56 research outputs found

    Simulation of Image Performance Characteristics of the Landsat Data Continuity Mission (LDCM) Thermal Infrared Sensor (TIRS)

    Get PDF
    The next Landsat satellite, which is scheduled for launch in early 2013, will carry two instruments: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). Significant design changes over previous Landsat instruments have been made to these sensors to potentially enhance the quality of Landsat image data. TIRS, which is the focus of this study, is a dual-band instrument that uses a push-broom style architecture to collect data. To help understand the impact of design trades during instrument build, an effort was initiated to model TIRS imagery. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool was used to produce synthetic “on-orbit” TIRS data with detailed radiometric, geometric, and digital image characteristics. This work presents several studies that used DIRSIG simulated TIRS data to test the impact of engineering performance data on image quality in an effort to determine if the image data meet specifications or, in the event that they do not, to determine if the resulting image data are still acceptable

    Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity

    Get PDF
    The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA) in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS) show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm) have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer thermal observations. Given its unique characteristics, the TIRS shows much potential for providing useful, detailed and accurate volcanic observations in the future

    Landsat Program

    Get PDF
    Landsat initiated the revolution in moderate resolution Earth remote sensing in the 1970s. With seven successful missions over 40+ years, Landsat has documented - and continues to document - the global Earth land surface and its evolution. The Landsat missions and sensors have evolved along with the technology from a demonstration project in the analog world of visual interpretation to an operational mission in the digital world, with incremental improvements along the way in terms of spectral, spatial, radiometric and geometric performance as well as acquisition strategy, data availability, and products

    Band to Band Calibration and Relative Gain Analysis of Satellite Sensors Using Deep Convective Clouds

    Get PDF
    Two calibration techniques were developed in this research. First, a calibration technique, in which calibration was transferred to cirrus band and coastal aerosol band from well calibrated reflective bands of Landsat 8 using SCIAMACHY Deep Convective Cloud (DCC) spectra. Second, a novel method to derive relative gains using DCCs and improve the image quality of cirrus band scenes was developed. DCCs are very cold, bright clouds located in the tropopause layer. At small sun elevation and sensor viewing angles, they act as near Lambertian solar reflectors. They have very high signal to noise ratio and can easily be detected using simple IR threshold. Thus, DCCs are an ideal calibration target. Cirrus band in Landsat 8 has band center at 1375nm. Due to high water vapor absorption at this wavelength it is difficult to calibrate the cirrus band using other standard vicarious calibration methods. Similarly, the coastal aerosol band has short wavelength (443nm). At this wavelength maximum scattering can be observed in the atmosphere, due to which it is difficult to calibrate this band. Thus DCCs are investigated to calibrate these two channels. DCC spectra measured by the SCIAMACHY hyperspectral sensor were used to transfer calibration. The gain estimates after band to band calibration using DCC for the coastal aerosol band was 0.986 ±0.0031 and that for cirrus band was 0.982±0.0398. The primarily target was to estimate gains with uncertainty of less than 5%. The results are within required precision levels and the primarily goal of the research was successfully accomplished. The non-uniformity in detector response can cause visible streaks in the image. To remove these visible streaks, modified histogram equalization method was used in the second algorithm. A large number of DCC scenes were binned and relative gains were derived. Results were validated qualitatively by visual analysis and quantitatively by the streaking metric. The streaking metric was below 0.2 for most of the detector which was the required goal. Visible streaks were removed by applying DCC derived gains and in most of the cases DCC gains outperforms the default gains

    SPATIO-TEMPORAL ANOMALIES IN SURFACE BRIGHTNESS TEMPERATURE PRECEDING VOLCANO ERUPTIONS DETECTED BY THE LANDSAT-8 THERMAL INFRARED SENSOR (CASE STUDY: KARANGETANG VOLCANO)

    Get PDF
    Indonesia's geological as part of the “ring of fire” includes the consequence that community life could be affected by volcanic activity. The catastrophic incidence of volcanic eruptions in the last ten years has had a disastrous impact on human life. To overcome this problem, it is necessary to conduct research on the strengthening of the early warning system for volcanic eruptions utilising remote sensing technology.  This study analyses spatial and temporal anomalies of surface brightness temperature in the peak area of Karangetang volcano during the 2018-2019 eruption. Karangetang volcano is an active volcano located in North Sulawesi, with a magmatic eruption type that releases lava flow. We analyse the anomalies in the brightness temperature from channel-10 of the Landsat-8 TIRS (Thermal Infrared Scanner) time series during the period in question. The results of the research demonstrate that in the case of Karangetang Volcano the eruptions of 2018-2019 indicate increases in the surface brightness temperature of the crater region. As this volcano has many craters, the method is also very useful to establish in which crater the center of the eruption occurred

    Demonstrating Landsat\u27s new potential to monitor coastal and inland waters

    Get PDF
    The Operational Land Imager (OLI) is a new Landsat sensor being developed by the joint USGS-NASA Landsat Data Continuity Mission (LDCM) that exhibits the potential to be a state-of-the-art instrument for studying inland and coastal waters. With upgrades such as a new Coastal Aerosol band, 12 bit quantization, and improved signal-to-noise, OLI will be spectrally and radiometrically superior to its predecessors. When considering Landsat\u27s already high 30 meter spatial resolution, coupled with the fact that its data is free to the community, the OLI sensor may prove to be more valuable than any other environmental imaging satellite to date. The first part of this research investigates the potential for the next Landsat instrument to be used to determine the major constituents contained in water. An OLI sensor model is designed and its ability to retrieve water constituents from space is compared to existing technologies. To support this effort, two over-water atmospheric compensation methods are developed which will enable OLI data to be used in this constituent retrieval process. The ability to characterize material transport in coastal regions is an ongoing effort in the remote sensing community and is essential to determining the environmental processes taking place in, and ultimately the health of, the water. When moderate resolution thermal data is used in conjunction with high resolution reflective data, such as the 30 meter resolution data from OLI, a three dimensional characterization of the water can be developed. In the second part of this work, a model of the Genesee River plume in Rochester, NY is simulated and the ability to calibrate the model with remotely sensed thermal data is demonstrated

