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ABSTRACT 

Organic electronic devices, based on Poly (3,4-ethylenedioxythiophene)-Poly 

(styrene sulfonic acid) (PEDOT-PSS) as the active layer for sensor applications, have 

been studied. Two sets of sensors have been developed. In one case, sensors consisting 

of PEDOT-PSS resistors have been realized and demonstrated for soil moisture 

monitoring. The resistor model for the soil moisture sensor enables the sensor device to 

be fabricated at low cost and easily tested with a simple structure. Unlike the large 

dimension device used in Time Domain Refiectometry (TDR), the sensors are small and 

are capable of capturing microscale behavior of moisture in soil which is useful for 

geological and geotechnical engineering applications. 

The Field Effect Transistors (FETs) based on PEDOT-PSS and GOx have been 

developed for a glucose sensing application. The sensitivity of the developed FET-based 

sensors is enhanced by selecting the channel as the active sensing region as compared 

with the previously reported devices which use the gate as the active sensing region. This 

also allows the devices to be designed by a simple and cost-effective means, unlike other 

complex platform designs for polymer-based sensor devices. 

PEDOT-PSS based sensors showed higher sensitivity and reversible electrical 

properties when compared to early versions of sensors fabricated using polymer 

electrolytes which showed irreversible change in the electrical properties when exposed 

to high moisture content. The output characteristics, which is the change in electrical 

sheet resistance of the PEDOT-PSS film versus the percentage change in relative 

iii 
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humidity (%RH), show that the conductivity of the film decreases when it is exposed to 

increasing levels of moisture content. The change in the output resistance of the 

developed PEDOT-PSS based sensor device was observed to be from 2.5 MQ to 4.0 MQ 

when exposed to soil samples (e.g. Buckshot Clay, CH) with 15 - 35 % change in 

gravimetric water content. 

The FET-based glucose sensor using PEDOT-PSS and GOx as the channel 

materials, is designed and developed with the capability of precise, fast, and wide sensing 

range of measurement compared to that of traditional glucose sensors, which are costly 

and operate on a complex electrochemical based principle. The fabrication and 

characteristics testing steps of the present glucose sensor are also simpler in comparison 

to other glucose sensors, which use electrochemical cells for measurements. In the 

present device, GOx was immobilized on PEDOT-PSS conducting polymer film using a 

simple cost effective spin-coating technique. A linear increase in the FET drain current 

was observed, which was resulted from the increase in glucose concentration. The 

sensitivity of the glucose sensor was determined to be 0.3 Ampere per 1 mg/ml of 

glucose concentration. A linear range of response was found from 0.2 to 3 mg/ml of 

glucose, with a response time of 10 - 20 s. The results indicated that the reported FET-

based glucose sensor retains the enzyme bioactivity and can be applied as a glucose 

biosensor. Moreover, the glucose sensor presented in this dissertation has displayed a 

reasonable level of sensitivity, repeatability, and stability. The evaluated range of glucose 

detection shows that the developed biosensor can be used to detect glucose concentration 

for normal and diabetic patients. This finding also opens a potential pathway for further 

development of novel biosensor devices. 
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CHAPTER ONE 

INTRODUCTION 

Polymer electronic devices stimulate a steady development of new sensor types to 

interact with our physical world. Conducting polymers, such as 

poly(ethylenedioxythiophene), were utilized for sensor and transducer applications due to 

their electrically conducting characteristics. Sensors and transducers enable non-electrical 

signals from physical, biological and chemical domains to be converted into electrical 

quantities, such as voltage, current, resistance or capacitance. The discovery in 1977 that 

the conductivity of a polymer could be increased controllably by doping [1] opened a 

new era for organic electronic sensor applications. About a decade later, one of the most 

extensive applications, field effect transistors (FETs), using polymers as the active 

material, was developed [2]. The field effect transistor has been used in many sensor 

applications. For example, humidity sensors [3] and glucose sensors [4] have proven to 

be successful in this area. 

In fact, microelectromechanical systems (MEMS) have produced high-density 

sensor arrays integrated with electronics circuit processing A/D signal. One of the 

advantages of field effect transistor sensors made from silicon is the possibility that the 

mechanical structure can be integrated with the read-out and signal-conditioning circuitry 

on the single chip. Although silicon, both as single-crystal and an amorphous film, is 

1 
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successfully used for millions of sensors, there are applications where its use is 

disadvantageous, such as, the limitations caused by the mechanical properties of silicon. 

Therefore, there has been growing research in organic electronics to develop polymer 

applications with utilizing novel fabrication techniques. Due to the improvement in 

performance, polymer-based electronic devices have been demonstrated that use 

conducting polymer films [5,6] for sensing may provide unique technologies and 

generate new applications. Also some groups have embedded silicon sensing elements in 

polymer skins [7] or deposited active polymer layers on silicon substrates [8]. 

As for all commercial products, low cost is usually required. Therefore, low cost 

and easier ways to produce an electronic device are always welcome. Currently, 

conductive and semiconductive organic materials are utilized as substrate layers to build 

electronic integrated circuits. With novel polymer materials being produced, a new set of 

processing technologies is applied to thin films. These new techniques open a potential 

area for building organic electronic sensors with different properties and lower cost as 

compared to the traditional technologies. Investigation into these new materials and 

techniques is valuable for building new microsensor applications. 

1.1 Organic Electronics 

Due to their advantages over traditional inorganic semiconductor technologies, 

organic electronics have been the focus of a growing body of investigation and 

development for more than fifty years. The discovery of conductive property of organic 

solids was at the beginning of the 20th century. In 1941, Nobel Laureate Albert Szent-

Gyoryi suggested that certain processes in biological system might be accounted for by 

the transfer of electrical charge carriers along molecular chains [9]. In addition to being 
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electrically conducting, organic materials were also capable of emitting visible light when 

excited optically or electrically. Since then, organic light emitting diodes (OLEDs), 

plastic solar cells and organic transistors have been developed in this area (Figurel-1). 

Alan Heeger, Hideki Shirakawa and Alan MacDiarmid established the foundation for the 

field of organic electronics with the discovery of the variation of electrical conductivity 

of polyacetylene [10]. With the early fundamental work done, many novel organic 

materials have been developed and investigated for fabricating electronics devices. 

Figure 1-1 Organic light emitting is used in screens for mobile phones. 

1.1.1 Advantages and Disadvantages 

Unlike inorganic materials, organic material can be deposited by solution-

processing, for example: spin-coating, spray-coating, ink-jet printing and self-assembling. 

This offers greater process throughput, lower fabrication costs and possibly a lower 

thermal budget as compared with inorganic materials. 
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Accordingly, organic electronic devices were fabricated and the performance 

improved with the ability to fabricate these devices over large areas on flexible substrates, 

such as plastic, paper, wood and glass. This capacity may provide unique technologies 

and generate new applications to address the growing needs for pervasive computing and 

enhanced connectivity [11]. Since the organic materials are assembled out of organic 

building blocks, they can be made bio-compatible [12]. Thus, they can be implanted and 

used in vivo without causing immune reactions. More electronic sensors based on 

polymer materials are likely to be developed in the near future for monitoring critical data, 

like local blood pressure or blood sugar concentration [13]. 

It is clear that innovative organic materials function either as conductors or 

insulators. As an insulator material, polymers are mainly used for the packaging of 

semiconductor chips which can provide protection from environment to ensure the 

reliability for the chips [14]. As an electrical conducting material, due to the low carrier 

concentration found in most organic materials [15], they can be used in many 

applications [16]. In addition, thin-film transistor based circuits and electronic integrated 

circuits incorporating several hundred devices on flexible substrates have been recently 

demonstrated [17, 18]. For example, radio frequency identification [RFID] tags have 

been developed from these levels of integration [19]. Organic transistors [20, 21, 22] 

have also been successfully integrated with display elements and used as image sensors. 

Another promising advantage of organic materials is that the behavior of the 

material can be modified by evaluating parts of the molecular structure. Normally, the 

conductivity of organic materials can be changed by deliberate oxidative doping [23]. 

Eventual uses of organic molecules for electronic devices and circuits are to enlarge the 
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unique feature of individual molecules into a full material by synthetically controlling the 

structures and the intermolecular interactions [24]. For instance, alcohol soluble 

polypyrrole was composed using a functional doping agent di(2-ethylhexyl) sulfo 

succinate sodium salt (NaDEHS) [25]. 

Since organic materials are still novel and in their development phase, there is one 

major drawback which might affect on performance of organic electronic device. They 

easily degrade from environment due to the effect of heat, light, fire, ionising radiation, 

biological agents, pollution and even combinations of these factors [26]. The mechanisms 

of degradation and stabilization procedures must be understood, if the manufacturing 

technology and devices of polymers continue to develop in advance. As part of the 

packaging processes, encapsulation technology plays an important function in protecting 

organic electronic devices and prints out circuits, and then a reasonable stability can be 

achieved for marketing [27]. 

The silicon industry has shown some decrease in integrated circuit feature size 

because of the demand for higher level performance and low cost manufacturing process. 

Moore's law predicted that the number of transistors on a chip doubles in every two years 

[28], which also showed cost level decrease per transistor. During this development 

process, there will be involved with several approaches including printing techniques for 

individual devices, thin film structures and semiconductor integrated circuits. Predictably, 

the organic electronics industry has already shown expansion on the compatibility of 

these fields due to low cost processing and has kept Moore's law on track [29]. Several 

important aspects that are related to the fabrication and operation of future organic 

electronic devices will be discussed in following sections. 
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1.1.2 Fabrication Techniques 

The primary purpose of fabrication mechanisms for organic devices is to create 

promising structures with high speed, low cost, and easy manufacturing process. In order 

to achieve this goal, there is much fundamental research on fabrication techniques to be 

done. 

Spin-coating is one of the basic and fundamental fabrication techniques. A typical 

spin coating process involves depositing a small amount of a fluid onto the center of a 

substrate, and then spinning the substrate at a speed that is determined speed by the 

viscosity of the fluid. Centrifugal acceleration will cause most of the fluid to spread off 

the edge of the substrate, leaving a thin film of fluid on the surface. Final film thickness 

and other properties depend upon the fluid viscosity, drying rate, percent solids, surface 

tension, and other parameters chosen for the spin coating process. 

Another promising technique is layer-by-layer (LBL) self-assembly that has 

attracted a lot of attention in the manufacturing process of nanometer scale electronics 

[30]. This technique has been developed as a simple, practical and versatile method for 

creating nanometer scale films on large surfaces, microfibres and cores [31]. Stable film 

architectures can be formed during the fabrication process. These hierarchical structures 

can exhibit unique properties that might not occur on the individual components [32]. 

Since Cavendish Laboratory of the University of Cambridge developed a new 

approach to achieve higher resolution, which allowed all-polymer transistor circuits can 

be printed [33]. Ink-jet printing appears to the excellent features, such as low cost and 

printable organic electronics [34]. Recently, ink-jet printing has shown a success in 

organic applications, such as organic electronic transistors [35] and drug discovery [36]. 
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Also, the ink-jet printing is one of the main techniques for the fabrication of fiat screen 

displays, field emission [37] and organic light emitting diodes [38]. There are two mainly 

approaches utilized for ink-jet printing of materials for the manufacturing process. The 

first ink-jet printing technology is the "Continuous, Charge and Deflect" [39] that deflect 

drops up to 0.5 mm in diameter and appropriate for high-speed coverage of relatively 

large areas. The second is the "Drop-on-Demand" (DOD) technology which is suitable 

for smaller drops 20-100 urn in diameter and the DOD technique produces drops that are 

near to the orifice diameter of droplet generator [40]. 

Lithography is considered as one of the manufacturing techniques since the most 

potential for the fabrication of organic electronic devices and circuits. The resolution has 

achieved to 10 nm since it was proposed by Chou, et al. in 1995 [41]. Direct printing 

processes are appropriate for submicron length scales, but might not be easy to get 

promising resolution in organic electronic devices [42]. Recently nano-imprint 

lithography (NIL) has been developed for the fabrication of gratings using conjugated 

materials, which is a preliminary step towards scattered feedback mirrors and waveguides, 

with promising results [43] and without degradation in devices electronic properties. 

1.1.3 Sensor Applications 

In order to develop the low-cost, large-area sensor applications, such as smart 

fabric systems, it is required that the simple, flexible, washable, and even disposable 

sensors design [44]. However, it is difficult that the silicon-based sensors design meets 

these requirements due to their being naturally brittle, size limitations and higher cost 

processes. Therefore, flexibility, low-cost fabrication techniques and nontoxic processes 
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make organic electronic devices, such as polymeric electrolytes or organic conducting 

polymers, to be investigated and developed for sensor applications. 

One application of organic sensors is the response for controlling air pollution or 

for data storage. The chemical structure of the organic molecules is important for these 

applications. Like water vapor and gas sensing, conductivity of some materials show a 

variation when interacted with the change of vapor and gases, which provide the 

possibility to control the sensitivity to vapors by modifying their chemical structures [45]. 

For example, the detection of alcohols has been done by conducting polymer sensor 

arrays which consist of ten different conjugated polymer materials [46]. Another 

promising application is humidity sensors which are related to the formation of the cross-

linked network structure in the sensing film and a change in the polymer chain if exposed 

to a humidity environment [47]. In addition, another application, biosensors [48] is 

developed with the technological and theoretical achievements on clinical, environmental 

and industrial analysis. Due to organic materials flexibility to build different electronic 

devices and the successful design of tactile sensitive skin, biological tactile sensors [49], 

which can be found in the skin of a human finger, were developed and investigated to 

detect hardness, temperature, thermal conductivity and surface roughness [50]. 

Integration into microelectromechanical systems (MEMS) is one novel trend in 

the development and implementation of organic sensors. The approach for devices based 

on the same platform technology has been successfully proven in the field of organic 

MEMS integrated sensors [51]. 
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1.2 Previous Work and Research Contribution 

As discussed above, there has been a rapid growth in the development of organic 

sensor applications based on organic electronic materials addressed primarily in the 

medical and gas fields to monitor various parameters, such as temperature, relative 

humidity, and chemical gases. One important characteristic of organic polymer materials 

widely used is that both ions and electrons can be acted as charge carriers [52], which are 

very important for medical and humidity sensor application. In the past, humidity sensors 

have been developed by using different types of materials, such as electrolytes [53], 

organic polymers [54] and porous ceramics [55]. Humidity sensors based on alkali salts 

of poly(2-acrylamido-2-methylpropane sulfonic acid) (AMPS) and made of an organic 

electrochemical resistor type have been reported by Sakai, et al.[56]. Conducting 

conjugate polymers show significant change in their electrical properties when exposed 

to humidity. Different fabrication techniques, such as electrochemical polymerization, 

chemical and electrochemical deposition, and spin coating have been applied to the 

manufacturing process of polymer humidity sensors [57]. These sensors detect either the 

absolute value of a physical quantity or a change in the value of an electrical quantity, 

and convert the measurement into useful input signals for an indicating or recording 

instrument. In the early stages of humidity sensor development, commercially available 

polymer electrolytes were directly used as an active sensing material. However, these 

polymers have the serious drawback of an irreversible change in the electrical properties 

when exposed to high humidity [58]. On the other hand, conducting polymers, like Poly 

(3,4-ethylenedioxythiophene)-Poly (styrene-sulfonate) (PEDOT-PSS) [59], show high 

sensitivity and reversible electrical properties when exposed to a humidity environment. 
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The electronic properties of PEDOT-PSS film was controlled by its polymer chain 

structure which interconnected conductive PEDOT with PSS matrix [59], which is shown 

in Figure 1-2. The use of PEDOT-PSS polymer material for humidity sensing 

applications using transistor applications was first reported by Nilsson, et al [60]. 

