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Abstract—Flexible and reconfigurable architectures have
gained wide popularity in the communications field. In particular,
reconfigurable architectures for the physical layer are an attrac-
tive solution not only to switch among different coding modes
but also to achieve interoperability. This work concentrates on
the design of a reconfigurable architecture for both turbo and
LDPC codes decoding. The novel contributions of this paper
are: i) tackling the reconfiguration issue introducing a formal
and systematic treatment that, to the best of our knowledge, was
not previously addressed; ii) proposing a reconfigurable NoC-
based turbo/LDPC decoder architecture and showing that wide
flexibility can be achieved with a small complexity overhead.
Obtained results show that dynamic switching between most of
considered communication standards is possible without pausing
the decoding activity. Moreover, post-layout results show that
tailoring the proposed architecture to the WiMAX standard leads
to an area occupation of 2.75 mm2 and a power consumption of
101.5 mW in the worst case.

Index Terms—VLSI, LDPC/Turbo Codes Decoder, NoC, Flex-
ibility, Wireless communications

I. INTRODUCTION

In the last years several efforts were spent to develop
systems able to give ubiquitous access to telecommunication
networks. These efforts were spent mainly in three directions:
i) improving the transmission rate and reliability; ii) develop-
ing bandwidth efficient technologies; iii) designing low cost
receivers. The most relevant results produced by such a vivid
research were included in the last standards for both wireless
and wired communications [1]–[7]. Besides, several standards
provide multiple modes and functionalities. However, sharing
common features is a challenging task to achieve flexibility
and interoperability.

Several recent works, including [8], have shown that flex-
ibility is an important property in the implementation of
communication systems. Some works investigated this di-
rection facing the challenge of implementing flexible archi-
tectures for the decoding of channel codes. In particular,
flexible turbo/Low-Density-Parity-Check (LDPC) decoder ar-
chitectures have been proposed not only to support differ-
ent coding modes within a specific standard but also to
enable interoperability among different standards. In [9]–
[11] flexibility is achieved through the design of Processing
Elements (PEs) based on Application-Specific-Instruction-set-
Processor (ASIP) architectures, whereas in [12]–[14] PEs rely
on Application-Specific-Integrated-Circuit (ASIC) solutions.
In both approaches, flexible and efficient interconnection struc-
tures are required to connect PEs to each other.

Unfortunately, the communication patterns of turbo and
LDPC codes suffer from collisions, namely two or more PEs
require concurrent access to the same memory resource. To
break the collision a Network-on-Chip (NoC) like approach
was proposed in [15] for turbo codes. This idea has been
further developed in other works. In particular, in [16] the NoC
approach is used as a viable solution to implement flexible and
high throughput interconnection structures for turbo/LDPC
decoders.

An intra-IP NoC [17] is an application specific NoC [18]
where the interconnection structure is tailored to the char-
acteristics of the Intellectual Property (IP). The use of an
intra-IP NoC as the interconnection framework for both turbo
and LDPC code decoders has been demonstrated in several
works [16], [19]–[21]. This choice enables larger flexibility
with respect to other interconnection schemes [16], [22], [23],
but introduces penalties in terms of additional occupied area
and latency in the communication among PEs.

Stemming from the work presented in [14], [19], [20],
where an ASIC implementation of an NoC-based turbo/LDPC
decoder architecture is proposed, this paper aims to further
investigate and optimize it. In particular, this work features
the following novel contributions: i) management of dynamic
reconfiguration to switch between a code to another one
without pausing the decoding, ii) description of a new PE
architecture with an improved shared memory solution which
provides relevant saving of occupied area for min-sum de-
coding algorithm, iii) evaluation of a wide set of standards for
both wireless and wired applications: IEEE 802.16e (WiMAX)
[5], IEEE 802.11n (WiFi) [6], China Mulitimedia Mobile
Broadcasting (CMMB) [3], Digital Terrestrial Multimedia
Broadcast (DTMB) [4], HomePlug AV (HPAV) [2], 3GPP
Long Term Evolution (LTE) [7], Digital Video Broadcasting
- Return Channel via Satellite (DVB-RCS) [1], iv) complete
VLSI implementation of the decoder up to layout level and
accurate evaluation of dissipated power.

It is worth noting that, to the best of our knowledge, this is
the first work addressing dynamic reconfiguration of flexible
channel decoders with an analytical approach, and showing
the actual impact of reconfiguration on both performance and
complexity. The paper is structured as follows. In Section
II decoding algorithms are briefly discussed, whereas section
III deals with the basics of NoC-based turbo/LDPC decoder
architectures and summarizes the main results this work starts
from. The decoder reconfiguration techniques are detailed in
Section IV and V, while Section VI deals with the descrip-
tion of LDPC and turbo decoding cores, along with their
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respective memory organization. In Section VII evaluations of
the architecture performance on various existing standards are
provided. Implementation results are portrayed and discussed
in Section VIII, and conclusions are drawn in section IX.

II. DECODING ALGORITHMS

Turbo and LDPC decoding algorithms are characterized
by strong resemblances: they are iterative, work on graph-
based representations, are routinely implemented in logarith-
mic form, process data expressed as Logarithmic-Likelihood-
Ratios (LLRs) and require high level of both processing and
storage parallelism. Both algorithms receive intrinsic informa-
tion from the channel and produce extrinsic information that is
exchanged across iterations to obtain the a priori information
of uncoded bits, in the case of binary codes, or symbols, in
the case of non binary codes. Moreover, their arithmetical
functions are so similar that joint or derived algorithms for
both LDPC and turbo decoding exist [24]. In the following
for both codes we will refer to K, N and r = K/N as the
number of uncoded bits, the number of coded bits and the
code rate respectively.

A. LDPC codes decoding algorithm

Every LDPC code is completely described by its M × N
parity check matrix H (M = N − K) which is very sparse
[25]. Each valid LDPC codeword x satisfies H · x′ = 0,
where (·)′ is the transposition operator. The decoding of LDPC
codes stems from the Tanner graph representation of H where
two sets of nodes are identified: Variable Nodes (VNs) and
Check Nodes (CNs). VNs are associated to the N bits of the
codeword, whereas CNs correspond to the M parity-check
constraints. The most common algorithm to decode LDPC
codes is the Belief Propagation (BP) algorithm. There are two
main scheduling schemes for the BP: two-phase scheduling
and layered scheduling [26]. The latter nearly doubles the
converge speed as compared to two-phase scheduling. In a
layered decoder, parity-check constraints are grouped in layers
each of which is associated to a component code. Then, layers
are decoded in sequence by propagating extrinsic information
from one layer to the following one [26]. This process is
iterated up to the desired level of reliability.

Let λ[c] represent the LLR of symbol c and, for column k
in H, bit LLR λk[c] is initialized to the corresponding received
soft value. Then, for all parity constraints l in a given layer,
the following operations are executed:

Qlk[c] = λoldk [c]−Rold
lk (1)

Alk =
∑

n∈N(l),n6=k

Ψ(Qln[c]) (2)

δlk =
∏

n∈N(l),n6=k

sgn(Qln[c]) (3)

Rnew
lk = −δlk ·Ψ−1(Alk) (4)

λnewk [c] = Qlk[c] +Rnew
lk (5)

λoldk [c] is the extrinsic information received from the previous
layer and updated in (5) to be propagated to the succeed-
ing layer. Term Rold

lk , pertaining to element (l,k) of H and
initialized to 0, is used to compute (1); the same amount is
then updated in (4), Rnew

lk , and stored to be used again in the
following iteration. In (2) and (3) N(l) is the set of all bit
indexes that are connected to parity constraint l.

