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Abstract

Modern advances in sensor, computing, and communication technologies enable various

smart grid applications which highlight the vulnerability that requires novel approaches

to the field of cybersecurity. While substantial numbers of technologies have been

adopted to protect cyber attacks in smart grid, there lacks a comprehensive review of the

implementations, impacts, and solutions of cyber attacks specific to the smart grid.

In this dissertation, we are motivated to evaluate the security requirements for the smart

grid which include three main properties: confidentiality, integrity, and availability. First, we

review the cyber-physical security of the synchrophasor network, which highlights all three

aspects of security issues. Taking the synchrophasor network as an example, we give an

overview of how to attack a smart grid network. We test three types of attacks and show the

impact of each attack consisting of denial-of-service attack, sniffing attack, and false data

injection attack.

Next, we discuss how to protect against each attack. For protecting availability, we

examine possible defense strategies for the associated vulnerabilities.

For protecting data integrity, a small-scale prototype of secure synchrophasor network is

presented with different cryptosystems. Besides, a deep learning based time-series anomaly

detector is proposed to detect injected measurement. Our approach observes both data

measurements and network traffic features to jointly learn system states and can detect

attacks when state vector estimator fails.

For protecting data confidentiality, we propose privacy-preserving algorithms for two

important smart grid applications. 1) A distributed privacy-preserving quadratic optimiza-

tion algorithm to solve Security Constrained Optimal Power Flow (SCOPF) problem. The

SCOPF problem is decomposed into small subproblems using the Alternating Direction

v



Method of Multipliers (ADMM) and gradient projection algorithms. 2) We use Paillier

cryptosystem to secure the computation of the power system dynamic simulation. The IEEE

3-Machine 9-Bus System is used to implement and demonstrate the proposed scheme. The

security and performance analysis of our implementations demonstrate that our algorithms

can prevent chosen-ciphertext attacks at a reasonable cost.
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Chapter 1

Introduction

1.1 Background

A smart grid uses information and control technologies to improve reliability, security, and

efficiency of the traditional electric power system. Many countries have already started

extensive research and development on smart grid technologies. A report by Pike Research

[101] states that the European Union’s investment in smart grid development will increase

to $79 billion by 2020 . The U.S. also estimated to contribute ranging from $23.8 billion to

$44 billion annually to the smart grid deployment by 2030 [2].

According to EPRI’s study [44], the potential benefits of the smart grid are as follows:

• Allows Direct Participation by Consumers. The smart grid consumer is informed,

modifying the way they use and purchase electricity. They have choices, incentives,

and disincentives.

• Accommodates all Generation and Storage Options. The smart grid accommodates all

generation and storage options.

• Enables New Products, Services, and Markets. The smart grid enables a market system

that provides cost-benefit tradeoffs to consumers by creating opportunities to bid for

competing services.
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• Provides Power Quality for the Digital Economy. The smart grid provides reliable

power that is relatively interruption-free.

• Optimizes Asset Utilization and Operational Efficiently. The smart grid optimizes

assets and operates efficiently.

• Anticipates and Responds to System Disturbances (Self-heal). The smart grid

independently identifies and reacts to system disturbances and performs mitigation

efforts to correct them.

• Operates Resiliently against Attack and Natural Disaster. The smart grid resists

attacks on both the physical infrastructure (substations, poles, transformers, etc.) and

the cyber-structure (markets, systems, software, communications).

To achieve the aforementioned benefits, National Institute of Standards and Technology

(NIST) under the terms of the 2007 Energy Independence and Security Act (EISA) is

responsible for coordinating the development of interoperability standards that support

the implementation of the smart grid. Based on the latest NIST guideline [50], a

specific conceptual diagram with seven domains for smart grid is depicted in Figure 1.1

which groups the smart grid based on objectives, devices and functions that have similar

applications. This work primarily focus on the information network in this diagram which

contains interconnected computers, communication devices, and additional information and

communication technologies that share information across different entities to enable the

automatic supply and demand balance and real-time monitoring. More specifically, we are

interested in finding the vulnerabilities that exist in the information network of smart grid

and carrying out novel solutions to fill in the gaps where existing cybersecurity schemes do

not work.

1.2 Motivation

The next-generation power grid transforms from a centralized network to a more decen-

tralized and consumer-interactive network. This transformation is enabled by two-way

2



Figure 1.1: A conceptual diagram of the smart grid.
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communications to deliver electricity between suppliers and consumers. As a result, smart

grid introduced a number of new network infrastructures including: Wide Area Networks

(WAN) that connect different entities, such as control center, generators, and markets;

Field Area Networks (FAN) that connect devices within site; Premises Networks (PN) that

connect customer and utility premises; and AMI Networks (or utility networks) that focus

on connecting customers [50]. The new communication infrastructures should able to handle

a massive amount of data associated with the smart grid applications while not interrupting

functions of legacy power grids.

However, with the concern of these new developments, other vital researches must also

be accomplished. Primarily, we need to devise effective technologies for protecting the

availability and reliability of the envisioned smart grid communication networks and for

preserving the privacy of the data that are used for the smart grid. In this dissertation, we

focus on how to ensure the confidentiality, integrity, and availability of data delivery through

vulnerability assessment and privacy-preserving computations in smart grid.

In smart grid, data are aggregated from diversity sources and used for different purposes

such as monitoring and automatic control. One key challenge of the smart grid is how to

guarantee efficiency and cyber resilience in large-scale data transmission. On the one hand,

there has been an immense advancement in computing and networking technologies. Existing

technologies, such as cloud computing and sensor networks, could be adapted toward the

new interconnected smart grid architecture. On the other hand, those smart grid adoptions

need to be carefully designed in order to provide the low latency, self-healing, reliability, and

self-configurable requirement. For example, the synchrophasor network is viewed as a key

enabler for power grid real-time situational awareness and control which consists of two major

component: Phasor Measurement Units (PMU) is used to obtain phasor information (both

magnitude and phase angle) in real time; Phasor Data Concentrator (PDC) can exchange

synchrophasor data with PDCs from other locations. However, due to the low-latency

demand, this network cannot directly employ other well-established network technologies.

In the past decade, many researches and standards have been published for synchrophasor

network. Nevertheless, fewer works have been conducted on security and privacy issues for

synchrophasor networks.
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Furthermore, new cybersecurity threats are particularly harmful to the power industry.

Many power grid systems are less prepared for defending against cyber attacks. Specifically,

many smart grid substations’ components do not have an authentication mechanism of

other components with which they interact; data integrity is not checked correctly; all the

data that sent to the network is in plaintext. Therefore, according to [13, 82, 112, 115],

smart grid communication networks are vulnerable to a variety of cyber attacks, such as

Denial of Service, Man-in-the-Middle attacks. On Dec. 2015, the attackers penetrated

some Ukraine electricity distribution control centers which reported to have utilized software

vulnerabilities, stolen credentials, and sophisticated malware [70]. The attackers then opened

a few circuit breakers and shut off power for several hours which affect more than 200,000

people. This incident led to a tremendous amount of efficiency and finance loss regarding

the affected entities. To this end, it is necessary to examine the cybersecurity and privacy

vulnerabilities associated with the smart grid communications.

Typically, a cyber attack over the smart grid consists of 3 stages:

• Network Breach: In this step, the attackers try to grant access to the power system

communication networks by hacking into prosaic targets: employee’s email accounts,

web servers, etc. In general, the attacker can attack either one or multiple substation

or control center.

• Reconnaissance: Before start attacking, an experienced attacker needs to fully

exploit the grid system. For instance, an attacker who wants to initiate target data

injection attacks needs to know the bad data detector before injecting bad data.

• Coordinated Attack: The attackers can attack the smart grid network by forging

network packages and directly send commands to substations or bad data to control

center.

In this work, we restrict our scope to the reconnaissance and coordinated attack stage.

More specifically, we assume the attacker is capable of penetrating the communication

network and access network traffic. For the smart grid, this assumption is reasonable because

it’s impossible to prevent penetration from both outside and inside coordinate. Based on

5



Verizon’s 2018 data breach investigations report [3], 73% of cyber attacks were perpetrated

by outsiders and 28% of attacks involved insiders. Some guideline for how to penetrate a

network can be found in [1].

1.3 Challenges

Modern cyber-physical systems, such as the smart grid, have vulnerabilities. Although some

challenges are identical to those of traditional networks with more complicated designs,

various new challenges will arise with the integration of new technologies. We consider three

areas in this chapter: Confidentiality, Integrity, and Availability

In the reconnaissance stage, after breaching into the internal network, a strong attacker

aims to penetrate the control center or gain operational access. Compromising data

confidentiality is the primary goal for the attackers in this stage. In the past, the operational

systems of power industries are strictly disconnection from other networks, which causes an

incredible amount of effort for cyber attackers to break in. However, this regulation becomes

flexible due to the deployment of new technologies. Internal systems may interact with

the public networks through multiple sources including customers to third-party providers;

generation to grid operators; markets to grid operators; and third-party providers to utilities.

More often, a weak attacker is only capable of controlling a limited set of internal components

and communication interfaces. To maximize their interest, the attacker needs to exploit

some key information of power grid; such information is either power system related (e.g.,

bus connections and voltage limitation) or networking related (such as IP addresses and

component’s identity number). Since information is hard to obtain, some attacks require

long dwell time in the environment to gain sophisticated domain knowledge. Based on

CrowdStrike annual cyber intrusion services casebook [31], the average attacker dwell time

is 86 days. In Chapter 3, we will show that without network information, the attacker can

only perform random data injection attack which can be easily detected by static false data

injection detector. As such, ensuring data confidentiality is equally important for defending

network breach. In this dissertation, we concern a problem that sensitive data may be
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disclosed to cyber attackers, in the situations where the data are processed in either private

or public space.

Most of the research on the data confidentiality in the smart grid concentrate on the

consumers’ data privacy. Giaconi et al.[46] studied information leakage in a smart meter

system, and the privacy can be partially preserved by a low-complexity policy which can

approach the theoretical lower bound. Engel et al. [37] use the wavelet transform to

generate a cascade of different resolutions which enable users to grant or deny access to

external parties efficiently. Similar researches can be found in the literature [11, 49]. While

apparently an important topic, we expand the scope of smart grid’s data confidentiality

research. Specifically, we investigate data confidentiality issue for operational data in the

smart grid. Moreover, we are interested in protecting data confidentiality when interaction

with external networks is necessary.

Data integrity and availability are the major concerns in the coordinated attack stage.

In this stage, we are dealing with a situation that the adversary who has network access also

obtained the necessary information. To ensure the secure interoperability across different

domains and components, data integrity guarantee is the major concerns in this dissertation.

Integrity involves making sure that data must be intact in transmission and further steps

should be taken to ensure that data cannot be modified by any unauthorized parties (e.g.,

under the situation of confidentiality breach). For many applications in the smart grid,

especially power system control algorithms which use data to make decisions, fabricated data

can lead to misinformed controls and damaging consequences. For instance, as mentioned

in [75, 100], an attacker can take advantage of the configuration of a power system to

successfully bypass bad measurement detection in state estimation and mislead the operation.

Availability is another critical aspect for protecting ordinary operations of smart grid which

guarantees reliable service and data availability to the authorized people. To compromise

availability, Denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks aim to

obstruct or corrupt the availability of the system by blocking data delivery between entities in

the smart grid. Defending DoS attack are widely investigated in the literature [81, 104, 129].

In this dissertation, we extend these works to synchrophasor networks.
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Existing information security works either provide potential vulnerabilities in communi-

cation protocol and implementation of the smart grid or high-level overviews of cybersecurity

threats which focus on analyzing the impacts of cyber attacks. Most of these works are from

the power system’s point of views with the presence of useful attack techniques. To overcome

such limitation, we provide a few real-world attacking strategies and demonstrated on

physical hardware testbed in this dissertation. With the comprehensive attacking procedures,

we are able to prepare better security practice.

1.4 Dissertation Outline

Following the attacking scenario for the smart grid, the contributions of this dissertation are

summarized as follows:

• We investigate the vulnerability of current synchrophasor networks and provides

mitigation analysis (protecting data availability and integrity)

• A novel method to detect False Data Injection Attack using deep learning is proposed

(protecting data integrity)

• A privacy-preserving algorithm for large scale security constrained optimal power flow

is presented (protecting data confidentiality)

• Dynamic simulations leveraging the cloud computing is presented in the privacy-

preserving form (protecting data confidentiality)

Chapter 2 starts with investigating the vulnerability of current synchrophasor networks.

With the help of synchrophasor networks (or PMU networks), the system dynamic is

achieving situational awareness through a wide area measurement system which plays

an indispensable role for the future smart grid. To build a stable and cyber resilience

synchrophasor network, it is necessary to examine the cyber-physical security of current

synchrophasor networks. Comprehensive security study is revealed for conventional

information communication networks [110] and a few works have been conducted for

exploring the vulnerability of synchrophasor networks [115, 13, 82, 112]. Nevertheless, there
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lacks practical attacking schemes and mitigation analysis for synchrophasor networks in the

literature. In Chapter 2, we first summarized the existing vulnerabilities of synchrophasor

networks. Based on the found security vulnerabilities, we proposed 3 attacking schemes over

synchrophasor network located in CURENT 1 hardware testbed which include sniffing, false

data injection, and Denial-of-Service (DoS) attacks. For each possible attack, we discuss

practical defense mechanisms in the real-world settings.

Followed by cyber-physical security analysis, Chapter 3 introduces a novel method to

detect false data injection attack using deep learning. While all the examined cyber attacks

are of great importance, we found that false data injection attack can bypass bad data

detection and stealthily insert any bias value into the estimated state which is particularly

harmful to the smart grid. For instance, false data injection attack can coordinate with

physical attacks to cover line outages initiated by physical attacks [69]. False data injection

attack is first introduced by Liu et al. [75] targeting the state estimation in the power grid.

One way of detecting false data injection attacks is to secure basic measurements which are

selected strategically. However, based on our vulnerabilities assessment, it is not suggested

to trust some measurements completely. Moreover, PMUs are able to provide synchronous

measurement data which motivates us to develop an anomaly detection system based on the

neural network to enable the construction of a smart grid specific defense mechanism. In our

proposed solution, we make use of both PMU measurement and network traffic. By doing

so, our model learns normal behavior from normal data and is unrelated to certain attacks,

and thus capable of detecting unseen attacks. We fully implement the proposed scheme over

IEEE 39-bus system, and it is shown that our scheme can identify anomalies which cannot

be detected by traditional static bad data detection.

