363 research outputs found

    THz detection and amplification using plasmonic Field Effect Transistors driven by DC drain currents

    Full text link
    We report on the numerical and theoretical results of sub-THz and THz detection by a current-driven InGaAs/GaAs plasmonic Field-Effect Transistor (TeraFET). New equations are developed to account for the channel length dependence of the drain voltage and saturation current. Numerical simulation results demonstrate that the effect of drain bias current on the source-to-drain response voltage (dU) varies with the device channel length. In a long-channel TeraFET where plasmonic oscillations cannot reach the drain, dU is always positive and rises rapidly with increasing drain current. For a short device in which plasmonic oscillations reach the drain, the current-induced nonuniform electric field leads to a negative response, agreeing with previous observations. At negative dU, the amplitude of the small-signal voltage at the drain side becomes larger than that at the source side. Thus, the device effectively serves as a THz amplifier in this condition. Under the resonant mode, the negative response can be further amplified near the resonant peaks. A new expression of dU is proposed to account for this resonant effect. Based on those expressions, a current-driven TeraFET spectrometer is proposed. The ease of implementation and simplified calibration procedures make it competitive or superior compared with other TeraFET-based spectrometers.Comment: 23 pages, 11 figures, 1 tabl

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Modeling of voltage-dependent diffused resistors

    Full text link

    Aging-Aware Design Methods for Reliable Analog Integrated Circuits using Operating Point-Dependent Degradation

    Get PDF
    The focus of this thesis is on the development and implementation of aging-aware design methods, which are suitable to satisfy current needs of analog circuit design. Based on the well known \gm/\ID sizing methodology, an innovative tool-assisted aging-aware design approach is proposed, which is able to estimate shifts in circuit characteristics using mostly hand calculation schemes. The developed concept of an operating point-dependent degradation leads to the definition of an aging-aware sensitivity, which is compared to currently available degradation simulation flows and proves to be efficient in the estimation of circuit degradation. Using the aging-aware sensitivity, several analog circuits are investigated and optimized towards higher reliability. Finally, results are presented for numerous target specifications

    Poly(ethylenedioxythiophene) based electronic devices for sensor applications

    Get PDF
    Organic electronic devices, based on Poly (3,4-ethylenedioxythiophene)-Poly (styrene sulfonic acid) (PEDOT-PSS) as the active layer for sensor applications, have been studied. Two sets of sensors have been developed. In one case, sensors consisting of PEDOT-PSS resistors have been realized and demonstrated for soil moisture monitoring. The resistor model for the soil moisture sensor enables the sensor device to be fabricated at low cost and easily tested with a simple structure. Unlike the large dimension device used in Time Domain Reflectometry (TDR), the sensors are small and are capable of capturing microscale behavior of moisture in soil which is useful for geological and geotechnical engineering applications. The Field Effect Transistors (FETs) based on PEDOT-PSS and GOx have been developed for a glucose sensing application. The sensitivity of the developed FET-based sensors is enhanced by selecting the channel as the active sensing region as compared with the previously reported devices which use the gate as the active sensing region. This also allows the devices to be designed by a simple and cost-effective means, unlike other complex platform designs for polymer-based sensor devices. PEDOT-PSS based sensors showed higher sensitivity and reversible electrical properties when compared to early versions of sensors fabricated using polymer electrolytes which showed irreversible change in the electrical properties when exposed to high moisture content. The output characteristics, which is the change in electrical sheet resistance of the PEDOT-PSS film versus the percentage change in relative humidity (%RH), show that the conductivity of the film decreases when it is exposed to increasing levels of moisture content. The change in the output resistance of the developed PEDOT-PSS based sensor device was observed to be from 2.5 MΩ to 4.0 MΩ when exposed to soil samples (e.g. Buckshot Clay, CH) with 15–35 % change in gravimetric water content. The FET-based glucose sensor using PEDOT-PSS and GOx as the channel materials, is designed and developed with the capability of precise, fast, and wide sensing range of measurement compared to that of traditional glucose sensors, which are costly and operate on a complex electrochemical based principle. The fabrication and characteristics testing steps of the present glucose sensor are also simpler in comparison to other glucose sensors, which use electrochemical cells for measurements. In the present device, GOx was immobilized on PEDOT-PSS conducting polymer film using a simple cost effective spin-coating technique. A linear increase in the FET drain current was observed, which was resulted from the increase in glucose concentration. The sensitivity of the glucose sensor was determined to be 0.3 Ampere per 1 mg/ml of glucose concentration. A linear range of response was found from 0.2 to 3 mg/ml of glucose, with a response time of 10–20 s. The results indicated that the reported FET-based glucose sensor retains the enzyme bioactivity and can be applied as a glucose biosensor. Moreover, the glucose sensor presented in this dissertation has displayed a reasonable level of sensitivity, repeatability, and stability. The evaluated range of glucose detection shows that the developed biosensor can be used to detect glucose concentration for normal and diabetic patients. This finding also opens a potential pathway for further development of novel biosensor devices