According to [27], the Ψ(·) function in (2) and (4) can be
simplified with a limited BER performance loss as

Rnew
lk ≈ −δ′lk · min

n∈N(l),n6=k
{|Qnk|} , (6)

usually referred to as normalized-min-sum approximation,
where δ′lk = σ · δlk and σ ≤ 1.

B. Turbo codes decoding algorithm

Turbo codes are obtained as the parallel concatenation of
two constituent Convolutional Code (CC) encoders connected
by the means of an interleaver (Π). Thus, the decoder is
made of two constituent decoders, referred to as Soft-In-Soft-
Out (SISO) or Maximum-A-Posteriori (MAP) decoders [28]
connected in an iterative loop by the means of the interleaver
Π and the de-interleaver Π−1. Each constituent decoder per-
forms the so called BCJR algorithm [29] that starting from
the intrinsic and a priori information produces the extrinsic
information. Let k be a step in the trellis representation of the
constituent CC, and u an uncoded symbol. Each constituent
decoder computes λk[u] = σ · (λapok [u] − λaprk [u] − λk[cu])
where σ ≤ 1 [30], λapok [u] is the a-posteriori information,
λaprk [u] is the a priori information and λk[cu] is the systematic
component of the intrinsic information. According to [29] a-
posteriori information is computed as

λapok [u] =
∗

max
e:u(e)=u

{b(e)} − ∗
max

e:u(e)=ũ
{b(e)} (7)

where ũ ∈ U is an uncoded symbol taken as a reference
(usually ũ = 0) and u ∈ U \ {ũ} with U the set of uncoded
symbols; e is a trellis transition and u(e) is the corresponding
uncoded symbol. Several exact and approximated expressions
are available for the

∗
max{xi} function [31]: for example, it

can be implemented as max{xi} followed by a correction
term, often stored in a small Look-Up-Table (LUT). The
correction term, usually adopted when decoding binary codes
(Log-MAP), can be omitted with minor Bit-Error-Rate (BER)
performance degradation (Max-Log-MAP). The term b(e) in
(7) is defined as:

b(e) = αk−1[sS(e)] + γk[e] + βk[sE(e)] (8)

αk[s] =
∗

max
e:sE(e)=s

{
αk−1[sS(e)] + γk[e]

}
(9)

βk[s] =
∗

max
e:sS(e)=s

{
βk+1[sE(e)] + γk[e]

}
(10)

γk[e] = λaprk [u(e)] + λk[c(e)] (11)

where sS(e) and sE(e) are the starting and the ending states
of e, αk[sS(e)] and βk[sE(e)] are the forward and backward
metrics associated to sS(e) and sE(e) respectively. The term
λk[c(e)] represents the intrinsic information received from the
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channel. For further details on the decoding algorithm the
reader can refer to [32].

In a parallel decoder, the decoding operations summarized
in previous paragraphs are partitioned among P PEs. When
configured in turbo code mode, these PEs operate as con-
current SISOs. On the other hand, they execute (1) to (5)
in parallel for P slices of parity check constraints when
configured in LDPC code mode. In both cases, messages
are exchanged among PEs to propagate λk[u] and λnewk [c]
amounts in accordance with the code structure. In the follow-
ing, we indicate the j-th message received and generated by
PE i as λ′i,j and λi,j respectively.

III. NOC-BASED DECODER

The goal of this work is to design a highly flexible LDPC
and turbo decoder, able to support a very wide set of different
communication standards. The proposed multi-mode/multi-
standard decoder architecture relies on an NoC-based struc-
ture, where each node contains a PE and a routing element
(RE). Each PE implements the BCJR and layered normalized
min-sum algorithms. On the other hand, REs are devoted to
deliver λi,j values to the correct destination.

The node architecture employed in this work for node i is
represented in Fig. 1. Each RE is constituted by a 4×4 crossbar
switch with 4 input FIFOs and 4 output registers. The routing
algorithm is the one proposed in [19] as Single-Shortest-
Path-FIFO-Length (SSP-FL). SSP-FL relies on a distributed
table-based routing algorithm where each table contains the
information for shortest path routing. The routing information
is precalculated by running off-line the Floyd-Warshall algo-
rithm. Moreover, in SSP-FL shortest path routing is coupled
with an input serving policy based on the current status to
the FIFOs, namely in case two messages must be routed to
the same output port, priority is given to the message coming
from the longer FIFO. It is worth noting that the destination
of each λi,j is imposed by the interleaver and the H matrix
respectively. As a consequence, the routing is deterministic.

The PE includes both LDPC and turbo decoding cores:
their architectures are structured to be as independent as

possible of the supported codes. The LDPC decoding core
is completely serial and able to decode any LDPC code,
provided that enough memory is available. The SISO core
for turbo decoding is tailored around 8-state turbo codes,
and no other constraints are present: the two cores share the
memories where the incoming data λ′i,j are stored and the
location memory containing the pre-computed t′i,j values, i.e.
the memory addresses to store λ′i,j . Also the interconnection
structure depends only on the location memory size, that sets
an upper bound to the number of messages each PE can
handle.

The decoding task is divided uniformly among the different
nodes. The process is straightforward in turbo mode, with
each node being assigned a portion of the trellis that is
processed in a sliding-window fashion [33], [34]. Extrinsic
and window-initialization information are carried through the
network according to the code interleaving and deinterleaving
rules [19]. On the contrary, in LDPC mode the partitioning
of the decoding task on the PEs is obtained as follows.
Using a proprietary tool based on the METIS graph coloring
library [35], the H matrix is partitioned on the chosen network
topology. At this point the destination of every message
coming out of each decoding core is known. Thus, in both
turbo and LDPC modes each outgoing message is made of a
payload λi,j and a header containing the destination node.

Performance of meshes, toroidal meshes, spidergon, hon-
eycomb, De Bruijn and Kautz graphs were compared, along
with a number of other design choices, as routing algorithm
and collision management policies. This analysis shows that
the Kautz topology yields the best results in terms of area
occupation and obtainable throughput. In particular, in [14] a
22-nodes Kautz NoC was used to fully support IEEE 802.16e
standard, each node being connected to a decoding PE and to
three other nodes via a 4-way router.

IV. DECODER RECONFIGURATION

Flexible decoders available in the literature [9]–[13], [16],
[17], [19], [20], though supporting a wide range of codes,
do not address the reconfiguration issue. Change of decoding
mode, standard or code parameters requires not only hardware
support, but also memory initialization and specific controls:
since in many standards a code switch can be issued as early
as one data frame ahead [5], a time efficient reconfiguration
technique must be developed.

