9,212 research outputs found

    Nonparametric Edge Detection in Speckled Imagery

    Full text link
    We address the issue of edge detection in Synthetic Aperture Radar imagery. In particular, we propose nonparametric methods for edge detection, and numerically compare them to an alternative method that has been recently proposed in the literature. Our results show that some of the proposed methods display superior results and are computationally simpler than the existing method. An application to real (not simulated) data is presented and discussed.Comment: Accepted for publication in Mathematics and Computers in Simulatio

    Change detection in SAR time-series based on the coefficient of variation

    Full text link
    This paper discusses change detection in SAR time-series. Firstly, several statistical properties of the coefficient of variation highlight its pertinence for change detection. Then several criteria are proposed. The coefficient of variation is suggested to detect any kind of change. Then other criteria based on ratios of coefficients of variations are proposed to detect long events such as construction test sites, or point-event such as vehicles. These detection methods are evaluated first on theoretical statistical simulations to determine the scenarios where they can deliver the best results. Then detection performance is assessed on real data for different types of scenes and sensors (Sentinel-1, UAVSAR). In particular, a quantitative evaluation is performed with a comparison of our solutions with state-of-the-art methods

    A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In this paper, a full-resolution phase quality estimator, i.e., the temporal phase coherence (TPC), is proposed for DInSAR pixel selection. The method is able to work with both distributed scatterers (DSs) and permanent scatterers (PSs). The influence of different neighboring window sizes and types of interferograms combinations [both the single-master (SM) and the multi-master (MM)] on TPC has been studied. The relationship between TPC and phase standard deviation (STD) of the selected pixels has also been derived. Together with the classical coherence and amplitude dispersion methods, the TPC pixel selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona Airport. Results show the feasibility and effectiveness of TPC pixel selection algorithm. Besides obvious improvements in the number of selected pixels, the new method shows some other advantages comparing with the other classical two. The proposed pixel selection algorithm, which presents an affordable computational cost, is easy to be implemented and incorporated into any advanced DInSAR processing chain for high-quality pixels' identification.Peer ReviewedPostprint (author's final draft

    An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    Get PDF
    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described

    Tropospheric phase delay in interferometric synthetic aperture radar estimated from meteorological model and multispectral imagery

    Get PDF
    ENVISAT Medium Resolution Imaging Spectrometer Instrument (MERIS) multispectral data and the mesoscale meteorological model MM5 are used to estimate the tropospheric phase delay in synthetic aperture radar (SAR) interferograms. MERIS images acquired simultaneously with ENVISAT Advanced Synthetic Aperture Radar data provide an estimate of the total water vapor content W limited to cloud-free areas based on spectral bands ratio (accuracy 0.17 g cm^(−2) and ground resolution 300 m). Maps of atmospheric delay, 2 km in ground resolution, are simulated from MM5. A priori pertinent cumulus parameterization and planetary boundary layer options of MM5 yield near-equal phase correction efficiency. Atmospheric delay derived from MM5 is merged with available MERIS W product. Estimates of W measured from MERIS and modeled from MM5 are shown to be consistent and unbiased and differ by ~0.2 g cm^(−2) (RMS). We test the approach on data over the Lebanese ranges where active tectonics might contribute to a measurable SAR signal that is obscured by atmospheric effects. Local low-amplitude (1 rad) atmospheric oscillations with a 2.25 km wavelength on the interferograms are recovered from MERIS with an accuracy of 0.44 rad or 0.03 g cm^(−2). MERIS water product overestimates W in the clouds shadow due to mismodeling of multiple scattering and underestimates W on pixels with undetected semitransparent clouds. The proposed atmospheric filter models dynamic atmospheric signal which cannot be recovered by previous filtering techniques which are based on a static atmospheric correction. Analysis of filter efficiency with spatial wavelength shows that ~43% of the atmospheric signal is removed at all wavelengths

    Optimal sampling and quantization of synthetic aperture radar signals

    Get PDF
    Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data

    Turbo-FLASH based arterial spin labeled perfusion MRI at 7 T.

    Get PDF
    Motivations of arterial spin labeling (ASL) at ultrahigh magnetic fields include prolonged blood T1 and greater signal-to-noise ratio (SNR). However, increased B0 and B1 inhomogeneities and increased specific absorption ratio (SAR) challenge practical ASL implementations. In this study, Turbo-FLASH (Fast Low Angle Shot) based pulsed and pseudo-continuous ASL sequences were performed at 7T, by taking advantage of the relatively low SAR and short TE of Turbo-FLASH that minimizes susceptibility artifacts. Consistent with theoretical predictions, the experimental data showed that Turbo-FLASH based ASL yielded approximately 4 times SNR gain at 7T compared to 3T. High quality perfusion images were obtained with an in-plane spatial resolution of 0.85×1.7 mm(2). A further functional MRI study of motor cortex activation precisely located the primary motor cortex to the precentral gyrus, with the same high spatial resolution. Finally, functional connectivity between left and right motor cortices as well as supplemental motor area were demonstrated using resting state perfusion images. Turbo-FLASH based ASL is a promising approach for perfusion imaging at 7T, which could provide novel approaches to high spatiotemporal resolution fMRI and to investigate the functional connectivity of brain networks at ultrahigh field
    • …
    corecore