Polyamide fibers coated with PEDOT-PSS polymer material were also studied for 

humidity and temperature sensor applications [61]. Since monitoring moisture content in 

soil has become a pre-requisite for a variety of processes, such as agriculture, areas prone 

to landslides and laboratory testing. So far, measurement of moisture content has been 

guided by the agricultural industry resulting in development of time Domain 

Refiectometry Devices (TDR) [62] whose dimensions are far too large for capturing 

microscale behavior for geological and geotechnical engineering applications. For this 

work, the new microsensors was developed, based on the PEDOT-PSS polymer material, 

for detecting gravimetric water content in soil samples and which present promising 

features, such as simple structure and small size. Those features result in the presented 

sensor device, compared to TDR devices; to enable the gravimetric moisture content to 

be measured when capturing its microscale behavior in the soil samples. The change in 

the resistance of the polymer film is monitored when it is exposed to different soil 

samples to compute the gravimetric water content present in the samples. Moreover, 

when compared to the PEDOT-PSS humidity sensors developed based on a transistor 

structure, the sensors based on a resistive structure show the simplest structural design 

without intricate fabrication processes and use easier testing techniques. The simplicity 

and size of the developed sensor devices compared to other reported devices enabled the 

measurement of the gravimetric water content present in the soil samples. 
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Figure 1-2 PEDOT-PSS chemical structure [60] 

As introduced earlier, OFET and FET offer much promising results for chemical 

and biological sensing applications [63, 64]. OFETs have a number of advantages over 

biosensors based on other type of electrical models since the organic sensing materials 

can be fabricated into sensor devices using low-temperature processes and low-cost 

substrates. Moreover, as OFETs are based on organic semiconductors, the molecular 

structure and morphology of these materials can be more easily modified to enhance the 

sensitivity and selectivity of the resulting biosensors [65]. 

In recent years, conducting polymer materials as potential candidates, such as 

polypyrrole (PPy) and polyaniline, have showed the promising properties for biosensor 

applications [66, 67]. Researchers have used these polymers and their composites as the 

charge-transfer reaction layer between an enzyme and electrode in OFETs, via a 

conducting polymer matrix network [68]. Traditional GOx-based biosensors, which rely 

on anodic peroxide detection, use H2O2 permselective membranes. However, conducting 

polymer-based glucose sensors use a GOx membrane and are capable of precise and fast 
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measurement, with sensing range extending to 30 mM, as compared to that of traditional 

glucose sensors (~2 mM) [69]. 

Recently, there has been an increased interest in the application of PEDOT-PSS 

as a suitable matrix system for enzyme entrapment and charge-transfer media in glucose 

sensors. PEDOT-PSS also displays excellent electrochemical stability, reliability, and 

interesting redox properties, as compared to that of PPy [70]. The redox properties of 

PEDOT-PSS make a different oxidation state and conductivity switched by changing the 

applied potential or pH. For instance, during the operation of OFETs based on PEDOT-

PSS, the applied gate voltage allows this material to switch between different redox states 

[71]. Within a potential range, the redox states can affect enzyme interactions with 

conducting polymers [71]. Therefore, GOx enzyme can interact directly with the 

conducting polymer (PEDOT-PSS) to form a biosensor. Since then, some biosensors 

based on PEDOT-PSS have been developed and their mechanisms of operations were 

fundamentally based on traditional potentiometric and amperometric devices. An OFET-

based glucose sensor, with PEDOT-PSS and GOx as the channel materials to detect 

different levels of glucose concentration, is investigated and presented in the dissertation. 

The mechanism of operation of this biosensor device is fundamentally different from that 

of traditional PEDOT-PSS based biosensors, where the conducting polymer is used as an 

electrode. The fabrication and characteristics testing steps of the present glucose sensor 

are also simple. Moreover, the glucose sensor presented in this paper has displayed a 

reasonable level of sensitivity, repeatability, and stability. The evaluated range of glucose 

detection shows that the developed biosensor can be used to detect glucose concentration 

between normal and diabetic patients. 
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1.3 Dissertation Objectives 

The aim of this dissertation research is to investigate low cost methods to 

manufacture flexible polymer electronic devices. First, PEDOT-PSS based humidity 

sensors and glucose sensors are fabricated and characterized with a solution process. 

After several optimizing steps, the humidity sensors and glucose sensors, based on 

PEDOT-PSS electronic devices, present promising performance and improved quality. 

Also, TCAD simulation was applied to gain a better understanding of the devices (field 

effect transistors) and to identify the key factors that could limit device performance. 

1.4 Organization of Dissertation 

Chapter One introduces the investigation and development of organic electronic 

devices which are mainly assembled with three components, namely, conductor, 

semiconductor and insulator. Related work that has been done and the special 

requirements for these three components are briefly addressed in order to highlight the 

issues that could lead to high-performance OFETs. By comparing to previous work, the 

improvements of organic electronic sensors are presented. 

Chapter Two covers the knowledge of conducting polymers. The conducting 

mechanisms of the conjugated polymer are introduced, followed by properties and 

operation principle of the special polymer material, such as PEDOT-PSS, as the channel 

material of the OFETs. 

The theoretical background that has been applied in this work will be presented in 

Chapter Three. In the operating principles of the OFETs, the energy band diagrams, 
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electric characteristics, contact resistance effects, trapping effects and field effect 

mobility have been displayed. 

Chapter Four will discuss the modeling and simulation of electronics polymer 

devices. Technology Computer Aided Design (TCAD) is introduced, highlighting the 

importance of the numerical simulation on the design and understanding of the 

semiconductor devices. 

Fabrication and analysis of PEDOT-PSS based humidity sensors are given in 

Chapter Five. Device characteristics are investigated by considering moisture effects and 

the dependence of sensitivity on the environment. 

Organic field effect transistors (OFETs) based on PEDOT-PSS, which is used as 

the active channel, will be presented in Chapter Six. Fabrication process and device 

electrical characteristics are investigated considering the PEDOT-PSS material 

degradation phenomena and protective films for the active channel are evaluated for the 

degradation problem. 

In Chapter Seven, a glucose sensor based on an organic thin film transistor using 

glucose oxidase and conducting polymer has been investigated and developed. The use of 

a cellulose acetate membrane in glucose sensor devices to prevent dissolution of GOx 

and PEDOT-PSS in water has been shown. The sensitivity of the developed glucose 

sensor was determined by measuring different glucose concentration. 

The conclusion and future work will be presented in Chapter Eight. The 

contribution of the work and some topics for future work will be highlighted. 



CHAPTER TWO 

ELECTROACTIVE POLYMER MATERIALS 

2.1 Introduction 

It is known that organic electronic technology has been developed since the 

organic materials were investigated. Generally, there are three main groups for organic 

materials, the first is organic dielectric, the second is organic semiconductors and the 

third is organic metals. Comparing these three types material, organic semiconductors, 

such as polymer materials, offer significant advantages, such as being more robust than 

molecular crystals, low cost and simple fabrication techniques [72]. Another important 

feature is that polymers can be soluble in common solvents. Moreover, polymer materials 

have been used in a wide range of applications as coatings, adhesives, structural materials 

and for flexible organic electronics and circuits. Currently, an increasing demand for 

highly specialized materials for use in optical and electronic applications has found that 

the polymers provide a particular potential in this case [73]. "There is considerable 

interest in the development of polymers with targeted optical properties, such as second-

order optical nonlinearity [74], and conducting polymers as electrode materials [75] and 

as electroluminescent materials" [76]. 

15 



16 

2.2 Conducting Polymer Structure 

A polymeric solid is made of many repeating chemical units or molecules called 

monomers. An important feature of a conducting polymer is the conjugation of n-

electrons extending over the length of the polymer backbone. The chemical structures of 

some common conducting polymers, for example, polyaniline(Pan), polypyrrole(PPy) 

and polythiophene(PTh), are presented in Figure 2-1. Normally, they incorporate 

aromatic compounds, thiophenes and pyrroles. Within the backbone of the molecular 

chain there are alternative single and double carbon bonds along their polymer chains. 

Benzene rings with six carbon atoms are building blocks for aromatic compounds. In 

thiophenes, four carbon atoms and one sulfur atom form a ring while the sulfur is 

replaced by a nitrogen atom in pyrroles. 

poly aniline polypyrrole polythiophene 

Figure 2-1 Polyaniline, Polypyrrole and Polythiophene chemical structures [77] 

2.3 Conducting Polymer Electrical Characteristics 

Conjugated polymers show various mechanical, electrical and optical properties 

depending on the synthesis conditions and variation chemical properties of the polymer 

chain. The electrical conductivity of insulating polymers is about 10"18 S/m, whereas that 

of doped conducting polymers can reach 107 S/m [78]. Some polymers are sensitive to 

high-energy radiation and when those polymers are exposed to ultraviolet light, the 
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chemical properties, such as solubility, will change [79]. For example, photolithography, 

which is a very well known process in micro-electronics, accords to this principle. 

The basis of conjugated polymer electronic properties is due to every repeating 

unit forming a separate molecule having molecular orbitals in a certain electronic state 

[80]. Since then, the number of repeat units determines the electronic properties of the 

polymer. The possibility of transport charge (holes and electrons), due to the 7r-orbital 

overlap of neighboring molecules, allows the conjugated polymers to emit light, conduct 

current and act as semiconductors. The electrical conductivity of the conjugated polymers 

can be tuned by doping an oxidizing or a reducing agent. 

2.3.1 Energy Band Structure of 
Conducting Polymers 

Semiconducting properties of conducting polymers come from delocalized n-

electron bonding along the polymer chain [81]. Molecular orbitals of the repeated units 

overlap in space and form a series of energy bands: rc-bond and a-bond [82]. In these 

compounds, electrons are delocalized from their parent atoms and form two molecular 

orbitals of different energies, which act as the highest occupied molecular orbital, defined 

as HOMO (valance band), and the lowest unoccupied molecular orbital, defined as 

LUMO (conduction band), of a conjugated polymer. "Carbon-carbon double bonds are 

formed when two of the three 2p orbitals on each carbon atom combine with the 2s 

orbital to form three 2sp hybrid orbitals. These lie in a plane directed at 120° to each 

other, and form a-orbitals with neighboring atoms. If the hybrid orbitals are formed from 

one 2s and two 2p orbitals, a planar a-bond structure occurs. The third pz orbital on the 

carbon atom, the 2pz, points perpendicularly to this plane, and overlaps with a 2pz orbital 

on a neighbouring carbon atom, to form two pairs of rc-orbitals" [82] (Figure 2-2). The 
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resulting 7i-bond will form parallel to the underlying o-bond. As equivalent 7t orbitals are 

formed between nearby atoms along the chain, the wave-functions overlap, resulting in a 

delocalisation over the polymer chain. The electrons in the rc-bond are less strongly 

bound than the electrons in the o-bond. Thus the electrons in the 7i-bond can be more 

easily removed as compared to electrons from the a-bond. The weaker binding of the K-

bond also means that polymer materials have the potential to display either 

semiconductor or metallic behaviour, due to the unstable of 7t-bond. 

• I 
• 2sp2 ^ ^ . /. • 

I I 
Figure 2-2 The overlapping of 2sp and 2p orbitals forms a and rc-bonds respectively 

[82]. 

The difference in energy between the highest occupied molecular orbital (HOMO) 

in the valence band and the lowest unoccupied molecular orbital (LUMO) in the 

conduction band gives the energy gap Egap. In Figure 2-3, the energy gap decreases with 

an increase in the conjugation length, which also corresponds to an increase in the 

number of energy levels [83]. The energy gap determines the electronic and electric 

properties of the conducting polymers. Therefore, control of the HOMO-LUMO energy 

differences in molecules and, specifically, the design of low band gap polymers have 

currently gained importance. 
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Figure 2-3 Band formation in conducting polymers with increasing conjugation length 
[83] 

To design a low band gap conjugated polymer, it is desirable to start with 

monomer units with small excitation energies [84]. One way to obtain excitation energies 

is to calculate the energy of the ground and excited state explicitly and to take the energy 

difference. 

2.3.2 Doping Characterization of 
Conducting Polymers 

Doping refers to the process of intentionally introducing impurities into an 

extremely pure (intrinsic) semiconductor in order to change its electrical properties. On 

conjugated polymers, the doping level determines the transport mechanisms [85]. By 

adjusting the level of doping in the chemical process, the conductivity of the polymer can 

be varied. For example, PEDOT and polyacetylene, which have intrinsic conductivities 

much lower than 10"5 (Q.cm)"1, could be made highly conducting, ~106 and ~ 105 (Q.crn)" 

1 respectively [86] (shown in Figure 2-4). 

Energy 
[eV] 
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Figure 2-4 Conductivity levels change of Polyacelene and PEDOT [86] 

Generally, charge transport mechanisms are based on the motion of radical 

cations or anions [87], which are created by oxidation or reduction along the polymer 

chain. A redox process, oxidation or reduction, causes a change in the electronic structure. 

Impurity or dopant atoms in the polymer backbone can be thought of as interstitial 

defects that take up positions between the chains. 

There are several doping methods for polymers: chemical doping, electrochemical 

doping, photo-doping and charge-injection doping [88]. Chemical and electrochemical 

doping are the most common approaches. Conjugated polymers can be both p-type and n-

type doped. P-type doped is the partial oxidation of the polymer by chemical oxidant or 

an electrode and causes depopulation of the bonding p orbital (HOMO) with the injection 

of holes (excess acceptors) [89]. The process involved in p-doping is equivalent to taking 

electrons from the 7t-system of the polymer backbone. Oxidation doping of conducting 
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polymers results in the polymer backbone being changed from a neutral polymeric chain 

into a polymeric cation [90]: 

P + yA~ - » Py+A~ + ye' (2-1) 

P means the polymer chain, A denotes the charge-compensating counter-ion, e is the 

electron and^ is the number of counter-ions. 

N-type doped, which refers to the partial reduction of the polymer by a chemical 

reducing agent or electrode with the injection of electrons (excess donors) in the anti-

bonding p system (LUMO) and the chain is instead reduced compared to its neutral state. 

During the n-doping process, electrons are introduced into the 7i-system of the polymer 

chain to form a negatively charged unit in the conjugated system [90]: 

P + ye~ + yA+ -> Py'A+
y (2-2) 

As described above, charge carriers can be created through oxidative or reductive 

doping. The charge carriers can either be solitons, polarons or bipolarons, which are not 

real physical particles, but rather quai-particles [91]. "When two chain segments of 

conjugated polymer interact, with different bond order, a defect in the form of an 

unpaired electron is created, which is named a neutral soliton" [92]. This unpaired 

electron will end up at a new energy level inside the band gap. However, most conductive 

polymers result from acceptor doping and the formation of positive polarons, since the 

negatively charged counterparts are chemically unstable. These polarons, or radical-

cations, have conventional charge-spin relationships. It is also possible to form 

bipolarons, or dications, in which the Coulomb repulsion of two positively charged 

polarons can stabilize a short length of the higher energy polymer structure [93]. For such 

polymers, heavy doping can be viewed as producing polarons and bipolarons that interact 
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to form bands that eventually fill the whole intrinsic band gap which leads to a metallic 

state. 

Within this framework, two types of conductive polymer exist: those with a 

degenerate ground state (ie. polyacetylene) and those with a non-degenerate ground state 

(ie. PEDOT and PPy)[94]. With degenerate ground states, the initial charge forms a 

polaron, and another polaron will be created by the subsequent charge. The two polarons, 

will degenerate to form two charged solitons. However, for non-degenerate polymers, 

solitons are not formed with two charges, but a pair of defects is created called bipolarons. 

As described above, in non-degenerate ground state systems, the combination of 

the charges and the structural deformation create polarons or bipolarons. Figure 2-5 

shows the energy band structure change during the doping process for PEDOT [95]. By 

oxidising the polymer, an electron is removed and the associated positive polaron 

occupies an energy level in the energy band gap. By withdrawing an electron from a 

polymer chain with a non-degenerate ground state, a cation-radical pair is formed, which 

can be observed in Figure 2-5. In between the cation and the radical, a change in the 

polymer structure is created. "In thiophenes, the structural deformation of the benzene 

ring to change from a benzenoid to a quinoidal form upon creating a polaron, is presented 

in Figure 2-6" [96]. The quinoid structure is a higher energy state compared to the 

benzenoid form. In contrast to solitons, polarons must overcome an energy activation 

barrier related to the benzenoid-quinoid transformation while moving. A polaron 

occupies up to approximately five monomer units along the polymer chain. If two 

electrons are withdrawn from the conjugated polymer, a positive bipolaron, with two 
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positive charges, is created. If the polymer is oxidised even further, bipolaron energy 

bands are generated in the band gap. 