    The Future of High Frequency Circuit Design

    Get PDF
    The cut-off wavelengths of integrated silicon transistors have exceeded the die sizes of the chips being fabricated with them. Combined with the ability to integrate billions of transistors on the same die, this size-wavelength cross-over has produced a unique opportunity for a completely new class of holistic circuit design combining electromagnetics, device physics, circuits, and communication system theory in one place. In this paper, we discuss some of these opportunities and their associated challenges in greater detail and provide a few of examples of how they can be used in practice

    An analog electronic cochlea

    Get PDF
    An analog electronic cochlea has been built in CMOS VLSI technology using micropower techniques. The key point of the model and circuit is that a cascade of simple, nearly linear, second-order filter stages with controllable Q parameters suffices to capture the physics of the fluid-dynamic traveling-wave system in the cochlea, including the effects of adaptation and active gain involving the outer hair cells. Measurements on the test chip suggest that the circuit matches both the theory and observations from real cochleas

    Compact modeling of the rf and noise behavior of multiple-gate mosfets

    Get PDF
    La reducción de la tecnología MOSFET planar ha sido la opción tecnológica dominante en las últimas décadas. Sin embargo, hemos llegado a un punto en el que los materiales y problemas en los dispositivos surgen, abriendo la puerta para estructuras alternativas de los dispositivos. Entre estas estructuras se encuentran los dispositivos DG, SGT y Triple-Gate. Estas tres estructuras están estudiadas en esta tesis, en el contexto de rducir las dimensiones de los dispositivos a tamaños tales que los mecanismos cuánticos y efectos de calan coro deben tenerse n cuenta. Estos efectos vienen con una seria de desafíos desde el pun to de vista de modelación, unos de los más grandes siendo el tiempo y los recursos comprometidos para ejecutar las simulaciones. para resolver este problema, esta tesis propone modelos comlets analíticos y compactos para cada una de las geometrías, validos desde DC hasta el modo de operación en Rf para los nodos tecnológicos futuros. Dichos modelos se han extendido para analizar el ruido de alta frecuencia en estos diapositivos

    An Analog Electronic Cochlea

    Get PDF
    An engineered system that hears, such as a speech recognizer, can be designed by modeling the cochlea, or inner ear, and higher levels of the auditory nervous system. To be useful in such a system, a model of the cochlea should incorporate a variety of known effects, such as an asymmetric low-pass/bandpass response at each output channel, a short ringing time, and active adaptation to a wide range of input signal levels. An analog electronic cochlea has been built in CMOS VLSI technology using micropower techniques to achieve this goal of usefulness via realism. The key point of the model and circuit is that a cascade of simple, nearly linear, second-order filter stages with controllable Q parameters suffices to capture the physics of the fluid-dynamic traveling-wave system in the cochlea, including the effects of adaptation and active gain involving the outer hair cells. Measurements on the test chip suggest that the circuit matches both the theory and observations from real cochleas
    corecore