

Aalborg Universitet

Reliable flight control system architecture for agile airborne platforms

an asymmetric multiprocessing approach

Majumder, Shibarchi; Nielsen, Jens Frederik Dalsgaard; Bak, Thomas; La Cour-Harbo,
Anders
Published in:
The Aeronautical Journal

DOI (link to publication from Publisher):
10.1017/aer.2019.30

Creative Commons License
Unspecified

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Majumder, S., Nielsen, J. F. D., Bak, T., & La Cour-Harbo, A. (2019). Reliable flight control system architecture
for agile airborne platforms: an asymmetric multiprocessing approach. The Aeronautical Journal, 123(1264),
840-862. https://doi.org/10.1017/aer.2019.30

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 24, 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VBN

https://core.ac.uk/display/304611647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/aer.2019.30
https://vbn.aau.dk/en/publications/66cfcda7-e249-495d-9745-55dc889b742e
https://doi.org/10.1017/aer.2019.30

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Manuscript 1

Page 1 of 24

Reliable Flight Control System
Architecture for Agile Airborne
Platforms: An Asymmetric
Multiprocessing Approach
Shibarchi Majumder, Jens Frederik Dalsgaard Nielsen, Thomas Bak, Anders la Cour-Harbo∗

Department of Electronic Systems, Aalborg University
Aalborg

Denmark

ABSTRACT
System software subsystems in an unmanned aircraft system share hardware resources
due to space, weight, and power constraints. Such subsystems have different criticality,
requirements, and failure rates, and can cause undesired interference when sharing the
same hardware. A component with high failure rate can reduce the reliability of the
system unless a fault containment mechanism is adopted.

This work proposes an asymmetric multiprocessor architecture to establish isolation
at the hardware level for distributed implementation of safety-critical subsystems along
with user defined payload subsystems on the same hardware with minimally reduced
reliability of the system. To achieve that, subsystems are strategically segregated in
separate processors, connected to an on-chip protective interconnect for inter-processor
communications. A custom watchdog and reset mechanism are implemented to reset
a specific processor without affecting the entire system if required. The architecture is
demonstrated on a FPGA chip. In addition, an example of an optimized distribution
is provided for a specific flight control system with five subsystems.

Keywords:

Mixed-Criticality System; Reliable-multiprocessing; Embedded Flight Computer;
Asymmetric-multiprocessing; Reliable Embedded System; Unmanned Aircraft Sys-
tem

∗ This research is funded by Danish Independent Research Foundation under grant num-
ber 6111-00363B. Email: sm@es.aau.dk, jdn@es.aau.dk, tba@es.aau.dk, alc@es.aau.dk

Received 12 12 2018; revised DD MM YYYY; accepted 12 03 2019.

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

2 Manuscript

NOMENCLATURE
Symbols

λ Rate of failure per unit time
cm Criticality of subsystem m
Sm Subsystem m
Rm Reliability of subsystem m
Rsys Reliability of overall system
Sall Union of all subsystems

Abbreviations

ALU Arithmetic and logic unit
AMP Asymmetric multi-processor
FCS Flight control system
FPGA Field programmable gate array
HDL Hardware description language
IMU Inertial measurement unit
PID Proportional-integral-derivative

1.0 INTRODUCTION
Reliability is the key aspect when considering operations of unmanned aircraft systems
(UAS), or drones, in close vicinity to people. The reliability aspect of the embedded
flight controller for UAS was neglected earlier, probably because faults were often
encountered from other physical components. Recent research outcomes in control
algorithms have made it possible to keep the craft airborne even after failure of major
subsystems (1) that gives us the motivation to put effort towards a reliable embedded
flight controller platform.

Conventional solutions to improve reliability in embedded platforms is achieved by
extensive hardware redundancy, which is not feasible for agile aerial platforms due
to space, weight, and power (SWaP) constraints. In a generic UAS embedded flight
computer, the applications with different level of criticality share the same hardware
due to tight SWaP budget. Operation or failure of one application can cause inter-
ference that might cause malfunction in other applications or even the entire system,
compromising the overall reliability. Although the software implementation of con-
ventional flight control algorithms are widely evaluated and considered reliable, the
payload/mission specific applications, implemented by the end-user, can have higher
complexity and can be hard to analyze, hence, may have imperfections.

An isolation mechanism is beneficial for fault containment and prevention of inter-
application interference. A hypervisor and embedded operating system (6) can provide
such an isolation in software by restricting the access of individual applications to
shared resources up to a certain degree. However, implementing software-based safety
mechanism is a complex task that becomes even more complex for mixed-criticality
system and multicore implementation (9). Additionally, the protective software (e.g.
an operating system) consumes significant amount of computational resources. Dis-
tributed and redundant implementation in isolated partitions in embedded platforms

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 3

are done by considering the reliability of the subsystems of the system. For safety-
critical systems, like UAS, analyzing the criticality of the subsystems is important
for efficient distribution. In the aviation industry, such criticality levels are analyzed,
and systems with different criticality levels are kept isolated, which is not feasible for
low-cost platforms.

In this work, we present a distributed implementation of a conventional flight con-
trol system (FCS) software on a custom multi-processor architecture, that establishes
isolation at hardware level. The proposed distribution method considers reliability
as well as criticality of the subsystems for distributed implementation to minimize
the probability of system failure; which we define to be a loss of control situation.
For implementation on a resource limited platform, applications with different levels
of criticality and reliability are allowed to share the same processor. Each proces-
sor is an independent system, with dedicated and isolated resources, connected to a
protective inter-connect for inter-processor communication with message-passing tech-
nique. Establishing isolation at hardware level provides the benefits of a distributed
and bare-metal implementation with ease of scheduling and execution time analysis.
Furthermore, such a platform is free from the complexity of multi-threading and offers
re-usability of applications developed for single processor systems.

The paper is structured as follows. Section 2 gives an overview of related works and
presents regulations for unmanned aircraft and its subsystems. Section 3 provides
an insight of a generic FCS architecture and functionality of different subsystems.
Section 4 introduces the proposed system architecture and its components followed
by implementation of a FCS in the architecture in Section 5. Section 6 presents
an analysis of fault-tolerance under some given condition. Experimental results are
presented in Section 7 and Section 8 concludes the paper.

2.0 Background and Related Work

Despite the fact that the dynamics and control of manned and unmanned aircraft
systems are very similar, the software implementation in unmanned aircraft system
is very different. Apart from the quality regulations and certification standards, the
distributed and redundant control structure in manned aviation makes it more reliable
where a single failure can hardly result in a catastrophe. Moreover, separate hardware
and system isolation prevent interference.

The advancement in FPGA technology has made it possible to develop application-
specific custom processor architectures, and asymmetric multiprocessor (AMP) archi-
tectures have gained the attention of researchers. Unlike synchronous multiprocessors
where processors are connected to shared memory, in AMP architecture processors are
distributed in clusters and resources are shared within a cluster only. Such architec-
tures have been under consideration for safety-critical applications. In (7), researcher
have investigated such a platform for avionics implementation, where a health moni-
toring system of a helicopter is implemented in a many-core architecture. The authors
considered the regulations for airborne systems, and isolation was established between
subsystems of different criticality level.

Established solutions for safety-critical applications largely depends on availabil-
ity of resources for recovery. In (5), such a redundant implementation is discussed.

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

4 Manuscript

In resource-limited platforms, such availability of resources is not feasible. The re-
searchers in (3) introduced an in-operation error detection and recovery technique and
proposed novel methodologies for efficient resource utilization in redundant hardware.
An adaptive approach with a dynamic scheduling solution is provided in (4). For
efficient resource utilization in multicore architectures load balancing techniques are
considered where effort is given to distribute the computation tasks evenly on the avail-
able processors. Such practice of distributed implementation is beneficial for general
purpose computation in terms of overall throughput and power, but for safety-critical
applications considering reliability and criticality of the tasks is important. In (14)

and (11) the reliability and dependability of software implementations for different ap-
plication of different size and functionality is presented. The authors have described
several approaches of estimating achievable software reliability under different condi-
tions. In (15), the author has described software reliability modes, including system
availability, safety, security, and criticality aspects of software.

In (13), field failure rate of an integrated software system is analyzed prior to field
deployment, where a field failure rate prediction methodology is described by consid-
ering system test data and field data using software reliability growth models. Such a
methodology gives an estimation of software reliability in a targeted platform before
the actual deployment of the software. The authors in (12) propose a new software reli-
ability model that takes into account the uncertainty of operating environments, that
is helpful for estimating the reliability of the software implementation in a hardware
environment that is different from the one, for which the software was developed and
tested.

3.0 Flight Controller Architecture for UAS

The objective of an effective flight controller is to reach desired state at desired time
instant by wisely manipulating the actuators, considering the dynamics of the vehi-
cle. Although the implementation of a flight controller varies with the dynamics of
the platform, the control architecture is very similar for conventional fixed wing and
multirotor platforms.

A conventional flight controller consists of multiple cascaded closed-loop controllers,
where the control command flows from the outer loop to the inner loop. The inner-
most loop is closely coupled with the physical actuators that establishes link between
the plant (the UAS platform) and the controller. Required control loop frequency
depends on the application, environmental factors, and dynamics of the platform.

A multirotor platform has faster dynamics compared to a fixed-wing platform of
similar size and weight, and requires a faster control response for controlled maneuvers.
For this reason, this work will present the proposed method as applied to a FCS
architecture for a multirotor platform.

A multirotor is controlled by actuating the thrust from each rotor, by manipulating
the angular velocity of the rotors. The inner-loop controller, typically an angular
velocity controller, is a closed-loop controller that controls the angular velocity of the
multirotor by directly controlling the rotors by taking desired angular velocities as a
reference signal from the attitude controller and actual roll, pitch and yaw motions
(from an on-board sensor/estimator) as feedback signal as shown in Figure-1. The

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 5

attitude controller gets references from a translational velocity controller, which in
turn depends on a position controller and ultimately a trajectory planner. In a hover
condition, where reference signals are zero, the angular velocity controller controls the
rotors to hold the multirotor in a horizontal position.

UAS DYNAMICSATTITUDE
CONTROLLER

VELOCITY
CONTROLLER

TRAJECTORY
PLANNER

SENSOR/
ESTIMATOR[θ, φ, ψ,

h]

MOTION
CAPTURE

TERRAIN MAP/
WAY-POINTs

[θ', φ
', ψ

', h']

[x, y, z]

[x', y', z'] throttle command

[ax,ay, az,
P, Q, R]

Figure 1. Block diagram of a generic FCS implementation, where inner to outer loops are represented in
a right to left order. [θ′, φ′, ψ′, h′] is the reference attitude and altitude. [ax, ay, az, P,Q,R] are

accelerations and angular velocities respectively.

The position controller is a feedback controller that takes a reference signal from a
trajectory planner, feedback signal from a positioning device (such as GPS or motion
capture system) and outputs desired attitude state variables that is fed to the atti-
tude controller as an input. A trajectory planner could have very different approaches
of generating output signal in the form of position (x′, y′, z′) or position-velocity
(x′, y′, z′, u′, v′, w′) combination that goes into the position/velocity controller(s). A
vast range of different approaches like way-point navigation, vision-based navigation,
vision-IMU odometry, genetic algorithm etc. are used for trajectory planning.

3.1 Sources of failure and effects

A system failure in this context can be defined as an uncontrolled, unrecoverable
maneuver resulting in a crash of the platform. This work considers the failure related
to the FCS only, and not failures related to mechanical, power or external peripheral
(GPS/ motion capture device) failures. We have considered that the operation of the
UAS is completely autonomous and there is no pilot input to avoid human error.

Failure in different control loops with different functionality has different effect on
the system. The source of failure could be in the algorithm, in software implementa-
tion, in the dependencies, and even in the computing platform, i.e. embedded com-
puter. It is also vital to consider the response time of the control loop, as a delayed
response is also considered as a functional failure in control application.

The inner-loop is the most critical control loop in the system, as a failure at this level
results in loss of control with a very high probability. However, a proportional-integral-
differential (PID) controller, the widely used control algorithm in the inner-loop is
fairly simple, deterministic, and easy to implement in software. The effectiveness of
the inner-loop heavily rely on the attitude sensor/estimator output and redundant
sensors are used to increase reliability. Assuming, the external devices are fault-free,
the only possible source of failure in the inner-loop could be interference from other
applications or a failure in the computational platform. The position controller is
similar to the inner-loop where a PID controller is widely used to compute reference

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

6 Manuscript

attitude/thrust control commands to hold or attain a reference position in a three-
dimensional space. The position controller itself is reliable, however, its dependency
on an external positioning system (e.g. GPS) can reduce its reliability in terms of
timely computation of control commands. A failure in the position-controller is not
necessarily catastrophic, as a controlled descent is still possible with the inner-loop
controller alone; however, an uncontrolled drift may result in a crash of the platform.

The trajectory controller may use a complex algorithms to compute desired trajec-
tories and its software implementation can be hard to analyze for errors. Algorithms
like way-point tracking is fairly simple, and a deterministic implementation is possible.
However, most of the autonomy comes from the life-long trajectory planning where
the trajectory is planned or updated on the go based on the updated information
of the surroundings. Such iterative computations may result in memory overflow or
infinite looping. Although a failure in the trajectory controller would not necessarily
lead to a loss of control, it can significantly interfere with other applications when
sharing the same computational platform.