Neutral polymer 

I 
Polaron 

Bipolaron 

Neutral polymer Polaron Bipolaron Bipolaron band 

Figure 2-5 Generation of positive polaron and bipolaron in PEDOT. Energy levels of the 
neutral polymer, a polaron, a bipolaron and a polymer with bipolaron energy band are 

described above. • denotes an electron not participating in a bond, © denotes a hole [95]. 
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Benzenoid 

Quinoid 

Figure 2-6 Bonding arrangement change in PEDOT [96]. 

The evolution of the doping properties in a polymer with a degenerate ground 

state, for example, polyacetylene, is similar to that in PEDOT except considering charged 

solitons rather than bipolarons. As the ground state structure of those polymers are 

twofold degenerate, the charged cation are not bond to each other by a higher energy 

bonding configuration and can be separated along the chain. Thus, "the charged defects 

are independent of one another and can form domain walls that separate two phases of 

opposite orientation and identical energy" [97]. At the lower doping levels, the 

recombination among polarons or existing neutral solitons creates charged solitons which 

are shown in Figure 2-7. With the doping level increasing, soliton energy states at midgap 

become overlapping to form a soliton band. These soliton bands result in the creation of 

new localized electronic states that are present in the middle of the energy gap. "With the 

doping concentration increased, the charged solitons interact with each other to from a 

soliton band which can merge with the edges of the valance band and conduction band to 

produce true metallic conductivity" [98]. 
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Figure 2-7 Generations of polaron and solitons in PEDOT. Energy levels of the neutral 
polymer, a polaron, solitons and a polymer with soliton energy band are described above 
[97]. 

2.4 Free Charge Carriers in Conjugated Polymers 

Conjugated polymers consist of long carbon molecular chains with alternating 

single and double bonds and 7i-electrons are delocalized along the whole backbone. In 

order to reach electrical conduction in a conjugated polymer, there should be some free 

charges in the polymer chain. As described earlier, the doping and de-doping processes 

can create the charge carriers which are transported through the ^-bonded polymer chain. 

Electrons of the conjugated structure are attracted from the positive charge of the carbon 

atom that donated the electron. Thus, the charge becomes delocalized and can hop along 

the chain. 

The working mechanism of charge transport along conjugated polymers was 

originally proposed by Conswell [99] and Mott and co-workers [100,101]. The process to 
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describe this charge transfer is named intermolecular hopping and is a thermally assisted 

tunneling effect [102]. The transition rates for this tunneling are given by Miller and 

Abraham [103]. Due to the disorder introduced from the end-groups of conjugated 

polymer chains and defects in form of kinks, cross-links and impurities, the charge 

hopping between conjugated parts of the polymer becomes the most important factor for 

conduction in the materials [104]. The degree of disorder with the wide range of charge 

species is the main reason affecting the charge transport in conjugated polymers. 

-5 '•y 

In the case of hopping transport, lower mobility values, such as ~ 10" cm /Vs, in 

many cases even much lower values, will be resulted due to the disorder of the polymer 

chain and weak intermolecular interaction [105]. In order to achieve high conductivity, 

higher concentration of charge carriers is required. Thus, the doping of an energetically 

disordered hopping transport system produces free charge carriers and also creates 

localized states in addition to the intrinsic density of state (DOS) distribution [106]. In 

equilibrium condition, charge carriers mostly occupy positions in the deep tail of the 

DOS while charge carrier hopping will occur generally via much shallower states that 

belong to the effective transport level [107]. The charge carrier density increasing 

strongly increases the mobility at low to moderate doping levels [108]. According to the 

doping process principle, the Fermi energy shifts to the center of the DOS distribution at 

high doping levels. Therefore the high concentration of dopant will lead to decreasing 

carrier mobility. 

Hopping of either electrons within a manifold of lowest unoccupied molecular 

orbitals (LUMO) or holes within a set of highest occupied molecular orbitals (HOMO) in 

disordered conjugated polymers magnify conductivity of the materials [109]. Both 
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LUMO and HOMO manifolds are characterized by random positions and relatively broad 

(Gaussian) energy distributions of hopping sites [110]. Being embedded into a random 

medium, dopant atoms or molecules are also inevitably subjected to positional and 

energy disorder. Since the HOMO level in most organic solids is deep and the gap 

separating LUMO and HOMO states is wide, energies of donor and acceptor molecules 

are normally well below LUMO and above HOMO, respectively. Therefore, a double 

peak Gaussian function should be a realistic model for the DOS distribution in a doped 

polymer [111]: 

S(E) = n^^(-^T) + n^QM-(-^^-) (2-3) 

in which JV, and Nj are the densities of intrinsic states and dopants, a, and ad the Gaussian 

widths of the intrinsic and dopant, E is the energy of charge carrier and Ed is the energy 

shift between these distributions. The equilibrium distribution of charge carriers, pe<\(E), 

is directed by the Fermi-Dirac distribution/a/is^l 11]: 

g(£) 
^E)-g(E)f«(E)-^lE-E ,Vtr] (2"4) 

with the Fermi energy EF determined by the condition that the total density of charge 

carriers must be equal to the density of dopants Nj as [111]: 

According to the Miller-Abrahams equation [112], the rate of carrier jump 

strongly reduces with increasing of the distance and energy difference between starting 

and target sites. The distance and energy variation, which provide the highest hopping 

rate, is determined by the temperature, the carrier localization radius 1/y, and the shape of 
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the DOS distribution [113]. The research results have shown that a carrier will most 

probably jump from a currently occupied state to a hopping site which belongs to the 

effective transport level of the energy, E,r. If there are carriers partially filling in a DOS 

distribution, the equation for the effective transport energy is [109], 

v3 

LdET7^T^wzr^wr^T) (2'6) 
\ + exp[-(E-EF)/kT] n 

The occurrence of the effective transport energy reduces the problem of variable-

range hopping in the trap controlled transport model with a broad distribution of localized 

states. 

The weak-field equilibrium mobility n can be estimated from the Einstein relation 

as fx= eDIkT, with e being the elementary charge and D the diffusion coefficient. 

D can be used as <v>/) 

where r7 is the typical jump distance and <v> the average jump rate. By calculating r, as 

tdEg (E) 
J- ao 

(2-7) 

and averaging the jump rate one obtains the following expression for the equilibrium 

mobility [114], 

^--my^rtiTT^m^-^^ <2-8) 
where no is the attempt-to-jump frequency. 

From Figure 2-8 [111], it is observed that the doping efficiency increases with 

decreasing temperature although the material is doped by very deep traps. It can be 

explained that the activation energy of the equilibrium mobility of extrinsic charge 

carriers strongly increases with decreasing temperature. However, in a doped material, 

this energy cannot be larger than the energy difference between the energy of dopants and 



29 

the maximum of the intrinsic DOS. Thus, the mobility remains basically constant at low 

carrier densities; it strongly increases at higher carrier concentrations. This limits the 

maximum activation energy of the mobility in a doped material and does not allow the 

mobility to decrease as steeply as it decreases for a low density of extrinsic carriers [111]. 

40 60 

(1000/T)2,K^ 

Figure 2-8 Temperature dependence of the carrier mobility in doped and pristine 
amorphous organic materials [111] 

Instead of a power law, the temperature dependence shows an activated behavior 

and the mobility also depends on the applied electric field [115]. 

M(E, T) oc exp(-A£ / kT) • exp(/?V£ / kT) (2-9) 

On a macroscopic level, the current density, J, through a material is given by the 

charge carrier density n and the carrier drift velocity v, where the latter can be expressed 

by the mobility [i and the electric field E: 

J = qnv = qn/jE (2-10) 

Due to the carrier density and mobility both depending on the applied electric 

field, the relationship between J and E is not linear for the disordered organic polymer 
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materials. From Equation (2-10), apart from the field, the current is determined by 

another two parameters, n and //. As discussed above, the mobility strongly depends on 

the degree of order and doping level of the disordered organic polymers. The density of 

charge carriers is equal to the density of dopants Nj, as shown in Equation (2-4). 

Furthermore, space-charge and trapping effects, as well as details of the charge 

carrier injection mechanism, are considered for the charge carrier transport in conjugated 

polymers [116]. 

2.5 PEDOT-PSS Structure and Electrical Characterization 

"Poly(3,4-ethylenedioxythiophene) (PEDOT) belongs to a novel class of 

polythiophenes with very high electrochemical stability in oxidized states and a moderate 

band-gap with good stability in the doped state" [117]. Another promising feature is that 

high conductivity if the material is in its oxidized form, which is due to a plannar 

structure and derealization of 7t electrons in polymer chain. And also PEDOT gives 

promising optical transparency in the visible region [117]. However, PEDOT formed by 

using oxidative chemical or electrochemical polymerization due to its insoluble property. 

Recently, this problem was solved with the "combination of poly(4-styrenesulmoate) 

(PSS) as a water soluble polyelectrolyte and charge-compensating counter-ion" [117] to 

form PEDOT-PSS. Each styrene ring of the monomer has one acidic SO3H group. Part of 

the sulfonyl groups are deprotonated and carry a negative charge and the other 

component PEDOT carries positive charges. This chemical structure makes PEDOT-PSS 

form a high regiochemically defined material [118]. Therefore, the polymer requires the 

easy fabrication and then can form well films which retaining promising optical 

transparency, high chemical stability and good conductivity. According to the promising 
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features of the polymer, the PEDOT-PSS originally was used as an antistatic coating for 

photographic films and plastic components [119]. Its uses can also be developed for 

conducting electrodes in capacitors and FETs [120]. Because of its planar structure, 

which leads to "high electron derealization along the chain, then the relative high 

conductivity [121] and good transparency can make PEDOT-PSS usable for LEDs [122], 

due to its high work function, and, as mentioned previously, as a charge injecting layer in 

PLEDs" [123]. Finally, it is a promising electrode material for organic photovoltaic cells 

because of the low current densities [124]. 

The conductivity of PEDOT-PSS can be varied widely due to the different doping 

level in the polymer. For example, the original PEDOT-PSS has a conductivity of about 

10 S/cm. However, after the doping process, like redox, the conductivity of PEDOT-PSS 

can be improved up to several hundred S/cm. The principle of PEDOT doping is depicted 

in Figure 2-5. 

Except for getting high conductivity PEDOT-PSS, the lower conductivity also can 

be achieved by changing the particle size and by increasing of the PSS content [125]. 

"Normally, the material with conductivity of around 10"3 (1:6 PEDOT: PSS by weight) or 

10"5 (1:20 PEDOT: PSS by weight)" [126] used in PLEDs is this type. 

Recently, spectroscopic methods, such as Raman, infrared (IR), X-ray (XPS) and 

ultraviolet photoelectron spectroscopy (UPS) are applied to the investigation of the 

electronic structure and characterization of PEDOT-PSS film. The sulfate doping level 

can be determined by analysis from spectroscopic measurement [127]. The key role of 

PSS in making PEDOT-PSS an effective hole-injection material was established and the 

work function of this polymer material changes with PSS quality [128]. Thus, flexible 



32 

conductivity PEDOT-PSS films can be formed. This is a potential application of PEDOT-

PSS to future organic electronics and displays. 



CHAPTER THREE 

THEORETICAL BACKGROUND OF ORGANIC ELECTRONIC 

DEVICES 

3.1 Overview 

"Organic electronics is attracting more and more attention from theoreticians and 

computational physicists both for its potential applications and for the interesting 

fundamental theory" [129]. The availability of organic semiconductor electronics devices 

may open the new way to completely new set-ups, fabrication processes, and applications. 

Then the processing of organic material by printing and lithography can be visualized and 

then large volume, low cost production of field-effect transistors based on polymers using 

thin film technologies can be realized [129]. As mentioned earlier, organic field-effect 

transistors (OFETs) can be manufactured by using organic materials. The insulating 

polymer material, such as, polyester, polyethylene and polyimide can be chosen as the 

dielectric layer of OFETs, and the conducting channel material can be a conjugated 

polymer which provides the reasonable conductivity and mobility for devices. 

33 
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3.2 Operation Models of Organic Field Effect Transistors 

Organic Field Effect Transistors (OFETs) have been developed due to their good 

compatibility with different substrates and opportunities for structural tailoring. The trend 

towards competing with conventional semiconductor technologies is growing because of 

the advantages of organic electronic devices, like inexpensive, large-area, flexible 

devices processed with lower temperatures and lower cost fabrication techniques. 

The most common OFET device structure diagraph is based on the traditional 

metal oxide semiconductor field effect transistor (MOSFET) configuration. A thin film of 

organic semiconductor material is deposited on top of a dielectric with an underlying gate 

electrode, which is shown in Figure 3-1. The source-drain electrodes providing the 

contacts are defined either on top of the organic film or on the surface of the FET 

substrate prior to deposition of the semiconductor film. There are two different devices 

structures in Figure 3-1, (a) is top-contact, bottom-gate; (b) is bottom-contact, bottom-

gate [130]. In both cases, an organic semiconductor film is deposited on a gate/insulator 

substrate and is contacted with metallic source and drain electrodes. Each of these 

structures has its advantages and drawbacks. For bottom contact architecture, contacts are 

deposited on the insulator layer and the electrode contacts can be patterned or printed by 

means of microlithography and metallization techniques. However, in the top contact 

structure, a shadow mask is used for the deposition of contacts. The organic 

semiconductor film can be coated from the vapor phase or from solution. The metal 

source and drain electrodes are e-beam deposited or metal evaporation through a shadow 

mask. The comparison between top-contact and bottom contact devices shows that the 

two structures have similar channel characteristics but differ in the formation of the 
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contact-polymer interface [130]. "The interface between the contact electrode and the 

polymer film is much more uniform for top-contact devices than for bottom contact 

devices which results in a reduction of the contact resistance effect" [131]. Therefore, in 

this research work we developed the OFET based on the top contact structures. 

Source Drain 

(a) (b) 
Figure 3-1 FET structures (a) top-contact, (b) bottom-gate structures 

"The basic principle of operation of an OFET is that the density of charge carriers 

between the source and drain is modulated via capacitive coupling between the gate 

contact and the transistor channel" [132]. The capacitor consists of the gate contact, the 

dielectric medium, and the semiconducting polymer channel as the other electrode. The 

voltage applied between the source and drain is called the source-drain voltage, VDS-

Under a given VDS, the current flow which is across the channel film from source to drain, 

depends on the voltage VGS applied to the gate electrode. The channel film and gate 

electrode are coupled such that application of a bias on the gate induces charge in the 

semiconductor film, as shown schematically in Figure 3-2. Much of this charge carrier 

moves in response to the VD. Ideally, when no gate voltage is applied on the device, the 

conductance of the semiconductor film is extremely low because there are no mobile 

charge carriers, and the device is switched off. When there is voltage applied, mobile 

charges are induced, and the device is turned on. At low drain-source voltages, the drain-
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source current (ID) has a linear relationship with Voand the characterization of the device 

behaves as a resistor. As the VDS is increased to saturation, the thickness of the highly 

conductive channel is reduced to zero, which results in pinch off. Beyond VDS, ID remains 

essentially constant and, therefore, the transistor acts as a current generator. 

