5 research outputs found

    Electrochemo-magneto abrasive flow machine setup fabrication and experimental investigation of the process alongwith mathematical modeling and optimization

    Get PDF
    In abrasive flow machining, there are two sets of piston-cylinder arrangements, i.e. machine and media. the machine ram pushes the media piston two and fro so that media filled inside it flows past the inner wall of workpiece and the material is removed. The extrusion pressure is the main mechanism of material removal. Various authors have made the process more effective in terms of material removal and surface roughness by providing rotational and magnetic force

    The single factor experiment of the non-linear tube in abrasive flow machining

    Get PDF
    In order to obtain high quality of special channel surface and improve overall performance of machine or parts, this paper regarded the non linear tube-nozzle as the research object, and the single factor experiment was performed in the critical process parameter of abrasive flow machining(AFM) with self-developed abrasive medium, to study the relationship between process parameters and channel surface of microstructure and the influence of process parameters on the workpiece surface quality. The results show that abrasive flow technology can obviously improve surface quality of the non-linear tube, and has important practical value to improve the stability and the functional performance of the non-linear tube. The results can provide technical support for the deep research in the theory of abrasive flow machining

    Understanding the Mechanism of Abrasive-Based Finishing Processes Using Mathematical Modeling and Numerical Simulation

    Get PDF
    Recent advances in technology and refinement of available computational resources paved the way for the extensive use of computers to model and simulate complex real-world problems difficult to solve analytically. The appeal of simulations lies in the ability to predict the significance of a change to the system under study. The simulated results can be of great benefit in predicting various behaviors, such as the wind pattern in a particular region, the ability of a material to withstand a dynamic load, or even the behavior of a workpiece under a particular type of machining. This paper deals with the mathematical modeling and simulation techniques used in abrasive-based machining processes such as abrasive flow machining (AFM), magnetic-based finishing processes, i.e., magnetic abrasive finishing (MAF) process, magnetorheological finishing (MRF) process, and ball-end type magnetorheological finishing process (BEMRF). The paper also aims to highlight the advances and obstacles associated with these techniques and their applications in flow machining. This study contributes the better understanding by examining the available modeling and simulation techniques such as Molecular Dynamic Simulation (MDS), Computational Fluid Dynamics (CFD), Finite Element Method (FEM), Discrete Element Method (DEM), Multivariable Regression Analysis (MVRA), Artificial Neural Network (ANN), Response Surface Analysis (RSA), Stochastic Modeling and Simulation by Data Dependent System (DDS). Among these methods, CFD and FEM can be performed with the available commercial software, while DEM and MDS performed using the computer programming-based platform, i.e., "LAMMPS Molecular Dynamics Simulator," or C, C++, or Python programming, and these methods seem more promising techniques for modeling and simulation of loose abrasive-based machining processes. The other four methods (MVRA, ANN, RSA, and DDS) are experimental and based on statistical approaches that can be used for mathematical modeling of loose abrasive-based machining processes. Additionally, it suggests areas for further investigation and offers a priceless bibliography of earlier studies on the modeling and simulation techniques for abrasive-based machining processes. Researchers studying mathematical modeling of various micro- and nanofinishing techniques for different applications may find this review article to be of great help

    Modeling and CFD Simulation of Abrasive Flow Machining Process

    Get PDF
    The abrasive flow machining (AFM) is a new finishing operation that involves abrasive particles as the tool to remove work material. AFM is broadly known as “no-tool” precision finishing operation and the carrier media containing abrasive particles is called as “self-deformable stone”. In AFM, a semi-solid polymer-based media containing abrasive powders in a particular proportion is flown through the work-piece at a certain pressure. The AFM consists of three major components, i.e. machine, media and tooling or fixture. The machine consists of a frame structure, control system, hydraulic cylinder and the media cylinder. The extrusion pressure for a standard AFM process varies from 10 bars to 100-200 bars. The function of tooling and fixture is to position the work-piece and provide direction to the media flow through the work-piece. The media consists of a carrier, abrasive powder and some additives. The flow of the media can be modeled using finite volume method as it deals with flow of a fluid. In the present work, FLUID FLOW FLUENT available in ANSYS 15 software package was used for the modeling and simulation. A 2D model for a cylindrical work-piece and a 3D model for four rotary swaging dies along with the fixtures have been prepared. Validation has been done for the two models with the existing experimental data. The most affecting flow output parameters like dynamic pressure, velocity and strain rate for different volume fraction and media speed have been analysed. The 3D model was simulated for both the non-granular and granular flow. The effects of different abrasive particles for variable diameter and volume fraction on the flow output parameters like granular pressure and skin friction coefficient have been studied. The flow analysis of the outputs gives a prediction of material removal efficiency
    corecore