574 research outputs found

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Vulnerability Assessment and Privacy-preserving Computations in Smart Grid

    Get PDF
    Modern advances in sensor, computing, and communication technologies enable various smart grid applications which highlight the vulnerability that requires novel approaches to the field of cybersecurity. While substantial numbers of technologies have been adopted to protect cyber attacks in smart grid, there lacks a comprehensive review of the implementations, impacts, and solutions of cyber attacks specific to the smart grid.In this dissertation, we are motivated to evaluate the security requirements for the smart grid which include three main properties: confidentiality, integrity, and availability. First, we review the cyber-physical security of the synchrophasor network, which highlights all three aspects of security issues. Taking the synchrophasor network as an example, we give an overview of how to attack a smart grid network. We test three types of attacks and show the impact of each attack consisting of denial-of-service attack, sniffing attack, and false data injection attack.Next, we discuss how to protect against each attack. For protecting availability, we examine possible defense strategies for the associated vulnerabilities.For protecting data integrity, a small-scale prototype of secure synchrophasor network is presented with different cryptosystems. Besides, a deep learning based time-series anomaly detector is proposed to detect injected measurement. Our approach observes both data measurements and network traffic features to jointly learn system states and can detect attacks when state vector estimator fails.For protecting data confidentiality, we propose privacy-preserving algorithms for two important smart grid applications. 1) A distributed privacy-preserving quadratic optimization algorithm to solve Security Constrained Optimal Power Flow (SCOPF) problem. The SCOPF problem is decomposed into small subproblems using the Alternating Direction Method of Multipliers (ADMM) and gradient projection algorithms. 2) We use Paillier cryptosystem to secure the computation of the power system dynamic simulation. The IEEE 3-Machine 9-Bus System is used to implement and demonstrate the proposed scheme. The security and performance analysis of our implementations demonstrate that our algorithms can prevent chosen-ciphertext attacks at a reasonable cost

    Pseudo-Random Bit Generator Using Chaotic Seed for Cryptographic Algorithm in Data Protection of Electric Power Consumption

    Get PDF
    Cryptographic algorithms have played an important role in information security for protecting privacy. The literature provides evidence that many types of chaotic cryptosystems have been proposed. These chaotic systems encode information to obviate its orbital instability and ergodicity. In this work, a pseudo-random cryptographic generator algorithm with a symmetric key, based on chaotic functions, is proposed. Moreover, the algorithm exploits dynamic simplicity and synchronization to generate encryption sub-keys using unpredictable seeds, extracted from a chaotic zone, in order to increase their level of randomness. Also, it is applied to a simulated electrical energy consumption signal and implemented on a prototype, using low hardware resources, to measure physical variables; hence, the unpredictability degree was statistically analyzed using the resulting cryptogram. It is shown that the pseudo-random sequences produced by the cryptographic key generator have acceptable properties with respect to randomness, which are validated in this paper using National Institute of Standards and Technology (NIST) statistical tests. To complement the evaluation of the encrypted data, the Lena image is coded and its metrics are compared with those reported in the literature, yielding some useful results

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    Privacy in the Smart City - Applications, Technologies, Challenges and Solutions

    Get PDF
    Many modern cities strive to integrate information technology into every aspect of city life to create so-called smart cities. Smart cities rely on a large number of application areas and technologies to realize complex interactions between citizens, third parties, and city departments. This overwhelming complexity is one reason why holistic privacy protection only rarely enters the picture. A lack of privacy can result in discrimination and social sorting, creating a fundamentally unequal society. To prevent this, we believe that a better understanding of smart cities and their privacy implications is needed. We therefore systematize the application areas, enabling technologies, privacy types, attackers and data sources for the attacks, giving structure to the fuzzy term “smart city”. Based on our taxonomies, we describe existing privacy-enhancing technologies, review the state of the art in real cities around the world, and discuss promising future research directions. Our survey can serve as a reference guide, contributing to the development of privacy-friendly smart cities

    Raziel: Private and Verifiable Smart Contracts on Blockchains

    Get PDF
    Raziel combines secure multi-party computation and proof-carrying code to provide privacy, correctness and verifiability guarantees for smart contracts on blockchains. Effectively solving DAO and Gyges attacks, this paper describes an implementation and presents examples to demonstrate its practical viability (e.g., private and verifiable crowdfundings and investment funds). Additionally, we show how to use Zero-Knowledge Proofs of Proofs (i.e., Proof-Carrying Code certificates) to prove the validity of smart contracts to third parties before their execution without revealing anything else. Finally, we show how miners could get rewarded for generating pre-processing data for secure multi-party computation.Comment: Support: cothority/ByzCoin/OmniLedge

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    On the security of NoSQL cloud database services

    Get PDF
    Processing a vast volume of data generated by web, mobile and Internet-enabled devices, necessitates a scalable and flexible data management system. Database-as-a-Service (DBaaS) is a new cloud computing paradigm, promising a cost-effective and scalable, fully-managed database functionality meeting the requirements of online data processing. Although DBaaS offers many benefits it also introduces new threats and vulnerabilities. While many traditional data processing threats remain, DBaaS introduces new challenges such as confidentiality violation and information leakage in the presence of privileged malicious insiders and adds new dimension to the data security. We address the problem of building a secure DBaaS for a public cloud infrastructure where, the Cloud Service Provider (CSP) is not completely trusted by the data owner. We present a high level description of several architectures combining modern cryptographic primitives for achieving this goal. A novel searchable security scheme is proposed to leverage secure query processing in presence of a malicious cloud insider without disclosing sensitive information. A holistic database security scheme comprised of data confidentiality and information leakage prevention is proposed in this dissertation. The main contributions of our work are: (i) A searchable security scheme for non-relational databases of the cloud DBaaS; (ii) Leakage minimization in the untrusted cloud. The analysis of experiments that employ a set of established cryptographic techniques to protect databases and minimize information leakage, proves that the performance of the proposed solution is bounded by communication cost rather than by the cryptographic computational effort
    • …
    corecore