23,542 research outputs found

    The virtual human face – superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT Scan

    Get PDF
    The aim of this study was to evaluate the impact of simultaneous capture of the three-dimensional (3D) surface of the face and cone beam computed tomography (CBCT) scan of the skull on the accuracy of their registration and superimposition. 3D facial images were acquired in 14 patients using the Di3d (Dimensional Imaging, UK) imaging system and i-CAT CBCT scanner. One stereophotogrammetry image was captured at the same time as the CBCT and another one hour later. The two stereophotographs were then individually superimposed over the CBCT using VRmesh. Seven patches were isolated on the final merged surfaces. For the whole face and each individual patch; maximum and minimum range of deviation between surfaces, absolute average distance between surfaces, and standard deviation for the 90th percentile of the distance errors were calculated. The superimposition errors of the whole face for both captures revealed statistically significant differences (P=0.00081). The absolute average distances in both separate and simultaneous captures were 0.47mm and 0.27mm, respectively. The level of superimposition accuracy in patches from separate captures ranged between 0.3 and 0.9mm, while that of simultaneous captures was 0.4mm. Simultaneous capture of Di3d and CBCT images significantly improved the accuracy of superimposition of these image modalities

    Quantitative Analysis Linking Inner Hair Cell Voltage Changes and Postsynaptic Conductance Change: A Modelling Study

    Get PDF
    This paper presents a computational model which estimates the postsynaptic conductance change of mammalian Type I afferent peripheral process when airborne acoustic waves impact on the tympanic membrane. A model of the human auditory periphery is used to estimate the inner hair cell potential change in response to airborne sound. A generic and tunable topology of the mammalian synaptic ribbon is generated and the voltage dependence of its substructures is used to calculate discrete and probabilistic neurotransmitter vesicle release. Results suggest an almost linear relationship between increasing sound level (in dB SPL) and the postsynaptic conductance for frequencies considered too high for neurons to phase lock with (i.e., a few kHz). Furthermore coordinated vesicle release is shown for up to 300–400 Hz and a mechanism of phase shifting the subharmonic content of a stimulating signal is suggested. Model outputs suggest that strong onset response and highly synchronised multivesicular release rely on compound fusion of ribbon tethered vesicles

    Structural characterization and statistical-mechanical model of epidermal patterns

    Full text link
    In proliferating epithelia of mammalian skin, cells of irregular polygonal-like shapes pack into complex nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct and Fourier spaces of the cell centroids in the early stages of embryonic development show structural directional dependence, while in the late stages the patterns tend towards statistically isotropic states. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-ranged soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. Our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. We discuss ways in which our model might be extended so as to better understand morphogenesis (in particular the emergence of planar cell polarity), wound-healing, and disease progression processes in skin, and how it could be applied to the design of synthetic tissues

    ServiceSimulator v1.19

    Get PDF
    ServiceSimulator was designed as a free tool for modeling service operations. In addition to the simulator itself, the tool includes seven sample files which correspond to seven sample problems that involve how to address staffing issues relating to different scenarios of customer traffic, in operations as diverse as hair salons, quick-service restaurants, and call centers. The scenarios are given at the end of the instruction document. Videos are also available that show how to construct models for the seven sample problems. To explain how to use the simulator, the instruction book shows screen captures drawn from the models relating to Example 4 (an instructor of trainees at a hair salon), Example 5 (managing food waste at a quick-service counter), and Example 6 (customers arriving and waiting for service at a hair salon). Users are able to simulate possible changes in their own existing or planned service operations. Videos that show how to construct the sample problems using ServiceSimulator are available for free from Professor Thompson. Simply send him an email at [email protected] with the subject line ServiceSimulator video

    Character customization: Animated hair and clothing

    Get PDF
    Treball final de Grau en Disseny i Desenvolupament de Videojocs. Codi: VJ1241. Curs acadĂšmic: 2018/2019This project consists in designing and implementing a 3D female character editor. It is focused in modeling and animating the female character, hairstyle and clothes. This editor will be developed using the Unity 3D Game Engine. It will consist in an interface that allows changing skin and eye color, style and color of hair and, lastly, the clothes the character is to wear among a catalogue of predefined models. With each change, the character will respond with an animation in order to improve the experience of perceiving the final style of the character

    An experimental study to test a 3D laser Scanner for body measurement and 3D virtual garment design in Fashion education

    Get PDF
    Artists, scientists, anthropometrists and tailors have accurately measured the human body with traditional tools, such as tape measures, callipers and accumulated visceral experience for centuries. Due to the progressive acceleration in the quality of 3D graphics technology and computer processing power, many product industries that traditionally use 3D software as a 3D design and prototyping tool, are also successfully measuring, customizing and re-engineering the products they design and manufacture through the integrated use of 3D Laser scanning technology. In the changing world of Fashion, 3D graphics technology has at last emerged from the shadows of academic research projects and hit the high streets. 3D body measurement surveys, using mobile 3D laser scanners, have mapped the true shape and body sizes of the UK and USA populations. Virtual fit and 3D visualisation technology has expanded out from the Internet, into the physical world, and is now available for shoppers to visualise made to measure garments. The acceptance of three-dimensional body-scanning and 3D digital design tools into our everyday experiences can be seen as a significant move toward encouraging and developing new, innovative learning and teaching methods in Art & Design education. This paper describes an experimental study into the application of 3D laser scanner technology for use in learning and teaching of undergraduate and postgraduate fashion and textiles design; clothing manufacture, fashion marketing, merchandising and promotion. The study focuses on testing the 3D scanning equipment with a student sample group. The use of the sample group attempts to simulate a range of body shapes, categorised by the traditional standard size chart specification method, currently used to design new fashion collections for high street clothing retail and UK fashion education. The methods applied for evaluation and testing of the 3D laser scanner for body measurement are described, and the results of the initial user experiences are discussed. The study seeks to establish the overall efficiency of 3D scanning technology and investigates the potential value for integration of the 3D Laser scanner with 3D clothing design and construction software. Conclusions provide recommendations on the potential effectiveness of connecting the results of the 3D body measurement study to the fashion curriculu

    GaussianHair: Hair Modeling and Rendering with Light-aware Gaussians

    Full text link
    Hairstyle reflects culture and ethnicity at first glance. In the digital era, various realistic human hairstyles are also critical to high-fidelity digital human assets for beauty and inclusivity. Yet, realistic hair modeling and real-time rendering for animation is a formidable challenge due to its sheer number of strands, complicated structures of geometry, and sophisticated interaction with light. This paper presents GaussianHair, a novel explicit hair representation. It enables comprehensive modeling of hair geometry and appearance from images, fostering innovative illumination effects and dynamic animation capabilities. At the heart of GaussianHair is the novel concept of representing each hair strand as a sequence of connected cylindrical 3D Gaussian primitives. This approach not only retains the hair's geometric structure and appearance but also allows for efficient rasterization onto a 2D image plane, facilitating differentiable volumetric rendering. We further enhance this model with the "GaussianHair Scattering Model", adept at recreating the slender structure of hair strands and accurately capturing their local diffuse color in uniform lighting. Through extensive experiments, we substantiate that GaussianHair achieves breakthroughs in both geometric and appearance fidelity, transcending the limitations encountered in state-of-the-art methods for hair reconstruction. Beyond representation, GaussianHair extends to support editing, relighting, and dynamic rendering of hair, offering seamless integration with conventional CG pipeline workflows. Complementing these advancements, we have compiled an extensive dataset of real human hair, each with meticulously detailed strand geometry, to propel further research in this field

    APPLICATION OF THE ARTEC EVA SCANNER FOR ORTHOTICS IN PRACTICE

    Get PDF
    Tento člĂĄnok sa tĂœka spĂŽsobov, ktorĂ© sĂș k dispozĂ­cii na skeneri Artec Eva v oblasti protetiky a protetiky so zameranĂ­m na tvĂĄr a krk. Metodika je rozdelenĂĄ do 5 zĂĄkladnĂœch skupĂ­n - prĂ­prava prostredia, skener, predmety, skenovanie a 3D modely. PraktickĂĄ časĆ„ obsahuje 3D vybranĂ© vybranĂ© objekty, ktorĂ© obsahujĂș ukĂĄĆŸky inĂœch druhov, konkrĂ©tne oblasti dosahu vlasov, brady a oblasti očí

    Can people guess what happened to others from their reactions?

    Get PDF
    Are we able to infer what happened to a person from a brief sample of his/her behaviour? It has been proposed that mentalising skills can be used to retrodict as well as predict behaviour, that is, to determine what mental states of a target have already occurred. The current study aimed to develop a paradigm to explore these processes, which takes into account the intricacies of real-life situations in which reasoning about mental states, as embodied in behaviour, may be utilised. A novel task was devised which involved observing subtle and naturalistic reactions of others in order to determine the event that had previously taken place. Thirty-five participants viewed videos of real individuals reacting to the researcher behaving in one of four possible ways, and were asked to judge which of the four ‘scenarios’ they thought the individual was responding to. Their eye movements were recorded to establish the visual strategies used. Participants were able to deduce successfully from a small sample of behaviour which scenario had previously occurred. Surprisingly, looking at the eye region was associated with poorer identification of the scenarios, and eye movement strategy varied depending on the event experienced by the person in the video. This suggests people flexibly deploy their attention using a retrodictive mindreading process to infer events
    • 

    corecore