We start the discussion of protecting data confidentiality in Chapter 4. Unlike

previous works for protecting consumer data privacy that raised great concern recently, this

dissertation mainly focuses on preserving power operation data confidentiality. In our cyber-

physical security and false data injection attack researches, we found that a successful cyber

attack often requires sensitive power grid data which can be captured by cyber attackers

1CURENT, Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks, is a National
Science Foundation Engineering Research Center that is jointly supported by NSF (National Science
Foundation) and the DoE (Department of Energy).
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or leaked internally. While traditional cryptography is useful to scramble a plaintext in

such a way that any interceptor of this ciphertext cannot know the real value, the cipher

still needs to be decrypted before the computation phase. In this way, the security of data

confidentiality can be dramatically increased if sensitive data remained encrypted during

the computation phase. Chapter 4 starts with preserving data confidentiality for large-scale

security constrained optimal power flow (SCOPF). In actual operations, optimal power flow

of the entire distribution network often requires to be solved in real time (every five minutes

for many Independent System Operators) to ensure demand is met accurately. This provides

great opportunities for attackers as optimal power flow usually involves multiple entities,

and the computations require data from a variety of trust domains. To mitigate this threat,

each substation encrypts their private data after which a third party performs our privacy-

preserving SCOPF algorithm over the encrypted data without decrypting it. To facilitate

the computation process, we decompose the SCOPF problem into independent subproblems

using ADMM and gradient projection. The proposed privacy-preserving algorithm is also

tested with both IEEE 57-bus system and IEEE 118-bus system. Security analysis and

performance evaluations are also carried out.

Next in Chapter 5, we describe another scenario that an entity wishes to outsource

some heavy computations to the cloud (either a private cloud or public cloud) without

leak any data to the cloud. This scenario is motivated by previous works [59, 117] that

showed the possibility to conduct power system simulations by efficiently outsourcing the

computations to the public cloud. Yue Tong et al. [117] alleviate the privacy concern by

a solution of outsourcing of power system dynamic simulations with disguising and code

obfuscation technologies. However, both disguising and code obfuscation do not have strong

security guarantee. For example, a chosen-ciphertext attack can be used to recover injective

mappings. We future enhance the security of dynamic simulation by proposing a privacy-

preserving dynamic simulation using homomorphic encryption. By doing so, both the input

sensitive data and the final simulation result are encrypted while the majority computation

is protected by our semantic secure algorithm. This algorithm provides confidence for utility

companies or ISO to off-load dynamic simulations to the public domains. The proposed

scheme was implemented and evaluated with the IEEE 3-Machine 9-Bus and analysis of
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the trade-off between feasibility, efficiency, and security for homomorphic encryption and

trajectory disguising is discussed afterward.

Finally, Chapter 6 summarized the work in this dissertation and suggestions for future

work are provided.
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Chapter 2

Cyber-physical Security of the

Synchrophasor Networks

2.1 Introduction

A smart grid revitalizes the legacy power grid with the benefits of modern communications

to achieve real-time monitoring and enable the fast balance of supply-demand management.

Naively, smart grid devices can be directly connected to the Internet. However, as

transmission latency, reliability and bandwidth requirements for different components vary

widely, a number of communication systems and network structures have been proposed

for the smart grid. For example, advanced metering infrastructure (AMI) is a system that

integrated with communications networks, data management, and smart meters to permit

communications between utility companies and customers. With AMI, utilities shift from

reading meters to remotely maintaining and controlling key aspects of the grid. Existing

AMI communication networks are based on a hybrid of networking technologies including

Ethernet, power line communication (PLC), and a variety of wireless technologies such as

WLAN and LTE. Thus, the heavy reliance on data availability and integrity for smart grid

poses a great challenge on respective communication networks.

In the past, legacy power system was designed for local operations with limited wide

controls. The security of the legacy power grid largely relies on its physical isolation

from the public networks, i.e., the airgappedness. For smart grid, most communication
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infrastructures are developed to support monitoring and controlling applications, e.g.

Supervisory Control and Data Acquisition (SCADA), Energy Management Systems (EMS),

Distribution Management Systems (DMS), etc. For SCADA system, It is designed for

distribution automation and remote controls, and it can benefit power utilities to achieve

higher supply reliability with low costs. Additionally, connections between distribution

automation or DMS control centers and EMS are typically provided via high-capacity IP

Gateways [55]. As a result, the air-gap between the power grid internal network and the

Internet has been increasingly blurring [128]. Therefore, even with defending mechanisms

(i.e., Intrusion Detection System (IDS) and firewall) deployed, the smart grid communication

network can no longer be deemed as physical isolation. This leads to significant issues related

to privacy and security on the power grid. For instance, false data may mislead operation and

control functions of the control and monitor system such as EMSs. In a worst-case situation,

carefully fabricated data could result in potentially catastrophic consequences as suggested

in [71]. In the past decade, there are a increasing number of cyber-attacks targeting power

grid:

• The communication networks of power and utility companies faced around 12 cyber

attacks between 2004 and 2008 [102]. This is sharply increased by 20 %. As the

SCADA becoming essential for smart grid infrastructure, the cybersecurity concerns

are increased rapidly.

• In 2010, a computer worm called ‘Stuxnet’ was first discovered which intend to attack

industrial software and equipment and spreads through Windows operating systems

[41]. This type of cyber attack is based on the computer virus and can targets critical

infrastructures of industrial cyber-physical systems which introduces new threads to

power systems [67].

• On December 2015, a report is released to describe a power outages caused by cyber

attacks. The internal networks of three energy distribution companies in Ukraine

are successfully compromised by the external hackers and the electricity supply is

temporarily blocked to the end consumers [70].
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As the smart grid proliferating, before trusting a newly introduced network-related

technology, we need to assess its potential vulnerabilities of all aspects, including the

protocols, implementations, and configurations, etc. In this chapter, we chose the

synchrophasor network. This is because of its imperative role for the future smart grid

which offers significant advantages by providing fast and precise voltage and current phasors

measurement of the entire grid. In contrast, traditional SCADA system are unable to provide

a synchronized real-time assessment of the system as a result of low sampling rates and

lacks of time synchronization for wide area monitoring systems (WAMS). What’s more,

synchrophasor networks have not been under comprehensive vulnerability assessment in

the real world. Only a few works have been conducted for exploring the vulnerability of

synchrophasor networks [115, 13, 82, 112] in theory or experimental setup. In this chapter,

we attempt to gain more insights into how to attack a synchrophasor network starting

from scratch on CURENT hardware testbed. We consider three areas in this chapter:

Confidentiality, Integrity, and Availability. Based on the attempts, practical defense analysis

against cyber attacks are presented.

2.1.1 Challenges

Synchrophasor networks serve as a critical role for the traditional power system to emanate

as a cyber-physical system. In the meantime, as the essential energy source, our life can be

significantly impacted by a successful cyber attack against the power grid. Power generation,

distribution, and transmission networks should be taken into consideration in this situation.

It is infeasible to examine all the necessary strategies for improving the cyber-physical

security of the smart grid without those components.

However, due to security and privacy concerns, utility companies tend to trust the

airgappedness and traditional security practice, thus ignore new cyber-physical security

methods and assessment. As a result, there is a lack of cybersecurity research that performs

on real smart grid cyber-physical system. Indeed, researchers usually leverage simulation

environments and IEEE test systems to identify the attack surface, target, and attack vector.

Although this type of evaluation setup is sufficient under specific circumstance, it neglects

some essential factors. For instance, a fix estimated delays are specified for communication
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networks based on WAMS needs and specifications in [5]. However, network delays are

dynamic and vary according to a number of aspects. Additionally, some research efforts

have been conducted to develop cyber-physical integrated power system testbed including

GE Grid Solutions Smart City Testbed (SCT) at Washington State University, PowerCyber

testbed at Iowa State University, and CURENT center at University of Tennessee, Knoxville.

Despite that some theoretical works [112, 51] have been carried out, it is still challenging to

conduct cyber attacks from the attackers’ point of view. As such, most papers only consider

a simplified threat model, such that some vital information is supposed to be captured by

the attacker. In contrast, we are motivated to develop cyber attacks targeting synchrophasor

networks that require no prior knowledge and minimum network access. Therefore, more

effective cyber-physical impacts and security analysis can be provided.

2.1.2 Outlines

This chapter is organized as follows. Section 2.2 reviews existing research concerning the

cybersecurity of synchrophasor networks. We then revisit the concept, existing standard, and

the cyber threat of synchrophasor network in Section 2.3. Then, cyber attacks paradigm

against real-world synchrophasor network has been discussed in Section 2.4. Additionally,

we present the evaluation setup and venerability assessment in Section 2.5 and test all

proposed attacks in Section 2.6. Especially, evaluations have been conducted over both small

prototype synchrophasor (Section 2.7.4) and real-world emulation in CURENT hardware

testbed (Section 2.5.1). Finally, mitigation analysis is provided in Section 2.7.

2.2 Related Work

Cyber-physical security (CPS) is critical to address the requirements of a sophisticated smart

grid. Some researchers reviewed cyber attacks, countermeasures, and challenges of smart

grid cyber-physical system. C. Beasley et al. [13] provide a review of a wide selection

of cyber attacks against synchrophasor networks and group them into five categories, i.e.,

interruption attacks, interception, modification, and fabrication. Countermeasures and

future research directions are also provided for each attack. Similar work is done by [68]
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which studies the smart grid network architecture and introduces major security challenges.

Smart grid security fundamentals are discussed to defend existing or future malicious attacks.

More specifically, state-of-art role-based access control, authentication mechanism, privacy-

preserving computations, and intrusion detection system are listed and evaluated to resist

basic cyber attacks against smart grid architecture. Y. Mo et al. [82] first analyze both cyber

and system-theoretic approaches and show that they are essential to improve the security of

smart grids than traditional methods. The authors provide an example that a cyber attack

on the data integrity can be mitigated by system-theoretic approaches.

In order to identify vulnerabilities in synchrophasor networks, a variety of research on

vulnerability assessment is conducted to analyze the weaknesses of specific network or device.

Y. Tong [115] conducts thorough penetration testings through a small scale synchrophasor

network to discover network vulnerabilities and improve the security. By testing a variety

of technologies including packet sniffing, packet injection, fuzzing, the author identified few

vulnerabilities associated with the IEEE C37.118. T. Morris et al. [84] use an MU Dynamics

MU-4000 Analyzer to perform denial-of-service, network congestion, and protocol mutation

tests for synchrophasor network. The result shows that some devices may finally becomes

unresponsive when receiving high volume of packets. Some devices reset themselves during

the test, and become available when the packet rate returns to certain levels. C.C. Sun et al.

[112] utilized Washington State University (WSU) testbed and the Smart City Testbed (SCT)

to test and analyze basic defense mechanisms against cyber attacks targeting substations.

A hybrid anomaly detection system is deployed to examine the anomaly detection and

mitigation capabilities.

2.3 Preliminary

2.3.1 Synchrophasor

A phasor is a sinusoidal signal Â = Acos(ωx + φ) = (A, ω, φ) can be represented by a

cosine function with a magnitude A, frequency ω, and phase φ. A synchrophasor is a phasor

measurement corresponding to a synchronized time. With synchrophasor measurement, we
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can determine the absolute phase-angles between phase quantities at different locations on

the power system. High resolution synchronized data is critical for the smart grid. By

synchronizing the sampling processes for different signals which may be captured hundreds

of miles away, it is possible for monitoring the dynamics of the power grid. For instance,

it is feasible to track the system dynamic response to generator tripping events with

synchrophasors [36].

2.3.2 Phasor Measurement Unit and Phasor Data Concentrator

Synchrophasors are synchronized measurements that contain both the magnitude and phase

angle of the signals in power system. The synchronization is attained by a real-time

sampling utilizing calibrating signals from the Global Positioning System (GPS) technology.

Synchrophasors are measured by high-speed monitors called Phasor Measurement Units

(PMUs) which are estimated 100 times faster than SCADA. A comparison between SCADA

and PMU is listed in Table 2.1. PMU measurements report high accuracy grid states and

offer strong insight into grid stability. A typical PMU measures:

• Positive sequence voltages and currents

• Phase voltages and currents

• Local frequency

• Local rate of change of frequency

• Circuit breaker and switch status

With all the measurements, system operators are capable to monitor the power system

across a wide area and estimate grid states in real time, thus to identify and react to

emerging events. Phasor data concentrator (PDC) is utilized to align data from multiple

PMU devices by the synchronized time and sends aggregated synchrophasor data as a single

data frame. Several ongoing projects such as the North America Synchrophasor Initiative

(NASPI) are dealing with the research and development of synchrophasor networks [32].

1Based on SEL latest production.
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Table 2.1: Comparison between SCADA and PMU

SCADA PMU

Sample Rate
1 sample every 2-4
Seconds

30 samples per second
(up to 60 samples per second)

Measurement Magnitude
Magnitude and phase
angle

Synchronization No Using GPS

Input/output Channels 100+ Analog & Digital
Up to 64 Phasors, 30 digital,
64 analog 1

Observability Steady State Dynamic states
Monitoring Local Wide Area

Figure 2.1 illustrates a typical architecture of the synchrophasor network. PMUs are placed

at desirable locations by utility companies to achieve best state estimation performance.

PDC receives data measurement from PMUs within the same utility where quick decisions

are made (less than 100ms). The PDC may forward the aggregated data to a central PDC

called SuperPDC, usually hosted by the regional Independent System Operator (ISO), for

higher-level control (100ms-1s decisions). According to IEEE Standard for Synchrophasor

Data[57], additional functions may be provided as follows:

• Various quality inspections on the phasor data and insertion of appropriate flags into

the correlated data stream.

• Checking for disturbance flags and recordings of data files for analysis.

• Monitoring of the overall measurement system and displaying the results, as well as

the recording of the performance.

• Number of specific outputs, such as a direct interface to a SCADA or EMS system.

2.3.3 Synchrophasor Network Standards

For the synchrophasor network, a standard defines an open design for all vendors to make

use of the synchrophasor more efficient and reliable, which can facilitate data exchange

between devices, data collection, and various applications. It can be used directly or align
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Figure 2.1: An example of architecture of a synchrophasor network.

