1,217 research outputs found

    The influence of winter time boreal forest tree transmissivity on tree emission and passive microwave snow observations

    Get PDF
    Forest cover significantly attenuates natural upwelling ground microwave emission from seasonal terrestrial snow. This presents a major challenge for the accurate retrieval of snow from airborne or spaceborne passive microwave (PM) observations. Forest transmissivity is a key parameter describing tree emission because not only does it influence the proportion of sub-canopy upwelling microwave emission penetrating through the forest canopy, it also controls the forest thermal emission. Hence, it is a very important parameter for correcting the influence of forests on spaceborne or airborne observations of the Earth’s land surface. Under sub-zero temperatures, vegetation water content can be frozen influencing the microwave transmissivity of trees. Yet this phenomenon has not been verified through experimentation leaving significant uncertainty in tree emission modelling and spaceborne microwave observations. Therefore, a season-long experiment was designed to study this phenomenon. Ground-based radiometer observations of tree emission, spaceborne observations of forest emission, and model simulations of canopy emission were conducted during this experiment. Based on this experiment, the influence of physical temperature on tree transmissivity was verified, and a model developed to quantitatively describe this temperature-transmissivity relationship. An evaluation of this temperature-transmissivity relationship was conducted showing that both ground-based and spaceborne observations of tree emission are significantly influenced by this phenomenon. Furthermore, passive microwave spaceborne snow retrievals in forested regions are influenced by this phenomenon. Finally, an approach to reduce the influence of the temperature-transmissivity relationship on passive microwave spaceborne snow retrievals is demonstrated

    Derivation and evaluation of a new extinction coefficient for use with the n-HUT snow emission model

    Get PDF
    In this study, snow slab data collected from the Arctic Snow Microstructure Experiment were used in conjunction with a six-directional flux coefficient model to calculate individual slab absorption and scattering coefficients. These coefficients formed the basis for a new semiempirical extinction coefficient model, using both frequency and optical diameter as input parameters, along with the complex dielectric constant of snow. Radiometric observations, at 18.7, 21.0, and 36.5 GHz at both horizontal polarization (H-Pol) and vertical polarization (V-Pol), and snowpit data collected as part of the Sodankylä Radiometer Experiment were used to compare and contrast the simulated brightness temperatures produced by the multi-layer Helsinki University of Technology snow emission model, utilizing both the original empirical model and the new semiempirical extinction coefficient model described here. The results show that the V-Pol RMSE and bias values decreased when using the semiempirical extinction coefficient; however, the H-Pol RMSE and bias values increased on two of the lower microwave bands tested. The unbiased RMSE was shown to decrease across all frequencies and polarizations when using the semiempirical extinction coefficient

    Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modeling

    Get PDF
    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size and temperature) were used as inputs to the multi-layer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical SSA to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%

    Effect of snow microstructure and subnivean water bodies on microwave radiometry of seasonal snow

    Get PDF
    Remote sensing using microwave radiometry is an acknowledged method for monitoring various environmental processes in the cryosphere, atmosphere, soil, vegetation and oceans. Several decades long time series of spaceborne passive microwave observations can be used to detect trends relating to climate change, while present measurements provide information on the current state of the environment. Unlike optical wavelengths, microwaves are mostly insensitive to atmospheric and lighting conditions and are therefore suitable for monitoring seasonal snow in the Arctic. One of the major challenges in the utilization of spaceborne passive microwave observations for snow measurements is the poor spatial resolution of instruments. The interpretation of measurements over heterogeneous areas requires sophisticated microwave emission models relating the measured parameters to physical properties of snow, vegetation and the subnivean layer. Especially the high contrast in the electrical properties of soil and liquid water introduces inaccuracies in the retrieved parameters close to coastlines, lakes and wetlands, if the subnivean water bodies are not accounted for in the algorithm. The first focus point of this thesis is the modelling of brightness temperature of ice- and snow-covered water bodies and their differences from snow-covered forested and open land areas. Methods for modelling the microwave signatures of water bodies and for using that information in the retrieval of snow parameters from passive microwave measurements are presented in this thesis. The second focus point is the effect of snow microstructure on its microwave signature. Even small changes in the size of scattering particles, snow grains, modify the measured brightness temperature notably. The coupling of different modelled and measured snow microstructural parameters with a microwave snow emission model and the application of those parameters in the retrieval of snow parameters from remote sensing data are studied

