1,470 research outputs found

    Network-on-Chip -based Multi-Processor System-on-Chip: Towards Mixed-Criticality System Certification

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Zuverlässige und Energieeffiziente gemischt-kritische Echtzeit On-Chip Systeme

    Get PDF
    Multi- and many-core embedded systems are increasingly becoming the target for many applications that require high performance under varying conditions. A resulting challenge is the control, and reliable operation of such complex multiprocessing architectures under changes, e.g., high temperature and degradation. In mixed-criticality systems where many applications with varying criticalities are consolidated on the same execution platform, fundamental isolation requirements to guarantee non-interference of critical functions are crucially important. While Networks-on-Chip (NoCs) are the prevalent solution to provide scalable and efficient interconnects for the multiprocessing architectures, their associated energy consumption has immensely increased. Specifically, hard real-time NoCs must manifest limited energy consumption as thermal runaway in such a core shared resource jeopardizes the whole system guarantees. Thus, dynamic energy management of NoCs, as opposed to the related work static solutions, is highly necessary to save energy and decrease temperature, while preserving essential temporal requirements. In this thesis, we introduce a centralized management to provide energy-aware NoCs for hard real-time systems. The design relies on an energy control network, developed on top of an existing switch arbitration network to allow isolation between energy optimization and data transmission. The energy control layer includes local units called Power-Aware NoC controllers that dynamically optimize NoC energy depending on the global state and applications’ temporal requirements. Furthermore, to adapt to abnormal situations that might occur in the system due to degradation, we extend the concept of NoC energy control to include the entire system scope. That is, online resource management employing hierarchical control layers to treat system degradation (imminent core failures) is supported. The mechanism applies system reconfiguration that involves workload migration. For mixed-criticality systems, it allows flexible boundaries between safety-critical and non-critical subsystems to safely apply the reconfiguration, preserving fundamental safety requirements and temporal predictability. Simulation and formal analysis-based experiments on various realistic usecases and benchmarks are conducted showing significant improvements in NoC energy-savings and in treatment of system degradation for mixed-criticality systems improving dependability over the status quo.Eingebettete Many- und Multi-core-Systeme werden zunehmend das Ziel für Anwendungen, die hohe Anfordungen unter unterschiedlichen Bedinungen haben. Für solche hochkomplexed Multi-Prozessor-Systeme ist es eine grosse Herausforderung zuverlässigen Betrieb sicherzustellen, insbesondere wenn sich die Umgebungseinflüsse verändern. In Systeme mit gemischter Kritikalität, in denen viele Anwendungen mit unterschiedlicher Kritikalität auf derselben Ausführungsplattform bedient werden müssen, sind grundlegende Isolationsanforderungen zur Gewährleistung der Nichteinmischung kritischer Funktionen von entscheidender Bedeutung. Während On-Chip Netzwerke (NoCs) häufig als skalierbare Verbindung für die Multiprozessor-Architekturen eingesetzt werden, ist der damit verbundene Energieverbrauch immens gestiegen. Daher sind dynamische Plattformverwaltungen, im Gegensatz zu den statischen, zwingend notwendig, um ein System an die oben genannten Veränderungen anzupassen und gleichzeitig Timing zu gewährleisten. In dieser Arbeit entwickeln wir energieeffiziente NoCs für harte Echtzeitsysteme. Das Design basiert auf einem Energiekontrollnetzwerk, das auf einem bestehenden Switch-Arbitration-Netzwerk entwickelt wurde, um eine Isolierung zwischen Energieoptimierung und Datenübertragung zu ermöglichen. Die Energiesteuerungsschicht umfasst lokale Einheiten, die als Power-Aware NoC-Controllers bezeichnet werden und die die NoC-Energie in Abhängigkeit vom globalen Zustand und den zeitlichen Anforderungen der Anwendungen optimieren. Darüber hinaus wird das Konzept der NoC-Energiekontrolle zur Anpassung an Anomalien, die aufgrund von Abnutzung auftreten können, auf den gesamten Systemumfang ausgedehnt. Online- Ressourcenverwaltungen, die hierarchische Kontrollschichten zur Behandlung Abnutzung (drohender Kernausfälle) einsetzen, werden bereitgestellt. Bei Systemen mit gemischter Kritikalität erlaubt es flexible Grenzen zwischen sicherheitskritischen und unkritischen Subsystemen, um die Rekonfiguration sicher anzuwenden, wobei grundlegende Sicherheitsanforderungen erhalten bleiben und Timing Vorhersehbarkeit. Experimente werden auf der Basis von Simulationen und formalen Analysen zu verschiedenen realistischen Anwendungsfallen und Benchmarks durchgeführt, die signifikanten Verbesserungen bei On-Chip Netzwerke-Energieeinsparungen und bei der Behandlung von Abnutzung für Systeme mit gemischter Kritikalität zur Verbesserung die Systemstabilität gegenüber dem bisherigen Status quo zeigen