19



with other communication protocols which is the most direct method for data transmission

and accumulation for wide area monitor system. Few standards have been proposed for the

data transmission between PMUs and PDCs. The IEEE 1344 standard for synchrophasors

was first published in 1995 and revised in 2001. It was replaced by IEEE C37.118.2-2011

[58] in 2011 to deal with issues concerning the use of PMUs which is a complete revision of

the previous standard. In 2012, a new part of IEC 61850, IEC 61850-90-5 [56], specifying

the IEEE C37.118 based synchrophasors’ protocol with respect to IEC 61850, is proposed

for PMU communication networks. Although IEC 61850-90-5 has several unique features

over C37.118 [61], however, its adoption is still inadequate and thorough investigations of its

features and requirements are limited. In this dissertation, we still use C37.118 and IP over

Ethernet as the main communication protocol for synchrophasor network.

Based on [57], IEEE C37.118 is split into two standards: one concerning measurement

requirements and the another concerning the data transfer requirements. These two

standards are used to improve synchrophasor measurement technology in order to simplify

integration with other communication protocols for synchrophasor measurements.

A typical communication scenario between to PMUs and a local PDC is depicted in

Figure 2.2. For simplicity, we do not consider the header message which may be requested

by the control center using command messages. Based on [57], IEEE C37.118 standard

defines four types of messages: data, configuration, header, and command, which are briefly

introduced as follows:

• Data Frame transfers real-time measurements data from PMU or PDC to the

receiving device (PDC or SuperPDC, correspondingly).

• Configuration Frame is sent by PMU/PDC to notify the receiving device the

configuration information of the data message, including the number of channels, types,

and scaling factor, etc.. Configuration frames are intended to be read by machines.

• Command Frame is sent from a data concentrator (a PDC or a SuperPDC) to its

source devices (PMUs or PDCs, correspondingly) to coordinate the communication

(start/stop data transfer, request for configuration frames, etc.).
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PMU Local PDC

Establish TCP connection �optional�

Turn data transmission OFF

Send Configuration Frame

Configuration Frame

Turn data transmission ON

Data Frame

Turn data transmission OFF

Close TCP connection (optional)

Figure 2.2: A typical IEEE C37.118 communication scenario for data transmission
operating in commanded mode.

• Header information is human readable descriptive information sent from the PMU/PDC

which is provided by the user.

2.4 Cyber Attacks Targeting Synchrophasor Networks

As discussed earlier, IEEE C37.118 usually uses TCP/UDP, IP, over Ethernet as the low

level communication technology. As a result, any network attacks targeting these underlying

technologies are also possible on the synchrophasor network. However, since related attacks

and respective countermeasures have been well studied in the network security research

community [23, 79, 109], and that there even exist automated tools are available for testing
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relevant vulnerabilities, we put our focus on the security of the application layer and above,

i.e. the IEEE C37.118 protocol and implementations of PMUs and PDCs.

To better understand feasible attacks targeting the synchrophasor network. We first

introduce the CIA triad which is a model that helps us implement information security

programs to protect their confidential data. The CIA triad comprises three parts:

• Confidentiality: Information should only be restricted to entities who have legal

access to it.

• Integrity: Data stream must be protected from unauthorized modification and

destruction.

• Availability: Availability guarantee that authorized persons can access to the data

when necessary.

2.4.1 Compromising Data Availability

Data availability of the synchrophasor network is primarily subject to denial-of-service

(DoS) attacks if the supporting communication facilities fail to identify unexpected frames.

By saturating the victims’ communication resources or by obstructing the communication

channel between the legitimate client and server (e.g., jamming the wireless channel) [60], the

attackers can slow down or block the normal data transmission. In general, DoS attacks fall

into three basic categories based on the attacking volume and the targeting vulnerabilities:

volumetric attacks, which utilize high traffic to flood the network bandwidth; protocol

attacks, which focus on exploiting weakness in layer 3 and 4 ; application attacks, which

target on individual applications and are considered the most challenging attacks to be

mitigated.

In synchrophasor network, DOS attacks can target any relevant protocols, range from

the network layer (ARP, ICMP, IP), transport layer (TCP, UDP), or the application layer

(IEEE C37.118). Moreover, the target of DoS attack can be the communication between

PMUs and local PDC, local PDCs and superPDC, or superPDC and the control center. The

most critical choice for DoS attacks is targeting communication channel between superPDC
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and the control center. This attack will result in a complete loss of visibility of substations for

the control center. The impact of compromised data availability can also vary according to

types of frames loss. Loss of command frame will prevent the control centers from controlling

various devices. Loss of configuration frame will make PDC unable to decode upcoming data

frames. Loss of data frames will leave the grid operators with inadequate information about

the system dynamics, thus, obstructing the operators to make decisions.

In this research effort, because DoS attacks can be mounted by exploiting various

vulnerabilities, we only focus on testing DoS attack on transport layer over communications

between substation PDC and PMUs. Besides compromising data availability, we show that

DoS attacks can be leveraged for other attacks including compromising data confidentiality.

2.4.2 Compromising Data Confidentiality

The pivot concern over data privacy is at the consumer end. As the smart grid connect

end customers with utilities and as customers increasingly participate in managing their

energy, data confidentiality and privacy has become a critical concern. For the synchrophasor

network, data confidentiality is also a big issue as most high-level cyber attacks require

domain knowledge. Through eavesdropping the network traffic of the synchrophasor network,

attackers can learn substation name and ID, components’ (e.g., PMU, breakers) location

and measurements, and configurations of the individual devices. Since C37.118 does not

specify encryption scheme, all C37.118 packets transmitted through synchrophasor network

are carried in plaintext. The confidentiality concerns with respect to the smart grid is

summarized as below:

• Perform real-time surveillance. The utilities collect data measurements for high-level

monitoring and other services development. The data interception can be considered

as the real-time surveillance if the potential adversaries can capture short-interval data

streams.

• Power system operating data have high economic value. An attacker can sell that

information to competitors or the black market to gain economy interest.
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• Sensitive data can help the attacker for a more sophistic attack. For example, with

measurement Jacobian matrix, a false data injection attacker can pass the commonly

residue-based bad data detection.

• A data breach can have serious regulatory and reputational impact, but disruption

to the BES could arguably cause far greater harm to business performance, national

security, and public safety.

The U.S. government created Protected Critical Infrastructure Information (PCII)

Program to regularize the sharing of critical information between private sector infrastructure

and operators, such as utilities and the administrations, to prevent the data breach. However,

such a program cannot theoretically stop attackers from compromising data confidentiality.

In Section 2.7, we propose a lightweight encryption protocol based on C37.118 and test its

overhead for synchrophasor network.

2.4.3 Compromising Data Integrity

The integrity attacks can target either customer’s information (e.g., customer account

balance, power pricing ) or network operation information (e.g., synchrophasor measure-

ment, command frames). Particularly, such attacks can deliberately modify the original

measurement in the smart grid in order to mislead some critical control algorithms. The

impact of attacks targeting data integrity in the power grid is vital. A notable work is by

Y. Liu et al. [75], which proposed a type of false data injection attacks against the state

estimation in the power grid.

To launch a false data attack in the synchrophasor network (detailed in Section 2.6.3), the

attacker first captures a legitimate IEEE C37.118 data frame sent from a source device by

packet sniffing. With the obtained information, the attacker can construct a fake message

containing false measurement data to imitate an authentic message. The attacker then

injects the fake message, which will be routed to the PDC. Consequently, the PDC will

accept the fabricated measurements if there is no message or user authentication mechanism

or such mechanism is weak or not in use. If the false data is deliberately chosen, it may

mislead power grid controls and decision-making that uses the synchrophasor data as the
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input. Some works [125, 34, 71] demonstrate how deliberately chosen false data can mislead

the state estimation and cause disastrous consequence, which, however, does not specify how

to inject false data into the synchrophasor network. In Section 2.6.3, a practical false data

injection attack scheme is introduced which shows the impact of compromising data integrity

for the smart grid.

Current mitigation methods over false data attack are protecting set of basic measure-

ments [7], PMU-based protection [29], and proposing new detection algorithms [132]. We

will present a new way of detecting false data injection attack based on deep learning in

Chapter 3.

2.5 Vulnerability Assessment for Synchrophasor Net-

works

2.5.1 Evaluation Setup

To validate our proposed system in the real-world scenario, we explore the vulnerability on

hardware testbed located in the CURENT center as shown in Figure 2.3. As an alternative

to the actual power grid cyber-physical system, a testbed can be used to examine the

implementation and impact of cyber attacks. CURENT hardware testbed provides broad

time scales in one system - microseconds for power electronics devices and milliseconds to

seconds for power system event. It also integrates real-time monitoring, protection, and

control.

As shown in Figure 2.4, the hardware testbed is based on an aggregated WECC system.

A remote load center including L12 and L13 is fed by a local generator, two inter-connected

systems, and offshore wind through multi-terminal HVDC (MTDC). Four PMUs are placed

at each load bus, and synchrophasors measurements are collected by local PDC. PDC then

aggregates synchrophasor measurements and sends it to the control for wide-area monitoring

and control. CURENT hardware testbed uses latest version openPDC to emulate local

PDC and LabVIEW to mimic the control centers in power systems. For conducting the

vulnerability assessment, a machine running Kali Linux OS is deployed to emulate the cyber
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Figure 2.3: Power electronic converter based Hardware Universal Grid Emulator setup in
CURENT center.

attacker who has network access. The packet manipulation program Scapy 2.2.0 is used in

this research for generating attacking packets. Wireshark is used to analyze and visualize

network traffics.

2.5.2 Vulnerability Exploration

The goal of the exploration phase is to validate the possible weaknesses of the PMU network,

which are deduced from the information leaked from the reconnaissance phase. Evaluating

the information gathered in the reconnaissance phase and also the public information about

the C37.118 standards, we list vulnerabilities that we will manually explore and validate

during the exploration phase in Table 2.2.

We briefly explain the listed vulnerabilities as follows. 1) as we have already discovered

in the reconnaissance phase, all C37.118 frames are transferred in clear. Hence, not only can

attackers intercept and eavesdrop configuration frames but it is also possible for attackers

to monitor for command and data frames. 2) as the C37.118 standard does not specify any

user authentication mechanism, it is possible for the attackers to impersonate a legitimate

publishing or subscribing devices and confuse, mislead, or sabotage other parties in the PMU
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Figure 2.4: WECC system in CURENT hardware testbed.

Table 2.2: Vulnerabilities of CURENT hardware testbed

Cause of Vulnerabilities Possible Attacks Testing Technique
Lack of encryption Eavesdropping, Replay Packet sniffing

Lack of user authentication
Impersonation

man-in-the-middle attacks
Packet sniffing

Packet injection

Lack of message authentication False data injection attacks
Packet sniffing

Packet injection
Unexpected frames Denial-of-Service Fuzzing
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network. 3) as the case of lacking user authentication, neither C37.118 includes any message

authentication mechanism. As a consequence, all frames are subject to frame modifications;

a receiving device is unable to distinguish legitimated frames and modified frames. We use

packet sniffing and packet injection to validate this vulnerability. 4) as a stateful protocol, a

device that runs C37.118 protocol manages its transition of states based on its current state

and the frames it receives. If the incoming frames are expected under the current state, the

device should make the state transitions accordingly. If not, the device should also handle

for the case properly.

2.6 Exploit Development for Synchrophasor Networks

2.6.1 Denial-of-Service Attacks

Generally, there are two types of DoS attacks: flooding or crashing services. Crashing services

directly exploit the weakness that can make the system or service to fail. In such attacks,

the messages are sent to the victim to takes advantage of bugs in software or hardware so

that it can’t be reached or utilized by the legitimate users.

Alternatively, flood attacks initiate by sending large traffic to the server, causing them

to slow down or unresponsive. Popular flood attacks include:

• Buffer overflow attacks: The idea is to send more packages to a network destination

than the system initial configured to handle. It differ from other DoS attacks that

are designed to exploit bugs specific to particular applications or protocols and is

considered to be the most common DoS attack.

• Ping flood, also known as ICMP flood: It leverages misconfigured network devices

by overwhelming a targeted device with ICMP echo-request packets. Both outgoing

bandwidth and incoming bandwidth are consumed in this case.

• SYN flood: An attacker sends an SYN request to a server, but never reply ACK. It

continues until victim’s ports are saturated with malicious requests, and unavailable

for authentic users to connect.
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Figure 2.5: The progression of a TCP three-way handshake compared with a SYN flood
attack.

T. Morris et al. [84] tested various DoS attacks such as transport layer attacks,

ICMP attacks against a PMU network. It shows that all devices tested eventually became

unresponsive when the traffic volume increases beyond that devices ability to process packets.

In this work, we do not restrict how to implement various DoS attacks. Instead, we focus

on the impact of DoS attacks for synchrophasor networks and only test transport layer

attacks as our main attacking method.

SYN Flood Attacks

When two hosts establish a normal TCP “three-way handshake” which follows three steps

(Figure 2.5a):

1. Host A requests connection by sending SYN (synchronize) message to Host B.

2. Host B replies with SYN-ACK (synchronize-acknowledge) message to Host A.

3. Host A finally responds with an ACK (acknowledge) message, and a TCP connection

is established.

In an SYN flood attack which is shown in Figure 2.5b, the attacker sends flooding SYN

packets to all TCP port on the victim with fabricated source IP address. The victim receives

multiple SYN requests to establish TCP connections and responds to each request with an

SYN-ACK packet. The victim will wait for acknowledgment of its SYN-ACK packet for a

29



Figure 2.6: SYN flood attack targeting CURENT hardware testbed.

preset of time. During this time, the open ports stay open and the victim cannot close them

with RST packets. Before the connection times out, if another SYN packet arrives, it will

leave some connections half-open. This is the reason why SYN flood attacks are also referred

to as “half-open” attacks.

Attacking Local PDC

We demonstrate SYN flood attacks on CURENT hardware testbed. Figure 2.6 shows how

does an attacker generate attacking packets. Here, 48.26.87.102 is the IP address of PDC and

port 49842 to 49848 is the targeting ports for the attack. We notice that, after the attacks,

the attacker is able to slow down and obstruct the communications between PMUs and PDC.

Due to limited attacking power, DoS attacks cannot completely block the data transmission.

In fact, SYN flood attacks are often initiated by the Distributed denial-of-service (DDoS)

attackers which overwhelm the target with traffic from multiple sources. However, our

attacks can still cost time delay for synchrophasor networks (average 2 seconds). Indeed,

network traffic of synchrophasor networks is time-critical. For example, the delay constraint

of generic object oriented substation events (GOOSE) messages is only 4 ms in IEC 61850.