For the proposed decoder the reconfiguration task consists
of i) rewriting the location memory containing t′i,j values; ii)
reloading the CN degree (deg) parameters and the window
size in the control unit of LDPC decoding cores and SISOs
respectively. In the following, the whole set of storage loca-
tions to be updated at reconfiguration time will be indicated as
“reconfiguration memory”. When possible, the decoder must
be reconfigured while the decoding process is still running on
the previous data frame. This means that the reconfiguration
data can be distributed by means of the NoC interconnections
only at the cost of severe performance penalties. Consequently,
we suppose that the reconfiguration data are moved directly
to the PEs via a set of Nb dedicated buses, each one linked
to P

Nb
PEs.
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Figure 2. Memory reconfiguration process: (a) Decoding of C1; (b) Upload
of reconfiguration data required for C2 (phases Φ1 to Φ3 and Φ5); (c) First
iteration of C2 and concurrent upload of reconfiguration data (Φ4)

In the following we estimate reconfiguration occurrence
assuming mobile receivers moving at different speeds and
the carrier frequency fc = 2.4 GHz. This frequency is
included in most standards’ operation range, and used in a
variety of applications. In this scenario the communication
channel is affected by fading phenomena, namely slow fading,
whose effects have very long time constants, and fast fading.
Fast fading can be modeled assuming a change of channel
conditions every time the receiver is moved by a distance
similar to the wavelength λ of the carrier. Being λ = 0.125
m, at a speed v = 70 km/h the channel changes with a
frequency fchng = 155 Hz (WiMAX, WiFi, 3GPP-LTE),
whereas, at v = 10 km/h (DVB-RCS, HPAV, CMMB, DTMB)
changes occurs at fchng = 22 Hz. These scenarios result in
different reconfiguration probabilities, whose impact on BER
performance is addressed in Section V.

The reconfiguration memory is organized as a circular
buffer: two sets of pointers are used to manage reading and
writing operations. The Start of Current Configuration (SCC)
pointer and the End of Current Configuration (ECC) pointer
delimit the memory blocks that are currently being used. A
Read Pointer (RP) is used to retrieve the data during the
decoding process, as shown in Fig. 2.(a). The Start of Future
Configuration (SFC) and End of Future Configuration (EFC)
pointers are instead used concurrently with the Write Pointer
(WP) to delimit the locations that are going to be used to store
the new configuration data.

The reconfiguration of the considered decoder to switch
from the code currently processed (C1) to a new one (C2) can
be overlapped with the decoding of both current and new code,
provided that enough locations are free in the configuration
memories. In particular, part of the configuration process can
be concurrent with the decoding of one or more frames of
C1; if necessary, another portion of the configuration can be
scheduled during the first iteration of the new code C2. Finally,
in case the overlap with decoding activity is not sufficient to
complete the whole configuration, a further option is pausing
the decoder by skipping one or more iterations on the last
received frame for C1 and using the available time, before
starting the decoding of the new frame encoded with C2.

Let us define B as the size of the location buffer available at
each PE to store configuration data, tit1 and tit2 as the duration
in clock cycles of a single decoding iteration for codes C1 and
C2. Moreover, lc1 and lc2 express the number of locations
required to store configurations of codes C1 and C2 at each
PE, and nit1 and nit2 their iteration numbers.

In the considered architecture, the duration of one decoding
iteration tit expressed in clock cycles is directly proportional
to the number of memory locations a PE has to read throughout
the decoding process, and consequently to the number of
used locations in the reconfiguration memory (lc). Though the
actual relationship between tit and lc is affected by memory
scheduling and ratio between PE and NoC clock frequencies,
this analysis is carried out with the worst-case assumption
that the reconfiguration memory is read at every clock cycle
of each iteration, setting lc = tit for both C1 and C2 codes.

We define five phases Φi, i = 1, 2, 3, 4, 5 in the config-
uration process and for each phase we identify i) tΦi

a as
the number of clock cycles available during phase Φi, and
ii) lΦi

a = Nb · tΦi
a /P as the number of locations in each

reconfiguration memory that can be written in tΦi
a clock cycles.

Φ1 In the reconfiguration from code C1 to code C2, lc1 words
must be replaced with lc2 new words. The first part of the
configuration can be scheduled during the initial nit1−1
decoding iterations on C1 and therefore the available time
is tΦ1

a = (nit1−1) ·tit1; in this range of time a maximum
of lΦ1

a = Nb

P · (nit1 − 1) · tit1 words can be loaded
into each buffer. However, assuming that the buffer size
is larger than lc1, we define B − lc1 as the number of
unused memory blocks in current configuration for code
C1. Therefore, the actual number of locations written in
Φ1 is the minimum between B − lc1 and lΦ1

a . The SFC
pointer is thus initialized as ECC (Fig. 2.(b)).

Φ2 During the last iteration on C1, every memory location
between SCC and the current position of RP is available
for reconfiguration. This means that up to lc1 locations
are available for receiving configuration words for C2.
However, this has to be done during a single iteration,
and therefore tΦ2

a = tit1 cycles are available. During these
cycles, up to lΦ2

a = Nb

P · tit1 words can be loaded.
Φ3 As mentioned before, part of the configuration can be

overlapped with the first decoding iteration on C2 code.
SCC is initialized as SFC, and RP will take the duration
of a full iteration to arrive to ECC (Fig. 2.(c)). The
available time is tΦ3

a = tit2 and the maximum number of
words that can be loaded in this phase is lΦ3

a = Nb

P · tit2.
Φ4 In the event that previously listed phases are not sufficient

to complete the configuration, an early stopping in the
decoding of code C1 can be scheduled to make available
additional cycles to be used for loading the remaining part
of the configuration words. We indicate the number of
cycles available in this phase as tΦ4

a = tstop. The number
of words that can be loaded in Φ4 is lΦ4

a = Nb

P · tstop. As
one or more complete iterations are dropped in Φ4, tstop
is a multiple of tit1, which can be formalized as

tstop = nstop · tit1, nstop = 0, 1, 2, 3, · · · (12)

Differently from the other four phases, Φ4 affects the



Table I
RECONFIGURATION PHASES Φi : tΦi

a , AVAILABLE CLOCK CYCLES DURING
Φi AND l

Φi
a NUMBER OF LOCATIONS THAT CAN BE WRITTEN IN t

Φi
a

t
Φi
a l

Φi
a

Φ1 (nit1 − 1) · tit1 Nb
P

· (nit1 − 1) · tit1
Φ2 tit1

Nb
P

· tit1
Φ3 tit2

Nb
P

· tit2
Φ4 tstop

Nb
P

· tstop
Φ5 nit1 · tit1 ·Nf

Nb
P

· nit1 · tit1 ·Nf

decoder performance, as if nstop > 0 the number of
decoding iterations is reduced for code C1. Evaluating
the actual effect on BER and FER curves is necessary to
understand the feasibility of this approach.

Φ5 If necessary, the reconfiguration process can be over-
lapped with the decoding of a number Nf of data frames
encoded with C1, in addition to the last frame, which was
already considered in Φ1. The available time depends on
the chosen Nf :

tΦ5
a = nit1·tit1·Nf , lΦ5

a =
Nb

P
·nit1·tit1·Nf (13)

The five described phases are reported in Table I, together
with the corresponding tΦi

a and lΦi
a . Thus, B, Nb, nstop and

Nf are design parameters, and their values must be decided
based on decoder parallelism (P) and supported codes, which
determine lc1 and lc2.

Two alternative cases can arise during Φ1: either this phase
is limited by the available time, or it is limited by the number
of free locations in the reconfiguration memory:

(nit1 − 1) · tit1 R
P

Nb
· (B − lc1) (14)

Then, assuming tit1 = lc1 we define the threshold

lth =
P ·B

P + (nit1 − 1) ·Nb
(15)

and distinguish between two cases:
1) lc1 < lth (small C1 codes),
2) lc1 ≥ lth (large C1 codes).

