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Abstract

The fronto-parietal attention networks have been extensively studied with functional magnetic resonance imaging

(fMRI), but spatiotemporal dynamics of these networks are not well understood. We measured event related

potentials (ERPs) with electroencephalography (EEG) and collected fMRI data from identical experiments where

participants performed visual and auditory discrimination tasks separately or simultaneously and with or without

distractors. To overcome the low temporal resolution of fMRI, we used a novel ERP-based application of

multivariate representational similarity analysis (RSA) to parse time-averaged fMRI pattern activity into distinct

spatial maps that each corresponded, in representational structure, to a short temporal ERP segment. Discriminant

analysis of ERP-fMRI correlations revealed eight cortical networks – two sensory, three attention, and three other

–segregated by four orthogonal, temporally multi-faceted and spatially distributed functions. We interpret these

functions as four spatiotemporal components of attention: modality dependent and stimulus-driven orienting,

top-down control, mode transition, and response preparation, selection and execution.
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Introduction

Resolving the cerebral underpinnings of attention is one of the key questions in cognitive neuroscience (Petersen

and Posner 2012). However, the distributed nature of higher level cognition poses challenges for research:

attentional processes involve a number of cortical (Corbetta and Shulman 2002) and subcortical (Wimmer et al.

2015) structures, which could all have their own temporal processing scales (Gonzalez-Castillo et al. 2012). In

addition, largely overlapping brain networks are activated by different attentional functions (Duncan 2010).

Functional magnetic resonance imaging (fMRI) during attention demanding tasks has indicated that brain areas

participating in these networks are located in the intra- and temporo-parietal, and superior and inferior frontal

cortices (Corbetta and Shulman 2002). Even individual differences in attention can be predicted on the basis of

connectivity in these networks (Rosenberg et al. 2016). Functional connections between these network areas

persist in spontaneous activity measured during resting state without any designated task instructions given to

the participants (Fox et al. 2006; Dosenbach et al. 2007; Yeo et al. 2011). Thus, fMRI data during task performance

and rest demonstrate comparable spatial networks, but the relatively sluggish blood oxygenation level dependent

signal (Logothetis 2008) is not sufficient in unraveling the fine-grained temporal dynamics of attentional

processes within these networks.

The models of attention supported by fMRI and behavioral studies have segregated attention-related bottom-up

and top-down processes (Corbetta and Shulman 2002; Petersen and Posner 2012). While attention modulates

sensory processing of both visual and auditory target objects (Petkov et al. 2004; Johnson and Zatorre 2006;

Pestilli et al. 2011), there may be intermodal differences in the networks guiding these modulations. In the visual

modality, separate but interacting fronto-parietal networks have been found for top-down controlled and bottom-

up triggered attention shifts (Corbetta and Shulman 2002; Petersen and Posner 2012). Subsequently, in the

auditory modality top-down and bottom-up attention networks are presumably more overlapping (Salmi et al.

2009; Alho et al. 2015). Moreover, some areas of the top-down networks might be more related to divided than

selective attention(Johnson and Zatorre 2006) or shifting attention between modalities (Shomstein and Yantis

2004; Salo et al. 2015). In addition, some networks activated during attention demanding tasks might be involved

in task related memory functions (Petersen and Posner 2012; Wallis et al. 2015) rather than attention. As

compared to fMRI, more precise temporal information on attentional processes is provided by event related

potentials (ERPs) measured with electroencephalography (EEG). ERP studies have demonstrated attention related

modulations of sensory processing beginning already at 100 ms from stimulus onset(Hillyard et al. 1973; Näätänen

et al. 1978; Woods et al. 1992; Mangun 1995) as well as distraction(Squires et al. 1975; Knight 1997; Escera et al.

1998; Fogelson et al. 2009), orienting (Hopf and Mangun 2000; Nobre et al. 2000; Salmi et al. 2007) or reorienting

(Schröger and Wolff 1998; Berti and Schröger 2001) related responses between 200-600 ms from stimulus onset.

Despite extensive research knowledge on the specific brain areas and temporal components of attention, there is

still a lack of studies describing spatiotemporal dynamics of attention networks and representational relations of

the multiple attention related processes. Answering these questions calls for specific methods that enable

combining both spatially and temporally accurate neuroimaging techniques and experimental setups containing

multiple conditions that are controlled for features not directly linked to attention, such as task difficulty.

Integrating localization of cortical networks and their temporal dynamics is possible by combining fMRI and EEG

measurements (Huster et al. 2012). EEG based modelling of fMRI data has provided important knowledge, for
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example, by revealing brainstem connections to cortical attention networks around 200 and 450 ms after stimulus

onset (Walz et al. 2013) as well as task and response related temporal dynamics in the frontal cortex and in the

so-called default mode areas (Greicius et al. 2003; Walz et al. 2014). The advances of data analysis methods and

multivariate pattern analysis (MVPA) has enabled separating distinct processes within overlapping brain

networks, for example, segregating spatial and feature based attention shifts(Greenberg et al. 2010) in the medial

superior parietal lobule(Esterman et al. 2009). In the present study, we utilized representational similarity

analysis (RSA) (Kriegeskorte et al. 2008; Kriegeskorte and Kievit 2013) to investigate spatiotemporal dynamics of

attention networks. With RSA, we combined ERP and fMRI data from identical experiments by projecting both data

sets into a common representational space, and investigated representational similarity of multiple attentional

processes.