Organic semiconductor 

Figure 3-2 Organic field effect transistor schematic structure 

Now consider an organic FET as shown in Figure 3-2 with channel length and 

width L and w, respectively. The active layer channel is assumed to be p-doped and has a 

p-accumulation channel with hole mobility (ju). These defined OFET characteristics are 

similar to those of the MOS field effect transistor (MOSFET) at gate bias voltage (VQS) 

higher than the threshold voltage Vj, as illustrated in [132] and in our research. At low 

drain-source voltages (VDS«VGS), there is a linear (ohmic) area in which the drain 

current (ID) is independent of gate voltage (VQ), but dependent on the drain-source 

voltage (VDS)- With an increase of VDS, a saturation of ID occurs. The relationship of the 
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drain current of the transistor dependent on drain-source voltages and gate-source voltage 

VDS and VGS, respectively, can be evaluated as: 

W 
'GS 'T 

DS 
DS (3-1) 

For linear mode, where VDS<VGS-VT 

iB-^K-vrY (3-2) 

For saturation mode, where VDS>VGS-VT 

Here Q is the gate-insulator capacitance per unit area and VT is the threshold voltage. 

Furthermore, it was observed that the behaviour of the I-V characteristics in a 

OFET at low gate biases (VGS<VT) is also similar to that in MOS transistors because ID is 

an exponential function of VGs [133]. According to the MOS model for the sub-threshold 

regime, the exponential dependence can be written as 

/D= Vexp 
(V, GS 

A w i y 

( 
1-exp DS 

V <f>2 J 
(3-3) 

For the sub-threshold mode, where VGS<VT. 

To summarize, the shape of the I-V characteristics in an OFET is similar to those 

in a crystalline field-effect transistor. From Equations (3-1) and (3-2) the estimated 

values for the mobility (u) in OFETs are low, and have a very wide range ~ 10"5- 10"1 

cm /Vs [134]. The low mobility in OFETs is an important issue because it limits the 

applications for the device. Thus, much effort is devoted to develop polymers and 

processing technologies in which the effective mobility is improved to higher values. 
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3.2.1 Energy Band Diagrams 

"The highest occupied and lowest unoccupied molecular orbital (HOMO/LUMO) 

energies are the origin of gate-induced charge (field effect) and determine the acceptable 

performance of the organic FET" [135]. Figure 3-3 shows the position change of the 

HOMOs and LUMOs of the organic semiconductor relative to the Fermi levels with 

different gate bias. Due to the work function potential difference between the 

semiconductor and the metal, a gate voltage is applied so that the Fermi levels of metal 

and semiconductor align. Then no band bending will occur in the semiconductor [136], as 

shown in Figure 3-3 a. This gate voltage is called the flat band voltage (VFB) 

VfB=*.a=K-(Z + %r + h) (3-4) 

Here, ^miis the work function difference between metal and semiconductor, </>m is the 

metal work function, % m e electron affinity, Eg the semiconductor bandgap, q the 

electron charge, and (j)h the potential between the Fermi level and the intrinsic Fermi 

level Ei. When the work function of metal is similar to the Fermi level of the 

semiconductor, the flat band voltage will be close to zero. Here we are not considering 

the interface charges that also affect the flat band voltage. Applying a negative gate 

voltage will induce charges at the semiconductor-insulator interface. This results in the 

energy-band bending-up and the accumulation of holes at the interface which are shown 

in Figure 3-3b. Under this condition, the p-channel transistor is turned on. If a positive 

gate voltage is applied, the mobile holes are depleted from the semiconductor-insulator 

interface due to the electric field, causing bending down of the energy-band in the p-type 

semiconductor as illustrated by Figure 3-3c. 



39 

VGS>VFB 

Depletion 

^ s 

•I • • ^ • • • • • • • H n i l l i l i • 

/ 

(a) 0>) (c) 

Figure 3-3 Energy band diagrams of the OFET structure for a p-type semiconductor 
illustrating (a) flat band model, (b) accumulation model, and (c) depletion model 

3.2.2 Charge Transport in 

Organic Field Effect Transistors 

Electronic properties of various organic semiconducting materials are discussed in 

Chapter Two. For OFETs, the charge carrier mobility and on-off current ratio are two 

important parameters. In order to improve these parameters, the mechanism of charge 

transport should be studied. As discussed in Chapter Two, the transport of carriers within 

the organic semiconductor is governed by the hopping between localized states [137]. It 

is useful to know that the charge carrier density is not uniformly distributed in the 

accumulation channel and it is also very helpful for understanding the transfer 

characteristics of disordered OFETs. In OFETs, the mobility is dependent on the charge 

carrier density deduced from the hopping model. Consequently, the charge carrier 

mobility does not obtain a constant value under a certain gate voltage [138], but a 

distribution of charge carrier mobilities is achieved in the disordered OFETs. 

For OFETs at a given drain-source bias voltage (VD), the drain-source (ID) is a 

function of the conductivity of the polymer film [139]. This conductivity has to be 

VGS_VFB VGS<VFB 
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controlled by the gate-source bias voltage (VQ). In order to prevent current leakage due to 

gate electric field, a charge enhancement in the polymer film has to be produced. As 

discussed above, since the gate is isolated from the S/D contacts and the organic polymer 

film, MOS theory can be applied to explain charge transport in OFETs. Even with the 

complications of applying MOS transistor theory to OFETs, much effort was devoted to 

finding appropriate organic or polymer materials and electrode insulator configurations 

for improved electrical performance. However, some issues stay unresolved for the 

explanation of charge transport in OFETs. The first issue is that the characteristic of 

charge transport in polymers and crystals is different. In crystals, charge carriers move at 

the thermal velocity in the conduction or valence band and the mobility is controlled by 

scattering [140]. However, in polymers, the charge carriers are localized in the energy 

states of the films. "At cryogenic temperatures, delocalized conduction with high 

mobility is possible in organic films (u~ 3-300 cm /Vs and even higher), but above 30K, 

the delocalized conduction degrades quickly, and above 100K, the localized conduction 

(charge hopping) takes over. Then at room temperature, the mobility of the charge 

hopping is low (u< 1cm / Vs)" [140]. Charge hopping between energetically and 

spatially distributed states is the conduction mechanism in polymer films [110]. Since we 

know that the definition for HOMO and LUMO to be continuous valence and conduction 

bands in the polymer film is rough due to the HOMO and LUMO states which are 

spatially distributed in the polymer chain, and there is a distance and barrier between 

neighboring states which leads to the localization of the charge carriers. However, the 

source and drain contact material plays an important function in the performance and 

mobility of the OFET [141]. It has been shown that for the same polymer films, the 
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voltage drop at the source electrode is a significant portion of VDS for Ni and Pd 

electrodes, whereas for Pt, it is low [142]. 

According to the above discussion, dependence of OFET performance on the 

source-polymer contact cannot be explained only in terms of the MOS model for carrier 

enhancement in a polymer film owing to the gate bias and that the contact effects are not 

negligible. In the case of MOSFET theory (Equation (3-2)), at low VD and at the same 

gate biasing voltage (VGS), the current is inversely proportional to the channel length (L). 

This indicates that the "charge injection from the source electrode to the polymer film can 

explain the behavior of short-channel OFETs by assuming a superposition of the electric 

fields produced by the gate and drain bias voltages" [143]. Therefore, the charge 

enhancement in the polymer film of an OFET can also be due to injection of carriers 

through the source-polymer barrier, rather than only due to the charge induction caused 

by a potential bending in the polymer. 

Furthermore, for the injection process in OFET, there are two phenomena which 

are important for the metal-polymer interface. The first is a reduced charge enhancement 

in a narrow region in the vicinity of the interface and it applies for both the charge 

injection and charge extraction processes at the metal-polymer interface. The second 

phenomenon is the metal-polymer charge injection itself. For the source-polymer contact, 

this is very important only for the injection electrode, not for the charge extraction due to 

the fact that the voltage drop AVs at the source electrode is always larger than the voltage 

drop AVD at the drain electrode [143]. The difference, Vj = AVs - AVD, is associated with 

charge injection and the injection resistance, Rj = VJ/ID- RJ decreases when increasing the 

charge enhancement owing to gate biasing, that is, Rj is lower at higher | VGS - VT| and ID-
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Therefore, it should be realized that the contact effects are significant for OFETs, and that 

these effects can be dominant in the charge transport in OFETs with short channels 

(L<lum). Thus, the charge injection has to be included in the charge transport models for 

the polymer FET, and the injection mechanisms needs to be explored further in order to 

obtain agreement between the many explanations proposed over the last two years. 

The third issue is about non-stationary effects in OFETs, for example, hysteresis 

in I-V curves, non-monotonic variation of the drain current with time at constant biasing, 

and threshold voltage shift towards the gate bias. The slow variations do not coincide 

with the assumption of quasi-equilibrium in the treatment of charge trapping in terms of 

energy band bending, as adopted from MOSFET theory [144]. 

Overall, it should be realized that none of these three issues is negligible for the 

physical explanation of the charge transport in OFETs. These phenomena are the carrier 

injection from the source electrode into the polymer material, the drift of the injected 

carriers in the charge-enhanced polymer material or at the interfacial layers. The 

injection-drift limited model (IDLM) of charge transport in OFETs [145] has been 

introduced since the charge injection from the source electrode limits the number of 

carriers and the effective mobility of charge hopping in the polymer determines the drift 

of the carriers toward the drain electrode. 

3.2.3 Carrier Mobility in 

Organic Field Effect Transistors 

Charge carrier mobility (fi) is the central transport parameter in determining 

device performance in electronics applications. Most of the work related to the mobility 

is on the temperature and electric field dependence [146] described in Equation (2-14). 

Due to the research on the polymer field effect transistor, it has been recently found that 
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the carrier concentration also plays an important role for the mobility. Generally, for 

OFETs, the thin film is disordered. Thus, for these transistors, parameters such as 

mobility (pi) are primarily determined by disorder and grain size in the semiconductor 

[147], which in turn are strongly influenced by fabrication techniques and associated 

process conditions. In hydrogenated amporphou silicon, the disorder in the bond lengths 

and angles leads to a high density of localized states. These states trap most of charge 

carriers and low conductivity can be observed due to the small portion of charge carriers 

exited to the extended states [148]. In the organic semiconductor, disorder in the 

molecular arrangement and the presence of grain boundaries lead to a high density of 

localized states. Hopping of charge carriers between these density states constitutes the 

means for conduction. 

The carrier concentration also affects the mobility (pi) in the Arrhenius behavior 

of mobility in the temperature dependence measurements of OFETs [149]. The mobility 

(u) usually shows Arrhenius behavior with activation energy (EJ, which decreases with 

increasing gate bias, as reported in literature [150]. The dependence of (EJ on gate bias 

is because of the effect of carrier concentration on mobility (pi). 

According to the traditional crystalline semiconductor transistor, mobility is 

scattering limited and its parasitic bias dependence is only due to surface or impurity 

scattering. Neglecting electron-electron interactions, carriers in organic material 

contribute to conduction in which the conductivity (a) is linearly dependent on the carrier 

density (n). 

a = qjuFEn (3-5) 
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In this equation, q is the elementary charge, /UFE is the mobility of the FET and n 

is the charge carrier concentration. Also, this equation can be applied to OFETs. 

Following the conventional linear field-effect mobility definition for a transistor, the 

mobility of the field effect transistor can be calculated by Equation (3-1) as: 

MFE = L dIm'"n (3-6) 
WC,VDS dVGS 

W and L are the channel width and length, respectively and IDSM is m e drain current in 

the linear region. When this equation is applied to polymer semiconductor FETs, there 

are more complexities for analysis. In Equation (3-6), namely the uniform mobility 

transconductance method (UT), the mobility derivative was neglected and a uniform 

mobility across the channel was assumed. In the saturation region of operation, the field-

effect mobility is calculated by Equation (3-2): 

f 
21 

MFE = 
wc. v GS J 

(3-7) 

In the disordered material, a is proportional to the density of carriers that 

contribute to the conduction band, which is referred to as transport band carriers. 

However, most of the carriers are trapped and contribute in conduction only excitation to 

the transport band. For a transistor device, the conductance (g) as described in Equation 

(3-8) is averaged over the semiconducting film and can be spatially related to the 

conductivity (a) by 

A 

Where A is the cross section area and L the length of the semiconducting film. 
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For polymers used in field-effect devices, mobility (fi) is lower than 1 cm /Vs, 

and typically has a very wide range of- 10"5- 10"1 cm2/Vs [137]. This means that one has, 

in any case, some kind of hopping transport. It should be noted that the mobilities 

determining the transport in the device are defined only as averages. The exact values can 

be regarded as to be determined from fitting e.g. current characteristics; however, this 

mobility is not directly achievable from experiments. Further, field dependence of the 

mobilities can be taken into account. But it is worth while to check whether the electrical 

field in the transistor becomes really large enough for this effect to become important. At 

present, there is little information available on the possible dependence of the mobilities 

on the carrier concentration for a given doping, which, in principle depends on the type of 

hopping transport. 

3.2.4 Contact Resistance Effects 
for Polymer Transistors 

With the polymer applied as the channel material and the charge-carrier mobility 

improved, the limitation by contact resistance is becoming increasingly critical and 

finding ways to reduce these limitations has become a key issue. Mainly, there are two 

different contacts which can behave as an ohmic contact or as a Schottky barrier and 

which are dependent on the characteristics of the interface. 

3.2.4.1 Ohmic Contact 

Ohmic contact means that between the metal and semiconductor there is no 

potential barrier and the potential drop across these junctions is negligible under both 

forward and reverse bias. Equal currents will also flow with forward and reverse bias. In 

ohmic contact, the current produced by the device is determined by the polymer film 

conductivity rather than the properties of the contact. Carriers can flow freely in or out of 
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the device and this condition leads to minimal resistance across the contact. When the 

polymer is heavily doped, the Schottky barrier depletion region becomes very thin [151, 

152, 153]. At very high doping levels, a thin depletion layer becomes quite transparent 

for electron tunneling. Thus, in order to obtain a reliable ohmic contact, the polymer 

contact with the metal should be heavily doped. 

The image most commonly used to describe source and drain contacts is that of a 

metal-semiconductor junction. The contacts are expected to be ohmic when the work 

function of the metal is close to the HOMO and LUMO level of the semiconductor, 

depending on whether the semiconductor is p or n-type. If the reverse situation prevails, 

an energy barrier forms at the metal-semiconductor interface, leading to poor charge 

injection. From this standpoint, the Au/PEDOT-PSS interface would be a good candidate 

as a low-resistance contact. In practice, the real resistance is rather high. The mechanism 

of barrier formation at metal-organic semiconductor interfaces has been studied in great 

detail for organic light-emitting diodes (OLEDs), where contact resistance is also a 

crucial issue. UV Photoelectron Spectroscopy (UPS) has been used for the precise 

determination of the energy levels at both sides of the interface [154, 155]. A typical 

result for the Au/PEDOT-PSS interface is shown in Figure 3-10 [156], which clearly 

shows that the actual interface strongly deviates from the MOS model. Instead, the 

interface has an additional "dipole" barrier (A), which shifts the HOMO level downward 

by more than leV, hence increasing the barrier height by the same amount. The reason 

for this rather large interface dipole is that the electron density at a metal surface presents 

a tail that extends from the metal-free surface into vacuum, thus forming a dipole 
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pointing at the metal bulk [157,158]. Molecules deposited on the metal tend to push back 

this tail, thus reducing the surface dipole and reducing the work function of the metal. 

3.2.4.2 Schottky Contact 

In many devices, the contact between a metal and polymer material is rectifying 

and then becomes a Schottky contact. When current goes through the junction in one 

direction, there is a minimum potential drop across it, but in the opposite direction there 

exists a large potential drop [159]. Theoretically, the energy band diagrams can predict 

the behaviour and characteristic of the contact. 

If contacts do behave as Schottky barriers, one would expect the voltage drop at 

the source to be substantially higher than that at the drain. This is what is indeed observed 

with a "bad" contact. For "good" contacts, however, a comparable voltage drop is 

observed at both electrodes. A possible origin of this behavior has recently been 

suggested. The model assumes that the region immediately adjacent to the electrodes is 

made of organic material of quality different from that of the rest of the conducting 

channel and with very low mobility. 