Hence, with careful designs, even a weak DoS attack can cost serious consequences.
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Figure 2.7: Attacking targeting PMU. Both PMUs with IP address 48.26.87.54 and
48.26.87.55 are suffer DoS attacks that became unresponsive of select ports. After the
protection mechanism is triggered, PDC then resets both PMUs by sending request CFG-2
frame.

Attacking PMUs

We also test DoS attacks targeting PMUs. In this experiment, the attacker sends a huge

volume of attacking packets to a PMU. It is able to test a device’s ability to create and

teardown TCP sessions with floods of TCP packets targeting individual TCP ports. Our

test shows that targeting devices 2 eventually stop sending synchrophasor measurements and

become unresponsive when network package volume increases. Moreover, we find that local

PDC employs a protection mechanism that if one PMU is unresponsive for a preset time

(default 5 seconds), the local PDC will start to reset the unresponsive PMU as shown in

Figure 2.7. As mentioned in Section 2.3.3, a C37.118 session begins with TCP connection

handshake and follows by configuration frame request. This function is indeed beneficial for

other cyber attackers because PMUs’ configurations are necessary to decode C37.118 data

frames.

2PMUs that are deployed in CURENT hardware testbed are Schweitzer Engineering Laboratories SEL-
421
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2.6.2 Sniffing Attack

A sniffing attacker can obtain sensitive information (e.g. power usage, future price

information, and the smart grids’ network structure) by eavesdropping network traffic which

leads to privacy breaches. Sniffing attacks can be used for collecting information to perform

more sophisticated attacks. For example, the adversary can monitor network traffic to deduce

patterns from communication packages, and even encrypted network packages are subjected

to such attacks.

For the C37.118 data frame, it is encoded by specific configuration. Each PMU’s

configuration is factory preset but can be reconfigured later using Telnet protocol. The

configuration is crucial for data theft that without knowing PMU’s configuration, it is

hard to decode the data frames. Figure 2.8a shows that without the configuration frame

Wireshark is unable to decode the data frame and Figure 2.8b shows that after capturing

the configuration frame, Wireshark can see each phasor’s voltage and current information.

As mentioned in Section 2.3.3, the configuration information is exchanged when a PDC

setup a connection session. It is likely that the attacker may eavesdrop for a very long

period without capturing the configuration frame. However, the attacker can utilize the

protection mechanism we found in the previous section to obtain the configuration frame.

In this case, a sniffing attack can start with a DoS attack targeting PMU or PDC with the

port that is used for sending or receiving c37.118 data frames. Under this circumstance, if

the DoS attack is successful, the PDC will reset the PMU and start a new session using a

different port. During the reset process, the attacker can eavesdrop the network traffic and

easily capture the configuration frame.

2.6.3 False Data Injection Attacks

In this section, we demonstrate a practical false data injection attack. Specifically, we show

that how to start false data injection attack in the wide-area monitoring system (WAMS).

We look at a scenario where a synchrophasor network is employed in a wide area to gather

current, voltage and frequency measurements and to manage the situational awareness of

the potential power system event.
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(a) Without configuration frame

(b) With configuration frame

Figure 2.8: With configuration frame, Wireshark is able to decode C37.118 data frame.
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We show that a false data injection attack targeting a synchrophasor network can change

the result of situational awareness and misleads the operator. We devise a false injection

attack which is illustrated in Figure 2.9 and consists of the following five procedures:

1. An attacker penetrates the internal network. This process is usually done by

compromising employee’s email accounts, web servers, social engineering, etc.

2. The attacker eavesdrops the data communication between PDC and PMU. The data

frame includes the source and destination IP addresses, port numbers, the ID of

destination PDC, the message format, etc.

3. Initiate TCP flooding attack to local PDC or specific PMU. The primary purpose of

this step is to affect data availability, after which PDC will reset the system by re-

initiating one or multiple PMUs. Note that if the system uses UDP as the transport

layer protocol, the attacker can choose other DoS attack scheme.

4. Attacker intercepts the configuration frame and uses the configuration frame to

construct a false data stream. Based on the goals of the attacker, the data stream

can be generated randomly or carefully manipulated using domain knowledge.

5. Wait for the good time such that the attacker can do the most damage to the

power system and injects a false command frame to the PMU to shut down the data

transmission. Then, the attacker sends fabricated data frames with pre-generated

measurement data to local PDC to spoof the control center.

We demonstrate this attack on CURENT hardware testbed. We consider two real-world

false data injection attacks: random false data injection attacks which aim to find an attack

vector which can inject random errors into certain state variables, and target false data

injection attacks which seek to identify an attack vector that can lead to a designated wrong

state estimation result. Figure 2.10 showed the screenshot captured during a random false

injection attack. After starting the attacks, the attacker takes control of the data stream

transmission and keeps replying to the PDC zero value bus voltage, current, and frequency.

During the attack, the visualization of synchrophasor measurements was manipulated such
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Figure 2.9: A practical false data injection attack on synchrophasor network. The black
line represents the normal traffic between PMUs and PDC. And the red line denotes the
attacking packets generated from the the attacker.
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Figure 2.10: The demonstration of our data hijacking attack in CURENT hardware
testbed.

that the control center is deceived and incapable to apply protection controls to the potential

failures and oscillations.

Figure 2.11 illustrates the target false data injection attack which a generator trip event

is generated to mislead the operator. This is also called replay attack where an adversary

records a sequence of data measurements and replays the sequence afterward. It is worth

mentioning that Stuxnet [41] was used to damage Iran’s nuclear facility by inducing enormous

distortions with the replay attack. For synchrophasor networks, based on this manipulated

state, the operator and automatic control are blinded and harmful consequences may happen.

2.7 Attack Mitigation and Countermeasures.

In this section, we discuss possible solutions and best practices to prevent cyber attacks in

synchrophasor networks. We believe that cyber-physical security can not only avoid cyber

attacks but provide better solutions to detect and restore system functionalities.

2.7.1 Protecting Data Availability

First of all, it is essential to examine a device’s capability of processing different network

protocols which can be useful for system planning and for designing possible intrusion dection

system for denial-of-service attacks. A variety of network analyzers can be operated to
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Figure 2.11: A false generator trip event is injected to CURENT hardware testbed.

perform denial-of-service attacks, network congestion and protocol mutation tests for a

synchrophasor network. This step is called fuzzing or fuzz testing. Based on the fuzzing

result, it is recommended that each utility company monitors network traffic and alerts

administrator when the volume is over a certain threshold.

Another common practice is to employ firewalls. As a packet filter, the firewall can

monitor and control inward and outward network traffic based on preset rules. Only packets

that fulfill the predetermined rules can pass firewalls and anomaly packages are blocked.

With a firewall developed to prevent SYN-flood, a server can resist an attack whose flooding

rate is up to 22,000 SYN packets per second while an unprotected server can only defend

against 500 SYN packets per second [94].

For wireless networks, to prevent an external adversary from jamming, jamming detection

mechanisms can be used to identify attacks. The feasibility and effectiveness of jamming

attacks have been examined in[124], and detection schemes using the MICA2 Mote platform

are deployed.

The other way is using redundant devices and communication infrastructure to transmit

the same measurements in separate synchrophasor networks [13]. In that case, even an

attacker successfully performs DoS attacks against one synchrophasor network, WAMS can

still work with redundant measurements. Thus requires attackers to compromise more
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devices and networks channels, which dramatically increases the complexity and cost to

conduct such an attack.

2.7.2 Protecting Data Confidentiality

In general, the smart grid may contain operators, managers, engineers, etc., and these

people should have different access privileges to different devices and applications by default.

Using role-based access control (RBAC) can enhance the system reliability and reduce

possible cyber threats. In [103], the traditional RBAC is modified in order to improve the

current access management system with a higher level of granularity from the perspective of

regulating power utilities.

The best way to prevent packet sniffing is to utilize SSL (Secure Socket Layer), TLS

(Transport Layer Security), or IPSec (Internet Protocol Security) to encrypt the network

data streams between of PDC and PMU [111]. With encryptions, most of the information,

including the TCP/IP header, commands, measurements which are exchanged between

PMU and PDC in the synchrophasor network, are encrypted by specific cryptography.

Therefore, attackers can only get encrypted packages and obtain no valuable information

through the eavesdropping without getting secret keys. However, while various secure

protocols exist, some low computation capacity devices may need a lightweight protocol

to meet synchrophasor network’s time requirements. In Section 2.7.4, we test the overhead

of deploying a particular cryptographic system.

While cryptography can considerably mitigate the risk of data breach, it is vital to avoid

the key being stolen by adversaries. Key management is a necessary approach to network

security. Shared secret keys and public keys can be used to decrypt secrecy and message/user

authenticity. The major challenge, in this case, is key management over extensive and diverse

infrastructures. While it is possible to employ traditional key exchange and distribution

systems with the help of trusted third parties for the Internet, the smart grid has a wide

variety of equipments and involves with different entities including government, corporations,

and consumers which posts numerous additional challenges. To address these concerns, in

[12], NIST provides a fundamental guideline for developing cryptographic key management

systems in the smart grid.
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Furthermore, for sensitive power system data that is used for specific computations, it

is expected that some information will transmit across different places even with public

domains. It is difficult to protect data confidentiality under this circumstance since it is

possible that important data may be leaked by other parties on purpose. As a solution,

secure multi-party computation aims to create methods for parties to jointly compute a

function over their inputs while keeping those inputs private. In Chapter 4 and Chapter 5,

we propose two privacy-preserving algorithms for optimal power flow and dynamic simulation

in the multiparty scenario.

2.7.3 Protecting Data Integrity

Similar to protecting data confidentiality, cryptography plays a unique role to secure data

integrity. A naive method to protect data integrity is to hash the data which you received

and comparing it with the original hash. However, this means that the original hash of the

data must also be kept intact against the attackers. In section 2.7.4, we test the overhead

of deploying a certain authentication code system.

However, it is worth noticing that authentication is a computationally intensive procedure

that can generate considerable delay and become the target of DoS attacks. For example,

Fadlullah et al. [40] assume that some compromised grid devices can launch a DoS attack by

frequently sending false authentication requests in the network. They propose a predication-

based defending mechanism such that unusual activities such as device/authentication

failures are monitored at every layer and reported to the control center.

Intrusion detection mechanisms are essential for locating compromised devices. While

traditional network intrusion detection systems may be applied directly to the smart grid,

several works of intrusion detection systems for the power grid have been introduced. For

instance, S. Kim et al. propose to use data mining technique to learn and predict cyber

attacks from synchrophasor measurements [62].

One particular cyber attack against data integrity is false data injection attack which

can cost catastrophe results. For false data injection attack, bad data detector such as χ2 or

largest normalized residue detector [48] detects the corruption in measurement by checking

the measurement residue. However, such a detection scheme has inherent weaknesses as
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Figure 2.12: A small scaled synchrophasor network prototype.

different measurement vectors can generate the same residue. In Chapter 3, we will present

a new way of detecting false data injection attack based on deep learning.

2.7.4 A Small-scale Secure Synchrophasor network

Experiment Setup

To examine protections for the synchrophasor network, we build a small-scale prototype of

synchrophasor network, which is depicted in Figure 2.12. In this implementation, PDC and

PMU are connected to separate gateways. The gateways have access to the wireless local

area network which simulates physical distance between PMU and PDC. Additionally, since

our primary concern is on the communication side, the PDC does not store synchrophasor

data to a database server.

We adopt the pyPMU - Python Synchrophasor Module to emulate the PMUs and PDC

with Linux operating system [107]. pyPMU is written in python and comply with the IEEE

C37.118. It gets synchronized using the Network Time Protocol (NTP) protocol, and it can

synthesize a sequence of random phasor measurement or generate target measurement based

on needs. We also use python-cryptography as our cryptographic library which includes

both high-level recipes and low-level interfaces to common cryptographic algorithms such

as symmetric ciphers, message digests, and key derivation functions. It worth mention that

using simulated PMU measurements does not affect the validity of this research work since
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we concentrate on the testing the performance of proposed communication protocol and the

software implementations, which are independent of the data acquisition process.

Security Scheme

We proposed a security scheme in which PMUs and PDC perform mutual authentication

at the beginning of each predefined period. Session keys are established at the end of each

successful authentication and used throughout the entire period for data confidentiality and

integrity. Session keys are updated with each new authentication. The proposed security

scheme mitigates all the effective attacks shown in Table 2.3 and is presented as follows.

Upon receiving an authentication request from a PMU:

In this authentication process, the PDC and PMU first challenge each other by

their respective nonce (a number that is used only once), ANonce and SNonce. A

session key Kpriv is then derived from the pre-shared key (Kpub), the ID of the PDC

(IDPDC), ANonce, SNonce, and the MAC addresses of the PDC and PMU (MACPDC ,MACPMU)

as:

Kpriv = h(Kpub, IDPDC |ANonce|SNonce|MACPDC |MACPMU),

where h is a cryptographic hash function, and | denotes concatenation. The 256-bit pre-

shared key should be installed into the PDC and PMU before they are shipped. Message

integrity checks MICKpriv
(ANonce, SNonce) are then sent to make sure that the PDC and

PMU have obtained the same session key SK. Finally, the PDC and PMU can exchange data

securely by encrypting (ENCKpriv
(Data)) and integrity-protecting (HMACKpriv

(Data)) it

using Kpriv. A good choice of the encryption algorithm is AES-CCM.

Table 2.3 shows the analytical result of the proposed security scheme. The original packet

contains 16 phasors with a total size of 140 bytes. The test is conducted on a Linux machine

with a 2.2 GHz CPU. We can see that AES-GCM has the best performance with minimal

communication overhead. However, AES-GCM has nonce reuse problem [80] thus offers

worse integrity protection than AES+HMAC. Furthermore, the performance can be future

increased by integrating AES based hardware.
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Table 2.3: Performance of different security protocol over IEEE C37.118

Key Size
Encryption
Rate

Decryption
Rate

Commun-
ication
Overhead

AES-GCM 256 bits 54741 packets/s 66355 packets/s 19.77%
AES-CBC+HMAC-
SHA256

256 bits 51503 packets/s 50495 packets/s 76.74%

ChaCha20+HMAC-
SHA256

256 bits 41511 packets/s 40198 packets/s 86.04%
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Chapter 3

Dynamic Detection of False Data

Injection Attack in Smart Grid using

Deep Learning

3.1 Introduction

The future smart grid is designed to operate more reliable, economical and efficient in an

environment of increasing power demand. This goal, however, is achieved by incorporating

with a tremendous increase of data communications which lead to great opportunities for a

variety of cyber attacks. Thus, ensuring cybersecurity of the smart grid is a critical priority.

