensemble (Seeley et al., 2007) in goal-directed behaviors and tasks. However, converging 

evidence from the literature indicates distinct roles of ECN/L-FPN and SN/M-CIN in goal-

directed behaviors. ECN/L-FPN acts as a flexible coordinator of goal-relevant information 

(Cocuzza et al., 2020), and may underlie phasic control such as initiates exogenously triggered 

control, adaptive adjustments, and executive functions (Dosenbach et al., 2007; Sadaghiani et al., 

2012). Whereas, SN/M-CIN is related to stable maintenance of task-set (Fair et al., 2007) and 

tonic alertness (Sadaghiani and D’Esposito, 2015), and has also been proposed a role in lending 

processing resources to help other goal-relevant networks (Cocuzza et al., 2020). 

In the present study, by leveraging STV temporal information in the EEG to tease apart 

the temporal neural processes in the goal-directed salience processing, we dissociated the 

stimuli-evoked coactivation of ECN/L-FPN and SN/M-CIN into two distinct temporal 

components (subsystem of ECN as the middle-time network deactivated at 375 ms, subsystem of 

SN as the late-time network deactivated during 400-600 ms). Along with this temporal 

dissociation, ECN/L-FPN and SN/M-CIN seemed to act with distinct roles in the salience 

processing, where ECN/L-FPN was deactivated preceding the behavior response (group-

averaged RT: 404 ms) and the deactivation of SN/M-CIN. And ECN/L-FPN acted as a phasic 

control (deactivated only at 375 ms), which might provide the rapid control initiation to SN/M-

CIN (deactivated starting 400 ms). This is also supported by the EC results that the oddball-

modulated EC (Figure 3.13) showed a stronger connectivity strength from the subsystem of 

ECN/L-FPN to SN/M-CIN (mid-to-late; positive: 0.2523; negative: 0.3145) compared to the 
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connection from the subsystem of SN/M-CIN to ECN/L-FPN (late-to-mid; positive: 0.0165; 

negative: 0.1126). These results align with the interactive dual-networks model of ECN/L-FPN 

and SN/M-CIN in (Dosenbach et al., 2007). This rapid control initiation might be mostly driven 

by the EC from lOFC to mPFC-SMA, as indicated by the strong connection strength (Figure 

3.14A). Whereas, SN/M-CIN was deactivated at multiple time points (400, 425, 600 ms) right 

after the response, indicating a stable maintenance of tonic alertness, which might facilitate the 

better detection performance in the next coming trial (Sadaghiani and D’Esposito, 2015). The 

involvement of SN/M-CIN regions in processing salient stimuli was reported by (Downar et al., 

2002, 2000), where the anterior cingulate and the supplementary motor areas had been proposed 

a role in anticipation of forthcoming stimuli. We propose that the involvement of SN in the late 

time windows might allow the brain to disengage the current trial and maintain the preparedness 

for the next upcoming stimulus. As proposed in a single-unit recording study, pre-SMA (mPFC-

SMA) is associated with task switching by first suppressing irrelevant task-set and then boosting 

a controlled response with the relevant task-set (Isoda and Hikosaka, 2007; Sakai, 2008). In the 

present study, we found mPFC-SMA deactivated starting at 400 ms, which might reflect a 

suppression or inhibition of the current trial encoded task-set. With the proposed role of pre-

SMA (mPFC-SMA) in conflict monitoring (Botvinick et al., 2001; Isoda and Hikosaka, 2007), in 

the changing environment after the response, its involvement allows the brain to resolve the 

conflict between the current trial encoded task-set and the new environment, which facilitates 

task disengagement. This task-set suppressing and boosting role of the SN is consistent with the 

network switching theory (Menon and Uddin, 2010). It is worth noting that, in the traditional 

fMRI analysis of oddball effects (Figure 3.9), regions in the SN were identified as significantly 

activated clusters, whereas, our single-trial variability EEG-informed fMRI analysis results 



150 
 

suggest that the SN was deactivated in response to oddball events in the late window (Figure 

3.10 and 3.20). These observations indicate that though the mean response of the SN is stronger 

for the oddball trials compared to the standard trials, our EEG-informed time-resolved analysis 

shows that late in the trial, when an oddball is less discriminating from a standard, as measured 

by EEG, the SN response is stronger to the oddball trial. We believe this result supports the 

proposed ”windshield wiper” role of the SN in the literature (Sadaghiani and D’Esposito, 2015), 

and a stronger response in the SN might suppress the discriminating processes of the current 

trial, facilitating task disengagement. However, this hypothesis warrants further investigation. In 

the anticipation of upcoming inputs, SN may employ such a mechanism to increase preparedness 

by clearing currently ongoing activity in multiple cortical areas. The present findings provided 

more evidence for the functions, relationship, and timescales of these two cognitive control 

networks (i.e. ECN/L-FPN and SN/M-CIN). 

 

Linking networks effective connectivity and pupillary response: LC is associated with 

network reset   The LC-NE system has been proposed to modulate neural gain, attention, and 

arousal (Aston-Jones and Cohen, 2005). Pupil diameter fluctuations, as a proxy of LC activity 

(Joshi et al., 2016; Murphy et al., 2014), have been used to investigate how the ascending 

neuromodulator from the LC-NE system influences the cortex (Murphy et al., 2011). There is 

growing research on the relationship between brain measurements and pupil diameter, with 

evidence suggesting that pupil diameter fluctuations are associated with cortical membrane 

potential activity (McGinley et al., 2015), EEG P300 component of the ERP (Murphy et al., 

2011), fMRI BOLD signal in the DMN, SN, thalamus, frontoparietal, visual, and sensorimotor 

regions (Schneider et al., 2016; Yellin et al., 2015), overall functional connectivity strength 
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during exploration (Tardiff et al., 2021), and global fluctuations in network structure (Eldar et 

al., 2013). These findings shed light on the understanding of brain-pupil relationships and 

cortico-subcortical associations, however, the role of the LC-NE system in the connectivity and 

interaction between specific brain networks within the context of a goal-driven task (e.g. salience 

processing) is less well understood. Here, by leveraging the high temporal resolution of the EEG, 

we used a state-space model for inferring the EC between brain networks involved in salience 

processing. We observed a very strong relationship between the late-to-early positive network 

interaction strength and TEPR (Figure 3.16A). In the oddball paradigm with motor response, 

studies have shown that TEPR reflects not only bottom-up mechanisms but also top-down 

higher-order processing (Joshi and Gold, 2020; Kim, 2014). Given the directionality of this 