We collected ERP and fMRI data during a continuous 1-back adaptive pitch and orientation discrimination tasks

performed separately or simultaneously by the participants at 70% threshold (Fig. 1). The experiments contained

18 different event types based on 2×3×3 factorial design (Table 1): Target Modality (auditory or visual), Attention

Mode (selective or divided attention, or control task, i.e., a simple reaction time task) and Distractor Type

(intramodal, crossmodal or no distractor). With searchlight(Kriegeskorte et al. 2006) RSA we identified regional

voxel clusters in fMRI data that contained representational structures similar to the representational structures

calculated from short temporal segments of ERPs (Fig. 2). This resulted in a temporal ERP-fMRI correlation profile

for each voxel and region (Fig. 3). Discriminant analysis of temporal profiles revealed four temporally multi-

faceted and spatially distributed functional components: 1) modality dependent and stimulus-driven orienting of

attention, 2) top-down guided attentional control, 3) shifting between attention and default modes, and 4)

response selection, preparation and execution (Fig. 4).

Materials and methods

Participants

13 healthy right-handed volunteers (7 females, mean±SD age 26±6 years) with normal or corrected-to-normal

vision and without known hearing deficits participated in both EEG and fMRI experiments. The participants gave

a written informed consent before participating in the experiments approved by the Ethics Review Board in the

Humanities and Social and Behavioural Sciences of the University of Helsinki.

Stimuli

The auditory stimuli were binaural sinewave tones and various spectrally complex sounds occurring

simultaneously with a tone on some trials. The tones had an intensity of 80 dB SPL, and duration of 300 ms

including 10 ms linear onsets and offsets. The frequency of tones varied between 600 and 1800 Hz, either

randomly or according to participants’ correct/incorrect responses in the staircase procedure. The maximum

change in pitch between consecutive trials was limited to 0.5 octaves. Complex synthetic sounds, such as clicks

and ringtones, were used as auditory distractors. The maximum intensity of these distractor sounds was 80 dB

SPL and they were low- and high-pass filtered with cut-offs at 7000 and 200 Hz, respectively. In addition, the
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distractor sounds were notch-filtered at 1000 Hz (filter width 2 octaves) to avoid acoustic masking of target tone

frequencies. Each auditory distractor occurred only once during the experiment.

Visual stimuli were grayscale sinewave gratings and various colored textures occurring simultaneously with a

grating on some trials. Each high-contrast grating was shown for 300 ms in a Gaussian envelope (diameter 3 deg).

The spatial frequency of grating was 2 c/deg and the phase was randomly set in each trial. The orientation of

grating was varied randomly (in conditions with no visual task) or according to participants’ correct/incorrect

responses in the staircase procedure. The lower-part of the grating was kept at the center of the screen and the

grating was rotated between 0-360 deg. However, the maximum change between consecutive trials was limited to

90 deg. The textures (size 16 × 24 deg) were used as visual distractors. To avoid spatial masking and to keep

gratings identical across conditions, a circular 6 deg area was cut off from the center of distractor textures. The

rms (root-mean-squared) contrast (standard deviation of luminance divided with mean luminance) of the visual

distractors was 0.3. Each visual distractor occurred only once during the experiment.

Procedure

The experiment consisted of auditory and visual 1-back discrimination tasks. The participants’ auditory task was

to indicate whether the pitch of the tone was higher or lower than the pitch of the preceding tone by pressing a

button up or down with their right hand. The participants’ visual task was to indicate whether the orientation of

the grating rotated clock-wise or counter clock-wise in comparison to the preceding grating by pressing a button

right or left with their right hand. A tone-grating pair was presented on each trial. The pairs were presented

sequentially with a constant onset-to-onset interval of 1.8 seconds. The magnitude of attended pitch and

orientation change was determined using an adaptive staircase method with a 2-1 rule: after an incorrect response

the pitch/orientation difference between successive trials was increased and after two consecutive correct

responses the pitch/orientation difference was decreased in steps of 3 deg and 0.01 octaves. This method

produced a 70.7 % discrimination threshold. Only trials without distractors were included in the staircase and the

initial change was 15 deg and 0.1 octaves. Until the second reversal point, the amount of change was 3-fold. The

average of the reversal points (the first two reversal points were excluded) was used as the discrimination

threshold. The tones and gratings were created and their timing was controlled with Presentation® software

(Neurobehavioral Systems, Albany, CA, USA, www.neurobs.com).

In every condition, both tones and gratings were presented, but the participants’ task was varied. The tone and

grating discrimination tasks were performed separately (selective attention condition), or simultaneously (divided

attention condition). In the divided attention condition, the stimulus was changed in only one modality. Thus, in

the divided attention condition, the participant had to first detect the modality in which the stimulus changed and

then to decide to which direction the change had occurred. The selective attention conditions also contained sham

trials in which the stimulus changed in the non-attended modality as well. These trials were discarded from the

analysis in order to keep selective attention conditions similar to divided attention condition. In the control

condition, the participants were asked to press a button whenever the tone-grating pair occurred. During all tasks,

on 1/6 of the trials, a visual distractor and on another 1/6 of the trials an auditory distractor was presented with

this pair.
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In total, there were 18 different trial types in four experimental blocks (Table 1): 1) Auditory selective attention,

2) Visual selective attention, 3) Divided attention, and 4) Control. Each condition included in the present analysis

(for excluded conditions, see below) contained six different combinations of target and distractor stimuli: 1)

Auditory target without distractor, 2) Auditory target with auditory distractor, 3) Auditory target with visual

distractor, 4) Visual target without distractor, 5) Visual target with auditory distractor, and 6) Visual target with

visual distractor.