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Timing Predictability in Future Multi-Core Avionics Systems

    Full text link

    A time-predictable many-core processor design for critical real-time embedded systems

    Get PDF
    Critical Real-Time Embedded Systems (CRTES) are in charge of controlling fundamental parts of embedded system, e.g. energy harvesting solar panels in satellites, steering and breaking in cars, or flight management systems in airplanes. To do so, CRTES require strong evidence of correct functional and timing behavior. The former guarantees that the system operates correctly in response of its inputs; the latter ensures that its operations are performed within a predefined time budget. CRTES aim at increasing the number and complexity of functions. Examples include the incorporation of \smarter" Advanced Driver Assistance System (ADAS) functionality in modern cars or advanced collision avoidance systems in Unmanned Aerial Vehicles (UAVs). All these new features, implemented in software, lead to an exponential growth in both performance requirements and software development complexity. Furthermore, there is a strong need to integrate multiple functions into the same computing platform to reduce the number of processing units, mass and space requirements, etc. Overall, there is a clear need to increase the computing power of current CRTES in order to support new sophisticated and complex functionality, and integrate multiple systems into a single platform. The use of multi- and many-core processor architectures is increasingly seen in the CRTES industry as the solution to cope with the performance demand and cost constraints of future CRTES. Many-cores supply higher performance by exploiting the parallelism of applications while providing a better performance per watt as cores are maintained simpler with respect to complex single-core processors. Moreover, the parallelization capabilities allow scheduling multiple functions into the same processor, maximizing the hardware utilization. However, the use of multi- and many-cores in CRTES also brings a number of challenges related to provide evidence about the correct operation of the system, especially in the timing domain. Hence, despite the advantages of many-cores and the fact that they are nowadays a reality in the embedded domain (e.g. Kalray MPPA, Freescale NXP P4080, TI Keystone II), their use in CRTES still requires finding efficient ways of providing reliable evidence about the correct operation of the system. This thesis investigates the use of many-core processors in CRTES as a means to satisfy performance demands of future complex applications while providing the necessary timing guarantees. To do so, this thesis contributes to advance the state-of-the-art towards the exploitation of parallel capabilities of many-cores in CRTES contributing in two different computing domains. From the hardware domain, this thesis proposes new many-core designs that enable deriving reliable and tight timing guarantees. From the software domain, we present efficient scheduling and timing analysis techniques to exploit the parallelization capabilities of many-core architectures and to derive tight and trustworthy Worst-Case Execution Time (WCET) estimates of CRTES.Los sistemas críticos empotrados de tiempo real (en ingles Critical Real-Time Embedded Systems, CRTES) se encargan de controlar partes fundamentales de los sistemas integrados, e.g. obtención de la energía de los paneles solares en satélites, la dirección y frenado en automóviles, o el control de vuelo en aviones. Para hacerlo, CRTES requieren fuerte evidencias del correcto comportamiento funcional y temporal. El primero garantiza que el sistema funciona correctamente en respuesta de sus entradas; el último asegura que sus operaciones se realizan dentro de unos limites temporales establecidos previamente. El objetivo de los CRTES es aumentar el número y la complejidad de las funciones. Algunos ejemplos incluyen los sistemas inteligentes de asistencia a la conducción en automóviles modernos o los sistemas avanzados de prevención de colisiones en vehiculos aereos no tripulados. Todas estas nuevas características, implementadas en software,conducen a un crecimiento exponencial tanto en los requerimientos de rendimiento como en la complejidad de desarrollo de software. Además, existe una gran necesidad de integrar múltiples funciones en una sóla plataforma para así reducir el número de unidades de procesamiento, cumplir con requisitos de peso y espacio, etc. En general, hay una clara necesidad de aumentar la potencia de cómputo de los actuales CRTES para soportar nueva funcionalidades sofisticadas y complejas e integrar múltiples sistemas en una sola plataforma. El uso de arquitecturas multi- y many-core se ve cada vez más en la industria CRTES como la solución para hacer frente a la demanda de mayor rendimiento y las limitaciones de costes de los futuros CRTES. Las arquitecturas many-core proporcionan un mayor rendimiento explotando el paralelismo de aplicaciones al tiempo que proporciona un mejor rendimiento por vatio ya que los cores se mantienen más simples con respecto a complejos procesadores de un solo core. Además, las capacidades de paralelización permiten programar múltiples funciones en el mismo procesador, maximizando la utilización del hardware. Sin embargo, el uso de multi- y many-core en CRTES también acarrea ciertos desafíos relacionados con la aportación de evidencias sobre el correcto funcionamiento del sistema, especialmente en el ámbito temporal. Por eso, a pesar de las ventajas de los procesadores many-core y del hecho de que éstos son una realidad en los sitemas integrados (por ejemplo Kalray MPPA, Freescale NXP P4080, TI Keystone II), su uso en CRTES aún precisa de la búsqueda de métodos eficientes para proveer evidencias fiables sobre el correcto funcionamiento del sistema. Esta tesis ahonda en el uso de procesadores many-core en CRTES como un medio para satisfacer los requisitos de rendimiento de aplicaciones complejas mientras proveen las garantías de tiempo necesarias. Para ello, esta tesis contribuye en el avance del estado del arte hacia la explotación de many-cores en CRTES en dos ámbitos de la computación. En el ámbito del hardware, esta tesis propone nuevos diseños many-core que posibilitan garantías de tiempo fiables y precisas. En el ámbito del software, la tesis presenta técnicas eficientes para la planificación de tareas y el análisis de tiempo para aprovechar las capacidades de paralelización en arquitecturas many-core, y también para derivar estimaciones de peor tiempo de ejecución (Worst-Case Execution Time, WCET) fiables y precisas