Let us study the two cases separately.

A. lc1 < lth: small C1 codes

When lc1 < lth, phase Φ4 is not useful at all, as dropping
nstop decoding iterations has the effect of reducing the time
of Φ1 by the same amount that is gained in Φ4. Therefore, the
following constraint can be set:

P

Nb
lc2 < tΦ1

a + tΦ2
a + tΦ3

a + tΦ5
a (16)

This constraint simply means that the overall available time
through Φ1, Φ2, Φ3 and Φ5 must be long enough to update lc2
locations in the reconfiguration memories. From the values in
the second column of Table I the constraint in (16) becomes

lc2 <
Nb

P
· (nit1 · tit1 + tit2) +

Nb

P
· nit1 · tit1 ·Nf (17)

Then, if tit2 = lc2, we have

lc2 <
Nb · nit1 · (1 +Nf )

P −Nb
· lc1 (18)

A number Nf of preceding frames can be exploited only if
enough locations are unused in the buffers during Φ1 and Φ5.
This condition can be expressed as

tΦ1
a + tΦ5

a ≤
P

Nb
· (B − lc1) (19)

namely

(nit1 − 1) · tit1 + nit1 · tit1 ·Nf ≤
P

Nb
· (B − lc1). (20)

Thus, given that tit1 = lc1, the maximum useful value of Nf

depends on lc1 as

Nf (lc1) ≤
P
Nb
· (B − lc1)− (nit1 − 1) · lc1

nit1 · lc1
, Nfmax (21)

Thus, (18) can be better written as

lc2 <
Nb · nit1 · [1 +Nf (lc1)]

P −Nb
· lc1 (22)

This means that the size of code C2 has an upper bound and
this bound is proportional to the size of code C1. Therefore, the
most critical reconfiguration cases are those involving “small”
C1 codes: in such cases, there could be many C2 codes that
violate condition (22). The bound is also proportional to Nb,
and can be consequently increased by rising the number of
reconfiguration buses.

B. lc1 ≥ lth: large C1 codes

In this case, lc1 ≥ lth. Now the use of phase Φ4 makes
sense as the duration of Φ1 does not depend on the number of
iterations, because it is limited by the number of free locations
in the reconfiguration memory. As a consequence, additional
reconfiguration time can be gained if nit1 is reduced. On the
contrary, Φ5 is not useful for large C1, because Φ1 is limited
by the available memory, whereas the number of available
cycles is sufficient. Thus, in this case Φ1 is completed in
P/Nb · (B − lc1) cycles (when all the available locations are
written) and the constraints on lc2 is now written as

lc2 < B − lc1 +
Nb

P
· (tit1 + tit2 + tstop) (23)

If tit1 = lc1 and tit2 = lc2, we have

lc2 <
P ·B
P −Nb

−
(

1− Nb · nstop
P −Nb

)
· lc1 (24)

Also for this case, there is a limit to the size of code C2 that
can replace C1 during phases from Φ1 to Φ4. However, this
limit can be increased by increasing nstop or B.
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V. RECONFIGURATION: CASES AND EXAMPLES

The reconfiguration method detailed in Section IV has
been applied to a set of target standards, in order to identify
suitable design parameters (i.e. Nb, B, nstop, Nfmax) that
enable reconfiguration without pausing the decoder for most
of code sizes. The following analysis has been performed with
nit1 = 10.

Figures 3 to 7 plot the maximum lc2, as defined by (22)
and (24), for a continuous set of lc1 values. The × markers
represent a subset of the considered intra- and inter-standard
code changes: markers below the curve identify reconfigura-
tions that can be performed without pausing the decoder.

Figure 3 shows the maximum lc2 for different values of B:
in this plot, B = 100% corresponds to B = 1771, which
is the size of the largest considered lc1, while 160% means
B = 1.6 · 1771. It can be seen that in the cases of small C1

codes, increasing the buffer size does not affect the positive
slope portion of the curve.

On the contrary, in Fig. 4, the maximum lc2 is shown for
different values of Nb: in this case, an increase of Nb is
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reflected in all areas of the plot. A higher number of buses
means a shorter reconfiguration time, and a larger maximum
lc2.

Variation in the maximum allowed tstop (Fig. 5) only affects
the maximum lc2 in case of large C1 codes (negative-slope
portion of the curve), as shown in (24). It can be noticed
that with nstop = 3 all the large codes are below the right
side of the curve: later in this section it will be demonstrated
how these skipped iterations are negligible in terms of BER
performance.

In Fig. 6, the effect of different choices of Nf is shown:
from the plot it can be seen that Nf > 0 actually increases
the maximum lc2 only for small C1 codes.

Finally, Fig. 7 plots some combinations of the analyzed
parameters in order to allow dynamic reconfiguration among
most of considered codes. The represented combinations of
Nb, B, tstop and Nfmax all yield very similar performance:
the cost underlying every parameter choice consequently
becomes the decision metric. A 20% increase in memory,
even if backed up by a smaller number of buses, heavily
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affects the decoder area occupation, ruling out the solution
represented by the thick dashed line. Among the remaining
three combinations, the one that makes use of 6 buses yields a
higher area occupation than the others. Since with Nfmax = 1
the thin dashed curve crosses one of the lower × markers, the
final choice falls on Nb = 5, B = 100%, tstop = 3 · tit1 and
Nfmax = 2. Given that P = 22, and consequently P

Nb
= 22

5 is
not an integer number, every bus will be exclusively connected
to four nodes, while the reconfiguration of the remaining two
nodes will be shared among all 5 buses.

The impact of the reconfiguration process on the decoder
area is addressed in Section VIII, whereas a set of BER
simulations has been performed to evaluate the impact of dif-
ferent tstop, on WiFi, DVB-RCS, WiMAX, CMMB, DTMB,
3GPP-LTE and HPAV codes. Considering the worst case for
each tested standard (i.e. the largest block length, the most
unfavorable throughput/code rate ratios), the reconfiguration
probability can be expressed as the probability for each
incoming frame to request a code change, computed as the
channel changing frequency fchng over the number of coded
frames received in a second:

PR =
fchng · r ·N

Tmax
(25)

where Tmax is the maximum throughput required by the
standard for the N and r code choices. The reconfiguration
probability ranges between 0.25% and 0.3% in presence of
the fast moving receiver, while it remains under 0.15% in
the other case. Simulation results show how the BER penalty
is negligible as long as nit − nstop ≥ dnavgit e, with navgit

the average number of iterations performed before a correct
codeword is obtained and d·e is the next highest integer value.

Figure 8 shows the BER curves obtained with nit = 10 and
nstop = 3, in the pessimistic assumption that a reconfiguration
requiring always nstop = 3 occurs with PR. As it can be ob-
served, the difference between the case when reconfiguration
occurs (solid lines) and the no-reconfiguration case (dashed
lines) is completely negligible.
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VI. DECODING CORES

The design of the decoding cores must yield the same degree
of flexibility of the NoC, being as independent as possible of
the set of supported codes. In [14] a completely serial LDPC
decoding core has been designed, mostly independent of block
length and code rate: an arbitrary number of CN operations
can be scheduled on it. The same holds true for the serial
SISO, where different windows can be scheduled, regardless
of the size of the interleaver.