    Snow Properties Retrieval Using Passive Microwave Observations

    Get PDF
    Seasonal snow cover, the second-largest component of the cryosphere, is crucial in controlling the climate system, through its important role in modifying Earth’s albedo. The temporal variability of snow extent and its physical properties in the seasonal cycle also make up a significant element to the cryospheric energy balance. Thus, seasonal snowcover should be monitored not only for its climatological impacts but also for its rolein the surface-water supply, ground-water recharge, and its insolation properties at local scales. Snowpack physical properties strongly influence the emissions from the substratum, making feasible snow property retrieval by means of the surface brightness temperature observed by passive microwave sensors. Depending on the observing spatial resolution, the time series records of daily snow coverage and a snowpacks most-critical properties such as the snow depth and snow water equivalent (SWE) could be helpful in applications ranging from modeling snow variations in a small catchment to global climatologic studies. However, the challenge of including spaceborne snow water equivalent (SWE) products in operational hydrological and hydroclimate modeling applications is very demanding with limited uptake by these systems. Various causes have been attributed to this lack of up-take but most stem from insufficient SWE accuracy. The root causes of this challenge includes the coarse spatial resolution of passive microwave (PM) observations that observe highly aggregated snowpack properties at the spaceborne scale, and inadequacies during the retrieval process that are caused by uncertainties with the forward emission modeling of snow and challenges to find robust parameterizations of the models. While the spatial resolution problem is largely in the realm of engineering design and constrained by physical restrictions, a better understanding of the whole range of retrieval methodologies can provide the clarity needed to move the thinking forward in this important field. Following a review on snow depth and SWE retrieval methods using passive microwave remote sensing observations, this research employs a forward emission model to simulate snowpacks emission and compare the results to the PM airborne observations. Airborne radiometer observations coordinated with ground-based in-situ snow measurements were acquired in the Canadian high Arctic near Eureka, NT, in April 2011. The observed brightness temperatures (Tb) at 37 GHz from typical moderate density dry snow in mid-latitudes decreases with increasing snow water equivalent (SWE) due to the volume scattering of the ground emissions by the overlying snow. At a certain point, however, as SWE increases, the emission from the snowpack offsets the scattering of the sub-nivean emission. In tundra snow, the Tb slope reversal occurs at shallower snow thicknesses. While it has been postulated that the inflection point in the seasonal time series of observed Tb V 37 GHz of tundra snow is controlled by the formation of a thick wind slab layer, the simulation of this effect has yet to be confirmed. Therefore, the Dense Media Radiative Transfer Theory forMulti Layered (DMRT-ML) snowpack is used to predict the passive microwave response from airborne observations over shallow, dense, slab-layered tundra snow. The DMRT-ML was parameterized with the in-situ snow measurements using a two-layer snowpack and run in two configurations: a depth hoar and a wind slab dominated pack. Snow depth retrieval from passive microwave observations without a-priori information is a highly underdetermined system. An accurate estimate of snow depth necessitates a-priori information of snowpack properties, such as grain size, density, physical temperature and stratigraphy, and, very importantly, a minimization of this a prior information requirement. In previous studies, a Bayesian Algorithm for Snow Water Equivalent (SWE) Estimation (BASE) have been developed, which uses the Monte Carlo Markov Chain (MCMC) method to estimate SWE for taiga and alpine snow from 4-frequency ground-based radiometer Tb. In our study, BASE is used in tundra snow for datasets of 464 footprints inthe Eureka region coupled with airborne passive microwave observations—the same fieldstudy that forward modelling was evaluated. The algorithm searches optimum posterior probability distribution of snow properties using a cost function between physically based emission simulations and Tb observations. A two-layer snowpack based on local snow cover knowledge is assumed to simulate emission using the Dense Media Radiative Transfer-Multi Layered (DMRT-ML) model. Overall, the results of this thesis reinforce the applicability of a physics-based emission model in SWE retrievals. This research highlights the necessity to consider the two-part emission characteristics of a slab-dominated tundra snowpack and suggests performing inversion in a Bayesian framework

    Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations

    Get PDF
    icrowave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observ- ing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsur- face at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under veg- etation canopies. However, the absence of significant spectrum re- served for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities

    An Investigation into the Effects of Variable Lake Ice Properties on Passive and Active Microwave Measurements Over Tundra Lakes Near Inuvik, N.W.T.