4.0 System Architecture
In this section, we will discuss the architecture of the proposed system and the ar-
chitectural benefits in the context of isolation. For designing the custom platform
architecture, the following assumptions are considered.

1. The software is directly implemented without any operating system or any other
software-based protection mechanism.

2. A malfunctioning software subsystem can adversely effect other subsystems shar-
ing the same processor.

3. All subsystems can run on any of the processors.

The design goal is to establish isolation at the hardware level to prevent interference
between processes such that no subsystem can interfere subsystems in other partitions
or the entire system under all possible conditions to ensure a reliable computation
framework for critical control applications. The idea behind this work is to consider a
multicore architecture for an agile aerial platform with limited resources. Therefore,
the focus is to reduce the footprint of the custom hardware implemented on FPGA
thread for possible implementation on very small and low-cost platforms.

4.1 Processor

The system has four processors and each processor in this architecture is an inde-
pendent system with its own I/O, cache, data memory, instruction memory, heap
and stack and no memory is shared between two processors. The complete isolation
prevents any kind of interference between the processes running on each processor.

The processor considered in this work is a 32-bit RISC processor implemented with
separate 32-bit wide data and 16-bit wide instruction memories. The capacity of the
data and instruction memory are configurable and depends upon application needs
and available physical resources. The separate instruction and data memory allows it
to fetch an instruction in every clock cycle. For simpler implementation of different

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 7

width of data and instruction, the processor does not support ’immediate’ and all the
operands are stored in the data-memory. Each processor has 8 32-bit general purpose
registers that are used for computation. The ALU operates on the data stored in the
general purpose registers or in the data memory and stores a result in the general
purpose registers or in the data-memory. The supported data operations by the ALU
are described in Table 1.

Table 1
Supported data operations by the ALU.

Category Supported Operations by the ALU

Arithmetic add, subs, mult, ++

Relational ==, !=, >=, >, <=, <

Logical and, or, xor, neg

Shift shift between 0 to 31 bit

Each processor has an internal 32-bit counter that can be directly accessed by the
ALU with specific instruction. Furthermore, each processor is equipped with an inter-
nal watchdog with a 32-bit counter. On a start or reset condition, the program counter
of the processor is set to the code entry point of the instruction memory associated
to the processor, the general purpose registers in the processors are initialized to zero
and the watchdog counter is set to zero.

4.2 Memory

Memory is a critical element for establishing isolation. Erroneous applications can
corrupt memory allocated to itself or memory regions of other applications. In this
work, the memory device used are on-chip memory only and off-chip memory is out
of the scope of this work. The memory is defined in HDL and the synthesis tool
targets the on-chip memory blocks on the the FPGA for synthesizing memory on the
hardware. The memory shares clock with the processor. The memory blocks allocated
to each processor are physically isolated. Application running on a processor can only
access the data memory assigned to that specific processor. Furthermore, the separate
implementation of data memory and instruction memory helps to prevent corruption
of the executable code. The memory writing mechanism of the instruction memory
is only accessibly to a program downloading mechanism that is used for writing the
executable code in the instruction memory by the user. The user can program and
re-program the instruction memory and can read the instructions for verification as a
RAM device. However, the processor can only read from the instruction memory, as a
ROM device. It is the application developers responsibility to fit the application in the
memory allocated to a processor to prevent overflow. The executable code needs to
be uploaded separately to each isolated instruction memories, which can be different
or same for each processor depending upon the user need.

The memory operations are single cycled, the processor requests data from a mem-
ory location and reads the data in the subsequent cycle.

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

8 Manuscript

M
em

or
y

m
ap

pe
d

M
em

or
y

m
ap

pe
d

interconnect Tx

IO- Actuator

IO- Sensor

interconnect Rx [n:0]

executable

heap/ stack/ rw/ro
data

interconnect Tx

IO- Device

executable

heap/ stack/ rw/ro
data

interconnect Tx

executable

heap/ stack/ rw/ro
data

IO- Device

Selector

interconnect Tx

IO- Actuator

IO- Sensor

executable

heap/ stack/ rw/ro
data

Selector

M
em

or
y

m
ap

pe
d

M
em

or
y

m
ap

pe
d

M
em

or
y

In
te
rf
ac
e

M
em

or
y

In
te
rf
ac
e

M
em

or
y

In
te
rf
ac
e

M
em

or
y

In
te
rf
ac
e

source
selector

inter-
connect
interface

inter-
connect
interface

inter-
connect
interface

inter-
connect
interface

Interconnect
Controller

Code entry point 0x0000

Code entry point 0x0000

Code entry point 0x0000

Code entry point 0x0000

Address
decode

Address
decode

Address
decode

interconnect Rx [n:0]

interconnect Rx [n:0]

interconnect Rx [n:0]

IMU
Sensor

Actuator

Reset
IPCore

Address
decode

CPU 4

CPU 3

CPU 2

CPU 1

Figure 2. Block diagram of the proposed architecture in a four CPU configuration.

4.3 Peripherals

The access to external devices (sensors and actuators in this case) is restricted to the
associated applications only to establish isolation, and a memory mapping approach is
adopted to map the data-registers of the IO devices in the memory region allocated to
the individual processors as shown in Figure 2. In this configuration, specific addresses
from each partition is dedicated to memory mapped devices. The memory-mapped
address share the same interface with the data-memory. The read-write request for the
memory mapped addresses are bypassed to the IO-devices (IP Cores) by a memory-
interface mechanism implemented in hardware by controlling the chip-select line. The
physical memory location at the addresses of the memory mapped devices cannot be
accessed and remains unused at the upper edge of each memory partition. A processor
reads 0, if an IO-device is not present at a dedicated memory-mapped address.

4.4 Reset IPCore

A reset mechanism is necessary to reset the processors when a fault is encountered.
In most platforms an universal reset is used to restart all processors and other com-
ponents. The isolated implementation in this architecture allows implementing an

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 9

individual reset mechanism where any particular processor can be reset without af-
fecting the other components in the system. The custom reset hardware is connected
to the on-chip interconnect where any processor can send a reset request for itself or
other processors. Once a reset request is received for a processor, the reset line of
that processor is held active for one clock cycle. This hardware is beneficial for fault
recovery as discussed in later sections. The reset IPcore can be a single point of failure
for the system, however, it is defined in a simple and analyzable form with a small
footprint, therefore, assumed to be reliable.