This work stems from the results presented in [14], im-
proving the architectures through novel memory scheduling
and addressing methods, reduced latency and simpler control.
As shown in [36], sharing the datapath of a min-sum based
decoder architecture with a log-MAP SISO does not provide
significant advantages. As a consequence, in this work logic
sharing is not addressed. Experimental results show that the
area of the architecture is dominated by memories indeed.

A. Quantization and Memory Organization

Memory organization evolves from the idea presented in
[14], in which in every decoding core two memories are
instantiated: a 7-bit memory and a 5-bit memory. Their usage
is shown in the left part of Fig. 9: LDPC VN-to-CN values are
stored in the 7-bit memory, together with turbo extrinsic in-
formation and state metrics. The 5-bit memory is instead used
for CN-to-VN values in LDPC decoding, while storing the
intrinsic channel information in turbo decoding. The memories
are sized to the largest WiMAX codes (N = 2034, M = 576
for LDPC and K = 2400 for turbo). However, according
to post-layout synthesis results, memory access multiplexers
suffer from excessive area overhead for these particular cuts.
To reduce this problem and at to reduce at the same time the
overall memory area occupation, a novel memory organization
technique is proposed, as shown in the rightmost part of Fig. 9.
Different colors highlight different metrics, while black-striped
parts are unused.

Extensive simulations of WiFi, WiMAX, CMMB and
DTMB have shown how, in LDPC decoding, λk[c] and channel
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Figure 9. Memory organization, WiMAX maximum usage percentages

LLR quantization can be reduced from 7 to 6 bits without
consistent performance degradation. Figure 10 shows the BER
curves for some WiMAX, DTMB and WiFi LDPC codes with
the two quantization choices: the difference is smaller than
0.05 dB for all rates of medium and large code sizes. On
the same graph, yielding similar results, a few turbo codes
examples (WiMAX and HPAV) are plotted, in which λk[b]
and the channel LLR representation changes from 7 to 6
bits, and λk[c(e)] from 5 to 4 bits (the meaning of λk[b]
will be detailed in Section VI-C1). Also for turbo codes,
the performance loss introduced by the proposed quantization
change is almost negligible. Very small codes, as the ones that
can be found in 3GPP-LTE and WiMAX, suffer more from
the quantization reduction (Fig. 10). Curves obtained with
floating point precision show improvements between 0.1 and
0.2 dB w.r.t. the selected precisions. Thanks to these changes,
a single 6-bit wide memory is instantiated, in which both
λk[c] and Rlk values are saved. Storing all the Rlk values
requires M ·rowdeg

P = 576·15
22 locations in each decoding core.

However, with the normalized min-sum algorithm the number
of necessary bits can be reduced by 21.2% by changing the
addressing mode as follows. For every CN in the H matrix deg
metrics Rlk are updated. Since Rlk can take only two possible
values, for each CN we can memorize 576 ·2 magnitudes, and
576 · 15 2-bit indexes that identify the correct Rlk magnitude
and its sign.

The sizing of the 6-bit memory is determined by the Double
Binary Turbo Code (DBTC) decoding mode, since it must
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Figure 10. LDPC and turbo BER with quantization change, AWGN channel,
BPSK modulation
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Figure 11. Turbo mode in-depth memory organization

store λk[b] and λk[c(e)] values. To limit the area overhead and
speed up the loading process, four λk[c(e)] values are stored
in three memory locations, as portrayed in the left part of Fig.
11. Three 4-bit λk[c(e)] are stored in three 6-bit locations:
the remaining metric can be divided in two pairs of bits, and
stored in the leftover locations. Three clock cycles are used to
read the four λk[c(e)] values for a trellis step with minimal
logic overhead. In case of Single Binary Turbo Codes (SBTC),
like those used in 3GPP-LTE, only two λk[c(e)] and one λk[b]
are necessary for a trellis step, and they can be read in two
clock cycles without impairing the throughput.

With a similar method the 2-bit memory is used in turbo
decoding mode to store βk[s] and αk[s] between iterations,
as suggested in [34]. Six locations are used to store 2 βk[s]
or αk[s] (Fig 11): since at most three 8-state windows initial-
ization metrics, i.e. 24 βk[s] and 24 αk[s], are stored at the
same time, only 144 out of 400 locations are used. Multiple
memory accesses are necessary to read a single value: the issue
is handled with appropriate scheduling (see Section VI-C2)
and does not affect the throughput.
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B. LDPC Decoding Core

The LDPC decoding core used in the decoder described in
[14] relies on a serial architecture suited for exclusive memory
usage. The main drawback of this solution is the variable
number of cycles to produce the output. The average number
of cycles–per–data varies between one and two. To overcome
this limitation and to share the memory with the SISO a novel
architecture with limited area overhead is proposed.

1) Architecture: The LDPC decoding core is detailed in
Fig. 12.(a): this architecture supports all kind of LDPC codes,
as long as the memory requirements are met.

A Qlk[c] value (1) is produced at every clock cycle and
fed to the Minimum Extraction Unit (MEU) depicted in
Fig. 13. Then, |Qlk[c]| is compared to the current first and
second minimum (min1 and min2), that are initialized as the
maximum allowed value at the beginning of each CN phase.
The minimum of both comparisons (min1new and min2new) is
passed on and sampled on the rising edge of the clock signal,
together with the previous first minimum (min1old) and a flag
signaling if min16=min1new (min1update). If min1update = 0,
min2new is substituted with min1old: min1 and min2 are
finally updated on the falling edge of the clock, ready and
stable for the next |Qlk[c]|. Differently from the MEU used
in [14], that could halt the pipeline in case both min1 and
min2 had to be updated, the negative–edge triggered registers
allow both updates in a single clock cycle, leading to a constant
cycles–per–data rate close to one, after the initial deg+2 cycles
latency. Concurrently, Qlk[c] signs are XORed as in (3).

Once min1 and min2 have been successfully extracted,
they are compared to all the Qlk[c] of the CN, that are
delayed by a number of clock cycles equal to the degree
of the CN (deg), to compute Rnew

lk as in (4). The CMP unit
handles the comparison and produces the two flags (sign and
identification) to be stored in the Rlk index memory. The

≤

≤

|Qlk[c]|

min2

min1

min1new

min1update

min1old
min2

min1

min1update

min2newmin2new

Figure 13. Minimum Extraction Unit

correction factor σ in (6) is applied before the final addition
in (5) and λnewk [c] are sent to the output buffer.

The length of the delay lines used for Qlk[c], Rnew
lk mag-

nitudes and indexes is initialized by the control unit to deg.
2) Memory Scheduling: Both 6-bit and 2-bit memories are

implemented as dual port RAMs, allowing two concurrent
operations. At iteration n, for the j-th CN, two clock cycles
are devoted to write on port 1 of the 6-bit memory. This
allows the storage of the two Rnew

lk magnitudes of CN j and
computed during current iteration. On the contrary, port 2 is
set to read mode, loading the two Rold

lk magnitudes of CN j+1
stored during previous iteration. In the 2-bit memory port 1 is
always in write mode, storing Rnew

lk indexes as soon as they
are computed, while port 2 is constantly in read mode. During
this first phase, though, no data is loaded.