    Get PDF
    The accurate estimation of snow water equivalent (SWE) in the Canadian sub-arctic is integral to climate variability studies and water availability forecasts for economic considerations (drinking water, hydroelectric power generation). Common passive microwave (PM) snow water equivalent (SWE) algorithms that utilize the differences in brightness temperature (Tb) at 37 GHz – 19 GHz falter in lake-rich tundra environments because of the inclusion of lakes within PM pixels. The overarching goal of this research was to investigate the use of multiple platforms and methodologies to observe and quantify the effects of lake ice and sub-ice water on passive microwave emission for the purpose of improving snow water equivalent (SWE) retrieval algorithms. Using in situ snow and ice measurements as input, the Helsinki University of Technology (HUT) multi-layer snow emission model was modified to include an ice layer below the snow layer. Emission for 6.9, 19, 37 and 89 GHz were simulated at horizontal and vertical polarizations, and were validated by high resolution airborne passive microwave measurements coincident with in situ sampling sites over two lakes near Inuvik, Northwest Territories (NWT). Overall, the general magnitude of brightness temperatures were estimated by the HUT model for 6.9 and 19 GHz H/V, however the variability was not. Simulations produced at 37 GHz exhibited the best agreement relative to observed temperatures. However, emission at 37 GHz does not interact with the radiometrically cold water, indicating that ice properties controlling microwave emission are not fully captured by the HUT model. Alternatively, active microwave synthetic aperture radar (SAR) measurements can be used to identify ice properties that affect passive microwave emission. Dual polarized X-band SAR backscatter was utilized to identify ice types by the segmentation program MAGIC (MAp Guided Ice Classification). Airborne passive microwave transects were grouped by ice type classes and compared to backscatter measurements. In freshwater, where there were few areas of high bubble concentration at the ice/water interface Tbs exhibited positive correlations with cross-polarized backscatter, corresponding to ice types (from low to high emission/backscatter: clear ice, transition zone between clear and grey ice, grey ice and rafted ice). SWE algorithms were applied to emission within each ice type producing negative or near zero values in areas of low 19 GHz Tbs (clear ice, transition zone), but also produced positive values that were closer to the range of in situ measurements in areas of high 19 GHz Tbs (grey and rafted ice). Therefore, cross-polarized X-band SAR measurements can be used as a priori ice type information for spaceborne PM algorithms, providing information on ice types and ice characteristics (floating, frozen to bed), integral to future tundra-specific SWE retrieval algorithms

    Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado

    Get PDF
    Eight years (2002–2010) of Advanced Microwave Scanning Radiometer–EOS (AMSR-E) snow water equivalent (SWE) retrievals and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) observations are assimilated separately or jointly into the Noah land surface model over a domain in Northern Colorado. A multiscale ensemble Kalman filter (EnKF) is used, supplemented with a rule-based update. The satellite data are either left unscaled or are scaled for anomaly assimilation. The results are validated against in situ observations at 14 high-elevation Snowpack Telemetry (SNOTEL) sites with typically deep snow and at 4 lower-elevation Cooperative Observer Program (COOP) sites. Assimilation of coarse-scale AMSR-E SWE and fine-scale MODIS SCF observations both result in realistic spatial SWE patterns. At COOP sites with shallow snowpacks, AMSR-E SWE and MODIS SCF data assimilation are beneficial separately, and joint SWE and SCF assimilation yields significantly improved root-mean-square error and correlation values for scaled and unscaled data assimilation. In areas of deep snow where the SNOTEL sites are located, however, AMSR-E retrievals are typically biased low and assimilation without prior scaling leads to degraded SWE estimates. Anomaly SWE assimilation could not improve the interannual SWE variations in the assimilation results because the AMSR-E retrievals lack realistic interannual variability in deep snowpacks. SCF assimilation has only a marginal impact at the SNOTEL locations because these sites experience extended periods of near-complete snow cover. Across all sites, SCF assimilation improves the timing of the onset of the snow season but without a net improvement of SWE amounts

    Earth resources, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 541 reports, articles and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore