97,479 research outputs found

    Simulation And Analysis Of Indian Air Traffic

    Get PDF
    Air Traffic Density In India And The World At Large Is Growing Fast . The Airspace And Air Traffic Management Therefore Need Augmentation Of System Capability Without Compromising Safety . This Report Addresses The Judicious Use Of Simulation Facilities To Predict Present And Futuristic Problems. It Is Intended To Help Service Providers Plan And Come Out With Strategies For Air Traffic Management. "State Of The Art Simulation Facilities Are Also Useful In Training A Team Of Reliable, Safe And Efficient Air Traffic Controllers . The Report Presents Results Of Simulation Of Three International Airports : One Existing In Bangalore, The One Planned At Devanahalli And The One In Cochin . The Problems Addressed Are Those Of Delay Encountered At The Three Airports, Controller Workload And Noise Contours Around The Bangalore Aerodrome

    Modelling,simulation, and analysis of HAL Bangalore13; international airport

    Get PDF
    Air traffic density in India and the world at large is growing fast and posing challenging13; problems. The problems encountered can be parameterized as flight delay, workload of air traffic13; controllers and noise levels in and around aerodromes. Prediction and quantification of these13; parameters aid in developing strategies for efficient air traffic management. In this study, the13; method used for quantifying is by simulation and analysis of the selected aerodrome and air13; space. This paper presents the results of simulation of HAL Bangalore International Airport,13; which is used by civil as well as military aircraft. With the test flying of unscheduled military13; aircraft and the increase in the civil air traffic, this airport is hitting the limit of acceptable delay.13; The workload on air traffic controllers is pushed to high during peak times. The noise contour13; prediction, especially for the test flying military aircraft is sounding a wake up call to the13; communities living in the vicinity of the Airport.13

    Air quality impact of a decision support system for reducing pollutant emissions: CARBOTRAF

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses these off-line model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    CARBOTRAF: A decision Support system for reducing pollutant emissions by adaptive traffic management

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses all these model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    Multiple curved descending approaches and the air traffic control problem

    Get PDF
    A terminal area air traffic control simulation was designed to study ways of accommodating increased air traffic density. The concepts that were investigated assumed the availability of the microwave landing system and data link and included: (1) multiple curved descending final approaches; (2) parallel runways certified for independent and simultaneous operation under IFR conditions; (3) closer spacing between successive aircraft; and (4) a distributed management system between the air and ground. Three groups each consisting of three pilots and two air traffic controllers flew a combined total of 350 approaches. Piloted simulators were supplied with computer generated traffic situation displays and flight instruments. The controllers were supplied with a terminal area map and digital status information. Pilots and controllers also reported that the distributed management procedure was somewhat more safe and orderly than the centralized management procedure. Flying precision increased as the amount of turn required to intersect the outer mark decreased. Pilots reported that they preferred the alternative of multiple curved descending approaches with wider spacing between aircraft to closer spacing on single, straight in finals while controllers preferred the latter option. Both pilots and controllers felt that parallel runways are an acceptable way to accommodate increased traffic density safely and expeditiously

    Real-time simulations to evaluate the RPAS integration in shared airspace

    Get PDF
    This paper presents the work done during the first year in the WP-E project ERAINT (Evaluation of the RPAS-ATM Interaction in Non-Segregated Airspace) that intends to evaluate by means of human-in-the-loop real-time simulations the interaction between a Remotely Piloted Aircraft System (RPAS) and the Air Traffic Management (ATM) when a Remotely Piloted Aircraft (RPA) is being operated in shared airspace. This interaction will be evaluated from three different perspectives. First, the separation management, its results are presented in this paper. Secondly, during the next year, the contingency management, also including loss of link situations and, lastly, the capacity impact of such operations in the overall ATM system. The used simulation infrastructure allows to simulate realistic exercises from both the RPAS Pilot-in-Command (PiC) and the Air Traffic Controller (ATCo) perspectives. Moreover, it permits to analyze the actual workload of the ATC and to evaluate several support tools and different RPAS levels of automation from the PiC and ATC sides. The simulation results and the usefulness of the support tools are presented for each selected concept of operations.Peer ReviewedPostprint (published version

    Global Simulation of Aviation Operations

    Get PDF
    The simulation and analysis of global air traffic is limited due to a lack of simulation tools and the difficulty in accessing data sources. This paper provides a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASA's Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to present results on the evolution of global air traffic patterns from a concentration of traffic inside US, Europe and across the Atlantic Ocean to a more diverse traffic pattern across the globe with accelerated growth in Asia, Australia, Africa and South America. The simulation analyzes seasonal variation in the long-haul wind-optimal traffic patterns in six major regions of the world and provides potential time-savings of wind-optimal routes compared with either great circle routes or current flight-plans if available

    Simulation Challenges – Student Perception of Air Traffic Control Simulation

    Get PDF
    In the world of Air Traffic Management, words such as NextGen (NextGeneration) and SESAR (Single European Sky- ATM Research) elicit a sense of excitement or trepidation as to what this means for the world of Air Traffic Management (ATM). A number of collegiate institutions including members of the University Aviation Association (UAA), have degree programs that include air traffic control curriculum and different levels of simulation. Working in partnership with the FAA, these schools developed curriculum that met the basic needs of air traffic control, some going over and above the basic requirements to include high-fidelity simulation. What we know from the technological advancements with NextGen is that controllers will use automation more than ever; some tasks that were done manually before will now be handled by automation, and more decisions that a controller needs to make to separate aircraft will be handled by technology. The findings from the study found there were significant differences in the perceptions of students regarding air traffic control simulation based on the demographic factors investigated in the study, and with students who had prior experience with air traffic control simulators or prior experience with simulation in another training environment. This may be due to the fact that some students were more comfortable with technology and were able to capitalize on the learning experience and not worry about the technical aspects of the simulator. Recommendations from the study resulted in several areas that may need further research

    Laboratory Evaluation of Dynamic Routing of Air Traffic in an En Route Arrival Metering Environment

    Get PDF
    Arrival air traffic operations in the presence of convective weather are subject to uncertainty in aircraft routing and subsequently in flight trajectory predictability. Current management of arrival operations in weather-impacted airspace results in significant flight delay and suspension of arrival metering operations. The Dynamic Routing for Arrivals in Weather (DRAW) concept provides flight route amendment advisories to Traffic Management Coordinators to mitigate the impacts of convective weather on arrival operations. DRAW provides both weather conflict and schedule information for proposed route amendments, allowing air traffic managers to simultaneously evaluate weather avoidance routing and potential schedule and delay impacts. Subject matter experts consisting of retired Traffic Management Coordinators and retired Sector Controllers with arrival metering experience participated in a simulation study of Fort Worth Air Route Traffic Control Center arrival operations. Data were collected for Traffic Management Coordinator and Sector Controller participants over three weeks of simulation activities in October, 2017. Traffic Management Coordinators reported acceptable workload levels, a positive impact on their ability to manage arrival traffic while using DRAW, and initiated weather mitigation reroutes earlier while using DRAW. Sector Controllers also reported acceptable workload levels while using DRAW
    corecore