TEPR-related network interaction, we propose that the phasic LC activity (indexed by TEPR) is 

associated with a feedback (top-down) signal from the late-time network (nodes of SN) to the 

early-time network (nodes of DAN, visual, and sensory motor network). Besides the close 

relationship between the LC activity and pupil diameter fluctuations, SN areas also exhibited 

close links to the LC-NE system and pupil measurements. The LC-NE system has shown to 

receive projections from the anterior cingulate cortex and anterior insula (Aston-Jones and 

Cohen, 2005; Corbetta et al., 2008), and has robust functional connectivity with these SN nodes 

(Hermans et al., 2011; Mäki-Marttunen and Espeseth, 2021). In an intracranial EEG study 

(Kucyi and Parvizi, 2020), both the spontaneous and task-evoked activations in the anterior 

insula are linked to the dynamics of pupillary dilation. The SN and pupil measurements have 

both been associated with task demands, efforts, difficulty (Beatty, 1982; Vassena et al., 2014), 

uncertainty and surprise (Joshi and Gold, 2020), conflict and error processing (Critchley et al., 

2005), and anxiety (Browning et al., 2015; Seeley et al., 2007). The involvement of SN, as a 
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subsystem of the ventral attention network (VAN) (Uddin et al., 2019), aligns with evidence 

showing the involvement of VAN in both bottom-up stimulus saliency and top-down internal 

goals (Corbetta et al., 2008; Long and Kuhl, 2018).   

Even with widespread projections of LC neurons throughout the cortex, recent studies 

suggested that there are substantial specificity and heterogeneity in the projections (Tardiff et al., 

2021; Totah et al., 2019; van den Brink et al., 2019). For example, regions in DAN receive dense 

LC-NE inputs (Benarroch, 2009). Our functional connectivity analysis suggests that the LC-NE 

system, with connections to both SN and DAN nodes, might play an important role in the top-

down control from SN to DAN along with other early-time network nodes. Our results strongly 

support the network-reset theory, which proposes that the VAN (SN as a subsystem) marks 

behavior transitions and facilitates a network reset signal along with the phasic LC-NE activity 

(indexed by TEPR), to reconfigurate the DAN (part of the early-time network) for settling the 

brain into another state in the new environment situation (Bouret and Sara, 2005; Corbetta et al., 

2008). This theory also aligns with the previous discussions on the synchronized timing of the 

behavior response/transitions and the deactivation of SN areas, and the proposed preparedness 

role of the late involvement of SN areas. In light of recent studies in the LC-NE system effects 

on brain network reconfiguration (Zerbi et al., 2019), more studies are needed to investigate the 

role of LC-NE system in the interaction between brain networks (Poe et al., 2020; van den Brink 

et al., 2019). 

 

SN, DAN, and DMN in salience processing: LC plays a role in network switching   The 

anticorrelation between the DAN and the DMN has been characterized as a vital aspect of the 

human brain functional organization and dynamics (Fox et al., 2005a), with DAN and DMN 
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controlling environmentally directed and internally directed cognitive processes, respectively 

(Corbetta et al., 2008; Fox et al., 2005a). Converging evidence suggests that the nodes of the SN 

are at the apex of the cortical hierarchy between these two anticorrelated networks (Y. Zhou et 

al., 2018), with a critical role in the dynamic switching between them (Sridharan et al., 2008). A 

triple network model has been proposed for these three core neurocognitive networks (Menon, 

2011), serving as a networks framework for understanding psychopathology (Menon, 2011) and 

cognitive aging (Tsvetanov et al., 2016). However, the neural mechanisms underlying dynamic 

switching, and how can the SN have such a wide spread access to DAN and DMN for 

coordinating the switching between them, are not well understood. Here, along with the close 

relationship between the SN and the LC-NE system discussed in the previous section, it is 

plausible to hypothesize that brainstem nuclei, such as the LC, may play a role in the dynamic 

switching of large-scale brain networks through the release of neuromodulatory 

neurotransmitters. Neuromodulation models of the LC have been proposed. In the adaptive-gain 

theory (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010), the LC receives task utility 

information from the ACC (SN node) and OFC, producing NE release at cortical target sites and 

adjusts the gain. The network glutamate amplification of noradrenaline (GANE) model (Mather 

et al., 2016; Poe et al., 2020) proposed that the SN recruits LC firing to enable NE local 

concentration modulation, accompanied by in parallel enhancement and suppression of large-

scale brain networks. In support of our hypothesis, i.e. the LC is associated with the network 

switching function of the SN, we found that increased TEPR (index of phasic LC activity) is 

associated with a stronger positive EC from the SN to the DAN, and a stronger negative EC from 

the SN to the DMN (Figure 3.16). This result confirmed the previous findings that the SN 

initiates the dynamic switching, and to our knowledge, this is the first study to show the 
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integrative role of the LC-NE system and the SN in the dynamic switching between 

anticorrelated networks. This suggests a cortico-subcortical integrated network reorganization 

system, involving both the SN and the LC-NE system in the network reorganization (reset and 

dynamic switching) between the DAN and DMN (Figure 3.21). 

 
 

Figure 3.21: Cortico-subcortical integrated network reorganization (CS-INR) system. 
Previous brain-pupil relationships results aligned with the network switching model of SN in 

the literature, and also showed the role of the locus coeruleus norepinephrine (LC-NE) 
system in the network reset and the dynamic switching between anticorrelated networks (SN-

to-DAN and SN-to-DMN). In support with the literature (Bouret and Sara, 2005), we 
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hypothesized that the reset and switching might be modulated by the release of the NE, as an 
effect of the ascending neuromodulation, which indicates that the SN and LC-NE system 

might cooperate and share an integrated role in salience processing. dACC, dorsal anterior 
cingulate cortex; lAI and rAI, left and right anterior insula; lSPL and rSPL, left and right 
superior parietal lobule; lFEF and rFEF, left and right frontal eye fields; mPFC, medial 

prefrontal cortex; PCC, posterior cingulate cortex; lAG and rAG, left and right angular gyrus. 