Although a large number of countermeasures have been published, such as communication

standards (e.g. IEC 61850-90-5 [56]), regulation laws (e.g. Colorado Regulations (CCR)

723-3), cryptographic implementations (e.g. secure channel [43]), and official guidelines (e.g.

NISTIR 7628 Guidelines [91]), current smart grid still remains vulnerable to cyber attacks.

To prevent cyber attacks, legacy grid relies on the traditional security scheme (e.g.,

firewall and general intrusion detection system). Intrusion detection systems (IDS) can

generate alarms for potential intrusions by consistently monitoring network traffic or system

logs. Although there are a number of studies on general IDS in the network security

community, limited effort has been explicitly made to the smart grid. At the same time, the
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cyber threat against data integrity in the power system is indeed real. For instance, Y. Liu

et al. [75] proposed a type of attacks targeting the state estimation in the electric power

grid called false data injection (FDI) attacks. In such attacks, the attackers aim to bypass

existing bad data detection system and pose damage to the operation of the power system

by intentional changing the estimated state of the grid systems. Z. Chu et al. [30] introduce

four computationally efficient algorithms to evaluate the vulnerability of large-scale power

systems to FDI attacks and found that all critical lines are vulnerable. Therefore, there is

an urgent need of effective smart grid specific intrusion detection systems.

Recently, machine learning algorithms have been broadly adopted to the smart grid

literature for monitoring and preventing cyber attacks on power systems. Ozay et al. [95]

generate Gaussian distributed attacks and use both supervised and semi-supervised machine

learning methods to classify attacks. Similarly, Esmalifalak et al. [38] devise a distributed

support vector machines based model for labeled data and a statistical anomaly detector

for unsupervised learning cases. He et al. [53] utilize Conditional Deep Belief Network

(CDBN) to discover the high-dimensional features between normal data and unobservable

FDI attacks. However, existing works mainly focus on finding bad measurement at a specific

state, no prior studies have been conducted over the dynamic behavior of FDI attack.

Besides, detecting FDI attacks are considered as supervised binary classification problem in

[38, 53] which are incapable of identifying dynamically evolving cyber threats and changing

system configuration.

The recent breakthrough in GPU computing provides the foundation for neural networks

to go ”deep.” In this chapter, we develop an anomaly detection framework based on neural

networks to enable the construction of a smart grid specific IDS. More specifically, a recurrent

neural network with LSTM [54] cell is deployed to capture the dynamic behavior of the

power system and a convolutional neural network [65] is adopt to balance between two input

sources. An attack is alerted when the residual between the observed and the estimated

measurements is greater than a given threshold.

Moreover, attackers with sophistic domain knowledge may continually manipulate the

power grid state estimation without being detected causing extensive damages. As such,

we want to bridge the gap between network anomaly detector and FDI attacks detection
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mechanism. Unlike other works which separate two detectors, our framework combines

both network traffic characteristics and time-series data measurements with the help of

convolution neural network to equalize between two inputs. With the help of the proposed

neural network structure, our anomaly detector demonstrates highly accurate detection

performance.

3.1.1 Challenges

Recent developments in neural networks have dramatically improved machine learning

technology. This advancement highlights the potentials for many applications that aim to

build systems that can identify patterns and make decisions from data with minimal human

intervention. For information security, we also observed a significant number of new works

that utilize deep learning for a diversity of applications which also includes frameworks for

anomaly detection.

In the meantime, although prior work already applied supervised machine learning for

detecting FDI attacks in [95], it is not trivial to find the best machine learning algorithm

for the dynamic environment in the smart grid. First, despite that Y. Liu already brought

out basic principle and some scenarios for FDI attacks in [75], it is still unlikely that we can

provide a thorough dataset that contains all possible attacking schemes. Consequently, the

accuracy of the trained model will greatly decrease when the attacking vector is different from

the training set. In addition, the new powerful malicious computer worm targeting cyber-

physical systems provided the opportunities for the attackers to carry out more powerful

attacks such as replay attack. More specifically, it is feasible for the attackers to compromise

a large set of PMUs or PDCs in synchrophasor networks and inject phasor measurements

that are captured from a real event in order to mislead the power system operators (see

Section 2.6.3 for how to start FDI attacks).

Furthermore, substations often employ network IDS to detect network packages anoma-

lies, however, often run separately from FDI attacks detection system. Apparently, running

two independent system is less efficient and can increase false alarm rate. It is difficult to

create a unified model to combine both systems because network IDS takes dynamic network

flows as input and FDI attacks detectors are usually based on static vector estimation.
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By dealing with the aforementioned challenges, we are motivated to develop a dynamic

FDI attack detection method that takes advantage of both network features and data

measurements.

3.1.2 Outlines

We organize the rest of this chapter as follows: We first review some millstone works for

FDI attacks in Section 3.2. Section 3.3 introduces the background of FDI attack and neural

networks. Section 3.4 presents our combined detection system along with the static and

dynamic method to detect FDI attack. Section 3.5 validate the proposed system with a case

study on IEEE 10-machine 39-bus power system.

3.2 Related Work

After FDI attack was first introduced in 2009 [75], numerous works on composing and

defending against FDI attacks have been proposed in the past decade. To address the

above issues, two schemes have been widely studied to defend FDI attacks [19, 71]: One

way is to protect a number of secure basic measurements strategically. Kim et al. [63]

propose a greedy algorithm to select a subset of base measurements and the placement of

secure phasor measurement units. Bi et al. [17] characterize the problem into a graphical

defending mechanism to select the minimum number of meter measurements which cannot

be compromised.

The other way of defending FDI attack is to verify each state variables independently. Liu

et al. [73] formulate a low-rank matrix separation problem to identify attacks and propose

two optimization methods to solve the problem. Ashok et al. [9] present an online detection

algorithm that utilizes statistical information and the predictions of the state variables to

detect measurement anomalies. Yang et al. [125] proposed efficient algorithms to identify

the optimal attacking meter set. A protection-based defense scheme and a detection-based

defense scheme are introduced to defend such attacks. In [78], the authors adopt the Kalman

filter to estimate the state variables and the outputs are fed into a χ2-detector or a Euclidean

detector. What’s more, some researches have been carried out to form electricity thieves
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using methods such as game theory. Cárdenas et al. [26] formulate a game between the

electric utility and the electricity thief where the thief aims at stealing a fixed amount of

energy while minimizing the likelihood of being detected and the utility need to determine

the tradeoff between the probability of detection and the cost of the detection system. Some

other methods have been proposed to detect the electricity theft by analyzing the abnormal

consumption patterns [86, 87]

Recently, with the fast development in machine learning technologies, many machine

learning techniques have been applied to develop an anomaly-based intrusion detection

system for cyber-physical system. Specifically, machine learning can automatically learn

patterns and make predictions from the data. For smart grid, these anomaly-based intrusion

detection systems employ SCADA or synchrophasor networks to create normal behavior of

current power system, then detect anomalies which are different with the learned patterns,

and thus capable to detect unseen attacks. For example, Ozay et al. [95] reformulate the

FDI attacks detection problem as a machine learning problem and state-of-the-art machine

learning algorithms are examined in this scenario. He et al. [53] utilize Conditional Deep

Belief Network (CDBN) to discover the high-dimensional features between normal data and

unobservable FDI attacks. However, those methods still focus on detecting malicious data

based on the static state.

3.3 Preliminary

In this section, we briefly review false data injection (FDI) attack and basic neural networks

structures that are used to detect FDI attacks.

3.3.1 False Data Injection Attack

State Estimation in Power Systems

In a power system, the state is represented by bus voltage magnitudes V ∈ Rn and angles θ ∈

([−π, π])n, where n is the number of buses. Let z = [z1, z2, ..., zm]T ∈ Rm be the measurement
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vector, x = [x1, x2, ..., xn]T ∈ Rn be the state vector, and e = [e1, e2, ..., em]T ∈ Rm denote

the measurement error vector. We describe the AC measurement model as follows:

z = h(x) + e (3.1)

To analyze the impact of FDI attack on state estimation, we choose to adopt the DC

model which is the linearization of the AC model. For DC state estimation, the relationship

between these m meter measurements and n state variables can be expressed as a m × n

matrix H. Generally, for a given power system, the matrix H is a constant matrix which is

determined by the line impedances and network topology. An observable power network is

when there are enough measurements to ensure the state estimation of the current network.

z = Hx+ e (3.2)

Typically, a weighted Least Square Estimation (LSE) is used to obtain the state estimate

as:

x̂ = minx
1
2
(z −Hx)TR−1(z −Hx)

= (HTR−1H)−1HTR−1z (3.3)

where R is the covariance matrix and its elements are reciprocals of the meter errors

variances. To solve 3.3, QR decomposition method can be leveraged to avoid calculating

matrix inverse.

Bad Data Detector

For detecting a false data injection attack, one method is to use a traditional statistical test

based on the degrees of freedom (redundancy) in the system. It can be shown that under

Gaussian noise, the total normalized square measurement error, J(x̂) follows a chi-square

distribution based on the measurement redundancy with (m − n) degrees of freedom. The

test for bad measurement is then:
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J(x̂) < τ (3.4)

If J(x̂) > τ , bad data will be suspected with τ obtained from the χ2 distribution over

(m−n). Once bad data is suspected, the bad needs to be identified and corrected if possible.

Bad data are assumed to be those with the largest normalized residual (LNR). The LNR test

selects the largest the l2-norm of the measurement residual [48] as the most likely suspect

measurement.

For DC model, the traditional bad data detection approaches often reduce to l2-norm of

the measurement residual [75]:

‖Hx+ e‖2 ≤ τ

‖Hx+ e‖2 > τ
(3.5)

However, this method can be easy mitigated by choosing a as a linear combination of the

column vectors of H. Which means, if the attacker is able to use Hc as the attack vector a,

za can pass the detection as long as regular measurement z can pass the detection.

Attack Models

Let za denotes the vector of actual measurements that may contain malicious injections.

za can be represented as za = z + a where a = (a1, ..., am)T is the malicious data added

to the original measurements. Let xa represents the estimates of x using the malicious

measurements za. Then xa can be expressed as x̂+c, where c is a non-zero vector representing

the impact on the estimate from the malicious injection and x̂ is the estimate using the

original measurements. The l2-norm of the measurement za residual can be computed as:

‖za −Hx‖2 = ‖z + a−H(x+ c)‖2

= ‖z + a−Hx−Hc)‖2

= ‖z −Hx‖2 + ‖a−Hc‖2 ≤ τ

(3.6)
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In this work, for target FDI attackers, we assume the attacker has enough inside

information to construct xa while random FDI attackers only have partial information. Under

FDI attacks, the system operators are misled by considering the biased estimations xa as the

correct value of the current state. In this case, FDI attacks are also called “unobservable”

attacks.

3.3.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs or ConvNets) are a family of Neural Networks that

is shown in Figure 3.2. CNNs have been successful in areas such as image recognition

and classification in identifying faces and objects. CNNs are special variants of multi-layer

perceptron (MLP). The architect of a typical MLP is illustrated in Figure 3.1. Formally, a

one-hidden-layer MLP is a function:

f(x) = G(b(1,t) +W (1,t)x) (3.7)

where G is the activation function; W (t) and b(t) denote the weight matrices and the bias

vectors. The output is then obtained as: o(x) = G(b(2,t) +W (2,t)h(x))

CNNs describe the most classic form of neural network where multiple processing nodes

are arranged in layers such that information only flows from input to output. We mainly

use three types of layers to build a CNN architecture: Convolutional Layer, Pooling Layer,

and Fully-Connected Layer.

• Convolutional layer preserves the spatial relationship by applying a convolution

operation, which computing a dot product between their weights and followed by a

non-linear function where we often use rectified linear unit (ReLU): f(z) = max(0, z).

• Pooling layer tries to reduce the dimensionality of the input but preserves the most

important information. Pooling layer can be of different types: max pooling, average

pooling, sum pooling, etc.
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Figure 3.2: An example of architecture for classification with convolutional neural network.

• The fully connected layer is a one-hidden-layer MLP that uses a softmax activation

function (multi-classification task) or sigmoid activation function (binary classification

task) in the output layer.

CNN performs transformations to the original input into the final class values. Note that

some layers contain parameters that need to be learned, and others don’t. In particular,

the convolutional layers and fully connected layers can be expressed as a function that

not only contains the weights and biases parameters but also the non-linear activations.

The parameters in the CNN can be trained with optimization algorithms, such as gradient

descent, that the output scores are consistent with each input’s label in the training set.
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Figure 3.3: A recurrent neural network with no outputs.

3.3.3 Recurrent Neural Network

Recurrent neural networks, or RNNs [105], are a category of neural networks that are

specialized for processing sequential data. While a convolutional network is good at

processing tensors such as an image, a recurrent neural network is specialized for handling

variable-length sequence input x(1), ..., x(t). Each layer performs the same task without

sequence-based specialization, and it can scale to much longer sequences than other methods.

The hidden units of recurrent neural networks are defined in (3.8) or a similar equation.

h(t) = f(h(t−1), x(t); θ), (3.8)

where h represent the state and x(t) refers to the recurrent input at time t. This equation

can be described by a directed computational graph as illustrated in Figure 3.3.

The recurrent neural network is usually trained to predict future sequence from the

history, the RNN uses h(t) as a loss function over y with respect to the past input sequence

up to t. Given its current h(t), the RNN outputs a probability distribution over an arbitrary

length sequence (x(t), x(t−1), ..., x(1)). Unfortunately, Bengio et al. [15] observes that it is

difficult to train RNNs with long-term dependencies due to common gradient vanish or

explode problems. We may be able to initialize the weights very carefully to avoid gradient

vanish or explode problems, however, it’s still hard to capture long-time the dependency.
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Long Short-Time Memory

The most commonly implemented RNNs fall into the class of long short-time memory (LSTM

[54]) neural networks. As the name suggests, such RNNs exhibit remarkable empirical

performance for extracting/preserving long-term dependencies whilst also maintaining short-

term signals. LSTM networks, as shown in Figure 3.4, involve three gates in the computation

of each hidden cell to determine what to forget, what to output and what to be provided to

next hidden cell respectively. The information flow of LSTM cell is as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (3.9)

it = σg(Wixt + Uiht−1 + bi) (3.10)

ot = σg(Woxt + Uoht−1 + bo) (3.11)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (3.12)

ht = ot ◦ σh(ct) (3.13)

where σg(·) and σc(·) represent the sigmoid and tangent function, respectively, and ◦ denotes

the element-wise product.