Each task consisted of 60 trials occurring in a random order: 40 trials without distractors, 10 trials with auditory

distractor and 10 trials with visual distractor. Different tasks were performed in different blocks, and the order of

blocks was randomized in each run. Each run also contained single modality trials, which included visual and

auditory tasks without stimuli in the other modality. These trials were excluded from all present analyses. Each

participant took first part in the EEG and then in the fMRI experiment, and completed three runs in each

experiment.

Table 1. Experimental setup. 18 trial types/events occurred in four different blocks. The experiment contained 3 task

conditions: selective auditory, selective visual and divided Attention Modes, as well as a control task. In the attention

tasks, the target (to-be-discriminated change in tone pitch or grating orientation) was either auditory or visual.

Some trials included an auditory or visual distractor.

Event Block Task Target Change in Distractor Trials in block

1 1 Selective

attention:

1-back

discrimination

in one

modality

Auditory Tone None 20

2 Auditory 5

3 Visual 5

4 2 Visual Grating None 20

5 Auditory 5

6 Visual 5

7 3 Divided

attention:

1-back

discrimination

in both

modalities

Auditory Tone None 20

8 Auditory 5

9 Visual 5

10 Visual Grating None 20

11 Auditory 5

12 Visual 5

13 4 Control:

Press button

for any stimuli

Both Tone None 20

14 Auditory 5

15 Visual 5

16 Grating None 20

17 Auditory 5

18 Visual 5
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EEG acquisition, preprocessing and ERP analysis

The EEG data was acquired with Biosemi ActiveTwo system (BioSemi, Netherlands) with 64 scalp electrodes and

6 additional electrodes (at the right and left mastoids, at the canthi for horizontal electro-oculography, and above

and below the left eye for vertical electro-oculography from the left eye). The EEG data were analyzed with EEGLAB

toolbox(Delorme and Makeig 2004) and custom Matlab scripts. The EEG data were high-pass filtered using a cut-

off of 0.5 Hz and low-pass filtered using a cut-off of 20 Hz. Bad channels were rejected manually and using an

EEGLAB automatic channel rejection tool based on channel kurtosis. EEG data were sliced to 1200 ms epochs

beginning 200 ms before each stimulus pair onset. Mean voltage during the 200 ms prestimulus period was used

as the baseline. Independent components were calculated using FastIca algorithm(Hyvärinen 1999) and artefact

components were removed using ADJUST toolbox(Mognon et al. 2011) after which the epochs were averaged to

obtain ERPs to different events.

fMRI acquisition, preprocessing and GLM analysis

fMRI data were measured with a Siemens MAGNETOM Skyra 3 T scanner (Siemens Healthcare, Erlangen,

Germany) using 30-channel head coil. Three functional runs were measured using a gradient-echo echo planar

imaging sequence (TR 1900 ms, TE 32 ms, flip angle 75 deg, voxel matrix 64 × 64, field of view 20 cm, slice thickness

3.0 mm, in-plane resolution 3.1 mm × 3.1 mm × 3.0 mm). The functional measurements consisted of 388 volumes.

To reach stable magnetization, the first four volumes were discarded from the analysis. A fast structural MR image

with a 3D T1 weighted sequence (1 mm slice thickness) was acquired before the third functional run.

The fMRI data were analyzed with SPM12 Matlab toolbox(Penny et al. 2006), Freesurfer(Dale et al. 1999) software

package, RSA toolbox(Nili et al. 2014), and custom Matlab scripts. In the preprocessing, the acquisition order of

functional images and the head motion were corrected. Then a standard GLM analysis was conducted using 35

regressors, one for each event type (18 regressors), and nuisance regressors for instructions (1), motion (6), and

control conditions (10) that were excluded from the data analysis (one modality and sham trials). The resulting

SPMT images for 18 trial types were then analyzed using RSA.

Representational similarity analysis

For both ERP and fMRI data we conducted a representational similarity analysis(Kriegeskorte et al. 2008;

Kriegeskorte and Kievit 2013). In the analysis, a representational dissimilarity matrix (RDM) was calculated by

cross-correlating the measured data across 18 different trial types. For ERP data, the RDMs were calculated from

all channels with consecutive 10 ms time windows. For fMRI data, a searchlight method(Kriegeskorte et al. 2006)

was used and the RDMs were calculated from voxels within spherical searchlights (radius 3 voxels; volume ca. 100

voxels). The ERP and fMRI RDMs were then compared with each other, and with model RDMs based on the

classification of experimental conditions according to Attention Mode and Distractor Type as well as on reaction

times and correct responses. For each model we obtained a temporal activity profile based on the ERP data and a

spatial correlation map based on the fMRI data. The statistical inference was calculated using t-tests and

permutation tests. In permutations tests, data labels were shuffled and a distribution of correlations was

calculated based on 5000 (ERP) or 1000 (fMRI) permutations to find correlation values that correspond to the top

5% of the simulated distributions.
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Region of interest and discriminant analyses

The correlations between ERPs and fMRI obtained in RSA were further analyzed with region of interest (ROI)

analysis. A total of 44 ROIs were selected by first intersecting 17 Networks found in resting state analysis(Yeo et

al. 2011) and 74 anatomical regions(Destrieux et al. 2010) that contained at least 100 common vertices, and then

averaging some of the nearby regions in order to keep the number of ROIs reasonable. For each ROI, we averaged

fMRI RDM correlations with ERP and model RDMs across voxels. RSA was applied to the temporal profiles of ROIs,

and then multi-dimensional scaling was applied to the obtained RDM. The multi-dimensional scaling revealed

eight clusters, and this classification was then used in a step-wise discriminant analysis to find discriminant

functions that maximized Mahalanobis distances between the clusters. The resulting discriminant functions were

evaluated by finding the highest/lowest correlations between the functions and the analyzed time-points, as well

as comparing the function coefficients across ROIs.