The second phase of the scheduling lasts for deg cycles.
The ports on the 6-bit memory switch functionality: port 1 is
used to store λk[c] incoming from the network, while port 2 is
used to read deg λoldk [c] values of CN j+1. The 2-bit memory
is enabled, loading the Rold

lk indexes of CN j + 1 and storing
Rnew

lk indexes of CN j.

C. Turbo Decoding Core

As for the LDPC decoding core, also the SISO core yields
a very high degree of flexibility, limited only by the size of
the memories: any double-binary turbo code can be decoded
as long as the memory capacity is sufficient.

1) Architecture: Figure 12.(b) portraits the designed archi-
tecture. The SISO interfaces with the NoC via two dedicated
input and output blocks, respectively called Bit-To-Symbol
Conversion Unit (BTS CU) and Symbol–To–Bit Conversion
Unit (STB CU). According to [37], symbol-level (SL) infor-
mation in double-binary codes can be approximated from bit-
level (BL) extrinsics, with a limited BER loss and an average
NoC complexity reduction of 1/3. The BTS-CU changes the
received a priori BL λaprk [b] to SL λaprk [u], as required by the
algorithm, while the STB-CU reduces the number of messages
to be sent on the NoC by converting λk[u] extrinsic values into
BL λk[b].

For every trellis step in a window, the Branch Metric Unit
(BMU) and the Extrinsic Computation Unit combine the two
λaprk [b] converted by the BTS-CU with four λk[c(e)] values
read from the 6-bit memory to calculate γk[e] (11) and to



update λk[u] respectively. The output of the BMU is used by
the main computation unit, that tackles the calculation of b(e),
αk[s] and βk[s] (8), (9) and (10). These metrics are computed
in this exact order, thus storing βk[s] values in a dedicated set
of registers while αk[s] are being processed: the b(e) metric,
that needs both βk[s] and αk[s], is calculated last.

2) Memory Scheduling: In turbo mode, each trellis step
requires three clock cycles to be completed. However, up to
five cycles are needed to read all the necessary λaprk [b] and
λk[c(e)]. Early simulation results presented in [14] show that
the SISO working frequency (f turbocore ) can be lower than the
NoC’s one (f turboNoC ). By timing the memories with the faster
clock signal, six values (five memory locations) can be read
from port 1 of the 6-bit memory in three SISO-cycles. Port 2
is kept in write mode for the duration of the decoding, and
used to store values coming from the network.

The 2-bit memory is used in the same way, with port 1
in read mode and port 2 in write mode. At the beginning of
every new window 16 values are needed (8 αk[s] and 8 βk[s])
from this memory to initialize the trellis. Due to the memory
organization used for state metrics, see Fig. 11, one αk[s] and
one βk[s] are spread over 7 memory locations. Consequently,
7 · 8 clock cycles are necessary to load the 16 values. The
values must be loaded from the memory before the window is
processed. Thus, they are loaded during the processing of the
previous window. Since every window is composed of at least
20 trellis steps, requiring 3 · 20 clock cycles to be executed,
there is enough time to load βk[s] and αk[s] values to initialize
the next window.

VII. SUPPORTED STANDARDS

The 22-node architecture presented in this work has been
tested on a large set of communication standards. In particular,
the whole set of turbo and LDPC codes included in [1]–[6]
have been tested.

As explained in the previous section, if fcore is smaller
enough than fNoC , communication time between PEs is neg-
ligible. Taking in account the presented 22-node architecture,
the maximum ratio fcore/fNoC for which this assumption
stands is 2/3 for LDPC codes and SBTC, while 3/5 is neces-
sary for DBTC. The maximum number of iterations n(max)

it

has been set to 10 for LDPC codes, and to 8 for turbo codes.
Every standard has different throughput requirements: both

fcore and fNoC can be adjusted consequently.
• IEEE 802.16e: the WiMAX standard [5], is fully sup-

ported. A high enough throughput (> 70 Mb/s) can be
obtained with fLDPC

core = 200 MHz and f turbocore = 80
MHz. Table II summarizes the results.

• IEEE 802.11n: IEEE 802.11n standard [6] requires a
higher throughput than WiMAX, demanding for the N =
1944, r = 5/6 code up to 450 Mb/s. The 22–node
architecture can guarantee it with fcore = 820 MHz.
Taking in account the fcore/fNoC ratio constraint, this
would mean fNoC = 1.23 GHz. Both frequencies are
over the decoder maximum working frequency, and two
alternatives have been devised. By increasing the size of
the NoC to 35 nodes, the fcore/fNoC still holds at 2/3,

Table II
IEEE 802.16E STANDARD THROUGHPUT (T ), 10 ITERATIONS FOR LDPC,

8 FOR TURBO

CODE fcore T

[MHz] [Mb/s]
DBTC 80 73

LDPC r=1/2 200 70
LDPC r=2/3 200 88
LDPC r=3/4 200 88
LDPC r=5/6 200 110

but fcore can be lowered to 520 MHz, and fNoC = 780
MHz. By choosing fcore = 350 MHz, support still can
be given for other WiFi transmission modes, requiring up
to 300 Mb/s. The results are shown in Table III.

Table III
IEEE 802.11N STANDARD THROUGHPUT (T ) WITH DIFFERENT fcore AND

NOC SIZES, 10 ITERATIONS

T [Mb/s]

CODE @520 MHz @350 MHz @200 MHz
35 nodes 35 nodes 22 nodes

LDPC r=1/2 248 167 60
LDPC r=2/3 364 245 88
LDPC r=3/4 406 273 94
LDPC r=5/6 455 306 110

• DVB-RCS: the return channel for DVB satellite communi-
cations [1], thought for multimedia applications, employs
12 different payloads and 7 coding rates. The throughput
required by this standard is very small, and can go up to
2.05 Mb/s in case of corporate-driven applications. This
throughput is easily sustained by the 22-node architecture
with fcore = 3 MHz.

• HomePlug AV: the HPAV standard [2] makes use of a
small set of DBTC, with interleaver sizes of 64, 544 and
2080. The throughput requirements of HPAV demand at
least 150 Mb/s: on the 22-node architecture, with fcore =
170 MHz, achieved throughput is 156 Mb/s.

• CMMB and DTMB: the CMMB [3] and DTMB [4]
Chinese broadcast standards, though serving the same
purposes as DVB, work with smaller LDPC codes. Like
in DVB, also in CMMB codes feature double diagonal
submatrices, slightly limiting the concurrent number of
row nodes that can be instantiated on the proposed
decoder. Both CMMB and DTMB codes demand an
increased memory capacity with respect to the aforemen-
tioned standards, requiring PE memories to be enlarged
by 55% to support CMMB, and by 68% for DTMB.
A working frequency fcore = 60 MHz is sufficient
to guarantee the 20.22 Mb/s throughput required by
CMMB standard, while to comply with DTMB 40.6
Mb/s, frequency must be risen to fcore = 200 MHz, as
shown in Table V.