Bidirectional RNN

While conventional RNNs provide a very efficient way of dealing with sequential data, it only

exams past information to predict the next data. As such, Schuster et al. [108] proposed

a bidirectional RNN neural network (Bi-directional RNNs) that makes predictions based
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Figure 3.5: Computation of a typical 3 layers bidirectional recurrent neural network.

on both past and future sequences by adding another hidden layer. At each time-step t,

bidirectional RNN is split to two hidden layers for each neuron, one is used for the forward

propagation and another is used for backward propagation. The final class score, yt, is

calculated by merging the two scores generated by both forward and backward hidden layers.

This network, however, consumes twice as much memory space due to the increased number

of hidden layers. Figure 3.5 shows the bi-directional network architecture, and (3.14) presents

the mathematical formulation of bidirectional RNN. The difference between these traditional

RNN and bidirectional RNN is the direction of recursing through the “cells.”

−→
h (t) = f(h(t−1), x(t);

−→
θ ) (3.14)

←−
h (t) = f(h(t+1), x(t);

←−
θ ) (3.15)
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Figure 3.6: Different scenario for dynamic FDI attacks.

3.4 Real-time Detection of False Data Injection Attack

Various research on static FDI attack detection method has been published. A common

assumption is a threat model where the attackers have knowledge of the power system

topology; however, can only inject a limited number of bad data points which is shown

in Figure. 3.6a. In this threat model, FDI attack can be mitigated if a proportion of

the comprised substation is below a certain threshold. Moreover, data measurements are

often redundant for estimating the actual state. This threat model is widely adopted in

existing works. Nonetheless, we stress this threat mode by 1) removing the limitation of the

number of measurement data that are corrupted; and 2) assuming the attackers have a basic

understanding of the aforementioned static detection mechanism in (3.5).

Figure 3.6b shows the dynamic FDI attack that is focused on this work. The attack

starts at t = 3, and the measurements of both bus 2 and 3 have been compromised. Static

methods may fail in this scenario, for the reason that two-thirds of the measurements have

been modified from t = 3 to t = 6. A sophisticated attacker can deliberately generate a false

event based on a real event and inject it into the power grid. As a result, it is unlikely to

detect this attack only based on static methods which can have catastrophic consequences

if the control center takes false actions.
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Figure 3.7: The overview of our proposed deep learning based FDI attacks detection
system.

3.4.1 The Combined Attack Detection Method

In this section, we provide an overview of our proposed system for detecting FDI attacks in

Figure 3.7. Our proposed detection mechanism mainly consists of a static detector and a

deep learning based dynamic detection scheme. The static detector can be a State Estimator

(SE) or any aforementioned FDI attack detector [9, 17, 38, 53, 73, 95, 63] which is built

independently beyond our dynamic detector. As mentioned in the previous section, the

dynamic detector takes two input sources. While the data level features are explicit, the

network packages are captured by tcpdump, and each network packet includes header and

data payload, with unique features which defined in NSL-KDD dataset [114]. The NSL-KDD

dataset has 41 features as shown in Table 3.1 which are categorized into three types: basic,

content-based, and traffic-based features. It should also be mentioned that some features are

generated based on a fixed window (default is 2 second) which will remain consistent within

the window.

Our dynamic detector is employed to recognize the high-level time-series features of

the FDI attacks. To achieve this goal, our time-series method consists of two essential

mechanisms: offline training and online detection. The offline training is trained based on

historical measurement and can be potentially facilitated by outsourcing to public machine

learning cloud services. Unlike other methods which are designed under the assumption that
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Table 3.1: Derived features that are extracted from network trace

Feature Name Description Type

duration length (number of seconds) of the connection continuous
protocol type type of the protocol, e.g. tcp, udp, etc. discrete
service network service on the destination, e.g., http,

telnet, etc.
discrete

src bytes number of data bytes from source to destination continuous
dst bytes number of data bytes from destination to source continuous
flag normal or error status of the connection discrete
land 1 if connection is from/to the same host/port; 0

otherwise
discrete

wrong fragment number of “wrong” fragments continuous
urgent number of urgent packets continuous
hot number of “hot” indicators continuous
num failed logins number of failed login attempts continuous
logged in 1 if successfully logged in; 0 otherwise discrete
num compromised number of “compromised” conditions continuous
root shell 1 if root shell is obtained; 0 otherwise discrete
su attempted 1 if “su root” command attempted; 0 otherwise discrete
num root number of “root” accesses continuous
num file creations number of file creation operations continuous
num shells number of shell prompts continuous
num access files number of operations on access control files continuous
num outbound cmds number of outbound commands in an ftp session continuous
is hot login 1 if the login belongs to the “hot” list; 0

otherwise
discrete

is guest login 1 if the login is a “guest”login; 0 otherwise discrete
count

number of connections to the same host
as the current connection in the past two seconds

continuous

serror rate % of connections that have “SYN” errors continuous
rerror rate % of connections that have “REJ” errors continuous
same srv rate % of connections to the same service continuous
diff srv rate % of connections to different services continuous
srv count

number of connections to the same service
as the current connection in the past two seconds

continuous

srv serror rate % of connections that have “SYN” errors continuous
srv rerror rate % of connections that have “REJ” errors continuous
srv diff host rate % of connections to different hosts continuous
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the physical status of the power system does not change overtimes, our system will collect

real-time measurement data to support offline training and the prediction model will update

after retrain is completed.

3.4.2 Static Detection Method

In general, if the malicious data a is unstructured, the attack vector is likely to be detected

by SVE. So we can use a simple SVE to detect some limited power FDI attacks.

3.4.3 Dynamic Detection Method

In [52], the authors formulate the bus voltage magnitudes, angles and states of measuring

devices together as system states in Markov Decision Process (MDPs). In our method, we

extend to a recursive model where the decision not only depends previous one state but

previous n states where the loss is as follows:

η = L(φ(st), f(φ(st−1, ......, st−n−1), θ), τ) (3.16)

where φ, θ are parameters need to be turned and τ is the threshold that is needed to decide

whether the attack has been started.

Figure 3.8 shows the architecture of our dynamic detection method. More explicitly, the

input of the model is the time-serious power system data, and the features will be transformed

by several bi-directional RNN layers to learn high-dimensional temporal features. Previous

works [42, 53] characterize FDI attacks as a binary classification problem which looks

promising in the experimental setting, since the datasets to be tested can be manually

tuned for different scenarios. In real-world implementations, power system data is highly

unbalanced. Thus, binary classification methods will inevitably have low recall even the

overall accuracy is high. However, for evaluating IDS, recall is often more important than

accuracy since any cyber attack can cost catastrophe results.

In general, our dynamic anomaly detector takes the time-series input ..., x(t−1), x(t+1) to

learn their high-dimensional feature representations, and then use learned representations to
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Figure 3.8: The time-serious dynamic detection method based on RNN.

predict data x̂(t). After that, we use the predicted data to classify if x(t) is anomalous by

calculating the residue between the actual data x(t) and predicted data x̂(t).

Having presented single source FDI attacks detection model, we now introduce a

framework that combines FDI attacks detector with network intrusion detection system.

This framework is dealing with a case when an IDS that relies on data measurement fails to

detect the start of FDI attacks. Accordingly, if the fabricated injection data are derived from

a legitimate measurement in our threat model, data level detectors may fail to determine if

the current network is intruded or not. In this case, to increase the overall performance of

the time-series anomaly detection model, a combined attack detection method is proposed

in this research effort.

Specifically, the schematic structure of the proposed scheme is given in Figure 3.9. An

alternative method to combine data level information and packet level features is directly

concatenated with the input vector. However, because the dimension between the data

measurements and network packet features differ significantly, direct concatenation may have

minimal improvement than aforementioned time-serious methods. Alternatively, each level

features are transformed by a convolutional neural network before concatenation as shown in

the figure. The purpose of adding additional convolutional neural network is to equalize the

59



h !t,1)h!t-1,1)h!t-2,1) h!…)

y"!t+1)

h!…)

h !t,2)h!t-1,2)h!t-2,2)

h !t,l)h !t-1,l)h !t-2,l)

.

.

.

Anomly 
Detection

Measurment

Network 
Packages

1d_conv

Feature 
Extraction

Pooling

1d_conv Pooling

1d_conv Pooling

1d_conv Pooling

Fully 
Connected

Figure 3.9: The combined detection method with both network package and data
measurement inputs.

dimension between data measurement and packet level features and their respective weights

are learned using gradient descent (Adam algorithm is used in our experiments). Inception

deep learning architecture [113] is advised when possible.

3.5 Evaluation

In this section, we provide several key implementation details of our proposed FDI attack

detection system, thereby providing a better intuition about its capabilities and limitations.

Figure 3.10 shows IEEE 10 generator 39 bus power system and details in [96]. In the 39

bus system, the state vector x ∈ R39 is composed of the voltage, current, and frequency of

the individual buses. The communication network is emulated using two computers where

one computer represents the Independent Service Operator which collect data measurement

through Ethernet. The sample rate is set to 10Hz. The FDI attacks are generated from man-

in-middle attackers from a client-server communication structure, and two input sources are

time synchronized to make it possible for real-time implementation. The dynamic detector is

configured with three layers bi-directional RNN with LSTM cells and trained using Pytorch.
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Figure 3.10: IEEE 39 bus power system.

In this experiment, to better evaluate our dynamic detector, our system does not implement

SE.

We assume that the attackers can inject k measurements which are randomly chosen to

generate Gaussian distributed attack vectors a ∼ N (0, 0.5). We also test the scenario that

the attacking vectors are derived from real measurement which will fail to be detected by

most state-of-art detectors. In this experiment, the attackers try to inject a false generator

trip event which is collected in advance, and we define attacking capability as k
n

where n is

the total number of measurements. We evaluate the performance of our dynamic FDI attack

detection framework on the classification results for the test set. We train a neural network

with ten training epochs to minimize the loss function in Equation 3.16. For the experiment,

we apply a 60% / 20% / 20% train / validation / test split, with a grid search to determine

the best τ .

We illustrate the results of our anomaly detection system in Figure 3.11. From the figure,

it is clear that our proposed detection mechanism can achieve the detection accuracy above
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Figure 3.11: The accuracy of detecting FDI attacks for different the number of the
compromised buses.

90% for random FDI attacks when k
n

is high. However, we also notice that our system has

low accuracy when attacking power is low. In fact, this can be resolved by incorporating

an SE detector (such as [95, 53]) which work well for limited attacking capability. In

other words, our proposed two-level detection scheme is able to achieve high detection

accuracy for different scenarios. For target FDI attacks, the injected data streams are

carefully manipulated by a real event which is not considered for most SE bad data detection

schemes. Our experiment validates that the dynamic features and network anomaly detector

integration can support IDS for better performance. The simulation result in this case study

also implies that the full in-depth knowledge of the power system is not required for the

success of our dynamic detection scheme. Our system can be built at an early stage of an

electricity network.
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Chapter 4

Privacy-preserving Large Scale

Security Constrained Optimal Power

Flow

4.1 Introduction

In order to adequately supply the connected load while minimizing the operating costs,

system operators need to solve the optimal power flow (OPF) problem subject to physical

constraints and control limits of the power system [27]. However, due to the large-scale

interconnected topology of transmission and distribution networks, the OPF model cannot

ensure the demand-supply balance condition when the power system experiences unexpected

failure and disconnection of components such as generators, transmission lines, transformers,

etc., known as an outage or a contingency [64]. To address this issue, security requirements

that ensuring the power system to continue its reliable operation during contingency scenarios

need to be performed with the OPF problem, which is referred to as the security-constrained

optimal power flow (SCOPF) problem in the literature [6, 83]. The optimal solution of the

SCOPF problem produces the minimal cost generation dispatch while still assures that the

power system remains balanced and no operational constraints are violated in both the

normal state and contingencies [6, 83].
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Figure 4.1: The system security level is improved by solving the SCOPF, which takes into
account a number of contingency cases in a dedicate selected contingency list.

The contingency analysis is performed by independent system operators (ISOs) to ensure

the reliable operation of power systems in both normal case and contingencies. By taking into

account both pre-contingency constraints and post-contingency constraints in the SCOPF,

the security of the power system can be significantly improved [25]. An illustration of the

SCOPF is shown in Figure 4.1. The system security level is improved by taking into account

a number of contingencies in a dedicate selected contingency list. The SCOPF is commonly

classified into two major types: the preventive model [6] and corrective model [83]. The

preventive SCOPF formulation seeks the minimum cost dispatch solution in the normal

state that requires the normal-state variables to be feasible for all pre-specified contingency

conditions, i.e., the control variables are not allowed to reschedule in contingency scenarios.

However, this model makes the solution to be more conservative and may incur, in general,

a higher operation cost [6].

The corrective SCOPF model, on the other hand, permits system operators to adjust

post-contingency control variables such as power generation outputs and line power flows

within a certain limit to eliminate any violation caused by the contingency. Due to the

capability of adjusting control variables, the corrective SCOPF model often produces the

optimal solution that has a lower total generation cost than the preventive model [99].

Despite the economic benefit of the corrective SCOPF model, its formulation generates

additional variables, which sharply increase the problem size when numerous contingencies
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are taken into account. The large-scale formulated problem may result in excessive memory

usage and unacceptable computation time [98]. Recently, cloud computing has demonstrated

its massive potential for tremendously speeding up intensive computation while reducing the

cost. Hence, outsourcing the SCOPF problem to the cloud has emerged as a promising

solution to the challenges as mentioned above. Nonetheless, the fact that the operation

takes place entirely at a third party will inevitably raise privacy concerns about data

sensitivity. Sensitive power grid data can be captured by the cyber attacker and used to

initiate a more sophisticated attack (e.g., false data injection attack [75]) which could have

potentially catastrophic consequences. Alternatively, generic secure multi-party computation

can implement any algorithm in principle, allowing the utility companies to take advantage

of the aforementioned outsourcing paradigms while protecting the privacy of its operational

data.