RESULTS

Behavioral performance

The effect of experimental manipulations on behavioral measures was tested with a repeated measures analysis

of variance (ANOVA). The Imaging Modality (EEG vs. fMRI experiment) did not affect discrimination thresholds

(F1,12=1.31, p=.274), reaction times (RT; F1,12=1.160, p=.303) or correct responses (F1,12=0.739, p=.407), and there

were no significant interaction effects of the Imaging Modality and the other variables on thresholds or correct

responses. However, for RTs, two significant interactions were found. In fMRI, but not in EEG, the RTs were longer

to tones than gratings (Imaging Modality x Target Modality: F1,12=17.19, p=.001), especially in selective attention

condition (Imaging Modality x Target Modality x Attention Mode: F2,24=9.10, p=.007). Since there were no main

effects on Imaging Modality, the behavioral data from the EEG and fMRI experiments were combined for further

analysis.

For both pitch and orientation discrimination (Fig. 1a), the thresholds increased to ca. 2-fold (F1,12=14.96, p<.01)

during divided attention (pitch: 0.06 oct; orientation 9.5 deg) in relation to selective attention (pitch: 0.03 oct;

orientation 5.4 deg). In the divided attention condition, the thresholds correlated positively between the

modalities (r=.53, p=.064) showing that the participants did not pay more attention to one modality at the expense

of another.

RTs increased as the task demands increased from the control task to the selective and divided Attention Modes

(Fig. 1b; F2,24=23.10, p<.001). Adding a distractor to the tone-grating pair increased RTs significantly (F2,24=31.09,

p<.001), especially when the distractor was within the same modality as the target stimulus (Fig. 1b, green

symbols; Target Modality × Distractor Type interaction F2,24=9.58, p<.01). There was also a significant Attention

Mode × Target Modality interaction (F2,24=6.49, p<.01) and Attention Mode × Target Modality × Distractor Type

interaction (F4,48=2.58, p<.05), due to different effects of distractors on discriminating the tones and gratings in

the selective and divided attention conditions. Specifically, crossmodal distractors did not prolong RTs to gratings

in the selective attention condition (Fig. 1b), and the difference between effects of intra- and crossmodal
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distractors was larger for the gratings than tones (Fig. 1c), while overall, RTs were shorter for the gratings than

tones (F1,12=21.05, p<.01).

There were no significant differences in the proportions of correct responses between the tones and gratings

(F1,12=1.17, p=.30), but performance was less accurate during divided than selective attention (F1,12=10.55, p<.01).

The distractors decreased the amount of correct responses (Fig. 1c; F2,24=5.85, p<.01), especially distractors in the

target modality (F2,24=6.22, p<.01). The distractors tended to have a smaller effect on discrimination accuracy for

gratings than tones (Fig. 1c), but this interaction was not statistically significant.

Figure 1. Experimental setup and behavioral results. a) On each trial both sinewave tone and sinewave grating was

presented, and either tone pitch or grating orientation changed in relation to the previous trial. On 1/3 trials either

a visual distractor (spectrally complex texture) or an auditory distractor (spectrally complex sound) was presented.

These distractors were intramodal (IM) or crossmodal (CM) with respect to the target event (pitch or orientation

change). Error bars depict standard errors of mean. b) Reaction times (RTs) to tones and gratings. RTs were shortest

in the control condition (black diamond), longer in the selective attention condition (squares, gray asterisk), and the

longest in the divided attention condition (circles, black asterisk). c) Distractor effect on discrimination of tones and

gratings. Relative prolongation of RTs and decrease in proportion of correct responses in relation to targets without

distractors (black asterisk). IM distractors (green and blue symbols) exhibited stronger effects than CM distractors

(red and yellow symbols).
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ERPs

The topographic ERP maps for all 18 events at five different time points are shown in Figure 2a. The ERPs within

110 ms after stimulus onset were highly similar (first row). At 220 ms (second row), comparison of trials without

a distractor and with an auditory or visual distractor showed differing anterior-posterior distributions of activity

(Fig. 2a). In comparison to distribution without distractors (“No” columns), the activity distribution was shifted to

anterior regions during auditory distractors (“Aud” columns) and to posterior regions during visual distractors

(“Vis” columns). Beginning at 380 ms (rows 3-5), differences related to the Attention Mode were found. Higher

amplitudes were found in the selective (the six leftmost columns) and divided (six columns in the middle) attention

conditions than in the control condition (the six rightmost columns). Further, at 630 and 860 ms, the divided

attention condition showed stronger responses than the selective attention conditions.

ERP-fMRI correlations

The RSA is based on representational dissimilarity matrices (RDMs) calculated by cross-correlating variables of

interest. A specific RDM shows rank order of dissimilarities that can be compared with RDMs based on models or

RDMs derived from data collected with another method. Example model RDMs corresponding to the effects of

Distractor Type and Attention Mode are shown in Fig. 2b, as well as an RDM calculated from the present RT data.

Dissimilarities of ERP amplitude distributions (Fig. 2a) were quantified with RDMs (Fig. 2c). From these RDMs,

dissimilarities related to Distractor Type can be seen as a grid in the matrix (e.g., visual distractors: rows and

columns 3, 6, 9, etc. in the matrix) and dissimilarities related to Attention Mode as blocks, that is, differences

between rows/columns 1-6 (selective attention) vs. rows/columns 7-12 (divided attention) vs. rows/columns 13-

18 (control condition).