It is worth noting that the contact resistance of the top contacts is normally 

smaller than that of bottom contacts [160]. The asymmetry of the organic-metal contact, 

depending on whether the organic film is deposited on the metal or the metal on the 

organic layer, has been studied theoretically and experimentally [161]. 



CHAPTER FOUR 

MODELING AND SIMULATION 

4.1 Technology Computer Assisted Design 

Technology Computer Aided Design, or TCAD [162], is used to describe a 

computer-aided design and engineering method used in a broad range of modeling and 

analysis activities. The TCAD process consists of semiconductor device design, 

fabrication process design, and technology characterization for integrated-circuit (IC) 

lithographic processes [163]. The essence of this concept is for the successful design of 

today's devices and circuits because of their increasing complexity and the high cost and 

delay associated with experimental design iterations. Simulation tools are increasingly 

integrated into TCAD systems which provide a controlled and repeatable numerical 

experiment. For these tools to be useful in a practical environment, they must be 

physically accurate, computationally robust, and usable by users other than the software 

developers. Depending on the users technical background and needs, different demands 

on such system will arise. 

Simulation of fabrication and operation of the field effect transistor (FET), bipolar, 

or CMOS structures is routinely conducted in two-dimensional space and is widely used 

[164]. TCAD software requires an investment both in the development of new 

capabilities and training in the use of the software. We have used TCAD software to 
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shorten our device development cycle. Numerical experiments are much faster than 

physical experiments, provided that the models are accurate. TCAD simulation can also 

provide a better understanding of the device and a better design and performance 

improvement by simulating the effects that cannot be measured or visualized, such as 

leakage paths, locations of depletion regions and a complete description within the device 

of the parameters of interest. Without the device-to-device variations that occur in the 

real environment, TCAD software analyzes sensitivities and tradeoffs in a controlled 

situation, which has allowed a much more robust design to be developed. 

4.2 Description of Models 

These numerical simulations were typically based on the drift-diffusion (DD) 

model, which does not depend on the type of the microscopic transport mechanism, and 

therefore, can also be valid for the case of hopping transport in organic material systems 

[165]. Regarding the modeling of the electrostatics, most of the work has been based on 

solving the two-dimensional current continuity equation involving drift and diffusion 

currents together with Poisson's equation self-consistently. 

The electrostatic potential across the device is determined by the doping profile 

and mobile charges, as directed by the Poisson equation. 

£V
2y/=-q(p-n + N+

D-N-A)-ps (4-1) 

where e is the permittivity of the medium, y/ is the potential, q is the elementary charge, 

p and n are hole and electron density, respectively, NQ+ and NX are ionized donor and 

acceptor concentrations, respectively, and ps is the surface charge density. For the 

concentrations, the corresponding expression for holes density and electrons density in 

the quasi-equilibrium contact regions in terms of the local Fermi level, 
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p = ni exp{((pFp - <p)l VT} (4-2) 

n = nt exp{(<p - <pFn ) / VT} (4-3) 

n, = VAVÂ exp j - ^ ^ j (4-4) 

The intrinsic density (n,) is connected with the gap energy (e^ and AVand Nc. VT = ksT/e 

is the thermal voltage. The electron and hole continuity equations are: 

%-*-*• J.-U. (4-5) 
ot q 

where U„ and Up are net electron and hole recombination, respectively. J„ and Jp 

are electron and hole current density, respectively. Drift and diffusion current can 

be calculated as: 

Jn = -1nvS<PFn + qDnVn = qnjuA + qD„Vn (4-7) 

JP = -qPMpV(pFp ~ qDpVp = qnv„Ep - qDS/p (4-8) 

here ju is the mobility and D the diffusivity; n and p indicate the electron and hole 

concentration, respectively. The mobility (y.) correlates with the diffusivity (D) by the 

Einstein relationship based on Boltzmann statistics 

kT 
Dn=—Hn (4-9) 

q 

kT 
Dp=—jup (4-10) 

q 
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where subscripts n and p indicate electron and hole, respectively. Because the PEDOT-

PSS is a p-type polymer material, the model mainly focuses on the holes distribution 

during the simulation process. 

4.3 Device Simulation Results 

The two-dimensional device structure is developed with the dimensions of the 

device were chosen to approximate those of the real devices. The Figure 4-1 presents the 

schematic structure of the developed device. 

Figure 4-1 Schematic representation of the PEDOT-PSS OFET structure 

The material parameters are shown in Table 4-1. Dielectric constant (e) and 

effective density of states (Nv) and (Nc) of PEDOT-PSS are from Ref [166] and [167], 

and the electron affinity (equivalent to the LUMO level) and the energy bandgap are from 

Ref [168]. Mobility and doping concentration are obtained from the experimental results 

in Chapter Six. The S/D contacts are gold with a work function of 5.1 eV. The gate 

contact is n+-Si with a work function of 4.2 eV. For the mobility, the experimentally 

determined value is used, which is Up=0.0016cm2/Vs at Vd=-30V. The simulation input 

commands can be found in Appendix A. 
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Table 4-1 Basic material parameters used in simulation 

8 

Nc,Nv(cm-J) 

NA-(cm-J) 

Eg (eV) 

X(eV) 

PEDOT-PSS 

3.5 

2x 10^' 

1x10" 

1.6 

3.6 

Reference 

[177] 

[178] 

[178] 

[179] 

[179] 

Taurus simulator software [169, 170] was used during the simulation process. By 

solving Poisson's equation, the results of simulation present the energy level diagram of 

the OFET structure under thermal equilibrium, as shown in Figure 4-2. It is observed that 

Ec and Ev in PEDOT-PSS are equivalent to the LUMO level and the HOMO level, 

respectively. £> is the Fermi level. Being highly doped, n+-Si as the gate electrode has a 

Fermi level close to Ec- Its electric property is thus similar to a metal. Due to the 

difference of the work function between n+-Si {<f>m) and PEDOT-PSS (</>s) {</>m <<f>s), the 

Fermi levels align under thermal equilibrium, leading to a slight depletion (band bending 

down) of the PEDOT-PSS channel near the PEDOT-PSS/Si02 interface. 
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Figure 4-2 Energy level diagram of the OFET (n+-Si-Si02-PEDOT-PSS) structure under 
thermal equilibrium. 

Figure 4-3 shows the calculated hole concentration profiles in the PEDOT-PSS 

layer, which is obtained from a cut-line at the middle of the channel starting from the 

PEDOT-PSS surface. The gate voltage is -10 V and both the source and drain voltages 

are 0 V. The background doping profile is also shown. The right y-axis in Figure 4-3 

shows a linear scale for the hole concentration. One can see that the charge carriers are 

predominately located within 2 nm from the PEDOT-PSS/Si02 interface, where the 

carrier concentration reaches its maximum. This reveals the importance of the interface. 

Therefore, it is important to improve the interface in order to enhance the electrical 

characteristics of the resulting devices. It is also important to refine the mesh in this 

critical area, by which one can get accurate simulation results. 
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Figure 4-3 Hole concentration profile in the channel along the direction normal to 
PEDOT-PSS/Si02 interface. 

The dependencies of the mobilities on concentration and field can be taken into 

account directly; however, there are other influences, such as, an exponential trap 

distribution, a Schottky contact or an Ohmic series resistance in a top-contact structure 

which will also result in significant deviations from Equation (3-2) and (3-3). Therefore, 

a Drift-Diffusion (DD) model with a constant mobility is preferred. From experimental 

results, the doping density of 3x10 cm" was estimated, according to the Equation (3-5). 

The detailed information and the input commands can be found in Appendix A. 

Figure 4-4 shows the drain current as a function of drain-source voltage up to -20 

V for various gate biases. The shape of the ID-VD characteristics of the OFET is similar to 

those of field-effect transistors at the gate bias voltages (VQ) higher than a threshold 

voltage (VT). At low drain-source bias ( V D « V G ) , there is a linear (or ohmic) region in 
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which the drain current is dependent on VD and the saturation of ID is observed at high 

drain biases (VD>VG). The behavior of the OFET based on PEDOT-PSS are presented as 

Equations (3-2) and (3-3). Figure 4-5 shows the simulation gate transfer characteristics of 

the OFET based on PEDOT-PSS material. By linearly extrapolating the curve to the VGS 

axis, the threshold voltage (Vr) can be extracted to be 10 V. In Chapter Six, the 

comparison between experimental results and simulation results will be presented and the 

analysis of the resulting experimental data will demonstrate the advantage of combining 

the analytical estimates and the numerical simulation. 
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Figure 4-4 Simulation of output characteristics of OFETs based on PEDOT-PSS 
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Figure 4-5 Simulation of transfer characteristics of OFET based on PEDOT-PSS 

4.4 Summary 

Modeling and simulation are important for achieving an adequate understanding 

of the operation of the device. In this work, numerical simulation is carried out and the 

energy band diagram, hole distribution and electrical characteristics of the devices were 

produced by the Taurus simulator. Future more, numerical simulations realize the self 

contained task to clarify special effects as the possible occurrence of inversion and the 

influence of the type of the source/drain contacts on device mobility. The advantage of 

the simulations lies in the possibility to illuminate the mode of operation by inspecting 

the internal distributions of concentrations and fields and by relating them to the 

peculiarities of the device current characteristics. 

V=-20V 
D 

i I I I 1 I 



CHAPTER FIVE 

SOIL MOISTURE MONITORING SENSOR 

BASED ON PEDOT-PSS RESISTOR 

5.1 Introduction 

Recently, there has been a rapid growth in the development of microsensors for 

applications for relative humidity testing. For many years, "the influence of humidity has 

become the main concern in moisture sensitive areas, such as high voltage engineering 

systems, food processing, textile manufacturing, storage areas, computer rooms, hospitals, 

museums, libraries, and geological soil sample studies" [171]. Monitoring moisture 

content in soil has become a pre-requisite for a variety of processes, such as agriculture, 

areas prone to landslides, and laboratory testing. The application of microsensors in 

geologic and geotechnical engineering studies has emerged only recently owing to the 

complex boundary conditions that must be overcome in granular materials such as three 

phase solid-water-air void structures and heterogeneous particle distributions. Recent 

research in this area has focused on the measurement of suction and humidity in soils 

[172]. Measurement of moisture content has been guided by the agricultural industry 

resulting in improved time domain reflectometry devices (TDR) whose 

57 
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dimensions are far too large for capturing microscale behavior. Determination of 

moisture and moisture migration during environmental and physical loading of soils are 

critical for model development. Direct observation at the microscale of these phenomena 

is difficult with the current technology, which requires a need for development of 

microsensors to capture this moisture response. 

In Chapter One, we have introduced that organic polymers have been widely used 

for humidity sensor applications due to their reasonable characteristics. These humidity 

sensors detect either the absolute value of a physical quantity or a change in the value of 

electrical quantity and convert the measurement into useful input signals for an indicating 

or recording instrument. During the early stages of humidity sensor development, 

commercially available polymer electrolytes were directly used as the active sensing 

material. The use of PEDOT-PSS polymer material for humidity sensing applications 

using transistor phenomena was first reported by Nilsson, et al [173]. Polyamide fibers 

coated with PEDOT-PSS polymer material were also studied for humidity and 

temperature sensor applications [174]. In this paper, the use of PEDOT-PSS polymer 

material in the development of new microsensors for detecting gravimetric water content 

in soil samples will be demonstrated. A change in the resistance of the polymer film is 

monitored when it is exposed to different soil samples to compute the gravimetric water 

content present in the samples. When compared to sensors developed based on a 

transistor or capacitive structure, the sensors based on a resistive structure show the 

simplest structural design without complex fabrication processes. The simplicity and size 

of the developed sensor devices, as compared to other reported devices, enabled the 

measurement of the gravimetric water content present in the soil samples. 
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5.2 Experimental Details 

PEDOT-PSS used in the following experiments was purchased from Baytron P. 

Bayer Corporation. The process steps involved in the fabrication of the moisture sensor 

are shown in Figure 5-1. 

Figure 5-1 Schematic illustration of the fabrication process steps for the sensors 

First, a mask was designed for fabricating the electrode patterns with different 

resistor lengths using L-Edit layout software. L-Edit layout software is a customized 

mask editor, which is a part of a complete integrated circuit design tool offered by Tanner 

Research Inc. A [100] silicon wafer with a 100 nm thick oxide layer was used as the base 

substrate for the fabrication of the sensor devices. The pattern transfer was performed by 

UV photolithographic process using commercially available PR 1813 positive photoresist 

(Sigma-Aldrich). Spin coating technique was used to fabricate the PEDOT-PSS film. A 
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typical spin coating process involves depositing a small amount of a fluid onto the center 

of a substrate, and then spinning the substrate at high speed depending on viscosity of the 

fluid. Centrifugal acceleration will cause most of the fluid to spread off the edge of the 

substrate, leaving a thin film of fluid on the surface. Final film thickness and other 

properties depend upon the fluid viscosity, drying rate, and surface tension used in the 

spin coating process. The individual sensor devices were then wire bonded to the external 

circuit for electrical measurements. The final microsensor device after wire bonding and 

packaging is shown in Figure 5-2. The total dimensions of the packaged sensor are 1.5 x 

0.5 x 0.5 cm. A packaging cap from Sensirion Inc. was used to package the sensor 

presented. The filter in the cap is selective and will avoid the exposure of the sensor to 

any other environmental condition or soil granules, except humidity. The electrical 

characteristics of the sensor devices were first tested as a function of relative humidity 

(RH %). In order to study the incorporation of water in the PEDOT-PSS polymer 

material, attenuated total reflection-infrared (ATR-IR) was performed using a Thermo 

Nicolet Nexus 470 fourier transform infrared radiometer (FTIR) equipped with ZnSe 

ATR crystal. The FTIR spectroscopy provides a powerful tool to obtain both the 

chemical and spatial information of the sensing film [174-179]. 
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Figure 5-2 Final packaged microsensor device to measure gravimetric water content in 
soil samples. 

After studying the device performance, the actual soil samples (Buckshot Clay, 

CH) containing different levels of gravimetric water content were investigated. The setup 

for testing soil sample consists of a glove box, as shown in Figure 5-3. 

< Glove Box 

Humidifier 

Soil Sample 
in Mason Jar 

Sensor 

Glove 

Figure 5-3 The soil sample testing setup system. 

The soil samples were prepared in air tight mason jars and were placed inside the 

glove box to measure the gravimetric water content in the samples. The humidity inside 
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the glove box was controlled using a commercially available humidifier and nitrogen 

supply. The sensor is moved from one sample to another sample inside the glove box, 

and the change in the electrical characteristics of the sensor was monitored using a 

Keithley probe station. 

5.3 Results and Discussions 

The thickness of the spin-coated PEDOT-PSS film was measured to be 50 nm 

using a Tencor profilometer. The surface roughness profile of the film was measured 

using atomic force microscopy (AFM), as shown in Figure 5-4. It can be observed that 

the PEDOT-PSS film is relatively smooth with some rough peaks, probably due to the 

formation of PEDOT-PSS nanoclusters on the silicon substrate. 

Figure 5-4 PEDOT-PSS surface measured using AFM. 
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The ATR-IR experiments were done to investigate the increase in absorption of 

water molecules in the PEDOT-PSS film when exposed to an increased moisture level 

(70% RH) relative to the ambient condition (45% RH). These experiments can provide 

evidence for the response of the PEDOT-PSS film (absorption of water molecules) in the 

moisture environment. The ATR-IR resultant curve for the spectrum between 650 cm"1 

and 4000 cm-1 of the PEDOT-PSS film before (45% RH) and after exposure (70% RH) 

to moisture content is shown in Figure 5-5. The broader band between 3000 cm"1 and 

3700 cm"1 corresponds to OH stretching and aromatic CH stretching between 2850 cm"1 

and 2980 cm"1. The unexposed film (45% RH) has a flattened peak centered at 3420 cm-1, 

whereas the exposed (70% RH) PEDOT-PSS film has a relatively sharp intense peak at 

3420 cm-1 in the spectrum indicating the absorption of OH molecules in the film. The 

small peaks at 1750 cm_1and 1500 cm"1 in the spectrum appeared when the film was 

exposed to moisture content. These peaks indicate that the PEDOT-PSS molecular chain 

has been altered due to the presence of OH molecules. 
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Figure 5-5 ATR-IR spectrum of PEDOT-PSS film without and with exposure to moisture 
content. 