4.5 Source selection

In a system with multiple producers and consumers, a source control mechanism is
essential. A polling based source selection mechanism is established practice for re-
dundant architectures with N-redundant systems. In the proposed architecture with
limited resources a polling based source selection mechanism is not effective. The
sources selection IPcore controls the data flow between processors and peripherals
where more than one source is present. The data flow from sensors to processors is
simple, where the IPcore forks the sensor data to multiple processors without any
control. The actuators can not handle simultaneous input from more than one source,
moreover, simultaneous write from two separate functional sources can result in an
unpredictable and erroneous data-write and a flow control mechanism is necessary.
The IPCore has an internal counter and four 8-bit registers for each propulsion unit
where each processor can write the control command (i.e. thrust command in per-
centage in this case). The source selection IPcore forwards the command from the
default register to the propulsion controller i.e PWM generator in this case. If a fresh
command is not received before a timeout period, the IPcore selects the next register
as the default register.

4.6 On-Chip Interconnect

As there is no shared memory in this architecture, a message passing approach is
taken for inter-processor communication to share data between applications running
on separate processors, where application running on one processor can send data
as message-packets to a destination processor connected with an interconnect. The
interconnect has special mechanism for data-protection, isolation, and real-time end-
to-end on-chip communication.

4.6.1 Micro-architecture

The interconnect has two components; an interface for each processor and a controller.
The interface is an on-chip memory-mapped device where the transmitting and receiv-
ing buffers are independently mapped to the memory region of associated processor.
The interface takes two address spaces for transmission, one for the data-packet and
the other for destination address, and one address space for each receiving channel.
The destination address is the destination processor id followed by the channel id.

Each interface has dedicated sampling buffers for each transmission and reception
channel, where the data-packets are held before transmission and stored after reception

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

10 Manuscript

for the consumer application to read. The dedicated sampling buffers hold single
data-packets from the associated channel unless a new-packet from the same channel
over-writes the packet or it gets consumed by the consumer. Each interface has an
independent transmission and reception line, a single bit request line, a single bit access
line and a single bit active line to connect with the controller. The transmission and
reception lines from each interface are connected to the controller with a cross-bar.

The controller controls the communication over the interconnect by providing trans-
mission access to the interfaces. The controller has separate request, access, and active
line connecting each interface. The controller is memory-less and the flow through the
controller is atomic.

4.6.2 Operation

At the beginning of a transmission, a producer (sending application) writes the mes-
sage and the destination address at the memory mapped transmission address of the
interface. When a fresh data-packet is received at the interface, the interface raises
a transmission request to the controller. A round-robin arbitration is implemented
in the controller to provide transmission access to each interface by holding the asso-
ciated access line high. Once access is gained, the interface keeps transmitting until
all data-packets are transmitted or access is taken-back by the controller (access line
is low). The controller checks for the destination processor address in the header of
the data-packets and forwards the packet to the destination interface by controlling
the x-bar. The destination interface reads the channel id in the header and holds the
message in the associated channel buffer.

Channel specific sampling buffers provide an isolation mechanism; unlike conven-
tional FIFO buffers, overflow in one channel has no affect on the data in other channels.
Additionally, the access is controlled by the on-chip controller, dysfunction in an appli-
cation can not over-load the system, as the controller only forwards the data-packets
from an interface, when transmission access is given to the interface.

5.0 Distributed Implementation
This section addresses the distributed implementation strategy of a conventional FCS
in the proposed architecture. The design goal is to achieve higher reliability of the
entire system to reduce the probability of a loss-of-control failure.

Distributed implementation does not necessarily provide improvements in reliability.
In order to achieve improvements we have to provide a reasonably intelligent distri-
bution of functionality on the available processors. In our setup, these functionalities
are provided as function calls in a programming language and in the following will
be called subsystems. Any functionality can be provided by more than one subsys-
tem, but will then be programmed differently to achieve some degree of independency.
Thus, the FCS consists of a number of subsystems, as shown in Figure 2.

5.1 Reliability and criticality

One method for determining the optimal distribution is to assign a reliability function
to each functionality and simply pick the distribution that provides the better overall

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 11

reliability. In addition to this, we are also interested in optimizing for criticality, that
is finding the distribution with the least probability of losing control of the aircraft.
Criticality of a subsystem is determined by the possible impact on the system on the
event of dysfunction in that particular subsystem. Each subsystem is assigned a criti-
cality that expresses the importance of the subsystem being operational. Importance
is to be understood in terms of aviation safety, where failure of a critical subsystem is
more likely to lead to loss of the aircraft than failure of a less critical subsystem. For
instance, maintaining attitude control of the aircraft is much more important than
completing the mission of the aircraft. Subsystem criticality is quantified as a number
between 0 and 1, with 0 being non-critical and 1 being very critical for maintaining
control of the aircraft.

We impose the following assumptions on these subsystems.

1. Each subsystem is either operational or it has failed.

2. Failure of a subsystem results in failure of the processor it is running on, and thus
of all other subsystems running on the same processor.

3. An operational subsystem produces correct results.

4. A known reliability function R(t) is associated with each subsystem.

5. A known criticality index is associated with each subsystem.

6. The number of processors available on the platform are limited and known to the
system designer.

7. Two subsystems can have the same functionality, but with different implementa-
tions. The subsystems are said to be redundant. It is assumed that redundant
subsystems are independent. We will use the term ’functional subsystems’ for
subsystems with different functionalities.

8. A payload or foreign application software is not analyzed and might have imper-
fections.

The analysis only includes the algorithmic parts of the FCS. Thus, we assume sensors
and actuators to be perfectly reliable.

5.2 Reliability analysis

The reliability R(t) of a subsystem is the probability of non-occurrence of a subsystem
failure up until time t. When two subsystem are interdependent, meaning that if one
fails the systems composed of the two subsystems also fails, the joint reliability is

Rsys(t) =

n∏
k=1

Rk(t) . (1)

We say that the subsystems are in series. If two subsystems are independent, meaning
that the system composed of the two subsystems will continue to function correctly if
either of the two subsystems fail, the joint reliability is

Rsys(t) =
(

1−
n∏
k=1

(1−Rk(t))
)
, (2)

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

12 Manuscript

and we say that the subsystems are in parallel.
As stated in assumption 2 above, when subsystems run of the same core a failure of

one subsystem is assumed to render the entire core inoperable. Therefore, any subsys-
tems running on the same core will be in series. Redundant systems, as described in
assumption 7, are in parallel. So, if subsystems S1 and S2 are redundant implementa-
tions of the same functionality, with reliability functions R1 and R2, respectively, the
joint reliability R3(t) of the combined systems of S1 and S2 is

R3(t) = 1−
(
1−R1(t)

)(
1−R2(t)

)
.

For the entire system to operate all non-redundant subsystems must be functional,
where a non-redundant subsystem is either a functionality that does not have re-
dundant implementations, or the joint system of a number of redundant subsystems
implementing the same functionality. That is, the non-redundant subsystems are all
in series.