A searchlight RSA was conducted by calculating correlations between each ERP RDM and fMRI RDM within the

spherical searchlights (radius 3 voxels). The fMRI RDMs were calculated from SPMT images, regressor t-values

based on statistical parametric mapping that did not contain any temporal information as such. The analysis

revealed distinct spatial correlation maps for different time points showing spreading of activity from sensory to

parietal regions and further to frontal regions and propagation of activity back to the parietal and sensory regions

(Fig. 2d). The highest correlations for ERP RDMs calculated at 110 ms were found in a voxel cluster located in the

visual cortex (first row). At 220 ms (second row), the most prominent correlations spread to the parietal regions,

auditory cortex and to the medial visual cortex. At 380 ms (third row), the correlations in the visual cortex were

diminished and both parietal and frontal regions showed correlation maxima. At 630 and 860 ms (rows four and

five), high correlations were found in frontal voxel clusters, mainly in motor and supplementary motor areas at

860 ms, as well as in some clusters in the visual temporo-occipito-parietal areas.

In order to further confirm that the ERP-fMRI activity pattern correlations were related to attentional processes,

we conducted a model based RSA (Supplementary Fig.1a) separately for the ERP and fMRI data. Distractor Type

model correlations showed transient correlation peaks at 185, 220, and 290 ms after stimulus onset in ERPs

(Supplementary Fig.1b) and indicated significant voxel clusters in the visual and auditory cortices in fMRI

(Supplementary Fig.1c). In contrast, classification of trials on the basis of Attention Mode or RTs revealed

sustained correlations at longer latencies in ERPs, starting around 400 ms (Supplementary Fig.1b) and in fMRI
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correlations were localized to parietal and frontal regions, and to the temporo-parietal junction (Supplementary

Fig.1c). Model based on correct responses did not reveal any significant ERP correlations or voxel clusters in fMRI.

Figure 2. Results of the representational similarity analysis (RSA) of EEG and fMRI data at five time points from 110

to 860 ms after stimulus onset. a) Event related potentials (ERPs) were calculated from the EEG by averaging epochs

time-locked to stimulus events. Topographic maps of ERPs (the head viewed from above with the nose pointing

upwards) averaged across participants. Aud= auditory, Vis= visual. b) Model representational dissimilarity matrices

(RDMs) showing the expected effects of Distractor Type and Attention Mode, and an RDM calculated from reaction

times. c) ERP RDMs were calculated by cross-correlating ERPs from all 64 channels across the 18 different

experimental conditions within consecutive 10 ms segments from -200 to 1000 ms from stimulus onset, resulting in

120 RDMs. d) ERP-fMRI correlation maps. fMRI data were analyzed with General Linear Model (GLM) containing

separate regressors for each stimulus event and by calculating t-values for each regressor in each voxel using

statistical parametric mapping (SPM). First, fMRI RDMs were calculated by cross-correlating regressor t-values of the

18 experimental events across voxels within a spherical searchlight, and then correlated with each ERP RDM

(permutation test, p<.05). The Supplementary Video 1 shows the full data from -200 to 1000 ms from stimulus onset.
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We used all 64 measured EEG channels in our analysis. To ensure that this did not influence the results and to test

whether selecting a subset of electrodes could be used in investigating specific responses, we conducted similar

analysis with six subsets of electrodes: 1) 34 anterior electrodes, 2) 29 posterior electrodes, 3) 13 frontal

electrodes, 4) 10 parietal electrodes, 5) 11 occipital electrodes, and 6) sparse set of 16 electrodes across the scalp

(Supplementary Fig. 2b). With the electrode subsets, reduced correlations with model RDMs were found, with only

a few statistically significant differences to the original data (Supplementary Fig. 2c). Importantly, reducing the

number of EEG channels removed some of the effects found with the full electrode set, but did not produce any

new effects or correlation peaks. With the standard 16 channel setup the results were virtually identical

(Supplementary Figure 2c) to the original analysis. Similarly to the ERP and model RDM correlations, no additional

voxels clusters were found in ERP-fMRI correlations, and the subsets revealed only some of the voxels found with

the full 64 channels set (Supplementary Video 2). Taken together, these results suggest that the number of EEG

electrodes used in the ERP-fMRI RSA analysis is not critical as long as the electrodes are sparsely distributed and

little is gained by reducing the number of electrodes.

Temporal similarity

To fully characterize the spatiotemporal dynamics of attention related cortical areas, we conducted region of

interest (ROI) analyses based on Networks defined by resting state analysis(Yeo et al. 2011) and cortical

anatomy(Destrieux et al. 2010). For each of the 44 ROIs we calculated average correlation with ERP RDMs, to

reveal the time course of activity in the given ROI, as well as average correlation with model RDMs, to reveal the

ROIs function in relation to Distractor Type (auditory, visual or no distractor), Attention Modes, Distractor Type ×

Attention Mode interaction, and Behavior (RTs). No systematic differences between the hemispheres were found

and therefore results for the left and right hemispheres were averaged. Our main interest was to find temporal

dissimilarities in auditory and visual Network as well as attention Networks. Thus, we focused on eight ROIs (Fig.

3a), two in each of these Networks: Networks 1 (visual), 4 (auditory), 5-6 (dorsal attention), and 7-8 (ventral

attention).