 

Regarding the temporal profiles of the task responses in SN, DAN, and DMN, our results 

align with several intracranial EEG studies (Kucyi et al., 2020; Raccah et al., 2018), where they 

found the responses reached the fastest, intermediate, and slowest speed in the DAN, SN, and 

DMN, respectively. In our study, we also found an earlier involvement of the DAN (starting at 

225 ms), preceding the responses in the SN starting at 400 ms. Interestingly, in our previous 

simultaneous EEG-fMRI study (Walz et al., 2014), we identified significant responses in the 

DMN at a relatively late time window (525 ms), supporting the temporal order of responses in 

DAN, SN, and DMN as reported in these intracranial EEG studies. However, these findings in 

the task-evoked responses do not imply interactions among these networks. In this study, our 

effective connectivity analyses extend such frameworks of networks’ temporal dynamics, by 

proposing that the network switching signal from the SN to the DAN might reflect a late-to-early 

feedback signal. Here, the effective connectivity analysis results reflect the interactions between 

the networks regardless of the time windows. In support of the claims made previously, the 

strong relationship between the SN-to-DAN EC and TEPR suggests an important role of the LC-

NE system in this network reset (or circuit-breaker) top-down control signal. Based on the 

involvement of the SN nodes as the late-time salience processing network (Figure 3.20), and its 

higher hierarchy among the DAN and DMN (Y. Zhou et al., 2018), the CS-INR is thought to be 

involved in the late phases of the salience processing, reflecting a mark of behavior transition, 

task disengagement, and preparedness, initiated by the deactivation of SN. However, our 
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findings do not rule out the possibility that the CS-INR system might also be involved at the 

other phases of the trial. For example, a recent study has found that the DAN, SN, visual and 

frontoparietal regions are involved in the early phase of the re-orienting, which has been 

interpreted as a network reset signal (Spadone et al., 2021). Different from our findings, these 

results might reflect the reorienting modulation in task engagement or bottom-up stimuli 

processing. Consistent with our hypothesis, the LC activation has been shown to be more closely 

aligned with the behavioral response than the stimulus onset (Aston-Jones and Cohen, 2005; Poe 

et al., 2020), and our previous work has also demonstrated that the DMN is involved in the late 

phase of the trial in a target detection task (Walz et al., 2014). The DMN has been implicated in 

future planning (Buckner et al., 2008), task switching (Crittenden et al., 2015), attention shifts 

(Arsenault et al., 2018), as well as other functions (Buckner et al., 2008), and the LC-NE system 

has been proposed to modulate the DMN as a neural modulator of mind wandering (Mittner et 

al., 2016). Our results are consistent with hypothesis that the LC-NE system modulates the 

connectivity between the DAN and DMN (Jason S Tsukahara and Engle, 2021), and also the 

proposed role as a ’master switch’ (Ross and Van Bockstaele, 2021). Potential candidate 

mechanisms of the LC-NE modulation on the DAN and DMN are: 1) The LC-NE system 

modulates them through the heterogeneous spatial distribution of NE receptor types and densities 

across the cortex (van den Brink et al., 2018; Van den Brink et al., 2016); 2) The heterogeneity in 

LC cell populations might be responsible for the targeted modulations of specific cortex areas 

(Schwarz and Luo, 2015; Totah et al., 2019), for example, a modular organization in the LC with 

distinct efferent neural projection patterns has been reported (Poe et al., 2020; Uematsu et al., 

2017); 3) The LC-NE system might interact with other subcortical nuclei in the modulation (van 

den Brink et al., 2019), such as thalamus, which has been associated with the LC activity (Mäki-
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Marttunen and Espeseth, 2021), SN activity (Seeley et al., 2007), and the modulation of cortical 

networks connectivity (Buckner and DiNicola, 2019; Nakajima and Halassa, 2017). The work 

may inform future studies of the neural mechanisms underlying the LC-NE modulation on the 

cortex. 

The close relationship between the LC-NE system and the SN has been investigated 

thoroughly in the literature, for example Herman et al. found that the noradrenergic activation 

during acute stress results in the changes in the functional connectivity strength within the SN, 

and these changes were inferred as network reconfiguration in their study (Hermans et al., 2011). 

Their findings established a causal link from the LC-NE system activity to the activity of the SN, 

however the interaction between the SN and other brain networks, and how the two systems 

cooperate in an integrative framework are still unclear. Whereas, our study suggests that the LC-

NE system might be responsible for the network-level interactions between the SN and other 

brain networks. The CS-INR network model proposed here bridges the gap between the network 

reset model of the LC-NE system and the network switching model of the SN, which could 

potentially serve as a cortico-subcortical network reorganization paradigm for understanding the 

neural dynamics underlying various cognitive functions, such as salience processing. With the 

neuronal basis of fast control in the von Economo neurons (VENs) of SN (Menon and Uddin, 

2010) and the spatially diffuse projections from the LC (Aston-Jones and Cohen, 2005), the CS-

INR system is ideally suited to a variety of complex cognitive processes. Although our results 

shed light on the relationship between the LC-NE system and the cortical network reorganization 

in the context of an auditory oddball task, we speculate that the CS-INR system might play a 

more general role in cognitive functions, such as adaptations in environmental volatility (Angela 

et al., 2005; Browning et al., 2015), brain state switches/variations (Mccormick et al., 2020; 



158 
 

McGinley et al., 2015), cognitive control (Cocuzza et al., 2020; Eldar et al., 2013; Gilzenrat et 

al., 2010; Köhler et al., 2016). Further work is needed to uncover the implications of the CS-INR 

model in various cognitive processes and neurological diseases. For example, previous studies 

have associated the activity in the DAN and DMN regions with exploitation and exploration, 

respectively (Chakroun et al., 2020). And it has been proposed that the SN and the LC-NE 

system may play a role in the switching from exploitation to exploration (Aston-Jones and 

Cohen, 2005; Chakroun et al., 2020), hence, it will be interesting to test the CS-INR model in the 

exploration and exploitation tasks. 