In this chapter, we present a decentralized structure of outsourcing paradigm and

a distributed privacy-preserving algorithm to demonstrate the feasibility of solving the

corrective SCOPF problem without losing data privacy. The basic idea of the proposed

scheme is to let each substation encrypt their private data after which a third party performs

the SCOPF algorithm over the encrypted data without decrypting it. The third party then

sends the encrypted result to the ISO company, which can be decrypted using the pre-

distributed secret key. This is accomplished by leveraging additive Homomorphic Encryption

(such as the Paillier cryptosystem [97]). However, according to the additive homomorphism

property, we cannot directly solve the SCOPF problem using any available methods. In

this work, we leverage both alternating direction method of multipliers (ADMM) [21] and

gradient projection algorithm [16] to transform the SCOPF problem into a solvable problem

for the additive homomorphic cryptosystem.

Note that even though the proposed scheme is based on ADMM and gradient projection,

it can also be easily extended to other sophisticated optimization algorithms. Also, our

proposed method is not limited to solve the SCOPF problem; it can also be applied to any

other optimization problems that involve ADMM or gradient projection such as Internet

congestion control and power system state estimation.
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4.1.1 Challenges

The OPF is of great importance to ISO power markets, and is solved recursively from

every hour to every day. Thus, OPF has potentials to be targeted by attackers for sniffing

attacks (See Section 2.6.2). What’s more, a SCOPF problem contains high confidential

information, such as local power constraints and bus connections. In this case, protecting

SCOPF computation is particularly crucial. Traditional cryptography is widely utilized to

secure the communication channels between different entities. Nonetheless, it is hard to

figure out how to secure the computation process. For public key cryptosystem, variables

must be decrypted in order correctly calculate the optimal flow, thus still suffering sniffing

attacks. Taking the above requirements into consideration, we choose to use secure multi-

party computation to secure the SCOPF computation which can perform calculations on

encrypted data.

However, cryptography comes with a cost, especially for secure multi-party computation

algorithms. Therefore, it is also necessary to figure out how to minimize the computation

and communication overhead. Possible solutions include using high-performance computers

or special designed cryptography hardware, and distributed computing. Taking cost into

account, it is impractical for ISOs to employ high-performance computers or specially

designed cryptography hardware. On the other hand, it is also not straightforward to develop

a distributed multi-party secure computation algorithm for the SCOPF problem because of

its large scale.

4.1.2 Outlines

By presenting privacy-preserving computation for the large-scale SCOPF problem the main

contributions of this chapter can be summarized as follows:

• To our best knowledge, this work is the first to consider the privacy-preserving method

for the SCOPF problem.

• Decomposed the SCOPF problem into independent subproblems using ADMM and

gradient projection which are solved by Homomorphic Encryption.
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• Both ADMM and gradient projection algorithms are proposed in a privacy-preserving

manner.

We organize the rest of this chapter as follows. Section 4.2 reviews the related

works. Section 4.3 introduces the architecture and threat model. Section 4.4 explains the

components of privacy-preserving SCOPF. The section continues to presents the optimization

techniques and summarizes our proposed privacy-preserving SCOPF scheme along with

security analysis in Section 4.5. Section 4.6 presents the experiment results of our proposed

scheme.

4.2 Related Work

Due to the large-scale nature of the SCOPF problem, recent research has tried to propose

different methodologies to handle the SCOPF problem. The contingency filtering techniques

have been developed in [8, 24] to discard contingencies that do not affect the optimal solution.

An exact method to obtain the global optimal solution using a branch-and-bound algorithm

has been proposed in [98]. The Benders decomposition techniques to handle each contingency

separately and check the feasibility of the optimization problem has been applied in [123]

to achieve computational efficiency. The works in [99, 74] apply the ADMM decomposition

method to design a parallel computing framework, which can be executed simultaneously on

multiple computers to reduce the running time for the algorithms.

Previously, researchers mainly focus on the privacy of customer data in the smart grid.

Giaconi et al. [46] studied information leakage in a smart meter system, and the privacy can

be partially preserved by a low-complexity policy which can approach the theoretical lower

bound. This scheme only guarantees lower the information leakage rate in limited scenarios.

Other methods for protection consumers’ privacy can be found in [37, 11, 49]. Additionally,

only a few researches have been published to address sensitive operational data for the

power system. [122] tries to secure outsourcing of widely applicable linear programming

(LP) computations by applying affine mapping on decision variables, which will transform

the original vector space to a different one. [116] proposes a novel scheme that enables privacy

preserving multi-party spectral estimations, which conduct spectral estimation directly over
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the encrypted synchrophasors to limit privacy breaches. However, both works only deal with

the minimal scenario which cannot be applied to solve more complicated problems such as

SCOPF.

Furthermore, privacy-preserving computations have received significant attention in areas

other than the smart grid. A common approach makes use of two-party computation is

based on Yao’s garbled circuits. [89] shows the feasibility of designing a system that performs

matrix factorization, a popular method used in a variety of modern recommendation systems.

Several frameworks implement Yao’s garbled circuits and describe many applications [66].

However, due to the inherent serial property, recent work [88] shows that the garbled circuit

is 214 times slower than computing in plaintext. To deal with the slowness of garbled circuit,

some works introduced hybrid approaches, such as combining Homomorphic Encryption

and garbled circuits for regression [89], face [106] and fingerprint recognition [39], and

combining secret sharing with garbled circuits for learning a decision tree [4]. Nonetheless,

the performance of those hybrid approaches is primarily affected by the network connection,

which does not apply to our scheme.

4.3 System Architecture

4.3.1 System Model

Our system is designed for one or multiple entities who want to solve the large-scale SCOPF

problem with a limited computational resource. The system model of the proposed scheme is

captured in Figure 4.2 where the notation is given in Table 4.1. The proposed system model

involves four different entities: Control Center (CC), Balancing Authority (BA), Server (S),

and Cryptographic Provider (CP).

Control Center refers to as the operator of the regional power system who solves

the SCOPF problem to minimize generation costs, market surplus, and losses, etc. An

independent system operator (ISO) firstly prepares a SCOPF problem F which contains the

objective function and constraints and send initiation request to each balancing authority.

In our scheme, control center initials a SCOPF problem and sends it to the server.
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ISO Externtal Network

Figure 4.2: The architecture of proposed scheme

Balancing Authority is usually a substation in the power system F which contains

local operation data and contingencies. In our scheme, after receiving a request command

from the control center, balancing authorities generate encrypted local data and upload it

to the server.

Server only stores the public key Kpub. Upon receiving the encrypted SCOPF problem

Fc from the ISO, the server executes privacy-preserving algorithm over Fc, and finally returns

encrypted optimal [Pg,c] to the ISO. The contribution of our system is to ensure that the

server learns nothing about the power flow while still being capable of computing the optimal

state of the power system.

Cryptographic Provider is a third party that initializes the system by assigning setup

parameters to each party and is needed for a short one-round online step in each iteration

while the server computes the model.
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Table 4.1: Notation definitions

Variable Description
G The set of generators
N The set of buses
B The set of branches
θc ∈ R|N | The vector of voltage angles
Pg,c ∈ R|G| The vector of real power flows
f gi The generation cost function

Pg,0
i The displaceable real power of each individual generation

unit i for pre-contingency configuration
Bc
bus ∈ R|N |×|N | The power network system admittance matrix

Bc
f ∈ R|B|×|N | The branch admittance matrix

Pd,c ∈ R|N | The real power demand
Cg,c ∈ R|N |×|G| The sparse generator connection matrix, whose element

(i, j) element is 1 if generator j is located at bus i and 0
otherwise

Fmax The vector for the maximum power flow
Pg,c The upper bound of real power generation
Pg,c The lower bound of real power generation
∆c The pre-defined maximal allowed variation of power

outputs
Kpriv The private key of a cryptosystem
Kpub The public key of a cryptosystem
E A Paillier cryptosystem
F The plaintext of a SCOPF problem, denoted as a

collection of base case and all the contingencies
Fc The encrypted SCOPF problem stored in the server
[x] The encryption form of x using Paillier cryptosystem
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4.3.2 Design Goals and Threat Model

To enable secure, efficient, and accurate solving SCOPF over the encrypted problem under

the above model. Our goal is to ensure the security of our algorithms using the secure two-

party computation framework for semi-honest adversaries (or honest-but-curious adversaries)

[47]. The specific requirements are summarized as follows:

• Data Privacy: The server and cryptographic provider could not reveal the power flow

using the statistical information during the computation process.

• System Confidentiality: Given an encrypted SCOPF problem Fc, The server and

cryptographic provider are not able to recover key information of the power grid, such

as power demand, bus limits, and generation load.

• Efficiency: The scheme aims to achieve efficiency by offloading the computation to the

server and by using the parallel approach.

• Accuracy: The difference between the result that calculated by the proposed parallel

scheme and traditional centralized method will not exceed the threshold e.

In our system, we assume that the Server is able to produce a correct model. Thus,

we do not concern with a malicious server who tries to disrupt the optimization algorithm

to output an incorrect result. However, the server is motivated to learn information about

private data stored on the server since this data can potentially be sold to other parties,

e.g., black market. In our scenario, consider the server is compromised by a semi-honest

adversary. The adversary aims to learn the SCOPF problem and the optimization result

as much as possible by analyzing all the input and output of this party. That is to say,

the server can conduct a ciphertext-only attack (COA) [47] in this model. However, the

adversary cannot prevent this party from executing the algorithm faithfully. Hence, we do

not consider an adversary who will intentionally corrupt the operation to generate misleading

results.
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4.4 Preliminaries

To better understand our scheme, in this section, we review SCOPF and necessary

components of the proposed algorithm.

4.4.1 SCOPF Problem Formulation

The corrective SCOPF problem finds the optimal dispatch solution for the power network

while satisfying security criteria in which the system operator is allowed to re-adjust control

variables after a contingency occurs. This capability gives the system operator a time window

to adjust control variables in order to eliminate any violations caused by the contingency.

The general formulation of the corrective SCOPF problem can be compactly formulated as

follows [83]:

min
x0,...,xC ;u0,...,uC

f 0(x0,u0) (4.1)

subject to g0(x0,u0) = 0, (4.2)

h0(x0,u0) ≤ 0, (4.3)

gc(xc,uc) = 0, ∀c ∈ C, (4.4)

hc(xc,uc) ≤ 0, ∀c ∈ C, (4.5)

|u0 − uc| ≤∆c, ∀c ∈ C, (4.6)

where C = {1, 2, . . . , C} is the set of postulated contingencies, superscript c denotes variables

and constraints associated with the c-th contingency, superscript 0 represents the base case

(pre-contingency state), x and u denote state variables and control variable. The constraints

in (4.2) and (4.3) denote the set of equality and inequality constraints associated with the

operation of power system such as transmission line limits, power flow equations, etc., in

the base case. Similarly, (4.4) and (4.5) represent the operational constraints of power

system when switching into contingency states. The last constraints in (4.6) are the coupling

constraints between the base case and post-contingency, which mean that the deviation
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of control variables between the normal state and contingency states must be within the

allowable adjustment limit, denoted by ∆c.

Based on the standard form of the SCOPF problem, there are some variations on the

objective function and constraints for the SCOPF problem in alternating current (AC) and

direct current (DC) power networks. For the sake of computational tractability of the

proposed privacy scheme, we consider a DC power network with the objective function

is to minimize the total generation cost while ensure the security requirements for the power

system. Therefore, the corrective SCOPF problem can be simplified as follows [74]:

min
θ0,...,θC ;Pg,0,...,Pg,C

∑
i∈G

f gi (Pg,0
i ) (4.7)

subject to B0
busθ

0 + Pd,0 −Cg,0Pg,0 = 0, (4.8)

Bc
busθ

c + Pd,c −Cg,cPg,c = 0, (4.9)

|B0
fθ

0| − Fmax ≤ 0, (4.10)

|Bc
fθ

c| − Fmax ≤ 0, (4.11)

Pg,0 ≤ Pg,0 ≤ Pg,0, (4.12)

Pg,c ≤ Pg,c ≤ Pg,c, (4.13)

|Pg,0 −Pg,c| ≤∆c, (4.14)

i ∈ G, c = 1, . . . , C, (4.15)

where Pg,0
i is the generation output of each individual generator for pre-contingency

configuration, f gi (Pg,0
i ) represents the generation cost function of the generator using the

following function

f gi (Pg,0
i ) = ai(P

g,0
i )2 + biP

g,0
i + ci, (4.16)

where ai, bi and ci are the cost coefficients. The constraints (4.8) and (4.9) are the nodal load-

flow equations. The inequality constraints (4.10) and (4.11) are the transmission line limits.

Constraints (4.12) and (4.13) are the power generation limits. Constraints (4.14) enforce the
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maximum adjusting limits for the generation units when switching into post-contingency

states. The key notations of the above problem can be found in Table 4.1.

The problem in (4.7)-(4.15) is convex and can be solved by a central controller

using convex optimization techniques [22]. However, due to numerous contingencies are

incorporated into the model, the formulated problem becomes a large-scale optimization

problem, which makes the centralized computational framework impractical. We will propose

a parallel computation algorithm using the ADMM decomposition technique in the next

section.

4.4.2 Paillier Cryptosystem

Paillier cryptosystem is a public key based additive homomorphic cryptosystem first proposed

in [97] and further generalized by Damg̊ard and Jurik [33]. Here, additive homomorphic

cryptosystem means it can compute the sum of two values in the encrypted domain, which

means given the encryption of a and b, we can get encryption a + b without decryption. In

this case, the Paillier cryptosystem is very useful for privacy-preserving applications. In this

subsection, we will illustrate the key components of the Paillier cryptosystem.

Key Generation

First, two big prime numbers p and q are selected to compute n = pq and λ = lcm(p−1, q−1).

Then choose a random integer g where g ∈ Z∗n2 (Z∗n2 = {z|z ∈ Z, gcd(z, n2) = 1} and Z

denotes the set of all integers). The private key is λ and the public key is the tuple (n, g).

Encryption

To encrypt a value m where m < n in the typical setting, we need to select a random value

r ∈ Z∗n. Then the ciphertext can be computed as: c = gm · rn mod n2. Note that in our

scenario, m is not necessarily positive. Therefore, we divide the encryption space in two

parts and then m is in the range of (−n/2, n/2).
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Decryption

To decrypt a ciphertext c, the plaintext message can be computed as:

m = D(c) =
L(cλ mod n2)

L(gλ mod n2)
mod n, (4.17)

where function L is defined as L(u) = u−1
n

.