An analysis of the change in resistance, repeatability, and sensitivity of the 

PEDOT-PSS was done to study the sensor device performance. The results show that the 

resistance of the PEDOT-PSS polymer film increased when exposed to an increasing 

level of relative humidity. The output signal of the sensor device, in terms of percentage 

change in resistance with respect to change in relative humidity, is shown in Figure 5-6. 

The total percentage change in resistance of the PEDOT-PSS film was observed to be 

45% for a 50 to 90 % change in relative humidity. 
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Figure 5-6 The change in sheet resistance of PEDOT-PSS moisture sensor vs. change 
in relative humidity 

The humidity sensing mechanism can be explained on the basis of the dipole 

molecular effect on the polar polymers, such as PEDOT-PSS [181]. Experimental results 

obtained on molecularly doped polymers [181-183] indicate that the presence of dipoles 

initiate a decrease in effective carrier motilities. There is considerable evidence that the 

width of the density of states (DOS) can be influenced by the dipole moment of the 

dopant molecule. The width of the DOS increases with increasing dipole moment of the 

dopant molecule. An increase in the width of the DOS, with increasing inter-site distance, 

leads to an increase in charge carrier hopping distance which, in turn, decreases the 

conductivity of the polymer material. Since, the water molecules have larger dipole 

momentum they contribute to the decrease in the effective conductivity of the PEDOT-
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PSS polymer material in the presence of humidity. On the other hand, PEDOT-PSS 

conductivity also depends on its component ratio (the ratio of PEDOT and PSS) [185]. 

Low conductivity indicated the presence of excess PSS in the film. In the polymer 

molecular structure, a single PSS chain interacts electrostatically over its length with 

many shorter PEDOT chains and the distance between adjacent PEDOT chains is small, 

and this favors the hopping of charges between PEDOT chains. But the higher density of 

insulating PSS material leads to increased hopping distance for the charge carriers and a 

resultant decrease in the electrical conductivity. 

The developed moisture sensor devices were used to test the soil (Buckshot clay, 

CH) samples with different levels of gravimetric water content (15% to 35%). The 

electrical measurements were taken by imbedded microsensors in the soil samples. The 

average change in the resistance value of the sensor device, with respect to change in 

gravimetric water content measured at different time intervals, are shown in Figure 5-7. 

Measuring at different time intervals helped in determining the optimum time that the 

sensor takes to give a stabilized reading when placed in soil samples. The intent of the 

sensors is to measure the air saturation present within the interstitial pore spaces in the 

soil. No moisture movement is present in the compacted clay samples as no moisture is 

being allowed to enter or leave the sample during testing. The effect of internal moisture 

movement is minimized by allowing the samples sufficient time to equilibrate. Therefore, 

the effects of permeability resulting from differential grain size (in the same soil sample 

or different kinds of soil samples) does not influence the speed at which sensor data is 

taken, as moisture is in equilibrium throughout the specimen during the experiments. 

After the equilibration, any changes in moisture content due to environmental effects 
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such as drying or wetting, occur slowly with respect to the sensor response time. This is 

true even for very permeable soils, i.e. sands. Therefore, following an initial equilibrium 

state, the sensors will have sufficient time to react to this changing behavior independent 

of grain size. 
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Figure 5-7 The change in sheet resistance of PEDOT-PSS moisture sensor vs. gravimetric 
water content in soil samples. 

It can be observed from the plots in Figure 5-7 that the resistance values measured 

when the sensor device was placed in the soil sample for 20 and 30 minutes time intervals 

were mostly comparable. This indicates that any time between 20 to 30 minutes is 

adequate for the sensor to give a stabilized reading in any particular gravimetric water 

content level in soil samples. Hence, the resistance values of the sensor at 20 minutes and 

30 minutes are averaged and plotted in Figure 5-7. The change in the output resistance of 
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the sensor device was observed to be from 2.5 M to 4.0 M ohm when exposed to soil 

samples (Buckshot clay, CH) with 15 - 35 % change in gravimetric water content. The 

results obtained show that the sensor devices, thus fabricated, can be applied to measure 

gravimetric water content in the soil samples which, therefore, can be used in geologic 

and geotechnical engineering. 

Experiments were also conducted to see the effect of the sensor with and without 

using the Sensirion packaging cap. It was observed that when the sensor is unpackaged 

(i.e. not covered by the cap) and placed above the soil sample instead of imbedding it in 

the soil sample, the slope of the sensor response increases compared to the sensor which 

is packaged and embedded in the soil sample, as shown in Figure 5-8. From these results, 

it can be concluded that there is obviously some effect on the sensor due to the 

environment when the sensors are placed above the soil sample. More accurate readings 

can be generated by imbedding the packaged microsensors in the soil samples. 
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Figure 5-8 Resistance versus water content in CH soil samples measured using 
unpackaged and packaged sensor device. 
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In order to check the repeatability of the microsensors, experiments were 

performed to compare two different measurements performed at two different time period 

and also to compare the response of two different microsensors. As shown in Figure 5-9 

and Figure 5-10, it can be observed that there is some offset from one device to the other 

or from one measurement to the other as in the case of other humidity sensors. There was 

some hysteresis (1%) observed during the experiments conducted using soil samples. 

However, this offset can be minimized by normalizing the results obtained by taking the 

value of the microsensor at 15% soil sample as the base line. 
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Figure 5-9 Percentage change in resistance value of the packaged sensor device for two 
different measurements to the change in water content of the CH soil samples. 
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microsensors to the change in water content of the CH soil samples. 

5.4 Conclusions 

A moisture sensor based on poly(3,4-ethylenedioxythiophene-poly(styrene-

sulfonate) (PEDOT-PSS) conductive polymer was successfully developed and presented 

in this paper. The sensors showed promising performance in terms of response time, 

sensitivity and repeatability. The PEDOT-PSS polymer sensors thus developed were 

successfully used to test the gravimetric water content in the soil samples. The change in 

the output resistance of the sensor device was observed to be from 2.5 M to 4.0 M ohm 

when exposed to soil samples with 15 - 35 % change in gravimetric water content. At 

present, it is intent that these sensors will need to be calibrated for a given soil for the 

purposes of research. Once a family of calibration curves has been developed for a range 
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of grain size distributions, then any soil of similar grain size could adopt a curve to 

approximate moisture content. The results obtained are promising for further 

development of the given sensors and their application as miniaturized and cost effective 

alternatives to commercially available sensors for geological and geotechnical studies. 



CHAPTER SIX 

FIELD EFFECT TRANSISTOR BASED 

ONPEDOT-PSS 

6.1 Introduction 

It is known that semiconducting polymers provide reasonable properties. Since 

then, compared with the OFETs made of vacuum deposited small molecules, polymer 

FETs normally have significantly lower field effect mobility, thus reducing the possibility 

to use them for practical applications, such as drive circuits for organic displays. As 

previously introduced, the conductivity of conducting polymer, PEDOT-PSS, can be 

affected by an electric field. In an all-polymer field effect transistor (FET), some devices 

with doped conducting polymers as an active channel material have been reported [185]. 

Unlike the conventional organic field effect transistor (OFETs), such as, pentacene, 

thiophene oligomer, or undoped conjugated polymers, our devices show some promising 

features: (1) a simple structure configuration, easy to fabricate and low cost; (2) the 

source, channel, and drain are continuous without boundaries; (3) easy control of channel 

width. This OFET is a p-type device and operates in the accumulation mode by 

application of a negative gate voltage. A similar response was observed for the devices 

using poly(3-hexylthiophene) (P3HT) [186] and poly(p-phenylene vinylene)s (PPV) 

[187]. 

72 
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In their saturation mode of operation, polymer and organic based FETs obey a quadratic 

current-voltage (I-V) relationship similar to conventional FETs. Previously, some work 

based on flexible and transparent all-polymer FETs fabricated on one substrate has been 

reported [188]. It was observed that the device operated at lower voltages both in the 

depletion and enhancement modes in response to positive and negative gate voltages, 

respectively. However, the detailed mechanism is unclear since the application of 

conventional field effect theory yields surprisingly large carrier mobility (p). Moreover, 

the device is unstable where the threshold voltage shifts and response becomes slower 

with time, which distinguishes the mechanism from conventional field effect. 

The OFET devices resemble conventional thin film transistors and focuses on top-

contact structures in which the source and drain contacts are defined on the gate insulator. 

The organic active layer is deposited and covers the source and drain contacts as well as 

filling the gap between them, where the conducting channel forms. Consequently, the 

charge carriers forming the conducting channel are injected from the contacts. In order to 

improve the devices stability, protective materials have been used to protect the devices 

from degradation. 

6.2 Device Fabrication 

A conducting polymer solution was prepared by diluting 1 mL of 1.3 wt.% 

PEDOT-PSS (from Sigma-Aldrich Corporation) in distilled water, to a final volume of 5 

mL. A [100] silicon wafer with a 0.1 Dm thick silicon dioxide layer was used as the 

substrate for the fabrication of the sensor devices and also served as the gate region of the 

OFETs. First, a mask was designed using the L-Edit layout software for fabricating the 

source and drain gold electrode pair patterns, in between which the device channel region 
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is also defined. The pattern transfer was performed by the UV photolithographic process 

using the commercially available PR 1813 positive photoresist (Sigma-Aldrich). 

Prior to the spin-coating of PEDOT-PSS, the substrate was subjected to O2 

plasma for 60 s to hydrophobize and clean the photoresist residue from the channel 

region of the patterned surface. After spin-coating PEDOT-PSS, the samples were 

annealed for 2 minutes at 75°C in air to improve the polymer film morphology and 

firmness. Next, for the protection of device, poly(4-vinylphenol) (PVP, Mw- 20000, 

Aldrich Inc.) or cellulose acetate solution (2.5% (w/v) of cellulose acetate in 

Tetrahydrofuran (THF) (60%) and acetone (40%) solution) was coated on different 

devices, respectively, by spin-coating. 

6.3 Results and Discussion 

The ID-VD current characteristics of an OFET based on PEDOT-PSS are shown in 

Figure 6-1 (Symbol line-experimental results). This device behaves as a typical p-type 

OFET and the drain current ID is controlled by the gate voltage VGS- The negative gate 

voltage enhances the conduction of the channel, due to the formation of hole 

accumulation, while a positive gate voltage reduces the conduction of the channel. When 

a positive gate voltage is applied to the device, the device will be turned off. Figure 6-1 

shows that ID increases linearly with VDS when VGS is small. As VGS increases to be more 

negative, ID rises more steeply at the small VDS and displays a tendency to saturate at 

relatively high VDS-

According to the description in Chapter Three, the ID-VD shows two working 

regions: a linear region and a saturation region. Drain current values in the saturation 

region and the linear region are obtained from Equations (3-2) and (3-3), respectively. 



75 

Figure 6-2 shows the measured gate transfer characteristics of the OFET based on 

PEDOT-PSS material. By linearly extrapolating the curve to the VQS axis, the threshold 

voltage VTH can be extracted to be 20 V. It indicates that the OFET is a normally on 

transistor, which could be due to the unintentional doping of PEDOT-PSS probably by 

oxygen and moisture in the area [189]. In the saturation region, a threshold voltage and 

mobility of 10 V and 1.66e-3 cm2/Vs for the device can be deduced from Equation (3-7). 

The device channel (PEDOT-PSS) thickness is around 50nm which was measured by 

KLA Tencor Profilometer. The conductivity of the spin-coated film produced from the 

PEDOT-PSS solution, was measured to be 2e-4 S/cm, according to Equation (3-5). 

U.^H 1 1 J 1 1 1 1 1 1 1 

-20 -IS -10 -5 0 

Drain Voltage (V) 
Figure 6-1 The comparison between experimental and simulation output characteristics of 
OFETs based on PEDOT-PSS 

Figure 6-1 and Figure 6-2 also show the simulation results compared with the 

experimental data. A discrepancy between the simulation and experimental results is 
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observed. It can be seen that all calculated values are higher than the experimental values. 

This may not indicate an invalid assumption for the mobility and doping level. And the 

contact effect shows significant function during the real device measurement process. For 

the experimental device, the regions adjacent to the vertical contact sides are not filled 

with material that is the same as the rest of the PEDOT-PSS film. Therefore, the 

deposition along the edges of the contacts contributes to a structurally disordered material 

with very low mobility. However, in the simulation discussed here these regions are 

regarded as bulk material which has a constant carrier mobility. Continuing with the 

above simulation, the contact resistance in the model should be considered due to the 

significant effect on the electrical characteristics of the devices, as described in Chapter 

Three. A considerable voltage drop could be due to the contact resistance, resulting in the 

effective channel voltage being significantly lower than the total drain voltage [170]. 
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Figure 6-2 The comparison between simulation and experimental results for the transfer 
characteristics of OFET based on PEDOT-PSS 
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As described in Chapter 2, PEDOT-PSS is a sensitive material, thus, the 

degradation of the device occurs due to the polymer material used as the active channel. 

In order to protect the device from degradation, PVP and cellulose acetate are deposited 

on the device substrate to prevent the reaction between active layers and water and 

oxygen. The drain current decreased due to the device degradation in three days. After 

deposition of PVP and cellulose acetate on the device surface, the changes in drain 

current were negligible after three days when compared with the device without a 

protective layer shown in Figure 6-3 and threshold voltages are around +10V which is 

almost no change. 

Device without protective film 

VD«-20V The 1st day 

-The 2nd day 

The 3rd day 

-10 

Gate Voltage (V) 
10 

Figure 6-3 The comparison of the transfer characteristics of OFET based on PEDOT-PSS 
without a protective layer over three days 

As shown in Figure 6-4 and 6-5, the device with cellulose acetate protective film 

presents negligible degradation over three days compared with the PVP as the protective 
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film. Another reason that affects the device performance is the membrane reaction to the 

various membrane damaging conditions, such as free chlorine, free oxygen, bacteria and 

pH level [191]. 

Device with PVP protective film 

Vo=-20V 
«—The 1st day 
• The 2nd day 
^— The 3rd day 

Gate Voltage (V) 

Figure 6-4 The comparison of the transfer characteristics of OFET based on PEDOT-PSS 
with a PVP protective layer over three days 

Cellulose acetate membranes are advantageous for water desalination, despite 

their limits. Apart from their acceptable performance figures with respect to flux and 

selectivity, their main advantage is that they are highly chlorine resistant [190]. For 

oxygen, cellulose acetate is more resistant than PVP. According to the above description 

and the comparison between cellulose acetate and PVP, cellulose acetate is the more 

reasonable choice for use as the protective membrane for the glucose sensor devices 

which are discussed in Chapter Seven. 
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Figure 6-5 The comparison of the transfer characteristics of OFET based on PEDOT-PSS 
with a cellulose acetate protective layer over three days 

6.4 Summary 

In conclusion, OFETs with the simplified structure have been fabricated based on 

PEDOT-PSS as the channel sensing material using easy and low cost spin-coating 

fabrication process. The fabricated OFETs were characterized in the atmosphere at room 

temperature, with the field-effect mobility being 1.66e-3 cm /Vs and the threshold 

voltage is 10V. The comparison between simulation and experimental results was 

presented. Due to the nonuniform film structure of the PEDOT-PSS material, there is a 

discrepancy between simulation and experimental results. Also, the performance of 

OFETs is related to the PEDOT-PSS degradation. PVP and cellulose acetate have proven 

to be promising protective layers against degradation for the OFET devices and, 



furthermore, cellulose acetate will be used as the membrane for the developed glucose 

sensor based on PEDOT-PSS. 