    Ærø: A Platform Architecture for Mixed-Criticality Airborne Systems

    Get PDF

    Mixed-Criticality Systems on Commercial-Off-the-Shelf Multi-Processor Systems-on-Chip

    Get PDF
    Avionics and space industries are struggling with the adoption of technologies like multi-processor system-on-chips (MPSoCs) due to strict safety requirements. This thesis propose a new reference architecture for MPSoC-based mixed-criticality systems (MCS) - i.e., systems integrating applications with different level of criticality - which are a common use case for aforementioned industries. This thesis proposes a system architecture capable of granting partitioning - which is, for short, the property of fault containment. It is based on the detection of spatial and temporal interference, and has been named the online detection of interference (ODIn) architecture. Spatial partitioning requires that an application is not able to corrupt resources used by a different application. In the architecture proposed in this thesis, spatial partitioning is implemented using type-1 hypervisors, which allow definition of resource partitions. An application running in a partition can only access resources granted to that partition, therefore it cannot corrupt resources used by applications running in other partitions. Temporal partitioning requires that an application is not able to unexpectedly change the execution time of other applications. In the proposed architecture, temporal partitioning has been solved using a bounded interference approach, composed of an offline analysis phase and an online safety net. The offline phase is based on a statistical profiling of a metric sensitive to temporal interference’s, performed in nominal conditions, which allows definition of a set of three thresholds: 1. the detection threshold TD; 2. the warning threshold TW ; 3. the α threshold. Two rules of detection are defined using such thresholds: Alarm rule When the value of the metric is above TD. Warning rule When the value of the metric is in the warning region [TW ;TD] for more than α consecutive times. ODIn’s online safety-net exploits performance counters, available in many MPSoC architectures; such counters are configured at bootstrap to monitor the selected metric(s), and to raise an interrupt request (IRQ) in case the metric value goes above TD, implementing the alarm rule. The warning rule is implemented in a software detection module, which reads the value of performance counters when the monitored task yields control to the scheduler and reset them if there is no detection. ODIn also uses two additional detection mechanisms: 1. a control flow check technique, based on compile-time defined block signatures, is implemented through a set of watchdog processors, each monitoring one partition. 2. a timeout is implemented through a system watchdog timer (SWDT), which is able to send an external signal when the timeout is violated. The recovery actions implemented in ODIn are: • graceful degradation, to react to IRQs of WDPs monitoring non-critical applications or to warning rule violations; it temporarily stops non-critical applications to grant resources to the critical application; • hard recovery, to react to the SWDT, to the WDP of the critical application, or to alarm rule violations; it causes a switch to a hot stand-by spare computer. Experimental validation of ODIn was performed on two hardware platforms: the ZedBoard - dual-core - and the Inventami board - quad-core. A space benchmark and an avionic benchmark were implemented on both platforms, composed by different modules as showed in Table 1 Each version of the final application was evaluated through fault injection (FI) campaigns, performed using a specifically designed FI system. There were three types of FI campaigns: 1. HW FI, to emulate single event effects; 2. SW FI, to emulate bugs in non-critical applications; 3. artificial bug FI, to emulate a bug in non-critical applications introducing unexpected interference on the critical application. Experimental results show that ODIn is resilient to all considered types of faul

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft
    • …
    corecore