In the visual areas of Network 1 (Fig. 3a, blue) the ERP-fMRI correlations rose steeply, starting at 100-120 ms, and

reached peak values between 110 and 310 ms (Fig. 3b). After the transient peak, the correlations gradually

decreased. In these areas, the highest correlation was found for the Visual Distractor model suggesting that the

dissimilarities within these areas were mainly related to distractor processing, but significant correlations were

also found for Attention Mode and Distractor Type × Attention Mode interaction. A quite different pattern of results

was found in the auditory areas of Network 4 (Fig. 3a, orange): in Heschl’s gyrus and the planum temporale, two

sharp correlation peaks were found at 220-230 ms and 600-650 ms, and after both peaks the correlations

decreased sharply (Fig. 3c). The model correlations suggested that these areas were involved in processing of

Auditory Distractors and also showed Distractor Type × Attention Mode interaction.

In the parietal areas of dorsal attention Networks 5 and 6 (Fig. 3a, green), the correlations started to increase at

140-160 ms and two peaks were found at 160-240 and 530-680 ms (Fig. 3d). These areas were related to

processing of Visual Distractors and to Attention Mode, and especially to interaction of Distractor Type and

Attention Mode. In the frontal areas of the ventral attention Networks, that is, Networks 7 and 8 (Fig. 3a, pink/red),
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the correlations increased gradually and three/four correlation peaks were found at 220-230, 380-400, 580-690,

and 870-880 ms (Fig. 3e). Within these areas, no correlation with distractor models were found, but instead the

areas correlated with Attention Mode, Distractor Type × Attention Mode interaction and RT models, suggesting a

role of these frontal regions in attentional control.

Figure 3. ROI analysis for eight regions in four Networks (a). In both hemispheres, each of the 17 resting state defined

Networks(Yeo et al. 2011) were divided to 1-4 sub-regions according to lobes and anatomical structures(Destrieux et

al. 2010). The resulting 44 ROIs were averaged across hemispheres. Temporal profiles (top row) from ERP-fMRI RSA

analysis and model correlations (bottom row) averaged across voxels. Straight lines and asterisks indicate

statistically significant correlations (t-test, p<.05). Shaded area and error bars depict standard errors of mean. A =

auditory, V = visual, RT = reaction time. Results are shown for b) visual cortex, c) auditory cortex, d) dorsal attention

Network, and e) ventral attention Network.
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Spatiotemporal attention components

To test temporal similarities between all ROIs, we conducted RSA for their temporal profiles (some shown in Fig.

3b-e) and applied multidimensional scaling of the resulting RDM (Fig. 4a). Temporal similarity across analyzed

ROIs suggested eight cortical clusters (Fig. 4a, dashed lines): 1) visual Networks 1-2, 2) auditory regions of

Network 4, 3) dorsal attention Network 5 (and area in Network 6), 4) ventral attention Network 7 (and areas in

Networks 3, 4, 9,14), 5) ventral attention Network 8 (and areas in Networks 6, 10, 12,13,16,17), 6) Networks 11,

13, 16, and 7-8) two clusters from Network 15. The temporal profile of each ROI was then subjected to

discriminant analysis based on the eight clusters.

The discriminant analysis revealed seven statistically significant, orthogonal Functions. The first four Functions

explained 95% of the variance across areas (57, 26, 9, and 3 % for the Functions 1-4, respectively). Discriminant

Function 1 correlated positively with time points between 130-300 ms (Fig. 4b, blue line), and Function 2

correlated negatively with an early time point of 130 ms and positively with late time points between 370-620 ms

(Fig. 4b, red line). Function 3 also had two phases, and correlated positively with early (130-270 ms) and late (620-

680 ms) time points (Fig. 4b, yellow line). Function 4 had three phases: a negative correlation with earlier (130-

300 ms) and later (550-680 ms) time points, as well as a positive correlation with very late (740-970 ms) time

points (Fig. 4b, purple line). Spatially, Function 1 separated sensory cortical regions from fronto-parietal areas, as

well as the auditory and visual regions from each other, and Function 2 segregated the sensory from frontal regions

(Fig. 4b). The variance explained by Functions 3 and 4 were smaller and consequently, these Functions did not

segregate areas as clearly as the first two Functions when plotted on the same scale (Fig. 4b). Overall, the four

determined discriminant Functions essentially capture dissimilarity between the temporal profiles of ROIs (Fig.

3) and explain the observed spatial similarity structure (Fig. 4a).

To further visualize the differences in spatial and temporal activation characteristics, the discriminant Function

coefficients on each ROI were plotted on the cortical surface (Fig. 4c). The early time scale and sensory-frontal

division of Function 1 suggests that it is related to stimulus-driven processing, which depended on the modality.

The later time course of Function 2 and the high coefficient for it in frontal areas indicates that this Function relates

to top-down guided attentional control. The time course of Function 3 appears to represent shifting from the

default mode(Greicius et al. 2003) to the Attention Mode and back to the default mode, since the highest

coefficients were found in the default mode areas. The three phases of Function 4 and the high coefficients in the

sensory-motor areas might indicate that it is associated with response preparation, selection and execution after

target occurrence, and perhaps with preparation for the next trial. Since each experimental condition had a motor

response, purely motor processes should not show up in the analysis.
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Figure 4. Spatiotemporal attention components. The data for the right and left hemispheres were averaged in the

analysis. a) Multidimensional scaling of temporal RDM of ROIs. Numbers and colors indicate resting state based

Networks(Yeo et al. 2011) and letters A-D sub-regions of Networks. Dashed black lines indicate cluster boundaries:

Visual (Networks 1-2, blue), auditory (Network 4, orange), dorsal attention (Networks 5-6, green), ventral attention