CHAPTER SEVEN 

GLUCOSE SENSOR BASED ON 

PEDOT-PSS FIELD EFFECT TRANSISTOR 

7.1 Introduction 

In recent years, various types of biosensors, some of which are already in 

practical use, have been developed [191-198]. Such sensors have been used for different 

applications, including health care, food and environmental monitoring. Organic thin 

film transistors (OTFT) and field effect transistors (OFET) present much promise for 

chemical and biological sensing applications [199-203], and biosensors based on ion-

sensitive OFETs [199] have been developed. OFETs have a number of advantages over 

other types of biosensors. For example, the organic sensing materials can be fabricated 

into sensor devices using low-temperature processes and low-cost substrates. Moreover, 

"as OFETs are based on organic semiconductors, the molecular structure and morphology 

of these materials can be more easily tailored to enhance the sensitivity and selectivity of 

the resulting biosensors" [200]. 

In recent years, conducting polymer materials, such as polypyrrole (PPy) and 

polyaniline, have emerged as potential candidates for biosensor applications [204-205]. 

81 
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Researchers have used these polymers and their composites in OFETs as the charge-

transfer reaction layer between an enzyme and electrode, via a ramified conducting 

polymer matrix network [201-203]. Traditional GOx-based biosensors, which rely on 

anodic peroxide detection, use H2O2 permselective membrane. However, conducting 

polymer-based glucose sensors use a GOx membrane and are capable of precise and fast 

measurement, with sensing range extending up to 30 mM, as compared to that of 

traditional glucose sensors (~2 mM) [206]. 

Recently, there has been an increased interest in the application of PEDOT-PSS 

as a suitable matrix system for enzyme entrapment and charge-transfer media in glucose 

sensors. PEDOT-PSS also displays excellent electrochemical stability, reliability, and 

interesting redox properties, as compared to that of PPy [207-209]. It can be switched to 

a different oxidation state and conductivity by changing the applied potential or pH. For 

OFETs based on PEDOT-PSS, the applied gate voltage allows this material to switch 

between different redox states [210]. Within a potential range, the redox states can affect 

enzyme interactions with conducting polymers [211]. Therefore, GOx enzyme can 

interact directly with the conducting polymer (PEDOT-PSS) to form a biosensor. 

As a continuation of our work on p-type conducting polymers (PEDOT-PSS) for a 

soil moisture sensing application [212], an OFET-based glucose sensor, with PEDOT-

PSS and GOx as the channel materials to detect different levels of glucose concentration, 

is presented in this paper. The mechanism of operation of this biosensor device is 

fundamentally different from that of traditional potentiometric and amperometric sensors, 

where the conducting polymer is used as an electrode. The fabrication steps of the present 

glucose sensor are also simpler. Moreover, the glucose sensor presented has displayed a 
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reasonable level of sensitivity, repeatability, and stability. The evaluated range of glucose 

detection shows that the developed biosensor can be used to detect glucose concentration 

between normal and diabetic patients. 

7.2 Experiment Details 

A conducting polymer solution was prepared by diluting 1 mL of 1.3 wt.% 

PEDOT-PSS (from Sigma-Aldrich Corporation) in distilled water, to a final volume of 5 

mL. GOx solution was prepared by dissolving 6 mg of GOx enzyme (250 KU) in 50 ml 

of 0.1 M phosphate buffer, pH 6.5, which contains 1.5 mM of ethylenediaminetetraacetic 

acid (EDTA) as antimicrobial agent and 10% (w/v) of glycerol as stabilizer. The glucose 

solution ranging from 0.2 to 3 mg/ml was prepared for the evaluation of the biosensor 

presented in this paper. 

Figure 7-1 shows the schematic diagram of the device structure for the OFET-

based glucose sensor. A [100] silicon wafer with a 0.1 Dm thick silicon dioxide layer 

was used as the substrate for the fabrication of the sensor devices and also serving as the 

gate region of the OFETs. First, a mask was designed using the L-Edit layout software 

for fabricating the source and drain gold electrode pair patterns, in between which the 

device channel region is also defined. The pattern transfer was performed by the UV 

photolithographic process using the commercially available PR 1813 positive photoresist 

(Sigma-Aldrich). 
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Figure 7-1 A schematic diagram of the device structure for the glucose sensor 

Prior to the spin-coating of PEDOT-PSS and GOx, the substrate was subjected to 

O2 plasma for 60 s to hydrophobize and clean the photoresist residue from the channel 

region of the patterned surface. After spin-coating PEDOT-PSS, the samples were 

annealed for 2 minutes at 75°C in air, to improve the polymer film morphology and 

firmness. This step was followed by spin-coating of the GOx layer. The total film 

thickness was measured to be about 50 nm (using a Tencor Profilometer). Finally, the 

substrate was dip coated in a cellulose acetate solution, 2.5% (w/v) of cellulose acetate in 

Tetrahydrofuran (THF) (60%) and acetone (40%) solution, to form a protecting 

membrane that would allow glucose to pass while preventing water molecules from 

entering the substrate. The individual sensor devices were then wire bonded for electrical 

measurements. 
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7.3 Results and Discussion 

In general, the reaction between GOx enzyme and glucose produces hydrogen 

peroxide (H2O2) and Gluconolacton (gluconic acid), as described by Equations 1 and 2 

[213]. 

Glucose + GOx (ox) ^ Gluconolacton + GOx (red) (1) 

GOx(red) + 0 2 ^ GOx (ox) + H202 (2) 

GOx enzyme, used with a conductive material as sensing electrode, can be used to 

detect glucose through the measurement of electrons generated by oxidation of H2O2 

(Equation 3) formed during the reaction given in Equations 1 and 2 [213]. 

H202 • 0 2 + 2H++2e" (3) 

The working mechanism of the glucose sensor is based on the reduction/oxidation 

reactions, as shown in Figure 7-2. Due to the redox property of PEDOT-PSS and 

oxidation of hydrogen peroxide, the reaction between PEDOT-PSS and hydrogen 

peroxide can take place [214] and be detected electrically, as shown by the OFET-based 

glucose sensor reported in this work. 

PEDOT-PSS GOx 

GOx„ 

GOx, red 

Glucose 

p -D -glucose 

Gluconolactone 

Figure 7-2 The working mechanism of the PEDOT-PSS based glucose sensor 
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A Keithley probe station was used to characterize the electrical behavior of the 

fabricated OFET-based glucose sensors. Figure 7-3 shows the OFET's drain current 

versus gate voltage characteristic (ID-VG), measured at a drain voltage (VD) of-1.5 V, 

with VG swept between +10 V and -30 V, while being exposed to different 

concentrations of glucose solution. It can be noted that for the given conditions, the drain 

current increases when the device is exposed to higher concentrations of glucose solution. 

This is attributed to the increase in the charge carrier concentration occurring in the 

OFET's channel region, based on the concept schematically described by the diagram in 

Figure 7-2. Moreover, it can be observed that at a given glucose concentration, a 

negative gate voltage enhances the channel conduction while a positive gate voltage 

reduces it. This is consistent with the behavior expected for PEDOT-PSS based p-type 

OFETs. 
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Figure7-3 The drain current - gate voltage characteristic (ID -VG) of the OFET-based 
glucose sensor when exposed to 0 mg/ml (normal device), 1 mg/ml, and 3 mg/ml of 
glucose concentration solution. 
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The output characteristic (drain current versus drain voltage) of the developed 

OFET-based glucose sensor is shown in Figure 7-4. The results confirm that the device 

behaves as a p-type field effect transistor. When a positive bias is applied to the gate 

electrode, the electrons produced from the reaction between GOx and glucose are 

expected to move to the channel region (PEDOT-PSS). Cations (H+) produced during the 

reaction can easily transfer to the channel region [215] causing electrochemical dedoping 

(reduction) of PEDOT+ to the less conducting PEDOT0 (neutral) state [216], as shown by 

Equation 4. 

PEDOT+-PSS~ + H+ + e" <-• PEDOT0 + FT" - PSS" (4) 

The decrease in charge density is also accompanied by the reduction of hole 

mobility due to the presence of an increased number of ions in PEDOT-PSS [217]. 

Therefore, the decrease in conductivity of PEDOT-PSS in the channel region, due to 

electrochemical dedoping and reduction of hole mobility, can be the main cause for the 

decrease in drain current in the presence of glucose under positive gate bias, as shown in 

Figure 7-4. 

When negative bias is applied to the gate electrode, holes accumulate in the 

channel region, as in the case of p-type field effect transistors. As mentioned above, the 

density of electrons increases when the device is exposed to higher concentrations of 

glucose, according to Figure 7-2 and Equations 1, 2, and 3. Due to the negative bias on 

the gate electrode, electrons produced during the reaction between GOx and glucose will 

be pushed away from the channel region, thereby reducing the chances of reduction of 

PEDOT-PSS [216]. However, hydrogen peroxide, produced during the reaction 

according to Equation 2, has an impact on the device performance due to its strong 
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oxidation property. As a consequence, interaction between the hydrogen peroxide and 

PEDOT-PSS is directly possible by the reduction and oxidation reactions. Therefore, 

positively charged PEDOT-PSS will be oxidized in the presence of hydrogen peroxide 

and will have higher stability with higher concentration of free charge carriers [218]. This 

results in a high conductivity for PEDOT-PSS and a higher drain current in response to 

the increasing concentration of glucose solution under negative gate bias, as shown in 

Figure 7-4. 
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Figure 7-4 The output characteristic (ID-VD) of the OFET-based glucose sensor for 
lmg/ml, and 3mg/ml of glucose concentration solution. Insert: ID-VD of the device in the 
absence of glucose solution. 

Figure 7-5 shows the change in drain current versus time when the glucose sensor 

device is exposed to different concentration of glucose solution (1 mg/ml, 2 mg/ml and 3 
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mg/ml). The potential on the drain and gate electrodes was set at -1.5 V and 0 V, 

respectively. In Figure 7-5, it is shown that after a 10-20 seconds response time, the 

output current of the sensor reached a stable state and exhibited a relatively steady level 

during the exposure of glucose solution on the device. During the 10-20 seconds, the 

response curve showed two different linear slopes and it was also observed that the first 

slope is bigger than second one. This phenomenon occurs because when the exact amount 

of glucose solution was dropped on the device surface initially, there was a bigger slope 

due to the larger amount of glucose in the solution. With the glucose reacting with GOx 

and polymer, a lesser amount of glucose was left in the solution. After 10-20 seconds, the 

glucose quantity became constant and the response current also reached a stable state. 

From Figure 7-5, it is also observed that the measured drain current reached steady state 

more rapidly at higher concentrations of glucose. Moreover, the steady state value of the 

drain current is higher for larger values of glucose concentration. With the assumption 

that the enzyme was uniformly distributed throughout the film, the reaction is expected to 

take place faster on the surface of the film at higher concentrations of glucose solution, as 

compared to lower values [219]. When glucose solutions are absorbed away from the 

surface of the sensor device, the response current gradually decreased to zero. The results 

in Figure 7-5 also show that the device response is repeatable over time. 
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Figure 7-5 Drain current versus time, at VD=-1 -5 V and VQ=0 V, measured at different 
glucose concentration values. 

Figure 7-6 shows the change in drain current when the glucose sensor was 

exposed to different concentrations of glucose over a period of time. The drain and gate 

potentials were maintained at -1.5 V and 0 V, respectively. When the concentration of 

glucose was changed from 0.2 mg/ml to less than 0.2 mg/ml (by adding DI water), the 

current decreased. Then, when the concentration of glucose was changed from less than 

0.2 mg/ml to more than 0.2 mg/ml (by adding 2 mg/ml glucose), a sharp increase in the 

measured current was observed. From the results in Figures 7-5 and 7-6, it is observed 

that for the developed PEDOT-PSS OFET-based biosensor, a relatively rapid response of 

10-20 seconds was detected at each glucose concentration value. Similarly with Figure 7-
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5, during the first 10-20 seconds, the response curve showed two different slopes. The 

reason is also the same as the description for Figure 7-5. 
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Figure 7-6 Drain current versus time, at VD=-1.5 V and VQ=0 V, measured at different 
glucose concentration values, illustrating the effect of change in glucose concentration 
from 0.2mg/ml to 2mg/ml by adding DI water and subsequently adding 2mg/ml glucose 
solution. 

The relationship between the sensor response current (i.e. drain current) and 

glucose concentration is shown in Figure 7-7 when the gate and drain potentials are set at 

0 V and -1.5 V, respectively. It can be clearly observed that the drain current increases 

due to the increase in glucose concentration. The sensitivity of the developed OFET-

based glucose sensor was measured to be 0.3 uA per 1 mg/ml of glucose concentration. 

The observed rise in drain current due to the increase in glucose concentration is 

attributed to the redox property of PEDOT-PSS. The reduction-oxidation can occur 

between hydrogen peroxide and the PEDOT-PSS film in the OFET channel region. 
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Therefore, the more hydrogen peroxide that is produced, the more PEDOT-PSS gets 

oxidized, resulting in higher conductivity and increase in drain current. 
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Figure 7-7 Drain current versus glucose concentration, at VD = -1 -5 V and VG=0 V. The 
solid line is the linear fit of the displayed data points. 

Since we know that GOx catalyses the reaction of glucose to produce hydrogen 

peroxide and gluconic acid and that the latter changes the pH of the solution, the 

modulation in ID was measured in standard buffer solutions with pH in the range from 4 

to 10, as shown in Figure 7-8. It is observed that with increasing pH, a decrease in the 

current occurred. This observation indicates that the device based on PEDOT-PSS OFET 

can be used as a sensor over a wide range of pH environments. But, the value change is 

not noticeable as compared with the response current under glucose sensing. Then it has 

been proven that the response of the OFET to glucose is not identically depending on the 

VD=-1.5V 

y = 0.3209x+0,0242 

i ' i i i i i i i i i i i i i 
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production of hydrogen peroxide, which adjusted the pH environment of polymer/GOx. 

The main factor affecting the current response to the glucose is the redox property of the 

PEDOT-PSS and the reduction-oxidation between the polymer material and hydrogen 

peroxide. 
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Figure 7-8 Drain current ID of the OFET based on PEDOT-PSS as a function of PH. The 
gate voltage VG is set to 0 V and the drain voltage VD is set to 1.5V. 

7.4 Summary 

As reported here, PEDOT-PSS conductive polymer-based OFET has been 

successfully developed and demonstrated as glucose sensor. A simple spin-coating 

technique has been used to immobilize GOx enzyme on PEDOT-PSS polymer film to 

form the channel region of the device. A linear relationship between the drain current 
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response and glucose concentration (0.2 mg/ml to 3 mg/ml) has been determined. The 

reported OFET-based glucose sensor has displayed good performance detecting glucose 

in the concentration range of 0.2 mg/ml to 3 mg/ml. This range covers the human body 

blood glucose level of 0.7 mg/ml to 1.5 mg/ml. The sensitivity of the developed OFET-

based glucose sensor has been measured to be 0.3 uA/(mg/ml). The modulation of drain 

current measurement in standard buffer solutions with pH in the range from 4 to 10 has 

proven that the response of the OFET device to glucose is not identically dependent on 

the pH environment change due to the production of hydrogen peroxide, but is dependent 

on the reduction-oxidation between PEDOT-PSS and hydrogen peroxide. 



CHAPTER EIGHT 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

In this dissertation, organic electronic devices based on PEDOT-PSS as the active 

layer have been fabricated and analyzed. Fundamental applications that are useful, such 

as soil moisture monitoring sensors, and glucose sensors were investigated and presented. 

For OFETs, the device mobility was measured and discussed based on the developed 

model. 

2-D numerical simulation based on Taurus simulator was set up in order to get 

more adequate understanding of device operation and theory. The Taurus simulator is 

built on the fundamentals of the self-consistently solved Poisson's equation and current 

continuity equations. The simulations were implemented by taking into consideration the 

important parameters of the devices, resulting in the simulation results being in good 

agreement with the experimental data. 