• 3GPP-LTE: the LTE version of 3GPP [7] uses a set of
188 SBTC with coding rate 1/3, thus being characterized
by a range of widely spaced block lengths. The required
150 Mb/s throughput can be obtained on the 22-node
architecture with fcore = 330 MHz; however, if we



Table IV
RECONFIGURATION CASES IN INTRA- AND INTER-STANDARD COMBINATIONS. DARK GRAY: PERCENTAGE OF CODE COMBINATIONS REQUIRING

DECODER PAUSING. LIGHT GRAY: PERCENTAGE OF CODE COMBINATIONS REQUIRING 0 < Nf ≤ 2. WHITE: ALL CODE COMBINATIONS
RECONFIGURABLE WITH Nf = 0. THROUGHPUT OBTAINED WITH 10 ITERATIONS FOR LDPC, 8 FOR TURBO

C2 WiMAX LDPC WiMAX turbo WiFi DVB-RCS HPAV CMMB DTMB 3GPP-LTE
C1

WiMAX LDPC 3.5% 8.2% 1.8% 2.4% 14.0% 21.0% 36.4% 5.2%
WiMAX turbo 10.1% 15.8% 4.4% 5.9% 17.6% 47.0% 54.9% 10.0%

WiFi 8.2% 13.2% 6.8% 4.0% 19.4% 33.3% 44.4% 6.8%
DVB-RCS 18.5% 0.3% 13.5% 8.5% 22.2% 55.9% 67.0% 13.5%

HPAV 14.4% 17.6% 11.1% 17.8% 33.3% 33.3% 77.7% 12.3%
CMMB
DTMB

3GPP-LTE 7.9% 10.0% 5.3% 4.2% 12.3% 31.6% 38.0% 6.8%

Table V
CMMB AND DTMB STANDARD THROUGHPUT (T ), 10 ITERATIONS

CODE fcore T

[MHz] [Mb/s]
CMMB LDPC r=1/2 60 22
CMMB LDPC r=3/4 60 33
DTMB LDPC r=2/5 200 42
DTMB LDPC r=3/5 200 55
DTMB LDPC r=4/5 200 68

consider the extended 35-node architecture mentioned
for the WiFi standard, compliance with the throughput
requirement is met at fcore = 200 MHz. This standard re-
quires additional 41% memory capacity w. r. t. WiMAX,
WiFi, DVB-RCS and HPAV standards, but can be fully
supported by the CMMB and DTMB memory sizing.

Table IV summarizes possible switching among the selected
standards, taking in account all possible code combinations.
The dark gray cells represent the percentages of C1, C2

combinations between two standards whose reconfiguration
requires pausing of the decoder. A few cases arise between
DVB-RCS and WiMAX turbo codes and within 3GPP-LTE
(due to its wide variety of codes), while when C2 belongs
to the CMMB, DTMB and LTE standards, it is more likely
to encounter a critical combination. On the contrary, if C1

belongs to CMMB or DTMB standards, any reconfiguration
can be completed with Nf = 0: this is also the most common
situation among the other standards. The choice of maximum
Nf = 2 allows to handle all the other reconfiguration cases:
the light gray cells show the percentages of code combinations
in which 0 < Nf ≤ 2 is necessary.

VIII. IMPLEMENTATION RESULTS

The results presented in Section VII show a broad range
of possibilities for implementation, and the designed decoder
can be scaled with very low effort. Three different complete
decoders have been synthesized with TSMC 90 nm CMOS
technology: post-layout results have been obtained for all of
them, with accurate functional verification, area and power
estimation. Synthesis has been carried on with Synopsys
Design Compiler, functional simulation with Mentor Graphics
ModelSIM, and place and route with CADence SoC Encounter
[38].

A. Implementation A

The first decoder implementation has been devised to fully
support WiMAX, HPAV and DVB-RCS standards. The mem-
ory sizing and organization described in Section VI-A is able
to handle the addressed standards with 22 PEs. To comply with
each standard throughput requirements, a single fNoC = 300
MHz is sufficient in both LDPC and turbo mode, consequently
identifying fLDPC

core = 200 MHz and f turbocore = 170 MHz,
both under the fcore/fNoC constraint. Obtained throughput
is presented in Table VI.

Each reconfiguration bus is 18 bits wide: 3 bits are the
node identifier, used to address one of the connected decoding
cores, 5 bits are assigned to the node degree or window size
information, and the remaining 10 bits carry the t′i,j .

These design choices have led to an overall area of 2.75
mm2 after place and route, taking in account the reconfig-
uration additional hardware as well. The logic of the SISO
cores occupies 15% of the overall area, while the LDPC cores
11%. Core memories account for another 53%, while the NoC,
together with the reconfiguration buses and additional logic,
constitute the remaining 21%. This area overhead is due to
two specific functionalities that have been introduced in the
proposed decoder: (i) full flexibility in terms of supported
turbo and LDPC codes, and (ii) dynamic reconfiguration
between different standards.

Estimated power consumption, based on the switching ac-
tivity in case of WiMAX LDPC code N = 2304, r = 1/2
(for ease of comparison with the state of the art) is 87.8 mW;
for WiMAX turbo code with K = 2400 estimated power is
101.5 mW.

A screenshot of the final layout is portrayed in Fig. 14: the
irregularity of the placement is due to the large number of
memories and their complex interconnections. However, two
different areas can be easily identified: a central zone in which
most of the logic is found (black contour), and a border area
where the majority of memories have been placed, some of
which are highlighted with a white line.

B. Implementation B

The second implementation presented extends the set of
standards supported by implementation A to WiFi LDPC
codes and 3GPP-LTE turbo codes. To limit the complexity



Figure 14. Implementation A layout screenshot

of off-chip clock generators, also in this case a single NoC
working frequency has been chosen, fNoC = 780 MHz,
while fLDPC

core = 520 MHz is necessary to provide high
enough throughput, f turbocore can remain set to 200 MHz. The
parallelism of the NoC is increased from 22 nodes to 35 nodes,
the reconfiguration buses rise from 5 to 8, and the support
of LTE requires an increase in the size of 6-bit memories.
Throughput results are reported in Table VI. The post place &
route estimated area is 4.87 mm2, with 331.6 mW of power
consumption in LDPC mode, and 183.2 mW in turbo mode.

C. Implementation C

This third implementation extends implementation A’s sup-
port to CMMB and DTMB. Neither frequency nor NoC
parallelism modification are necessary, but the core and recon-
figuration memories must be enlarged. Consequently, an extra
bit is added to the reconfiguration bus data width. The new
post place & route estimated area is 3.42 mm2, while power
reaches 120 mW for both tested turbo and LDPC codes. This
is because the LDPC consumption is calculated on a DTMB
code, that makes full use of the extended memories, while
the memory usage percentages for DBTC remains low. The
enlarged memories allow also LTE codes to be decoded, but
the SBTC fcore would need to rise up to 333 MHz to meet the
throughput requirements. Throughput results for CMMB and
DTMB are shown in the Implementation C column of Table
VI.

D. Comparisons

Table VIII shows the detailed implementation results in
comparison with the state of the art flexible turbo/LDPC
decoders. Even though A, B and C are the only decoders
capable of dynamic switching, area, power and efficiency
figures prove the effectiveness of this approach.

In order to make a fair comparison, normalized area occu-
pation has been included in the Table, Antot =Atot ·(65/Tp)2,
where Atot is the total area and Tp is the technology process,
together with throughput and power consumption. Moreover,
two further metrics have been introduced: the energy efficiency
Eeff = Pow/(T · n(max)

it ), where Pow is the peak power
consumption, expressing the energy spent for decoded bit, and
the area efficiency Aeff = (T · n(max)

it /fclk) · (1000/Antot),
reported in Table VII, an efficiency figure that considers both
throughput and area occupation.