    Future Opportunities and Challenges in Remote Sensing of Drought

    Get PDF
    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and global efforts such as the Famine and Early Warning System (FEWS), National Integrated Drought Information System (NIDIS), and Group on Earth Observations (GEO), as well as the establishment of regional drought centers (e.g., European Drought Observatory) and geospatial visualization and monitoring systems (e.g, NASA SERVIR) have been undertaken to improve drought monitoring and early warning systems throughout the world. The suite of innovative remote sensing tools that have recently emerged will be looked upon to fill important data and knowledge gaps (NIDIS, 2007; NRC, 2007) to address a wide range of drought-related issues including food security, water scarcity, and human health

    Estimating coastal lagoon tidal flooding and repletion with multidate ASTER thermal imagery

    Get PDF
    Coastal lagoons mix inflowing freshwater and tidal marine waters in complex spatial patterns. This project sought to detect and measure temperature and spatial variability of flood tides for a constricted coastal lagoon using multitemporal remote sensing. Advanced Spaceborne Thermal Emission Radiometer (ASTER) thermal infrared data provided estimates of surface temperature for delineation of repletion zones in portions of Chincoteague Bay, Virginia. ASTER high spatial resolution sea-surface temperature imagery in conjunction with in situ observations and tidal predictions helped determine the optimal seasonal data for analyses. The selected time series ASTER satellite data sets were analyzed at different tidal phases and seasons in 2004–2006. Skin surface temperatures of ocean and estuarine waters were differentiated by flood tidal penetration and ebb flows. Spatially variable tidal flood penetration was evaluated using discrete seed-pixel area analysis and time series Principal Components Analysis. Results from these techniques provide spatial extent and variability dynamics of tidal repletion, flushing, and mixing, important factors in eutrophication assessment, water quality and resource monitoring, and application of hydrodynamic modeling for coastal estuary science and management

    An Integrated physics-based approach to demonstrate the potential of the Landsat Data Continuity Mission (LDCM) for monitoring coastal/inland waters

    Get PDF
    Monitoring coastal or inland waters, recognized as case II waters, using the existing Landsat technology is somewhat restricted because of its low Signal-to-Noise ratio (SNR) as well as its relatively poor radiometric resolution. As a primary task, we introduce a novel technique, which integrates the Landsat-7 data as a surrogate for LDCM with a 3D hydrodynamic model to monitor the dynamics of coastal waters near river discharges as well as in a small lake environment. The proposed approach leverages both the thermal and the reflective Landsat-7 imagery to calibrate the model and to retrieve the concentrations of optically active components of the water. To do so, the model is first calibrated by optimizing its thermal outputs with the surface temperature maps derived from the Landsat-7 data. The constituent retrieval is conducted in the second phase where multiple simulated concentration maps are provided to an in-water radiative transfer code (Hydrolight) to generate modeled surface reflectance maps. Prior to any remote sensing task, one has to ensure that a dataset comes from a well-calibrated imaging system. Although the calibration status of Landsat-7 has been regularly monitored over multiple desert sites, it was desired to evaluate its performance over dark waters relative to a well-calibrated instrument designed specifically for water studies. In the light of this, several Landsat- 7 images were cross-calibrated against the Terra-MODIS data over deep, dark waters whose optical properties remain relatively stable. This study is intended to lay the groundwork and provide a reference point for similar studies planned for the new Landsat. In an independent case study, the potential of the new Landsat sensor was examined using an EO-1 dataset and applying a spectral optimization approach over case II waters. The water constituent maps generated from the EO-1 imagery were compared against those derived from Landsat-7 to fully analyze the improvement levels pertaining to the new Landsat\u27s enhanced features in a water constituent retrieval framework

    Estimation of land surface temperature using Landsat satellite data: A case study of Mueang Maha Sarakham District, Maha Sarakham Province, Thailand for the years 2006 and 2015

    Get PDF
    At present, the climate has constantly been changing, especially the increase in global average temperature that results in the risk of severe climatic conditions such as heat wave, drought and flood. The objective of this study is to estimate land surface temperature (LST) by applying Landsat satellite data in Mueang Maha Sarakham District, Maha Sarakham Province, Thailand. The study focuses on investigating the temperature changes for the years 2006 and 2015. The research was conducted by analyzing the satellite data in the thermal infrared band with a geo-informatics package software mutually with mathematical models. The operation results indicated that the average LST was at 26.28°C in 2006 and 27.15°C in 2015. In order to verify the accuracy of the data in this study, the results of the annual satellite data analysis were brought to find out a statistical correlation with the LST data from the Meteorological Station of Thai Meteorological Department (TMD). The results indicated that there was a correlation of the data at a high level in 2006 and 2015. The results of this study indicated that the satellite data analysis method is reliable and can be used to analyze, track, and verify data to predict surface temperatures effectively
    • …
    corecore