 

Broader implications of a simultaneous pupillometry-EEG-fMRI study   In this study, we 

deployed a framework involving simultaneous recordings of pupillometry, EEG, and fMRI to 

investigate neural processes and interactions in salience processing. The high spatial resolution 

of fMRI data and functional connectivity analysis were utilized to map the neural substrates and 

the functional organizations. The EEG data with high temporal resolution, the single-trial 

analysis, and the effective connectivity state-space model were used to temporally ’tag’ the 

neural substrates and infer the directional interactions. As a proxy of the LC activity, 

pupillometry was included to study the cortico-subcortical associations. The multimodal 

methodological approaches and the CS-INR network model proposed here might promote further 

investigations on the brain dynamics underlying various cognitive processes and neurological 

diseases. For example, the role of the LC in cognitive control is intriguing but has not been fully 

explored. This might be due to the gap in current knowledge between the network models of the 

cortex and the models of the LC, such as how the LC’s function in network reset is related to the 

network switching function of the SN. Besides their critical contribution to attentional processing 
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as demonstrated in this study, the CS-INR network model proposed here, or other cortico-

subcortical network models, is also critical in the understanding of neurological diseases, such as 

Alzheimer’s disease (AD). As the first brain region in which AD-related pathology appears, the 

LC has been associated with cognitive decline and aging (Mather and Harley, 2016). The studies 

of the LC and pupil diameter fluctuations, and their interactions with the cortical networks have 

important implications for the understanding of neurological diseases, such as AD. For example, 

a recent study showed that the LC in the older population has reduced interaction with the SN, 

suggesting subsequent impairment in the initiation of network switching, and inferior ability in 

prioritizing the importance of incoming events (Lee et al., 2020). 

In addition to the other work from our group where we used this multi-modal approach to 

examine the relationship between LC activity, pupillary response, and cortical dynamics (Hong 

et al., 2022), there are two other very recent instances where this simultaneous triple-modality 

data acquisition was reported (Groot et al., 2021; Mayeli et al., 2020). Together with the work 

presented here, all four studies showcase unique analyses and insights that could be harnessed 

from simultaneous pupillometry-EEG-fMRI. For instance, while this work and Hong et al. used 

an asymmetric fusion approach, Groot et al. applied a symmetric fusion to the multi-modal data 

through a support vector machine, in order to investigate neural signatures of task-unrelated 

thoughts. Taken together, we believe that despite the technical challenges, this simultaneous 

multi-modal approach holds great value and potential in unraveling cortical dynamics at various 

levels. 
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3.4 Dynamic Causal Modeling of the Locus Coeruleus and preSMA Circuit in 

Attentional Processing 

3.4.1 Introduction 

The locus coeruleus is a small nucleus located in the brainstem, as a primary source of 

norepinephrine. Both the LC-NE and the salience network are important contributors to 

attentional processing. For example, the LC and the SN have been proposed in a network 

reorganization model for salience processing (He et al., 2023), a moderated mediation model for 

response inhibition (Tomassini et al., 2022), and a connectivity framework for cognitive aging 

(Lee et al., 2020). To further explore the integrated functions of the LC and the SN, here, we use 

dynamic causal modeling (DCM) (Friston et al., 2003) to investigate the connectivity between 

the LC and the pre-supplementary motor area (preSMA), which is a primary node of the SN. 

However, the challenges in the neuroimaging of the brainstem (e.g. physiological noise (Brooks 

et al., 2013)) still hinder the study of the associations between this brainstem nucleus and the 

cortical systems. The brainstem is located at the junction of the cerebrum and the spinal cord, 

surrounded by major arteries and cerebrospinal fluid-filled ventricles. Consequently, the fMRI 

signal at brainstem contains a prominent amount of physiological noise from the neighboring 

structures with a poor signal-to-noise ratio. In the fMRI data, cardiac related physiological noise 

sources include changes in cerebral blood flow, cerebral blood volume (CBV), CSF flow, and 

arterial pulsatility (Brooks et al., 2013). To addresses this issue, we use physiological noise 

modeling base on the simultaneously recorded ECG data. Here, we also aim to evaluate the 

impact of cardiac noise correction on the connectivity. 

 

3.4.2 Methods 
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Pupillometry-EEG-fMRI data were simultaneously recorded from nineteen healthy 

subjects (age: 26 ± 3.6) in a 3T scanner as described in Section 3.2.2. fMRI data were collected 

using T2*w EPI (TR = 2100ms; TE = 25ms; voxel size 3 x 3 x 3mm; matrix size 64 x 64 x 42; 

150 volumes) and were preprocessed with FSL (S. M. Smith et al., 2004). We used an auditory 

oddball paradigm, where both the LC-NE and the SN systems were expected to be elicited. To 

remove the cardiac noise, we used retrospective image correction (RETROICOR) (Glover et al., 

2000), by first using the R-peak detection in the ECG signal and the extraction of the cardiac 

phase associated with the timing of each fMRI-acquired image. Specifically, in RETROICOR, 

the cardiac fluctuations are modeled as quasi-periodic processes with a low-order Fourier series 

and varying cardiac phases. The phase is computed as the time difference between the cardiac 

signal peak and the sampling time of the slice, relative to the physiological cycle (R-peak to R-

peak interval). The cardiac noise component was regressed out with general linear modeling. 

Volume of interest (VOI) localization was described in Section 3.3.2. Specifically, the 

LC was localized using a predefined atlas and subject-specific neuromelanin-sensitive MR 

images. An EEG-informed fMRI analysis was used to define the node of preSMA. For the DCM, 

a first-order model was fitted to the BOLD signal from VOIs. Standard and oddball trials were 

modeled as modulatory inputs. We then performed Bayesian model comparison, where the full 

model was compared to the reduced models with permutations of connections turned on and off. 

Lastly, to associate the connections with behavioral and pupil measurement, a second-order 

parametric empirical Bayes (PEB) was constructed according to the response indicators of the 

runs. 

 

3.4.3 Results 
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Figure 3.22 shows the winning model with the highest model evidence (Friston et al., 

2007). The endogenous/modulatory connections between the VOIs before and after 

RETROICOR are illustrated in Figure 3.22A and Figure 3.22B, respectively. In the second-order 

PEB analysis, response time, pupillary response (PR), and pupil baseline diameter (PBD) 

variabilities were included as response parameters. In the standard stimuli case, the modulatory 

connections made a contribution to the PBD and PR, whereas, in the oddball stimuli case, the 

modulatory connections do not show an obvious effect (Figure 3.23C and 3.23D). Additionally, 

we also tested the association between the modulatory connections and the pupil measurements 

with Pearson correlation. We found that after RETROICOR, the standard stimuli modulated 

connections are significantly correlated with the pupil measurements of standard trials (LC-to-

LC and mean PR-standard: r = -0.269, p = 0.010; preSMA-to-LC and mean PBD-standard: r = -

0.270, p = 0.009). No significant association between modulatory connections and pupil 

measurements was found before RETROICOR (LC-to-LC and mean PR-standard: r = -0.066, p 

= 0.536; preSMA-to-LC and mean PBD-standard: r = -0.200, p = 0.0584). 
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Figure 3.22: DCM and the endogenous/modulatory connections between the LC and 
preSMA. (A) and (B) represent the DCM connections before and after RETROICOR, 

respectively. The overlaid brain is only for illustration purposes. The numerical value with 
each connection represents the corresponding average effect at the group level. After 

RETROICOR, the results indicate a positive endogenous effect between the VOIs, whereas the 
self-connections are negative. (C) The comparison of endogenous connections before and 

after RETROICOR. (D) The comparison of context-dependent modulatory connections before 
and after RETROICOR. The ‘STD’ represents the standard stimuli situation, and the ‘ODD’ 

represents the oddball stimuli situation. 
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Figure 3.23: Parametric empirical Bayes (PEB) full and reduced model of the 
modulatory connection matrix based on the behavioral and pupil measurements. (A) The plot 

shows the PEB full model of the modulatory connection matrix in the standard stimuli 
situations. (B) The PEB full model of the modulatory connection matrix in oddball stimuli 

situations. (C) and (D) are the PEB reduced models in the standard and oddball stimuli 
situations, respectively. The thin line on each bar represents the standard error. RT, PRstd, 

PRodd, PBDstd, and PBDodd represent ‘median response time’, ‘mean pupillary response of 
standard trials, ‘mean pupillary response of oddball trials’, ‘mean pupil baseline diameter of 

standard trials’, and ‘mean pupil baseline diameter of oddball trials’, respectively.  

 

3.4.4 Discussion 

In this section, we examined interactions between the LC-NE and SN systems with 

DCM. We found that for standard trials, modulatory connections between the two systems 

contributed to the mean pupil measurements. Additionally, our results indicate that physiological 

noise removal impacts the relationship between pupillometry and LC-related connectivity, even 
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though such noise removal had been reported to have little impact on the relationship between 

pupillometry and BOLD signal in LC (Murphy et al., 2014). 
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Chapter 4: Modulation of Functional Brain Networks using 

Transcranial Magnetic Stimulation and Its Brain-state Dependent 

Effects 

4.1 Introduction 

TMS over the L-DLPFC is an FDA-approved treatment for depression. Concurrent TMS-

fMRI studies have established the propagation of TMS-induced activity from the left dorsolateral 

prefrontal cortex to various afferents (Dowdle et al., 2018). However, the TMS effects on 

networks distal to the stimulation site are less understood. And the state-dependent effects of 

TMS propagation pathways remain largely unexplored (Bergmann et al., 2021; Bradley et al., 

2022). In the previous studies, it has been shown that TMS applied to the DLPFC attenuates 

hyperactivity in the default mode network (Liston et al., 2014), though its effects appear to be 

highly heterogenous, with reports of such stimulation both increasing and decreasing neuronal 

activity, depending on the region, network and stimulation parameters (Rafiei and Rahnev, 

2022). Here, we aim to investigate the network-level effects of TMS, by assessing how 

application of TMS at L-DLPFC propagates through cortical networks and induces changes in 

whole-brain network connectivity. Specifically, we used concurrent TMS-EEG-fMRI to quantify 

TMS effects on the brain network systems, and we investigated the dependency of TMS-induced 

activity on the brain-state, indexed via EEG prefrontal alpha phase. Figure 4.1 illustrates the 

concurrent TMS-EEG-fMRI multimodal dataset. 
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Figure 4.1: Illustration of the concurrent TMS-EEG-fMRI dataset used in the study. 
Specifically, simultaneous EEG-fMRI data were collected while single-pulse TMS was 
delivered to the left dorsolateral prefrontal cortex (DLPFC). To investigate brain-state 

dependency of TMS-induced fMRI signal changes, the phase of alpha oscillation in the EEG 
prefrontal recordings was used as an index of brain-state. 

 

4.2 Methods 

An integrated fMRI-EEG-TMS instrument was developed and used in this study. EEG-

fMRI data were acquired from twenty-eight depression patients inside a Siemens 3T Prisma 

scanner (EEG: 36 electrodes with 488 Hz sampling rate; fMRI: TR = 1750 ms with a 200 ms 

gap; TE1 = 11.20 ms; TE2 = 32.36 ms; TE3 = 53.52 ms; voxel size 3.2 x 3.2 x 3.2 mm; matrix 

size = 64 x 56 x 38; 233 volumes; 6 runs). Single-pulse TMS was delivered to the L-DLPFC (F3 

electrode) at the beginning of the TR gap, with inter-trial-intervals drawn from a uniform 

distribution (4 - 6 TRs). fMRI data were preprocessed with AFNI (Cox and Hyde, 1997).  

Whole-brain general linear modeling with FLOBS (Woolrich et al., 2004) was first 

performed to investigate TMS-induced BOLD response. The propagation of induced activity 

through cortical networks was quantified by computing the percent coverage of each network 

(brain parcellated with Schaefer atlas (Schaefer et al., 2018); Figure 4.3B). To investigate the 

TMS-modulated functional connectivity changes, we used psychophysiological interaction (PPI) 
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analysis (Friston et al., 1997). Specifically, local-global Schaefer cortical parcellation atlas 

(Schaefer et al., 2018) was used to define cortical region of interest and network systems, which 

is a fMRI based parcellation approach integrating local gradient and global similarity approaches 

based on resting state fMRI data from 1489 young adults. A whole-brain PPI analysis (Gerchen 

et al., 2014) was performed to assess any significant connections modulated by TMS. In the PPI 

analysis, the task modulated connectivity was examined. The interaction between the BOLD 

signal from one ROI and the task regressor was modeled by first deconvolving the BOLD signal 

from the canonical HRF and then being multiplied by the task timing boxcar function. As the PPI 

analysis focus on the second-order task modulation, controlling the first-order task modulation 

(task-evoked mean activation) is necessary, as the task-evoked mean activation could be a 

potential confounder and drives the false positive observed interaction between regions (Cole et 

al., 2019). Specifically, FLOBS based task regression was performed to account for the task-

evoked mean activation, which has been shown to achieve a relatively low false positive results 

in controlling the confounds (Cole et al., 2019). 

The FC matrix was symmetrized, and the beta-weights were summarized within/between 

networks. Finally, we assessed positive/negative node strength by computing the sum of all 

positive/negative connection weights associated with each node. Additionally, to investigate the 

dependency of induced FC changes on the brain-state (indexed via EEG prefrontal alpha phase), 

we performed the same PPI analysis where TMS trials were grouped into four bins based on the 

TMS timing relative to the phase of the EEG alpha rhythm. 

Figure 4.2 illustrates the brain-state dependency analysis, where prefrontal alpha (7.5-12 

Hz) was extracted from the EEG signals at channels FP1, F3 and F7, and the phase (index of 

brain-state) at TMS onset was estimated. TMS trials were grouped into four phase bins based on 
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the alpha phase. Then, general linear modeling was used to model the BOLD signal at left-

DLPFC (stimulation site), with the trials in each phase bin as a separate regressor. For each 

subject, the phase bins that generated the highest and lowest BOLD response at left-DLPFC were 

identified as the subject-wise preferred-phase and nonpreferred-phase, respectively. Lastly, 

whole-brain GLM analysis was performed to identify correlates of the preferred-vs-nonpreferred 

phase contrast.  

 
 

Figure 4.2: Illustration of brain-state dependency analysis. Single-pulse TMS trials 
were grouped into four bins based on their timing relative to frontal alpha phase. The TMS 

trials in the figure were labeled according to their phase bin group using four different colors: 
red, yellow, blue, green. The onset times of TMS trials in each phase bin were convolved with 

the canonical HRF, resulting in four predictors of the fMRI BOLD time series. Response 
amplitudes (beta weights) were used to describe TMS-induced effects on each condition 

(frontal alpha phase). 
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4.3 Results 

The group-level TMS-induced BOLD activation map is shown in Figure 4.3A 

(permutation test with FSL Randomise (Winkler et al., 2014); p < 0.05 FWE-corrected), and the 

induced-activity propagation coverage of networks is shown in Figure 4.3C. TMS significantly 

elevated BOLD signals in various brain regions including dorsal anterior cingulate, thalamus, 

right-DLPFC, but not left-DLPFC. In PPI analysis, we observed significant TMS-induced 

connectivity changes between networks (Figure 4.4A; p < 0.05 FDR-corrected; all negative 

effects). As shown in Figure 4.4B&C, the negative hubs (with a stronger negative node strength) 

are within the control-default regions, whereas the positive hubs are within the control-

processing regions.  
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Figure 4.3: Quantification of TMS-induced BOLD response. (A) group-level activation 
map (t-value; p < 0.05 FWE multiple comparison correction; mixed effect); (B) Schaefer atlas 
brain parcellation (400 regions of interest) was applied to each subject by the registration of 
cortical surface; (C) Coverage across networks of TMS induced-activity (TMS applied to L-

DLPFC). Shown is the percent (fractional, 0.0 - 1.0) coverage. The red line indicates the 
median across subjects. Brown lines indicate the lower and upper quartile across subjects. We 
found that SomMotB, SalVentAttnA, and VisPeri have the highest coverage of TMS-induced 

activity, and VisPeri, ContC, and SalVentAttnA have the highest inter-subject variability. 
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Figure 4.4: Quantification of TMS-induced functional connectivity changes. (A) Group 
level whole-brain psychophysiological interaction analysis results. TMS applied to L-DLPFC 
induced significant negative effects on the connectivity between cortical networks (p < 0.05 
FDR multiple comparison correction). No significant positive effects were observed after 

multiple comparison correction. (B) and (C) represent negative and positive node strength by 
computing the sum of all the negative and positive connection weights between one node 
and all other nodes, respectively. The negative hubs are within the regions/nodes of the 
control and default network regions, whereas the positive hubs are within the control-

processing regions. 

 

In the results of brain-state dependency analysis, the preferred-vs-nonpreferred phase 

contrast analysis identified regions in the lateral frontoparietal network (Uddin et al., 2019) as 

significant clusters (p < 0.001,uncorrected) including bilateral DLPFC and inferior parietal 

lobule (Figure 4.5A). Lastly, at the subject-level, to investigate phase contrast effects at left-
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DLPFC, we permuted trials’ phase bin labels, and the permutation test showed that eleven 

subjects have significant phase contrast effects at left-DLPFC (p < 0.05). We also quantified the 

spatial overlap between TMS response contrast map and functional connectivity map, as shown 

in Figure 4.5B. Functional connectivity map using the left DLPFC as the seed region showed a 

network overlapped with the TMS response contrast map. In the results of brain-state 

dependency PPI analysis, TMS trials in the preferred phase bins induced significant (p < 0.05 

FDR-corrected) negative FC changes between: 1) RH-Default-A and RH-Default-B; 2) RH-

Default-A and RH-ContA; 3) RH-Default-A and RH-ContB, whereas no significant FC changes 

were observed for the TMS trials in the nonpreferred phase bins. 
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Figure 4.5: Brain state-dependency analysis results. (A) Preferred v.s. non-preferred 
phase contrast. Regions in the lateral frontoparietal network (L-FPN) were identified as 

significant clusters (t-value; p < 0.001; uncorrected). (B) Spatial overlap between TMS 
response contrast and functional connectivity. Functional connectivity map using the left 
DLPFC as the seed region showed a network overlapped with the TMS response contrast 

map. 

 

4.4 Discussion 

In the results of PPI analysis, we found that TMS induced strong negative effects within 

and between DMN and control networks, which might help regulate the hyperactivity in the 

DMN of depression patients (Liston et al., 2014). The observations from our hub analysis align 

with the hypothesis in (Rafiei and Rahnev, 2022), where the positive and negative effects of 

TMS follow distinct pathways of control-processing and control-default regions, respectively. 

These pathways might reflect separate, yet parallel top-down signals organized by the 

categorized connector hubs in the brain (Gordon et al., 2018). In the results of brain-state 
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dependency analysis, the results suggest that the propagation of TMS-induced BOLD activity 

from the left-DLPFC to regions in the L-FPN might depend on the EEG prefrontal alpha phase. 

In general, this type of brain-state dependent analysis can be used to temporally optimize and 

personalize TMS targeting for treatment of depression (Faller et al., 2022; Pantazatos et al., 

2022).  
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Chapter 5: Conclusions and Future Directions 

5.1 Summary 

In this thesis, we employed novel computational and multimodal data analysis techniques 

to examine the structural and functional attributes of brain network systems. Our investigation 

encompassed a broad range of characteristics, including anatomy variability, task-related 

responses, connectivity, and the effects of neuromodulation. We have developed a novel region-

based spatial normalization approach that enables accurate quantification of brain structural 

variability. Our evaluation results demonstrated that this approach could improve the sensitivity 

and specificity in the group-level analysis of task-based fMRI studies. In addition to examining 

the structural organization of brain network systems, we conducted further investigation into 

their functional aspects. Our findings showed that pupillary response is associated with the reset 

and switching of brain networks during salience processing. These results contribute to the 

understanding of the interconnections between cortical networks and brainstem neuromodulatory 

system. Finally, our study extended beyond the examination of the structural and functional 

characteristics of brain network systems. We conducted a preliminary multimodal investigation 

using a neuromodulation approach, which has the potential to provide more causal evidence in 

the mapping of brain network systems.  

In the first part of Chapter 2, we developed a landmark-guided region-based spatial 

normalization approach for analyzing structural and function MRI. Specifically, using automatic 

landmark detection and matching, we have developed and implemented a novel 3D volumetric 

spatial normalization solution that not only aligns the cortical folding patterns of the brain, but 

also results in a high correspondence between different regions along the cortical ribbon and 

their counterparts in the template image. Our solution substantially outperforms the existing top 
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performing volumetric spatial normalization method by giving a significantly higher 

correspondence between the structure of the neuroanatomical regions, and also yields higher 

sensitivity and specificity in the group-level statistics when analyzing task-based fMRI data with 

both auditory and visual stimuli. The limited accuracy of conventional methods becomes more 

prominent when applied to clinical and aging populations with severe alterations in brain 

morphology. When compared to the healthy group, this population-based bias has been shown to 

generate false-positive findings that have been reported as a genuine breakthrough in the 

literature (Liu et al., 2017). We conclude that our proposed LG-RBSN solution is a suitable 

substitute for the conventional volumetric whole brain registration methods that often fail to 

generate an accurate correspondence between regions of the cerebral cortex, particularly for 

clinical and aging populations. 

In the second part of Chapter 2, we investigated the fMRI responses to visual stimuli, 

where we explored both the positive and negative hemodynamic responses in the visual network 

system. Our findings provide evidence that the two task-evoked NBRs due to unilateral visual 

stimulation are linearly related to the stimulus duration. Their extracted HRFs have similar 

magnitude and dynamics, while showing differences compared to the HRF extracted from PBR. 

The subject-wise expression of the cNBR is tightly coupled with that of the iNBR in the opposite 

hemisphere and significantly less correlated with PBR detected in its vicinity. Inversely, the 

spatial pattern of the iNBR is more inter-hemispherically similar to that of the PBR than to the 

corresponding cNBR. Neither of the PBR nor the two NBRs predict the task performance. 

Moreover, while attention did not alter the timings and peak magnitude of the PBR, both 

magnitude and return to baseline of the iNBR and cNBR (although not significant for cNBR) 

were modulated by attention.  Our findings suggest that common neural and/or vascular 
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mechanisms underlie the cNBR and iNBR. These mechanisms are possibly different from the 

mechanisms that give rise to the PBR, and they might involve subcortical brain structures with 

projections to both hemispheres. 

Drawing on the findings in Chapter 2, we hypothesized that deep brain structures, for 

example brainstem neuromodulatory systems, might regulate the task-evoked negative responses 

in the visual network. To further investigate such associations between cortical networks and 

brainstem neuromodulatory systems, we conducted multimodal investigations with a 

pupillometry-EEG-fMRI dataset in Chapter 3. In summary, firstly, the study in Chapter 3 reveals 

a coordinated neural cascade during salience processing, involving brain regions in the dorsal 

attention, visual, motor, executive control, and salience networks. Secondly, the study identified 

the network organization and effective connectivity between these brain regions, which were 

found to be associated with salient stimuli evoked pupillary response. These findings are in line 

with the proposed function of the pupil-indexed LC-NE system in network reset (Bouret and 

Sara, 2005; Corbetta et al., 2008). To advance understanding of the interactions between 

neuromodulatory systems and intrinsic brain networks in relation to cognition, the study 

presented additional analyses on the associations between the LC-NE system and networks 

including the SN, DAN, and DMN, where the results provide the first evidence in humans for the 

relevance of the LC-NE system to the function of the SN in the dynamic switching between 

anticorrelated cortical networks. The findings in Chapter 3 have important implications for 

multimodal neuroimaging data analyses, brain-pupil relationships, attentional processing, 

cognitive control networks, and network models of neurological diseases. 

In Chapter 3, we conducted an investigation of brain network system reorganization in 
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the context of salience processing. Alongside this task-evoked network reorganization, 

endogenous network reorganization and the brain-state dependency were also crucial elements of 

brain network dynamics. Thus, in Chapter 4, we delved deeper into this subject by characterizing 

the causal effects of TMS on brain network systems. Our analysis included quantifying TMS-

induced BOLD response and TMS-modulated functional connectivity changes, and we 

demonstrated the brain-state dependency of TMS effects. The quantification and understanding 

of TMS effects on brain network systems carry significant implications for the treatment of 

major depressive disorder and the development of personalized TMS treatment protocols, with a 

focus on both target-selection and timing parameters. 

 

5.2 Limitations and Future Work 

In Chapter 2, we developed a novel spatial normalization approach to accurately quantify 

inter-subject variabilities in brain anatomy. However, it is already known that the functional 

architecture of the brain does not necessarily and accurately follow brain gyri and sulci 

morphology. Therefore, one might conclude that improving the correspondence between brain 

structural features (sulci and gyri) might not necessarily translate to improvement in functional 

correspondence of the aligned regions, and would alter the effects of the improved spatial 

normalization methods in functional imaging of the brain. Since we currently do not have an 

accurate measurement of the deviation of the functional architecture from brain morphology, it is 

difficult to assess any limit in which improvement of the regional correspondence becomes 

unattainable. And as compared to CVS, the worse performance of LG-RBSN in the functional 

evaluation with right ear auditory stimuli condition might be due to this reason. Nonetheless, we 

have shown that increasing the regional correspondence to 86% still increases the functional 
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correspondence for the visual stimuli and the left ear auditory stimuli conditions, and indicates 

that we are still operating under such limitation in these conditions. To further align the 

functional architecture of the brain, in future work, the proposed LG-RBSN can also be modified 

to identify landmarks from functional or other imaging modality data, so that landmarks 

correspondence is established using functional cortical registration methods to help align the 

brain functional organizations across subjects.  