I (Network 7, pink) and ventral attention II (Network 8, red). b) Correlation of discriminant Functions and time points,

and distribution of discriminant Function coefficients. c) Spatial maps of discriminant Function coefficients (results

based on data combined across the hemispheres projected on the lateral surface of the right hemisphere).
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Discussion

We combined ERP and fMRI data with a novel application of representational similarity analysis in order to resolve

spatio-temporal dynamics of cortical networks related to multiple attentional processes. The ERP RDMs revealed

topographic dissimilarities across all experimental conditions and these were compared with RDMs within the

fMRI searchlight voxel clusters. We were able to parse the fMRI data into several spatial maps corresponding to

short temporal segments of ERPs. The present results reveal complex temporal dynamics of attentional processes

with a few separable processing phases. Distractor related pattern correlations were found in the sensory areas

at early time window of 200 ms from audiovisual stimulus onset. Early peaks were also found from parietal and

frontal areas, and our model analysis indicated that these were related to interaction of the Attention Mode and

Distractor Type, but not to distractor processing as such. In addition to the early peak, dorsal parietal areas showed

elevated correlations also at a later time point of 600 ms, related to distractor processing as well as to the

interaction of Attention Mode and Distractor Type. Elevated pattern correlations in the ventral parietal regions

and frontal areas were found at four distinct time points, around 200, 400, 600 and 800 ms, showing the role of

these areas in attentional control during all phases of the cognitive tasks. The results suggest that the spatial

activity patterns in fMRI data contain information from several time points, and that this information can be

recovered using external temporal ERP markers. Furthermore, multidimensional scaling of temporal profiles

suggested eight spatial networks: two sensory, three attention, and three other networks. Discriminant analysis

of these eight networks revealed four orthogonal components that each had separate temporal profiles and spatial

distributions. Our results suggest four distinct spatiotemporal components for attention: modality dependent and

stimulus-driven orienting, top-down guided control of attention, brain state transitions, and response selection,

planning and execution.

Temporal resolution of fMRI has fundamental limitations and it probably will not reach a millisecond scale of ERPs

even in the future although it has improved considerably in the past decades(Logothetis 2008). We resolved the

lack of high temporal resolution by combing the temporal ERP and spatial fMRI data with RSA. Previously, RSA has

been used to combine fMRI and magnetoencephalography (MEG) for studying spatiotemporal processing of

tones(Su et al. 2014) and visual objects(Cichy et al. 2014). We guided our searchlight(Kriegeskorte et al. 2006)

fMRI analysis with ERP-based RDMs and investigated spatiotemporal dynamics of attention across the entire

cortex. Thus, our analysis revealed spatial maps of representational relationships that correlated with certain time

points in electrophysiological brain activity, and hence inform us about the time course of attentional processing.

The success in our endeavor might be partly due to the fact that ERPs are quite specific with regard to stimulus

processing and attention functions examined in the present study. This would have not been the case with non-

averaged EEG signal. Similarly, instead of raw time series we used regressors derived from the fMRI data. Thus,

the event-related averaging ensured high quality signals for the RSA analysis.

In our experimental setup we calculated discrimination thresholds, RTs, and correct responses. All these

behavioral measures confirmed that the present attention and distractor manipulations were as effective as

expected and that the participants’ task performance was similar in the ERP and fMRI experiments. The EEG

experiment was always conducted before the fMRI experiment. Nevertheless, there were no differences in task

performance that could reflect, for instance, learning. Perhaps the less comfortable and acoustically noisy

environment of fMRI canceled any learning related improvements in performance. Our behavioral tasks consisted
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of low-level (perceptual) components of pitch and orientation discrimination as well as higher-level (cognitive)

components of response selection, focusing and dividing attention. The low-level component of the task was

adaptively varied in order to control for the task difficulty. In the model RSA, no significant voxels clusters were

found for model RDM calculated from correct responses, suggesting that the adaptive method was effective.

However, for model RDM calculated from RTs, significant clusters were found in locations comparable with the

Attention Mode model. This suggests that the RTs reflect, in addition to perceptual discriminability, cognitive

processes related to decision making, attention and response preparation. The decision making cascade involves

several brain areas and components with different temporal dynamics (Philiastides et al. 2014; Muraskin et al.

2016). The top-down attention and response control components found in our discrimination analysis likely

involve processes related also to decision making.

Separate model correlations confirmed that the temporal and spatial patterns in ERPs and fMRI, respectively, were

indeed related to Distractor Types, Attention Modes and their interaction. Overall, we found stronger correlations

between fMRI and model RDMs than between fMRI and ERP RDMs. However, spatial distribution for some of the

models was more limited; Attention Mode and Distractor models mainly segregated frontal areas from auditory

and visual areas. We also tried other models, such as separating auditory and visual targets in addition to

separating Attention Modes, but the correlations were not significantly affected. In contrast, the spatial

distributions of ERP correlations varied markedly and revealed several distinct spatial clusters at different time

points. Correlation map most comparable to ERP-fMRI correlations, was found for model depicting interaction of

Attention Mode and Distractors, thus confirming that our ERP-fMRI correlations were genuinely related to

attention and distractor processing.

We parsed time-averaged fMRI data into several distinct spatial maps depicting spatiotemporal dynamics of

attentional processing. The resolution of our regional temporal correlation profiles calculated from fMRI data was

comparable to ERPs, even though we used time-averaged SPMT-images. Since these images integrate activation

over a few seconds, the information from different time points within the spatial patterns could have been

significantly blurred or smoothed. However, our results suggest that the fMRI activation patterns at different time

points add up, and hence the spatial information at different times is recoverable. Therefore, we propose that

spatiotemporal dynamics of whole brain fMRI activity patterns can be investigated with spatiotemporal models

that include separate components for each time point of interest.