5.3 Criticality and optimization metric

So, if all subsystems were equally critical for the complete system to function, and no
redundancy of subsystems were employed, the resulting reliability would be as given
in (1). However, in many instances of subsystem failures an FCS is able to avoid
loss of control. If, say, the trajectory planner fails the aircraft may not be able to
complete its mission, but the FCS is still able to maintain sufficient control of the
aircraft to conduct a safe landing (thus avoiding loss of control). Consequently, we
assign a criticality somewhat less than one. However, if, say, the attitude controller
fails the likelihood of loss of control is very high, since not controlling the attitude of
the multirotor will most likely lead to a crash. Thus, we assign a criticality close to
one.

Assume that we have a setup with N cores, and M subsystems with separate func-
tionalities, that is, subsystems each implementing a specific functionality, such as
trajectory planner or velocity controller. In addition, we have Mr subsystems that
each provide redundancy to one of the M functional subsystems. Define the set of
functional subsystems as Σ = {S1, . . . , SM} and the set of redundant subsystems
as Σr = {SM+1, . . . , SM+Mr

}. The index set of subsystems running on each core is
defined as

Ck = {j | Sj runs on core k}, k = 1, . . . , N .

The index set of subsystems providing the same functionality is defined as

ρm = m ∪
{
M < j ≤Mr | Sj ∈ Σr same functionality as Sm ∈ Σ

}
, m = 1, . . . ,M .

(3)
Also we will need the set of cores on which a specific process runs, that is

Γm = {k | n ∈ Ck}, m = 1, . . . ,M +Mr . (4)

The optimization function will be composed by a
The reliability for a specific core Cj is given as the processes on the core running in

series, so

Rcore
j =

∏
m∈Cj

Rm . (5)

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 13

When a subsystem Sm is running on more than one core we can either assume that this
provides redundancy if we assume that the exact same code running on two different
cores is independent, or we can assume that if a subsystem fails on one core, it fails
simultaneously on the other core because it is exactly the same code. Those two
options are expressed as parallel and serial, respectively.

Rmcr
m = 1−

∏
i∈Γm

(1−Rcore
i), m = 1, . . . ,M +Mr , (6)

Rmcd
m =

∏
i∈Γm

Rcore
i , m = 1, . . . ,M +Mr , (7)

where ’mcr’ means multicore redundancy and ’mcd’ means multicore dependency. As
for the functional redundancy provided by the processes in Σr, these are by design
parallel to their functional counterparts, and there we define

Rar
n = 1−

∏
k∈ρn

(1−Rmcx
k), n = 1, . . . ,M , (8)

where ’mcx’ is either ’mcr’ or ’mcd’. Finally, the system reliability is given by all func-
tional subsystems being operational simultaneously (possibly through their redundant
counterparts). We also insert the criticality index for each functional subsystem as a
power on the reliability. This gives the total system reliability as

Rsys(t) =

M∏
m=1

(Rar
m)cm . (9)

where cm is the criticality index of Sm. Note that all R functions in (5) through (9)
are dependent on t, but this has been left out for clarity.

By implementing the criticality as a power on the reliability function, criticality is
in effect increasing the reliability. A low criticality is thus expressed as a significantly
increased reliability, while a high criticality does not increase the reliability by much.

The aim is to find the distribution of subsystem on the cores that maximizes the
system reliability. From a aviation safety point-of-view, there is no particular interest
in the time variation of the failure rate, only in a overall low rate. This in turn means
that the system reliability function should decay as slowly as possible, and given that
this function is monotonically decreasing, we will use the integral

∫ t∞
0

Rsys(t)dt over
a relatively long time period t∞ (long enough that Rsys(t) has decayed below 0.01) as
the optimization metric.

5.4 Implementation

An FCS for an unmanned multirotor consists of a number of subsystems, which may
vary slightly from platform to platform. For the purpose of demonstrating the method
proposed above, we employ a fairly simply FCS with 5 functional subsystems, listed
in Table 2. This table also lists estimated values for constant failure rates, for variable
failure rates, and for estimated criticality. Those values are discussed in Section ??.

To demonstrate the optimal distribution for a given system, assume first that all
subsystems have constant failure rates λk, that criticality is 1 for all subsystems, and

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

14 Manuscript

that there are no redundant subsystems. The reliability function for each subsystem
is then Rk(t) = exp(−λkt), and the optimal distribution according to Rsys(t) in (9)
will then be assigning the N −1 subsystem with the N −1 biggest λ to the first N −1
cores, and all remaining subsystems to the remaining core.

When criticality is no longer all 1, and when the possibility of redundancy of subsys-
tems in introduced, the result is no longer so obvious. Simulation results are presented
in Section 7.

Given that the subsystems are in fact software routines it is likely that the failure
rate will not be constant. For relatively simple functions such as a complementary filter
and attitude controller it is reasonable to assume that if they have been operational for
some time there is very little probability of failure. Whereas highly complex functions
such as a trajectory planner may still fail well into their life span given the variety
of inputs it may receive from different scenarios and different users. Finding true
parameters for the failures rate of algorithms implemented in e.g. C code (or similar)
is outside the scope of this work. A number of common sources for programs stopping
execution is described in Section 6, and while these do regularly occur even in tested
programs it is difficult to make a good estimate of how often they occur in a specific
code. A substantial amount of literature on the reliability of software (see Section 2).
Based on the size of executable code and complexity of operation, we have estimated
failure rates for different subsystems as presented in Table 2. However, we don’t
argue for the correctness of the considered failure rates, instead, the proposed method
remains unchanged as long as some estimation of failure rates can be made for the
subsystems in use.

Table 2
Subsystem parameters

Subsystem Failure rate Criticality

λ [1/hour] index cm
S1 Trajectory planner 1/200 0.01

S2 Full state Kalman filter 1/750 0.80

S3 Velocity controller 1/6000 0.80

S4 Complementary filter 1/20000 0.90

S5 Attitude controller 1/25000 0.99

6.0 Fault Tolerance Analysis

The concept of reliability is deeply connected with the fault tolerance capabilities of
the platform. In this section, we discuss the behaviour of the proposed architecture
under faulty conditions, and its fault containment capabilities. We have selected three
different sources of fault due to poor memory handling, algorithm development, and
software implementation where the proposed architecture can be beneficial.

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 15

6.1 Fault Injection

To evaluate the response under faulty conditions, common software faults in embedded
control applications are asserted in the source code for bare-metal execution. In a bare-
metal implementation, where no assistance is available from the operating system,
error handling is more challenging. Some frequently encountered faults are memory
leak, infinite looping, and communication overloading that we have investigated in
this work.