Alongside the quantification and investigation of brain structural organizaiton, in Chapter 

3, we investigated the functional organization of brain networks and their functional/effective 

connectivity. Specifically, we used effective connectivity to infer the directional couplings 

between brain networks. However, in the effective connectivity state-space model, the temporal 

dependence among the dynamics of latent neural states of different brain areas was modeled as a 

multivariate autoregressive process. For example, the effective connectivity estimates how the 

future neural states in one brain area are influenced by the current neural states in another brain 

area, and how the external experimental perturbation can modulate these couplings. Thus, the 

directionality of information flow was inferred based on temporal forecasting and control theory, 

and the ‘directional interaction’ in Chapter 3 is limited under the assumptions of our effective 

connectivity state space model. Future studies using simultaneous pupillometry, neuroimaging, 

and transcranial magnetic stimulation would be interesting to explore the relationship between 

pupil diameter fluctuations and brain networks couplings, and potentially to provide stronger 

evidence on the ‘directionality’ of brain networks interaction. Furthermore, the directionality in 

the cortico-subcortical interactions between the LC and cortex regions remain unclear. Based on 

the involvement of the SN in the late time of the trial observed in our data, we hypothesized that 

the network switching might be modulated by the release of the NE, as an effect of the ascending 
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neuromodulation. Our hypothesis aligns with the findings in (Hermans et al., 2011), which 

provided evidence on the causal link from the LC-NE system activity to the activity of the SN. 

Whereas, in the adaptive gain theory, the LC is proposed to receive inputs from ACC and OFC, 

with the release of NE at cortical target sites (Aston-Jones and Cohen, 2005). Further 

investigations will be needed to better understand the directionality in the interactions between 

the LC and cortex regions. 

Pupillometry has long been used to index the LC activity in previous studies (Aston-

Jones and Cohen, 2005; Gilzenrat et al., 2010; Joshi and Gold, 2020; Murphy et al., 2011) and 

also in the study of Chapter 3, though it is challenging, as other neural circuits are involved in 

controlling pupil diameter as well (Joshi and Gold, 2020). For example, shifts of attention are 

mediated in part by the superior colliculus (SC). In the previous studies, the LC rather than the 

SC showed neural spiking responses to unexpected auditory events (Joshi et al., 2016). In an 

oddball task fMRI study, the pupil size fluctuations have been associated with the BOLD activity 

in the LC (Murphy et al., 2014). In Chapter 3, we utilized this well-studied oddball paradigm, 

where the coupling between pupillometry and the LC activity has been shown, to investigate the 

pupil-indexed activity in the LC. However, this does not rule out the possibility that other 

subcortical nuclei, such as thalamus, or other neuromodulators, such as acetylcholine, might 

contribute to pupil diameter fluctuations or interact with the LC-NE system. Further 

investigations are needed for direct neuroimaging of the LC, however, it is challenging due to the 

excessive physiological noise and distortion in brainstem imaging (Beissner, 2015), and the 

difficulty in the localization of the LC (Mäki-Marttunen and Espeseth, 2021). Additionally, the 

present study did not examine the relationship between the LC activity and pupillary response, as 

well as its relationship to the EEG measurement of cortex processes. Another study from our 
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group highlighted these additional analyses and comprehensive examinations of LC activity and 

their associations (Hong et al., 2022). In Chapter 3, we examined the relationship between 

effective connectivity and pupil measurement at the inter-individual level as shown in Figure 

3.16. Future studies are needed to replicate our results at the intra-individual level. However, 

care should be taken when fitting the effective connectivity model without enough data points. 

And more experimental sessions and data acquisition for each individual may be needed. 

In Chapter 3, we made inferences on the role of the pupil-indexed LC activity in salience 

processing, based on their interaction with the task-related neural substrates. However, besides 

the attentional processing of salient stimuli, pupil-indexed LC activity has also been associated to 

changes in arousal. Though these two LC associated processes, i.e. attention and arousal, have 

been shown to be independent (Vazey et al., 2018), an important future direction will be 

accounting for the LC associated arousal, and assessing its relationship to the cortex. In future 

studies, novel tasks can be devised to dissociate pupil-indexed LC activity in attention and 

arousal.  

The interactions between the brainstem and cortex systems are less understood. For 

example, functional connectivity analysis has consistently identified regions in the midbrain of 

brainstem and other subcortical areas as part of the SN (Seeley et al., 2007). However, how they 

interact with the main nodes of the SN (dorsal ACC and anterior insula), and what is their 

integrative role in the context of SN function have not been explored (Menon, 2015). In future 

studies, it will be interesting to investigate the structural, functional and effective connectivity 

between the SN and the LC-NE system, to enhance our understanding of these crucial brain 

systems and their interactions. For example, we propose to use concurrent TMS-fMRI techniques 

to quantify the TMS-induced activity in the LC-NE system when TMS pulses are delivered to 
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the SN nodes. This approach will provide insights into the causal relationship between these two 

systems. By utilizing causal brain mapping techniques such as this, we will gain valuable 

insights into the understanding of TMS mechanisms and the development of novel therapeutic 

interventions. 

In Chapter 3, we proposed a localization approach for the LC and examined the effective 

connectivity between the LC and the preSMA region. However, in future studies, care must be 

taken in the processing of neuroimaging data in the brainstem area, as the standard pipeline 

available in the neuroimaging field may be unsuitable. For example, in terms of spatial 

normalization approaches, the standard spatial normalization methods are solving a global 

optimization problem in the registration of the whole-brain, this standard approach might achieve 

sub-optimal results in the brainstem areas. Spatial normalization methods targeting the brainstem 

areas have been developed, such as the spatially unbiased atlas template (SUIT) method 

(Diedrichsen, 2006) and the automated brainstem co-registration (ABC) method (Napadow et al., 

2006). However, all these existing methods relied on the matching of T1-weighted image 

intensities. This is feasible in the registration of cortical regions and systems to some extent, as 

the shapes and boundaries of cortical regions and systems can be characterized by the folding of 

the cerebral cortex and the contrast between grey matter and white matter in the T1-weighted 

image intensity contrast. However, the T1-weighted image intensities are homogeneous in the 

brainstem areas, which makes the characterization and registration of brainstem structures and 

regions almost impossible. Standard neuroimaging preprocessing pipeline typically includes 

spatial smoothing, which can compensate for the registration errors. However, in practice, spatial 

smoothing has been shown to obscure the estimate of brainstem nuclei BOLD activity (Murphy 

et al., 2014). As most of the brainstem nuclei are very small, it is not ideal to perform spatial 
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smoothing when coping with the neuroimaging data of the brainstem. Methods that accurately 

characterize and register brainstem structures are warranted. 
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