Overall, stronger ERP-fMRI correlations were found in the visual than auditory cortex, and the early part of

correlations showed visual cortex activity first, followed by parietal and auditory cortex activity. These could be

due to visual dominance during multisensory stimuli, e.g., ventriloquism effect(Driver 1996). Another possibility

is that our visual stimuli just elicited stronger effects than auditory stimuli, or that the auditory stimuli and

responses were partly masked more by the scanner noise and responses to it, respectively. A third possibility is

that spatial activation patterns are more persistent in the visual than auditory cortex, e.g., due to differences in

functional organization between the visual and auditory cortices. Furthermore, the observed temporal profiles for

visual and auditory areas were also different. In the visual areas, only one early peak was found and the correlation

decreased gradually, whereas in the auditory areas, two separate transient peaks were found, suggesting that

attention modulates visual and auditory regions differently. Behaviorally, crossmodal distractors had a smaller

effect on grating than tone discrimination. This suggests that the difference around 600 ms between the visual and
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auditory cortices might be related to modality switching or reorienting. Furthermore, there was an asymmetry of

behavioral responses between the modalities: The distractors prolonged the RTs to gratings relatively more than

the RTs to tones, and reduced the amount of correct responses relatively more for the tones than gratings. This

asymmetry might reflect the previously reported distractor related differences between the modalities (Boll and

Berti 2009; Bendixen et al. 2010), and especially the biases towards top-down and bottom-up attention systems

in the visual and auditory modalities, respectively (Braga et al. 2016). After the sensory-parietal responses,

complex dynamics emerged involving response-related processing, fronto-parietal, and default mode networks.

Interestingly, the peaks in ERP-fMRI correlations occurred roughly at the same time points in separate areas of

cortical networks. Thus instead of the classical serial and hierarchical processing account, our results are

consistent with previous research suggesting dynamic attentional control involving distinct components, which

have several phases and are distributed to multiple cortical areas.

The present multidimensional scaling and discriminant analysis suggested four spatiotemporal components. In

addition to the components related to cognitive processing, we also found components related to shifting between

brain states and response control. The first component, modality dependent and stimulus-driven orienting,

corresponding to the early peaks around 200-300 ms of ERP-fMRI correlations, is likely related to the components

of the P3a ERP response associated with novelty detection and involuntary attention(Yago et al. 2003) and to ERP

modulations due to attentional selection of the target events for further processing(Bengson et al. 2015). The

second component, top-down guided control, corresponding to the later peaks of ERP-fMRI correlations at 400-

600 ms is likely to be associated with ERP responses related to reorienting of attention(Schröger and Wolff 1998;

Berti and Schröger 2001) and other late attentional processes(Hopf and Mangun 2000; Nobre et al. 2000; Bengson

et al. 2015). The first and second components are roughly consistent with the dorsal and ventral attention

networks(Corbetta and Shulman 2002), but they were not limited only to the areas of these networks. Although

the determined spatiotemporal components were orthogonal, they still occasionally recruited overlapping cortical

areas, in agreement with previous reports showing parallel, partly overlapping attention networks (Stoppel et al.

2013). The time scales of these correlations are consistent with attention related connections found in a study

with a simultaneous EEG-fMRI recording (Walz et al. 2013). The third and fourth components, apparently

corresponding to brain state transitions and response control, respectively, are consistent with previous EEG

based modeling of fMRI task and response related effects in the frontal cortex and default mode areas (Walz et al.

2014) as well as the opposing effects of attention and default mode networks (Anderson et al. 2011; Hellyer et al.

2014).

Instead of sustained brain activity on the time scale of seconds or tens of seconds during different tasks, we used

an event related design to study attentional functions occurring within one second from stimulus onset.

Furthermore, we used MVPA to find dissimilarities in local activity distributions, not in the mean activity, during

multiple attentional processes. In our MVPA we found similar networks in both hemispheres, and observed larger

attentional modulations to distractors than targets. Inclusion of both auditory and visual attention conditions may

have emphasized supramodal attention networks. Moreover, previous studies suggest that attention effects

spread between synchronously stimulated modalities (Degerman et al. 2007) perhaps explaining the present

similarity of target responses across different attention instructions. We also found robust pattern correlations in

the prefrontal areas. MVPAs are more sensitive than univariate analyses (Kriegeskorte and Kievit 2013), which
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might explain the lack of prefrontal activation during some attention tasks in previous studies. In our experiment,

we used an adaptive task to individually control for task difficulty. Specific attentional functions may have different

effects on brain responses: task difficulty or required effort is observed as an increase in total activity, whereas

the task type, such as focused or divided attention, would be specifically reflected in the activation patterns. Thus,

due to the adaptive task our results likely emphasize task type related activity changes.

Our results show that the spatial patterns of time-averaged fMRI data contain information at a sub-second time

scale and that this information can be recovered using temporal information from ERPs. This suggests that the

fMRI activity patterns could be modelled with spatiotemporal models that include different pattern predictions

for different time points, that is, the activity patterns within each searchlight or ROI could be modelled as a sum of

multiple predicted patterns. Developing a quantitative spatiotemporal model would be a significant future step in

understanding the complex dynamics of supramodal attention. In the present study, the spatiotemporal dynamics

of attention suggested four multi-faceted and spatially distributed components related to stimulus-driven and top-

down controlled attention, shifting between brain states and response control.
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