6.1.1 Memory leak and overflow

C and C++ offers dynamic memory allocation where memory can be allocated and re-
allocated in run-time, which might cause unpredictable execution, performance degra-
dation, or crash. A memory leak occurs when a memory is allocated but not freed
after use and the location cannot be reused. An overflow occurs when the application
try to dynamically allocate more memory than the physically available heap size that
might or might not be detectable during compilation. In a bare metal system, the
application needs to be robust enough to prevent and handle such possible issues. An
array with a variable size can be used to enforce a memory leak and overflow condition,
with dynamic memory allocation as shown below.

define pointer my array;
define variable my array size;
while execution loop do

array size = user function();
my array = m allocate(my array size * datatype)

end

6.1.2 Infinite wait and loop

Infinite wait and infinite looping are results of poor algorithm development or poor
software implementation that occur when a time-out functionality is not properly
implemented and when a break point in a loop is not achieved in an iterative com-
putation. Solver or iterative applications like trajectory planner can be subjected to
such faults when an application infinitely computes to achieve accuracy or computes
an infinite series, e.g. Taylor series.

6.1.3 Communication overloading

A communication overloading occurs when a producer violates the transmission agree-
ment and transmits more data-packets causing a congestion in the communication
system. Such a congestion in the network may result in untimely delivery or dropping
of critical data-packets resulting in a system failure. This is reproduced by excessive
transmission over the interconnect from a single channel.

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

16 Manuscript

6.2 Failure Analysis

The asserted faults in the system has different implication causing dysfunction in the
system. Memory leak or memory overflow caused by one application interferes all the
applications sharing the same processor; moreover, the architecture does not provide
any special feature or technique to detect or handle such malfunction. However, the
isolated implementation of the memory with individual processors restricts the faulty
application to not corrupt other memory partitions and applications implemented on
other processors are unaffected.

Once an application is stuck in an infinite loop or wait, the timely delivery of the
result is missed. Once a time-out is reached before the expected message is received,
the consumer processor triggers the reset signal of the processor running high level
application, which restarts the applications on that processor from the initial condition
and executes unless the outlier condition (infinite loop/ wait) is hit again.

Dedicated sampling buffer for each communication channel in the interconnect in-
terface prevents corruption of data packets. On violation of transmission agreement
by a channel affects the data packet from that channel only. Moreover, the arbitration
mechanism guarantees timely access to all the communicating channel with no stalling
or packet-drop when producer follows transmission agreement, although, packet-drop
may occur in the violating channel(s).

7.0 Experiment and Results
The experiments in this work can be categorized in two sub-sections. The first is to
find an effective distribution of the subsystems in separate processors and the second
is to implement the executable in the physical platform for analysis. We consider a
platform with four processors contemplating the feasibility of practical implementation
on an agile airborne platform.

7.1 Finding Optimal Distribution

The goal of the distribution is to strategically segregate the subsystems described in
Table 2 in the four isolated processors to minimize the probability of loss of control.
At present, there is no numerical method available to directly calculate the optimal
distribution in the context of this work, hence, a graph-search approach is adopted to
form and evaluate all possible distributions.

0 50 100 150 200 250 300 350 400 450 500

time (Hrs)

0

0.2

0.4

0.6

0.8

1

R
s
u

b
s
y
s
te

m

1

2

3

54

Figure 3. Reliability of individual subsystems as listed in Table 2.

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 17

Redundant implementation results in increased reliability, however, full redundancy
is not feasible on limited resources. We have considered distribution for two scenarios,
one without and one with redundancy. Furthermore, system reliability of distributions
based on only the reliability aspect of the subsystem disregarding criticality are com-
pared with distributions considering both aspects in Table 3. A search-tree method
is implemented to compute all possible distribution where multiple occurrence of an
element is permitted for redundant implementation and restricted otherwise.

Table 3
The distribution with different considerations (redundancy, criticality and

reliability) and system reliability, Rsys, in each distribution for t = 0 : 100 hrs

Consideration
Remark

Distribution
RsysRed Cri Rel Core1 Core2 Core3 Core4

no
no

yes min s1 s2 s3, s4 s5 0.7326
yes max s1 s4 s2, s3 s5 0.7326

yes
yes min s2 s3 s4 s1, s5 0.7443
yes max s1 s2 s3 s4, s5 0.9359

yes
no

yes min s1, s2 s1, s3 s1, s5 s1, s4 0.4098
yes max s1, s5 s3, s4, s5 s2, s3, s4 s1, s2 0.9059

yes
yes min s1, s2 s1, s3 s1, s5 s1, s4 0.4530
yes max s2, s3, s5 s3, s4, s5 s1 s1 0.9960

Single core n/a sall n/a n/a n/a 0.7347
Quad-redundant n/a sall sall sall sall 0.9865

The exponential correlation of reliability with failure-rate-over-time results in a de-
caying measure of reliability with time as shown in Figure 3. Furthermore, time-variant
failure-rate adds the requirement of analysis over a period, where the time-period de-
pends on the operational lifetime of the system. Hence, to compare the reliability
in two different distribution, a single point measurement is not enough. Thus, the
integral framework is considered to analyze the reliability of the over-all system con-
sisting subsystems with time-variant reliability.The proposed theorem, described in
(9), assigns a score to each distribution based on the relative reliability and criticality
of subsystems running on each processor, such that, a higher score represents higher
degree of reliability against loosing control of the craft. To evaluate distributions
based on reliability alone, the cm term in (9) is set to 1, that implies that all the
subsystems have highest contribution to the overall system, i.e. the system fails if any
of the subsystem fails.

Figure 4.A and 4.B shows system reliability, Rsys, with and without redundancy
when criticality of subsystems are overlooked. Figure 4.A.1 and 4.B.1 represent the
highest Rsys and Figure 4.A.3 and 4.B.3 represents the lowest Rsys in the respective
distributions. The distributions are listed in Table 3. Figure(s) 4.x.2 shows Rsys in a
single core implementation.

The distribution based on both reliability and criticality are evaluated based on
the associated reliability and criticality index of each subsystem, as described in (9).
The results are plotted in Figure 5.A and 5.B for distributions with and without re-

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

18 Manuscript

0 50 100 150 200 250 300 350 400 450 500

time (Hrs)

(A)

0

0.2

0.4

0.6

0.8

1

R
S

y
s
te

m

0 50 100 150 200 250 300 350 400 450 500

time (Hrs)

(B)

0

0.2

0.4

0.6

0.8

1

R
S

y
s
te

m

1

2
3

1

2

Figure 4. Maximum and minimum system reliability, RSystem, with time in distribution without
redundancy: (A) Distribution without considering criticality (B) Distribution considering criticality.

