6,509 research outputs found

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    VLSI implementation of a multi-mode turbo/LDPC decoder architecture

    Get PDF
    Flexible and reconfigurable architectures have gained wide popularity in the communications field. In particular, reconfigurable architectures for the physical layer are an attractive solution not only to switch among different coding modes but also to achieve interoperability. This work concentrates on the design of a reconfigurable architecture for both turbo and LDPC codes decoding. The novel contributions of this paper are: i) tackling the reconfiguration issue introducing a formal and systematic treatment that, to the best of our knowledge, was not previously addressed; ii) proposing a reconfigurable NoCbased turbo/LDPC decoder architecture and showing that wide flexibility can be achieved with a small complexity overhead. Obtained results show that dynamic switching between most of considered communication standards is possible without pausing the decoding activity. Moreover, post-layout results show that tailoring the proposed architecture to the WiMAX standard leads to an area occupation of 2.75 mm2 and a power consumption of 101.5 mW in the worst case

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Reconfigurable G and C computer study for space station use. Volume 1 - Technical summary Final report, 29 Dec. 1969 - 31 Jan. 1971

    Get PDF
    Technical summary of reconfigurable guidance and control computer for space station application - Vol.

    Subtyping for Hierarchical, Reconfigurable Petri Nets

    Full text link
    Hierarchical Petri nets allow a more abstract view and reconfigurable Petri nets model dynamic structural adaptation. In this contribution we present the combination of reconfigurable Petri nets and hierarchical Petri nets yielding hierarchical structure for reconfigurable Petri nets. Hierarchies are established by substituting transitions by subnets. These subnets are themselves reconfigurable, so they are supplied with their own set of rules. Moreover, global rules that can be applied in all of the net, are provided

    A Reconfigurable Vector Instruction Processor for Accelerating a Convection Parametrization Model on FPGAs

    Full text link
    High Performance Computing (HPC) platforms allow scientists to model computationally intensive algorithms. HPC clusters increasingly use General-Purpose Graphics Processing Units (GPGPUs) as accelerators; FPGAs provide an attractive alternative to GPGPUs for use as co-processors, but they are still far from being mainstream due to a number of challenges faced when using FPGA-based platforms. Our research aims to make FPGA-based high performance computing more accessible to the scientific community. In this work we present the results of investigating the acceleration of a particular atmospheric model, Flexpart, on FPGAs. We focus on accelerating the most computationally intensive kernel from this model. The key contribution of our work is the architectural exploration we undertook to arrive at a solution that best exploits the parallelism available in the legacy code, and is also convenient to program, so that eventually the compilation of high-level legacy code to our architecture can be fully automated. We present the three different types of architecture, comparing their resource utilization and performance, and propose that an architecture where there are a number of computational cores, each built along the lines of a vector instruction processor, works best in this particular scenario, and is a promising candidate for a generic FPGA-based platform for scientific computation. We also present the results of experiments done with various configuration parameters of the proposed architecture, to show its utility in adapting to a range of scientific applications.Comment: This is an extended pre-print version of work that was presented at the international symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART2014), Sendai, Japan, June 911, 201
    corecore