Table VI
THROUGHPUT (T ) RESULTS FOR EACH STANDARD, WITH EVERY

IMPLEMENTATION

T [Mb/s]
CODE Impl. A Impl. B Impl. C
STD, r fNoC 300 MHz fNoC 780 MHz fNoC 300 MHz

fcore T fcore T fcore T

[MHz] [Mb/s] [MHz] [Mb/s] [MHz] [Mb/s]

DBTC
WiMAX 170 156 200 292 170 156

HPAV 170 156 200 292 170 156
DVB-RCS 170 156 200 292 170 156

SBTC
3GPP-LTE N/A N/A 200 150 170 78

LDPC
WiMAX 1/2

200

70

520

289

200

70
WiMAX 2/3 88 364 88
WiMAX 3/4 88 364 88
WiMAX 5/6 110 455 110

WiFi 1/2

200

60

520

248

200

60
WiFi 2/3 88 364 88
WiFi 3/4 94 406 94
WiFi 5/6 110 455 110

CMMB 1/2 N/A N/A N/A N/A 200 73
CMMB 3/4 110
DTMB 2/5

N/A N/A N/A N/A 200
42

DTMB 3/5 55
DTMB 4/5 68

Baghdadhi et al. in [11] propose an ASIP decoder architec-
ture supporting WiMAX and WiFi LDPC codes, and WiMAX,
3GPP-LTE and DVB-RCS turbo codes. The A, B and C im-
plementations are designed such that the minimum throughput
is sufficient to comply with the supported standards. On the
contrary, worst case throughput in [11] is not high enough
for WiMAX. Comparison reveals similar area occupations, but
very different frequencies. This leads to a better area efficiency
in all three proposed implementations for most of the codes:
particularly evident is the difference for DBTC (second last
row of Table VII).

The work presented in [9] supports convolutional, LDPC
and turbo codes, giving results for WiMAX LDPC, WiFi and
general binary and double-binary turbo codes. It yields a very
small area occupation with low power consumption and good
maximum throughput for LDPC decoding. On the contrary, it
features less interesting figures in turbo mode. This situation
is reflected both on Eeff and Aeff , with Implementation
A, B and C having, when comparing the same codes, better
efficiencies in turbo mode (last row of Table VII), and worse
in LDPC mode. However, under the worst case conditions
(N=672, r = 1/2, 20 iterations), A and B outperform [9] also
in LDPC mode.

The multi-standard decoder designed in [12] supports
3GPP-HSDPA, WiFi, WiMAX and DVB-SH. No specific
information on the codes used is given, only minimum guar-
anteed throughput: for this reason, results in Table VII refer to
the minimum throughput of each standard. Implementation A
and B have comparable minimum Aeff when working with
WiMAX LDPC codes, and A, B and C yield much better
results in turbo mode. When comparing WiFi results [12]
guarantees a higher Aeff than A, B and C, even though
aiming for a lower throughput than B. All three proposed



Table VII
AREA EFFICIENCY (Aeff ) FOR DIFFERENT CODES AND

IMPLEMENTATIONS. N/A: CODE NOT SUPPORTED. DASH: RESULTS NOT
AVAILABLE.

Aeff [ bits
mm2·kcycles

]

CODE A B C [11] [9] [12] [13]

LDPC (min)
2304, 1/2 2447 2188 1966 882 – 2013 –
2304, 5/6 3846 3445 3090 4412 9589 10779
1944, 5/6 3846 3445 3090 3719 10363 3484 8982
7493, 4/5 N/A N/A 1910 N/A N/A N/A N/A

Turbo (min)
DB 2400 5134 4598 4124 1468 750 2084 N/A
SB 6144 N/A 2362 2062 1468 375 N/A 3233

implementations yield better Eeff , and both A and C have
a smaller area occupation.

Sun and Cavallaro describe in [13] a decoder working with
3GPP-LTE turbo codes and WiMAX and WiFi LDPC codes.
They obtain very high maximum throughput efficiency in
both LDPC and turbo mode: the range of supported codes is
however quite limited w.r.t. all considered implementations,
and the area occupation is larger than A. Since no power
analysis is given, comparison based on Eeff is impossible,
although the difference in working frequencies would suggest
a smaller power consumption for at least A and C.

IX. CONCLUSIONS

This work describes a flexible turbo/LDPC decoder ar-
chitecture able to fully support a wide range of modern
communication standards. A complete analysis of the never
previously addressed inter- and intra-standard reconfiguration
issue is presented, together with a dedicated reconfiguration
technique that limits the complexity overhead and perfor-
mance loss. Three different implementations are proposed
to cover different sets of standards. Full layout design has
been completed to provide accurate area and power figures.
Comparison of the proposed architectures with the state of the
art show very good efficiency, competitive area occupation and
an unmatched degree of flexibility.
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POWER CONSUMPTION (POW), ENERGY EFFICIENCY (Eeff ), DATA WIDTH (DW), MAXIMUM NUMBER OF ITERATIONS (n(max)
it ), CODE LENGTH (N )

AND RATE (r), INTERLEAVER SIZE (K) AND THROUGHPUT (T )

Decoder 2 A 2 B 2 C [11] [9] [12] [13]

P
LDPC 22 35 22 8 1 12 12
DBTC

Tp LDPC 90 90 90 90 65 45 90
[nm] DBTC
Acore LDPC 2.19 3.83 2.56 2.44 N/A N/A 1.18
[mm2] DBTC
Atot LDPC 2.75 4.87 3.42 2.6 0.62 0.9 3.20

[mm2] DBTC
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[mm2] DBTC
fclk LDPC 2001 5201 2001

520 400 150 500
[MHz] DBTC 1701 2001 1701
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[ nJ
bits
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n
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it

LDPC 10 10 10 10 10 8 15
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T LDPC 70 455 68 62.5 237.8 71.05 600

[Mb/s] DBTC 156 292 156 173 37.2 73.46 450
1 fcore
2 post–layout results
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comments reported follow.

AE When evaluating the fixed-point performance, the
authors should show the performance degradation
compared to a floating-point decoder. Also, the initial
channel LLR quantization is not mentioned in the
simulation.

AU To better clarify the degradation introduced by the quan-
tization, the authors have included in Figure 10 two new
curves, obtained with floating point precision. They are
compared to fixed point precision in Section VI.A; here,
also, the channel LLR’s quantization has been specified
as requested.

AE The proposed decoder’s efficiency in Table VII is
relatively lower than the ASIC solutions, which is
understandable. When compared with ASIP solution
of [9], the proposed decoder is significantly worse in
LDPC mode, but much better in Turbo mode. Are
those numbers in Table VII normalized to the same
number of iterations?

AU The previous numbers did not take in account the it-
erations, and Table VII has been modified to consider
them. The Area efficiency metric has been redefined as
Aeff = (T ·n(max)

it /fclk) · (1000/Antot), where T is the
throughput obtained with n(max)

it iterations. This kind of



normalization means that Aeff of each decoder will be
evaluated on its performance once it has been detached
from the number of iterations, being T= bits·f

cyclesit·n(max)
it

.
Still the difference underlined by the reviewer is present,
and even accentuated. The particularly unsatisfying Aeff

of [9] in turbo mode is mainly due to the low throughput
obtained: 37.2 Mb/s are achieved with 5 iterations only,
making for a far smaller numerator than the compared
solutions, for example 156 Mb/s with 8 iterations.