0 50 100 150 200 250 300 350 400 450 500

time (Hrs)

(A)

0

0.2

0.4

0.6

0.8

1

R
S

y
s
te

m

0 50 100 150 200 250 300 350 400 450 500

time (Hrs)

(B)

0

0.2

0.4

0.6

0.8

1

R
S

y
s
te

m

1

4

1

2
3

3

2

Figure 5. Maximum and minimum system reliability, RSys, with time in distribution with redundancy:
(A) Distribution without considering criticality (B) Distribution considering criticality.

dundancy. Figures 5.A.1 and 5.B.1 represent the highest Rsys and 5.A.3 and 5.B.3
represents the lowest Rsys in the respective distributions. Figure(s) 5.x.2 shows Rsys

in a single core implementation and 5.2.4 shows Rsys in a quad-redundant implemen-
tation.

Table 3 shows the system reliability, Rsys, for distributions under different criteria-
redundancy, reliability and criticality. Although, reliability is our primary concern
and considered in every distribution. The best and the worst distributions under the
considered criteria(s) are marked, and the subsystem distributions are listed. The
average Rsys for all cases are listed for comparison.

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 19

Figure 6. System reliability, RSys, in all possible distribution with redundancy. Each line represent RSys

in a specific distribution. (A) Distribution without considering criticality (B) Distribution considering
criticality.

7.2 Distributed Implementation

Only the distribution with redundancy and criticality is considered for hardware im-
plementation from Table 3. The distribution of subsystems in separate cores and the
inter-core message passing for inter-subsystem data sharing is presented in Figure 7
and pseudo code is described in Appendix A.

Trajectory
Planner

Kalman Filter +
Velocity Ctrl +
Attitude Ctrl

Trajectory
Planner

Comp Filter +
Velocity Ctrl+
Attitude Ctrl

x',y',z'

acc_x,y,z,
p,q,r,
x,y,z

rpm command
 × 4

CPU 1
CPU 2

CPU 4
CPU 3

rpm command
 × 4

active

reset

reset

x',y',z'

x',y',z'

x',y',z'

x,y,z

x,y,z

acc_x,y,z,
p,q,r,
x,y,z

CPU 2

CPU 1

CPU 4

CPU 3

Figure 7. A flow diagram showing the distribution of subsystems in four processors and inter-subsystem
communication.

In a conventional N-redundant systems, polling based data-selection is a standard
practice. However, in this case, the degree of redundancy is not the same for all
of the subsystems (refer Table 3), and for a lower degree of redundancy a polling
based mechanism may not be efficient. Instead a sequential data selection method is
implemented such that data from a redundant subsystem running on a processor with
higher reliability gets preference over the subsystems running on processor with lower

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

20 Manuscript

reliability at the consumer end. Note that the processor reliability is subjected to
the reliability of all the subsystems running on it. The data from secondary source(s)
is considered only if the data is not received before a time-out period is reached or
received data is not valid from the preferred source.

In this work, we have assumed that an operational subsystem produces correct re-
sults and a malfunctioning subsystem can adversely effect other subsystems sharing
the same core. However, in a practical implementation, the assumptions may not
be true. A subsystem sharing a core with a faulty subsystem may produce incor-
rect results. We have considered that a data validation mechanism is implemented
at the receiving end that has the capability of detecting incorrect data. Once the
consumer subsystem receives a erroneous data, it treats the transmitting core as not
operational. The custom reset mechanism explained in Section 4.4 is used for a smart
watchdog implementation where a consumer subsystem of higher criticality can reset
a malfunctioning producer with lower criticality as shown in Figure 7.

Figure 8. Simulation results shows controlled flight after failure of core 1,3 and 4 at t = 300 s. The time
of failure is pointed with an arrow.

The physical implementation is done on an Intel Cyclone V FPGA platform with
a 50 MHz oscillator. The platform architecture is set up with four processors with
isolated instruction and data memory as presented in Figure 2. All the components are
written in Verilog HDL and synthesized with Intel Quartus-Lite tool. For hardware-
in-loop experiments the hardware platform is interfaced to a MathWorks Simulink
simulation platform, that simulates a quadrotor dynamics, through UART connectors.

The simulation framework transmits simulated sensor measurements to the Intel
Cyclone board and the controller running on the boards computes control commands

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 21

based on the sensor measurements and sends back to the simulation platform. The
simulator only simulates the plant (quadrotor) dynamics based on the control inputs
and has no contribution in the controlling of the plant.

Figure 9. Simulation results shows loss of control after failure of core 1, 2, 3 and 4 at t = 300 s. The
time of failure is pointed with an arrow.

Four switches on the Intel Cyclone V board are used to individually turn off the
individual cores to analyze the impact on the operation of the plant. For a broader
range of experiment, a script is used to turn off cores based on the reliability index
of the core, i.e. the product of reliability of the subsystem sharing the core. Two
simulation results are shown in Figure 8 and Figure 9; Figure 8 shows the flight
trajectories after failure of core 1, 3, and 4 and Figure 9 shows flight trajectories after
failure of all four cores. Note that the plant is controllable even after failure of 3 cores
as shown in Figure 8. In both cases, fault is injected at t = 300 seconds and response
is monitored for next 300 seconds, which is a reasonable period for safe landing.

7.3 Discussion

The results presented in Table 3 shows the evaluation of different distribution under
different criteria. Ignoring the criticality index implies that each subsystem has equal
impact on the overall system, hence, lowers the overall reliability factor. Consideration
of criticality index gives a more realistic distribution analysis, considering different
impact on overall system from different subsystem.

From the results presented, it is evident that a poor distribution can significantly
degrade the reliability of the system, even resulting in worse reliability than a single

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

22 Manuscript

core implementation.

8.0 Conclusion
In this work we have demonstrated a distributed implementation of a safety-critical
system in an asymmetric multi-core platform with limited resources. The outcome of
the experiment shows that consideration of criticality along with reliability of the indi-
vidual subsystems is beneficial to minimizing the probability of system failure (loss of
control). Additionally, the results show that a strategic implementation of subsystems
with different level of criticality on a shared hardware can improve the overall system
reliability, where system level redundancy is not feasible due to the limitation of re-
sources. Furthermore, such a distributed implementation is free from the complexities
of multi-threading, while taking advantages of a multi-core architecture.

The proposed method is scalable to more cores and more subsystems, though the
search time for the optimal distribution using a graph search grows rapidly. The work
can also be extended to subsystem dependencies where dependent subsystems can be
implemented together to reduce inter-core communications.

9.0 Acknowledgement
The authors would like to thank Henrik Schiøler from department of electronic sys-
tems, Aalborg University for his insightful comments and helpful discussion.

REFERENCES
1. M. W. Mueller and R. D’Andrea Stability and control of a quadrocopter

despite the complete loss of one, two, or three propellers, 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA), May 2014, doi:
10.1109/ICRA.2014.6906588, ISSN 1050-4729, pp 45-52.