According to the theoretical and experimental results analysis on the key issues, 

corresponding improvements have been made to the device performance. First, the 

commercial poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) was 

studied. The modified PEDOT-PSS was utilized as the active layer of the organic 

resistors and OFETs, giving the promising conductivity. After the modification of 

95 
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polymer material, the device characteristics were improved. Secondly, an improvement 

of the semiconductor-insulator interface has been developed, which was done by a simple 

annealing of the Si02 surface prior to the deposition of the PEDOT-PSS layer. Thirdly, 

the device degradation was investigated as the polymer material shows sensitivity to the 

environment. Protective coating, such as PVP and cellulose acetate were used to protect 

the devices from degradation. Finally, polymer based resistors and OFETs using PEDOT-

PSS were investigated and successfully developed for soil moisture and glucose sensing, 

respectively. The developed moisture sensor showed promising performance in terms of 

response time, sensitivity and repeatability, and can be used to test the gravimetric water 

content in the soil samples. The resistance of the sensor device was changed from 2.5 M 

to 4.0 M ohm when exposed to soil samples with 15 - 35 % change in gravimetric water 

content. It has been demonstrated that moisture sensors, based on PEDOT-PSS, are 

promising for geological and geotechnical applications. The glucose sensor based on 

PEDOT-PSS was also investigated and developed. It shows reasonable characteristics for 

detecting glucose in the concentration range of 0.2 mg/ml to 3 mg/ml which covers the 

human body blood glucose level of 0.7 mg/ml to 1.5 mg/ml. The sensitivity of the 

developed OFET-based glucose sensor has been tested to be 0.3 uA/(mg/ml). Because of 

low cost and better performance, this approach for an OFET based glucose sensor can 

provide an economical method for the development of organic bioelectronic devices. 

The observed characteristics of the devices and calculated results have proved that 

PEDOT-PSS has a promising conductivity which enables this polymer to be used in 

many significant organic electronic devices. 
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8.2 Future Work 

8.2.1 Glucose Sensors Based on 

Layer-by-Layer Self-Assembly 

The electronic sensor devices based on PEDOT-PSS were developed successfully. 

However, the main issue of polymer sensors is sensitivity of the deposited polymer, 

which is determined by the thickness of the sensing film, sensing area and surface 

roughness. Thus, the deposition of the sensing film on the devices during the fabrication 

process is important for controlling the device characteristics. Layer-by-Layer (LbL) self-

assembly is a unique technique for the deposition of composite and polymeric films with 

controlled thickness in the nanometer range [220]. The attractive feature of this approach 

is its ability to assemble complicated structures from components, and integrate them into 

self-assembling constructions for wide range of applications [221]. The LbL process 

involves alternating immersion of a substrate into aqueous solutions of oppositely 

charged polycation and polyanion polymers which are the basic component units used to 

form a multilayer. Structural stability is another promising feature of the LBL self 

assembly system. One important additional feature of self-assembly is hierarchy, where 

primary building blocks associate into more complex secondary structures that are 

integrated into the next size-level in the hierarchy. Due to these attractive characteristics, 

LbL self-assembly is investigated for deposition of an ultrathin PEDOT-PSS film for 

sensor applications. 

An LbL application is the realization of ultra-thin films of conductive polymers, 

as nanoengineered active regions in polymer-based devices. The schematic cross-section 

of polymer sensors fabricated by LbL self-assembly is shown in Figure 8-1, where n 

bilayers of PEDOT-(PSS/PAH)n (n is dependent on the active layer thickness) are 
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deposited on the precursor layer (PSS/PAH)n. The structure is fabricated on n+-Silicon 

wafer with high quality thermal oxide. The structure of such a sensor devices is 

illustrated in Figure 8-1. The same layer used for the sensing part would be the active 

film for p-type OFETs. 

(PEDOT-PSS/PAH)n 

Figure 8-1 A schematic cross section of Layer-by-Layer self-assembly PEDOT-PSS 
sensor 

Figure 8-2 shows the relationship between the response current of the sensor 

using the LbL self-assembly technique and glucose concentration when the gate and drain 

potentials are set at 0 V and -1.5 V, respectively. It can be clearly observed that the drain 

current increases due to an increase in glucose concentration. The sensitivity of the 

developed OFET-based glucose sensor was measured to be 1.05 uA per lmg/ml of 

glucose concentration which shows a higher sensitivity than the glucose sensor fabricated 

by the spin-coating technique, which achieves 0.3 DA per lmg/ml of glucose 

concentration. Therefore, the LbL self-assembly technique opens an alternative way for 

the fabrication of a wide range of polymer sensors due to low cost and light weight. 
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Figure 8-2 Drain current for the glucose sensor fabricated by the LBL self-assembly 
technique versus glucose concentration, at VD=-1.5 V and VG=0 V. The solid line is the 
linear fit of the displayed data points 

8.2.2 Heterostructure Organic 
Semiconductor Devices 

Heterostructures are the main building parts of many of the most advanced 

organic semiconductor devices presently being developed and produced. They are 

essential elements for the highest-performance in high-speed and high-frequency digital 

and analog devices [222]. The advantage of heterostructures is that they offer precise 

control over the states and motions of charge carriers in organic semiconductors. 

Heterostructures can improve the performance of organic semiconductor devices, such as 

OFETs, because they permit the device designer to locally modify the energy-band 

structure of the organic material and thereby control the motion of the charge carriers 
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[223]. Polymer based heterostructure is studied in conventional metal-oxide-

semiconductor field effect transistors to increase charge carrier mobility in the transistors 

[223]. High mobility results in the high speed of the transistors. Currently available 

polymer charge carrier mobility is at least 4 orders of magnitude lower than that for 

silicon. 

Figure 8-3 shows the schematic diagram of the heterostructure device. The 

heavily n-doped silicon substrate acts as the gate electrode. The gate dielectric insulator is 

1000 A thick thermal silicon dioxide. A layer of 500 A Au/30 A Ti is sputter deposited 

on the SiC>2 as the source/drain electrodes, and patterned by a lift-off process. Between 

the source and drain electrode there is a 50nm channel. The P-type semiconductor 

polymer, PPy, PEDOT-PSS, and P3HT can be chosen to be used as the active material 

for heterostructure devices with alternative film thicknesses. 

Figure 8-3 A schematic cross section of heterostructure sensor devices 

Among a number of conducting polymers, polypyrrole (PPy) offers reasonably 

high conductivity and has fairly good environmental stability. It has been decided to 

concentrate on PPy for the humidity sensor [224] based on past literature reviews which 

have suggested it would be the easiest to fabricate and have high sensitivity to humidity. 
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There are three types of conductivities affected by doping conjugated polymers: 

intrachain, intermolecular, and ionic conductivities [225]. This observation makes 

response prediction even more difficult, as the dopant can have more than one effect on 

the conductivity of the conjugated polymer. PEDOT-PSS is highly stable in its doped 

state because of low band gap (ca. 1.6-1.7 V) and reaches conductivities as high as 200 S 

cm"1. "Due to its interesting electronic properties, it has been considered for applications 

as antistatic coatings, hole-injecting layers for organic light-emitting diodes, sensors, 

photodiodes, and electrochromic windows" [226]. The PEDOT-PS has a high 

electrochemical stability, as can be seen by the reversibility with successive potential 

cycling of the polymer film in monomer free electrolyte solution. P3HT has self 

organizing properties to form a microcrystalline structure in films. Self-organization in 

P3HT results in a lamellar structure with two-dimensional conjugated sheets formed by 

interchain stacking [227]. The lamellae can adopt by two different orientations: "parallel 

and perpendicular to the substrate, the mobilities of which differ by more than a factor of 

100. In samples with high regioregularity (96%) and low molecular weight, the 

preferential orientation of ordered domains is with the (100)-axis normal to the film and 

the (OlO)-axis in the plane of the film [228]. Another property of P3HT is that it can be 

dissolved in a variety of solvents, such as chloroform, chlorobenzene, tetrahydrofuran, p-

xylene and toluene, etc. Previous research has noted that the field-effect mobility can 

vary significantly with different solvents [229]. Low boiling point and rapid evaporation 

time for crystallization during spin coating results in lower field effect mobility. The 

deposition methods for P3HT are drop casting, contact printing, Langmuir-Blodgett, dip 

coating, spin coating, and inkjet printing. 
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With the fabrication of a polymer based heterostructure FET, the modeling and 

simulation of devices by Taurus can be developed to modify the reasonable results. In the 

simulation, the contact resistance and field-effect mobility effect can be included because 

these two effects are important for device performance. 

8.3 General Considerations 

The applications of organic electronics present several advantages, such as low 

cost for the materials and simple processing, like spin-coating. In combination with 

sensor elements built the same way out of similar substances, this technology will lead to 

new devices with unique features. The use of flexible substrates for organic materials will 

enable entrance to new fields of applications. The techniques for device fabrication are 

low cost and easy to access. Together, this will reduce development and fabrication costs 

and new markets will be accessed with low cost organic electronic sensor devices. 

But, some disadvantages are observed due to their organic nature as well. For 

example, the long term stability of devices must be improved to make devices more 

attractive. Oxygen and moisture are the main reasons for organic electronic device 

degradation. Thus, packaging should be considered and given much attention in order to 

overcome these obstacles on the way introducing the organic electronic devices into the 

market place. 

Until now, organic electronic devices have not had a crucial role in many sensor 

applications. Invariably, electronically active organic materials are successfully used in 

displays. Very likely, the field of organic electronics will further grow and find many 

applications. 
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Taurus {device} 

DefineDevice ( 

name=devicemesh 

minX=0.0maxX=15 

minY=-50nm maxY=200nm 

region(material=silicon, name=channel 1), 

region(material=aluminum,name=source 1), 

region(material=aluminum,name=drain 1), 

region(material=oxide, name=oxide 1) 

region(material=polysilicon, name=polysiliconl) 

x=0.0 dx=500nm 

x=15 dx=500nm 

y=-50nm dy=lnm 

y=-5nm dy=2.5nm 

y=0 dy=5nm 

y=200nm dy=10nm 

) 

Defineboundary( 

region=polysilicon 1, 

polygon2d( 

point(x=0,y=200nm), point(x-15,y=200nm), point(x=15,y=100nm), 

point(x=0,y= 1 OOnm))) 

Defineboundary( 



region=oxidel, 

polygon2d( 

point(x=0, y=Onm), point(x=15,y=0nm), point(x=15,y=100nm), point(x=0,y=100nm))) 

DefmeBoundary( 

region=sourcel, 

polygon2d( 

point(x=0,y=-50nm), point(x=5,y=-50nm),point(x=5,y=0nm),point(x=0,y=0rim))) 

DefineBoundary( 

region=drainl, 

polygon2d( 

point(x=l 0,y=-50nm), point(x=l 5,y=-50nm),point(x=l 5,y=0nm),point(x=l 0,y=0nm))) 

DefineBoundary( 

region=channel 1, 

polygon2d( 

point(x=5,y=0nm), point(x=5,y=-50nm),point(x=:l 0,y=-50nm),point(x=l 0,y=0nm))) 

Regrid ( 

MinX=0, MaxX=15, MinY=-50nm, MaxY=200nm, 

MaxDeltaY=10nm, 

Criterion (Name=AllInterfaces)) 

save (meshfile=FETl.tdf) 

# Flat contact 

Definecontact (name=source, X (min=0, max=5.05) Y(min=-50nm, max=0nm)) 

Definecontact (name=drain, X (min=10 max=15) Y(min=-50nm, max=0nm)) 
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Definecontact (name=gate, X (min=0 max=15) Y(min=199nm, max=200nm)) 

contact(name=gate, workfunction=5.0) 

contact(name=source, workfunction=5.1) 

contact(name=drain, workfunction^S. 1) 

# Doping 

profile (name=ptype, region=channell, uniform(value=3el7)) 

profile (name=ntype, region=polysilicon 1, uniform(value=2el9)) 

Regrid (region=channell, 

MaxDeltaY=2nm) 

save (meshfile=FET2.tdf) 

#Device characteristics 

Taurus {device} 

DefineDevice(Name=tfit, meshfile=FET2.tdf, areafactor=500) 

# Define aluminum properties 

Physics( 

Aluminum( 

global (workfunction=5.1))) 

# Define PEDOT-PSS properties 

Physics(silicon(holecontinuity(mobility(constant=true,mup0=0.0016)))) 

Physics(Silicon(global(global(conductionDensityOfStates(AtRoomTemperature= 1 e21), 

ValenceDensityOfStates( AtRoomTemperature= 1 e21))))) 

Physics(Silicon(Global 

(Permittivity=3.5, ElectronAffinity=3.6, Bandgap (Eg300=1.6)))) 
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# Set equilibrium bias on contacts 

SetBias (value=0.0) {Contact (name=source, type=voltage)} 

SetBias (value=0.0) {Contact (name=gate, type=voltage)} 

SetBias (value=0.0) {Contact (name=drain, type=voltage)} 

# Specify zero-carrier solution 

Symbolic (carriers=0) 

numerics (iterations=100, relativeerror=5e-3) 

# Initialization that only solve poisson's equation 

# Do Solve 

Solve {couple {Poissons}} 

Symbolic ( 

Couple (iterations=100 linearSolver=directrelativeError=5e-3) 

{Poissons holeContinuity} 

) 

Solve {} 

Save (meshfile=initial.tdf add(valenceband conductionband bandgap electronPotential 

holePotential)) 

# Specify one-carrier solution with holes 

Symbolic (carriers=l,holes) 

ramp( 

voltage(electrode=gate,endvalue=-3 0,nsteps=3 0) 

) 

Ramp (logfile=Id21E.data 



Voltage (electrode=drain, startvalue=0,endValue=-20, nSteps=20) 

) 

Save (meshfile=gate21.tdf add(valenceband conductionband bandgap)) 

Ramp (logfile=Idno.data 

Voltage (electrode=drain, endValue=0, nSteps=10) 

) 

ramp( 

voltage(electrode=gate,endvalue=-20,nsteps=20) 

) 

Ramp (logfile=Id22E.data 

Voltage (electrode=drain, startvalue=0,endValue=-20, nSteps=20) 

) 

Save (meshfile=gate22.tdf add(valenceband conductionband bandgap)) 

Ramp (logfile=Idno.data 

Voltage (electrode=drain, endValue=0, nSteps=10) 

) 

ramp( 

voltage(electrode=:gate,endvalue=-10,nsteps= 10) 

) 

Ramp (logfile=Id23E.data 

Voltage (electrode=drain, startvalue=0,endValue=-20, nSteps=20) 

) 

Save (mesbiile=gate23.tdf add(valenceband conductionband bandgap)) 



Ramp (logfile=Idno.data 

Voltage (electrode=drain, endValue=0, nSteps=10) 

) 

ramp( 

voltage(electrode=gate,endvalue=0,nsteps= 10) 

) 

Ramp (logfile=Id24E.data 

Voltage (electrode=drain, startvalue=0,endValue=-20, nSteps=20) 

) 

Save (meshfile=gate24.tdf add(valenceband conductionband bandgap)) 

Ramp (logfile=Idno.data 

Voltage (electrode=drain, endValue=0, nSteps=10) 

) 

ramp( 

voltage(electrode=gate,endvalue=10,nsteps=5) 

) 

Ramp (logfile=Id25E.data 

Voltage (electrode=drain, startvalue=0,endValue=-20, nSteps=20) 

) 

#solve {} 

Save (meshfile=gate25.tdf add(valenceband conductionband bandgap)) 

Ramp (logfile=Idno.data 

Voltage (electrode=drain, endValue=0, nSteps=10) 



) 

ramp( 

voltage(electrode=gate,endvalue=:20,nsteps= 10) 

) 

Ramp (logfile=Id26E.data 

Voltage (electrode=drain, startvalue=0,endValue=-20, nSteps=20) 

) 

#solve {} 

Save (meshfile=gate26.tdf add(valenceband conductionband bandgap)) 
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