2. Ulbrich, Peter and Hoffmann, Martin and Kapitza, R and Lohmann,
D and Preikschat, W and Schmid, R Eliminating single points of failure in
software-based redundancy, Proceedings - 9th European Dependable Computing
Conference, EDCC 2012, 2012, doi: 10.1109/EDCC.2012.21, ISSN 1050-4729,
pp 45-52.

3. D. Gizopoulos and M. Psarakis and Adve, S and Ramchandran, P and
Hari, S. K. and Sorin, D and Meixner, A and Biswas, A and Vera,
X Architectures for online error detection and recovery in multicore proces-
sors, Design, Automation & Test in Europe Conference & Exhibition, 2011, doi:
10.1109/DATE.2011.5763096, ISBN 978-3-9810801-7-9.

4. Bolchini, C and Miele, A and Sciuto, D An adaptive approach for online
fault management in many-core architectures, 2012 Design, Automation & Test
in Europe Conference & Exhibition, 2012, doi: 10.1109/DATE.2012.6176589,
ISBN 978-1-4577-2145-8, pp 1429–1432.

5. Aggarwal, Nidhi and Ranganathan, Parthasarathy and Jouppi, N and
Smith, J. E Configurable isolation: building high availability systems with com-

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 23

modity multi-core processors, Proceedings of the 34th annual international sympo-
sium on Computer architecture, 2007, doi: 10.1145/1273440.1250720, ISBN
978-1-59593-706-3, pp 470.

6. Döbel, Björn and Härtig, Hermann and Engel, M Operating sys-
tem support for redundant multithreading, Proceedings of the tenth ACM
international conference on Embedded software - EMSOFT ’12, 2012, doi:
10.1145/2380356.2380375, ISBN 9789066052079, pp 83.

7. Lo, Moustapha and Valot, Nicolas and Maraninchi, F and Raymond,
P IMPLEMENTING A REAL-TIME AVIONIC APPLICATION ON A MANY-
CORE PROCESSOR, 42nd European Rotorcraft Forum (ERF), Sep 2016, Lille,
France. ffhal-01718139f, 2016.

8. Henkel, Jörg and Bauer, Lars and Dutt, N and Gupta, P and Sahi, N
and Muhammad, S and Mehdi, T and Wenn, N Reliable on-chip systems in
the nano-era, Proceedings of the 50th Annual Design Automation Conference on
- DAC ’13, 2013, doi: 10.1145/2463209.2488857, ISBN 9781450320719, pp 1.

9. Alhakeem, M S and Munk, P A Framework for Adaptive Software-Based
Reliability in COTS Many-Core Processors, ARCS 2015 - The 28th Interna-
tional Conference on Architecture of Computing Systems. Proceedings, 2015, ISBN
9783800736577, pp 1-4.

10. Huang, Lin and Xu, Qiang Characterizing the lifetime reliability of many-
core processors with core-level redundancy, IEEE/ACM International Confer-
ence on Computer-Aided Design, Digest of Technical Papers, ICCAD, 2010, doi:
10.1109/ICCAD.2010.5654250, ISBN 9781424481927, pp 680–685.

11. Finkelstein, Maxim. Failure Rate Modelling for Reliability and Risk chapter
9, 2008, Springer London.

12. Song, Kwang and Chang, In and Hoang, P A Software Reliability Model
with a Weibull Fault Detection Rate Function Subject to Operating Environments,
ARCS 2015 - The 28th International Conference on Architecture of Computing
Systems. Proceedings, 2017, doi: 10.3390/app7100983, Publisher: Springer
London, pp 983.

13. Zhang, Xuemei. and Pham, Hoang Software field failure rate predic-
tion before software deployment, Journal of Systems and Software, 2006, doi:
10.1016/j.jss.2005.05.015, ISSN 01641212, pp 291–300.

14. Littlewood, Bev and Strigini, Lorenzo Software reliability and dependabil-
ity, Proceedings of the conference on The future of Software engineering - ICSE
’00, 2000, doi: 10.1145/336512.336551, ISBN 1581132530, pp 175–188.

15. O’Regan, Gerard Software Reliability and Dependability, Software failures,
2017, doi: doi.org/10.1007/978-3-319-64021-12, ISSN01641212, pp983.

10.0 Appendix A
The appendix describes the software implementation of the subsystems in 4 separate
processors as shown in Figure 7. Each subsystem is presented as a function call with

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

24 Manuscript

the required arguments. The read and write functions in the pseudo code are methods
to read and write memory mapped address spaces, denoted with parameters starting
with ’*’. Such memory mapped addresses are interfaced to external devices and on-
chip communication network and can be accessed from the processor by reading or
writing at the associated address.

Pseudo code for Processor 1

while continuous loop do
IMU data = read(*IMU IPCore);
actual position = read(*MotionCapture IPCore);
reference position = read(*data from cpu 3);
if reference position received then

reset(timer);
else

reference position = read(*data from cpu 4);
if timer ≥ timeout then

reset(cpu3);
else

timer++;
end

end
estimated attitude = Kalman filter(IMU data);
reference attitude = velocity controller(reference position, actual position);
thrust command = attitude controller(reference attitude,
estimated attitude);

write (cpu 1 status ok to *cpu 2);
write (actual position to *cpu 3);
write(thrust command to *motors);

end

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

Shibarchi, Jens, Thomas, Anders Reliable FCS Architecture with AMP 25

Pseudo code for Processor 2
while continuous loop do

IMU data = read(*IMU IPCore);
actual position = read(*MotionCapture IPCore);
reference position = read(*data from cpu 4);
if reference position received then

reset(timer);
else

reference position = read(*data from cpu 3);
if timer ≥ timeout then

reset(cpu4);
else

timer++;
end

end
estimated attitude = complimentary filter(IMU data);
reference attitude = velocity controller(reference position, actual position);
thrust command = attitude controller(reference attitude,
estimated attitude);

cpu 1 status = read(*data from cpu 1);;
if cpu 1 status ok then

reset(timer);
else

if timer ≥ timeout then
write(thrust command to *motors);

else
timer++;

end

end
write (actual position to *cpu 4);

end

Con
fid

en
tia

l:
In

te
rn

al
Cop

y

26 Manuscript

Pseudo code for Processor 3
while continuous loop do

actual position = read(*data from core1);
reference position = trajectory planner(actual position);
write (reference position to *cpu 2);
write (reference position to *cpu 1);

end
Pseudo code for Processor 4
while continuous loop do

actual position = read(*data from core2);
reference position = trajectory planner(actual position);
write (reference position to *cpu 1);
write (reference position to *cpu 2);

end