Additive Homomorphism

Given the ciphertext of m1 and m2, the product of two ciphertexts will decrypt to the sum

of their corresponding plaintexts:

D(E(m1, r1) · E(m2, r2) mod n2) = m1 +m2 mod n. (4.18)

Moreover, given a ciphertext and a plaintext, we can compute the sum of the corresponding

plaintexts:

D(E(m1, r1) · gm2 mod n2) = m1 +m2 mod n. (4.19)

Homomorphic Multiplication of Plaintext

By raising the ciphertext to a constant k, we can get the encryption of the product of the

plaintext and the constant:

D(E(m1, r1)
k mod n2) = km1 mod n. (4.20)

However, given the encryptions of two plaintexts, there is no direct way to compute the

product of these messages without knowing the private key.

4.4.3 The ADMM Method

The ADMM is a powerful algorithm that is proposed to solve convex optimization. Its

general idea is to solve small local subproblems, which are coordinated to find a solution to

a global problem by blending the benefits of dual decomposition and augmented Lagrangian
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methods for constrained optimization. The general form of ADMM is described as follows:

min
x,z

f(x) + g(z) (4.21)

subject to Ax + Bz = c, (4.22)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. Functions f and g are closed,

convex and proper. The scaled augmented Lagrangian can be expressed as:

Lρ(x, z,µ) = f(x) + g(z) +
ρ

2
‖Ax + Bz− c + µ‖22, (4.23)

where ρ > 0 is the penalty parameter and µ is the scaled dual variable. Using the scaled

dual variable, x and z can be updated in a Guass-Seidel fashion. At each iteration k, the

update process can be expressed as:

xk+1 = arg min
x

f(x) +
ρ

2
‖Ax + Bzk − c + µk‖22, (4.24)

zk+1 = arg min
z

g(z) +
ρ

2
‖Axk+1 + Bz− c + µk‖22. (4.25)

Finally, the scale dual variable is updated by:

µk+1 = µk + Axk+1 + Bzk+1 − c. (4.26)

4.5 Privacy-preserving SCOPF

The basic idea of this algorithm is to use Paillier cryptosystem to solve multiplication,

addition, and subtraction without leaking any information about the input. However,

the objective function of the SCOPF problem is not necessarily linear and usually in the

quadratic form. To address this challenge, we will reformulate the SCOPF problem using

the ADMM and gradient projection algorithms in this section.
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4.5.1 Reformulating the Problem

The SCOPF problem in (4.7)-(4.15) contains a large number of constraints. However, we

can separate constraints (4.8)-(4.13) into the normal state and each contingency state. The

only constraints in (4.14) are coupling between the normal state and contingency state. In

order to make constraints in (4.14) to be separable, we define auxiliary variables

Pg,c = Pg,c
o ,∀c ∈ C, (4.27)

where each auxiliary variable Pg,c
o can be interpreted as local copy of Pg,c at the normal

state. Then, constraint (4.14) now can be rewritten separately for the normal state and

contingencies as

|Pg,0 −Pg,c
o | ≤∆c. (4.28)

The constraints (4.8), (4.10), (4.12), and (4.28) are now consisting of variables in the normal

state only, while constraints (4.9), (4.11), and (4.13) contains variables in contingencies. To

facilitate the presentation, we define the feasible sets in the normal state, F0, and each

contingency state, F c, as

F0 = {(Pg,0,Pg,c
o )|(4.8), (4.10), (4.12), (4.28)},

F c = {(Pg,c)|(4.9), (4.11), (4.13)},∀c ∈ C.

Then, the problem in (4.7)-(4.15) can be rewritten as

min
θ0,...,θC ;Pg,0,...,Pg,C

∑
i∈G

f gi (Pg,0
i ) (4.29)

subject to {Pg,0,Pg,c
o } ∈ F0, (4.30)

{Pg,c} ∈ F c,∀c ∈ C, (4.31)

Pg,c = Pg,c
o ,∀c ∈ C. (4.32)
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Algorithm 1 Distributed SCOPF

Input: Bc
bus, B

c
f , A

g,c,Pd,c,Pg,c,Pg,c,∆c

Initialize: θc,Pg,c,pc,µc, ρc, k = 0
1: while not converge do
2: Pg,0 - update
3: Pg,0k+1

= arg minPg,0,p

∑
i∈G f

g
i (Pg,0

i )−
∑C

c=1µ
cPg,c

o + ρ
2

∑C
c=1 ‖Pg,c −Pg,c

o ‖22
s.t. {Pg,0,Pg,c

o } ∈ F0

4: P g,c-update, distributively at each node:
5: Pg,ck+1

= arg minPg,c µcPg,c + ρ
2
‖Pg,c −Pg,c

o ‖22
s.t. {Pg,c} ∈ F c.

6: µck+1
= µck + ρ(Pg,c −Pg,c

o )
7: Adjust penalty parameter ρc when necessary
8: k = k + 1
9: end while

10: return θc,Pg,c, c = 0, ..., C

The augmented Lagrangian can then be calculated as:

Lρ(Pg,0, ...,Pg,C ; Pg,1
o , ...,Pg,C

o ;µ1, ...,µC)

=
∑
i∈G

f gi (Pg,0
i ) +

C∑
c=1

µc(Pg,c −Pg,c
o )

+
ρ

2

C∑
c=1

‖Pg,c −Pg,c
o ‖22.

(4.33)

Based on the Lagrangian function, we can decompose the problem in (4.7)-(4.15) into

C + 1 subproblems as follows:
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Pg,0-update

At kth iteration, the Pg,0-update solves the base scenario with square regularization terms

enforce by the coupling constraints and expressed as:

Pg,0[k + 1] = arg minLρ(P g,0)

= arg min
Pg,0,p

∑
i∈G

f gi (Pg,0
i )−

C∑
c=1

µcPg,c
o

+
ρ

2

C∑
c=1

‖Pg,c −Pg,c
o ‖22 (4.34)

s.t. {Pg,0,Pg,c
o } ∈ F0. (4.35)

Pg,c-update

The remaining C subproblems are associated with variables in contingency scenarios. Each

contingency can be solved in parallel at different computing nodes as

Pg,c[k + 1] = arg minLρ(P g,c)

= arg min
Pg,c

µcPg,c +
ρ

2
‖Pg,c −Pg,c

o ‖22

s.t. {Pg,c} ∈ F c. (4.36)

µ -update

The computation of updating dual variables are also linear and can be performed locally at

cth computing utility as:

µc[k + 1] = µc[k] + ρ(Pg,c −Pg,c
o ). (4.37)

4.5.2 Solving Subproblems

In this section, we explain how to solve each subproblem using Homomorphic Encryption in

a simple way. We formulate each subproblem as a quadratic optimization problem:
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arg min
x

xT · A · x+ bT · x (4.38)

subject to B · x = d, (4.39)

u ≤ C · x ≤ v, (4.40)

s ≤ x ≤ t. (4.41)

The linear inequality constraints are difficult to deal by basic operations in their current

form. So we further simplify this problem by introducing a dummy variable y = C ·x. Then,

we obtain the problem:

arg min
x

xT · A · x+ bT · x (4.42)

subject to B · x = d, (4.43)

C · x− y = 0, (4.44)

u ≤ y ≤ v, (4.45)

s ≤ x ≤ t. (4.46)

This subproblem itself can be solved by ADMM. We denote the augmented Lagrangian:

Lβ(x, y;w1, w2) :=xT · A · x+ bT · x+
β

2
‖Bx− d− w1‖22

+
β

2
‖Cx− y − w2‖22, (4.47)

where w1 and w2 are scaled Lagrange multipliers, and β is a penalty parameter. The iteration

of ADMM is
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xk+1 = arg min
x
Lβ(x, yk;wk1 , w

k
2) subject to s ≤ x ≤ t; (4.48)

yk+1 = arg min
y
Lβ(xk+1, y;wk1 , w

k
2) subject to u ≤ y ≤ v; (4.49)

wk+1
1 = w1k − (Bxk+1 − d); (4.50)

wk+1
2 = wk2 − (Cxk+1 − yk+1). (4.51)

The x-subproblem does not have a closed-form solution. It is solved by another iteration

of gradient projection: x ← proj[s;t](x − αOxLβ(x, y;w1, w2). Since L is quadratic, (x −

αOxLβ(x, y;w1, w2) is linear and reduces to matrix-vector multiplications and vector-vector

sums/differences.

To summarize, the numerical operations of the above algorithms include and only include:

• matrix-vector multiplications;

• vector-vector addition and subtraction;

• component-wise min and max.

4.5.3 Gradient Projection Algorithm

In the previous section, we reformulate the SCOPF problem to a set of subproblems which

are solvable by additive Homomorphic Encryption. However, at the end of each subproblem,

Pg,0 and Pg,c are updated using the gradient projection algorithm. The gradient projection

algorithm solves the bound constrained optimization problems by projecting the result of

the gradient descent to the feasible set:

xk+1 = proj[s,t][xk − αOf(xk)]. (4.52)

For the bound-constrained problems, the projection can be easily computed by setting:

proj[s,t](x) = mid(x, s, t), (4.53)
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where mid. . . is the median element of a set which cannot be directly solved by additive

Homomorphic Encryption.

We now describe our privacy-preserving gradient projection algorithm. One challenging

part is how to perform the comparison in the ciphertext domain. There are a few approaches

to perform comparison efficiently. One naive way is sending the projection operation back

to the ISO and calculate offline. Although this method is very efficient, it requires the ISO

to keep online. Two methods that do not need the ISO to stay online are using specialized

homomorphic encryption [119], or using garbled circuits [14]. Based on [20], the former is

more efficient for comparison of encrypted values, the second is more efficient for comparison

of unencrypted values. In our system, the lower and upper boundaries usually are power

generation or bus limit which are sensitive information for the power grid. In this case, we

are using homomorphic encryption to solve comparison.

The idea is to exploit the homomorphic property to obscure the inputs with an additive

mask. Here rl, rh ← (−2l, 2l) are in the message space of homomorphic encryption E and

they follows that: [x][(rl;rh)] = [(x · rl;x · rh)]. To evaluate (4.52) over encrypted x, we need

first calculate [xk]− α · [OLx(x)] using its homomorphic property. Then, the server chooses

a random mask rl, rh, obscures the difference [x − s;x − t] as above, and sends the masked

value to the Cryptographic Provider. The Cryptographic Provider can apply its decryption

key and determine if a number is positive or negative. proj[s,t](x) is hence solved by the cloud

by simply checking the value of (rl; rh) the result sent from the Cryptographic Provider.

The privacy-preserving gradient projection algorithm details in Algorithm 2. Here, we use

[x] to denote the encryption of x under the Paillier cryptosystem. Note that the computations

in this algorithm are in the ciphertext domain and [a]·[b]−1 mod N2 in the ciphertext domain

is equal to a− b in the plaintext domain. Detailed secure proof of Algorithm 2 is in Section

4.5.7.

4.5.4 Dealing with Floating Point Numbers

Given its Homomorphic property, the Paillier cryptosystem has been tested in many

scenarios. However, one limitation of the Paillier cryptosystem is that it can only work

with integers. Although we can test our scheme only on an integer model, the SCOPF
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Algorithm 2 Gradient Projection Algorithm

Input: S: data [xk], lower boundary [s], upper boundary [t].
Input: CP: private key Kpriv

Output: [xk+1]
1: S: [xk]← [xk]− α · [OLx(x)]
2: S: [dl]← [xk] · [s]−1 mod n2

3: S: [dh]← [xk] · [t]−1 mod n2

4: S choose two random integers rl, rh ← (−2l, 2l)
5: S: [zl]← [dl]

r
l mod n2

6: S: [zh]← [dh]
r
h mod n2

7: S sends [zl] and [zh] to B
8: CP decrypts [zl] and [zh]
9: CP checks zl < 0 and zh > 0 and encrypts them using Kpub

10: CP sends S [zl < 0] and [zh > 0]
11: if zl > 0⊕ (rl < 0) then
12: [xk+1] = [s]
13: else if zh < 0⊕ (rh > 0) then
14: [xk+1] = [t]
15: else
16: [xk+1] = [xk]
17: end if

problem usually uses floating point numbers in the real world. Hence when we evaluate our

system, we must adapt to it accordingly.

In practice, as discussed in Section 4.4.2, the Paillier cryptosystem involves only additions

and multiplications. Therefore, in [116], the authors use a solution by multiplying each

floating number with a constant K. However, the selection of K must guarantee that we

do not overflow the Paillier cryptosystem plaintext space during the entire operation. To

guarantee this, the selection of K must satisfy:

0 < K <

√
21024

2 ·mmax

, (4.54)

where mmax is the largest plaintext number in the system. The square root is due to the

fact that for multiplications, the Paillier cryptosystem requires integers for both sides of the

operation. Fortunately, due to constraints (4.10)-(4.13) introduced in the SCOPF problem,

the range of the encrypted values is small enough to ensure that the selection of K can

maintain high accuracy of the scheme.
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Recall that, in our scheme, the global minima is found by iterations P g,c ← P g,c − α ·

OL(P g,c) and at each iteration, the magnitude of x will increase by K. This is because both

α and OL(P g,c) are scaled to integers by multiplying K. Moreover, as mentioned in Section

4.4.2, the Paillier cryptosystem can only deal with multiplication directly, not division. As

a consequence, the plaintext space will be overflowed after several rounds of iterations. The

simplest way to rescale P g,c is to send it to an authorized party who has the secret key to

decrypt it and sends the rescaled value back to the cloud. However, in reality, it is costly

to find a trusted third party for this job since this party needs to keep online during the

whole process. Another practical solution is to use the garbled circuit for operations that

are not able to be solved by Homomorphic Encryption. In our case, the garbled circuit is

considered computationally complex compared with Homomorphic Encryption if we only

use the garbled circuit to solve divisions.

In [118], an efficient way to compute [x ÷ d] from [x] and d is proposed by additive

blinding. Because B is not allowed to learn value x, it is additively blinded by a random

number r which is the statistical security parameter. It leads to Algorithm 3, where the

random number r is chosen as large as possible to ensure the best statistical hiding of x.

Algorithm 3 Approximate Division Algorithm

Input: S: [x] and d.
Input: CP: d and Kpriv

Output: [x÷ d]
1: S chooses a random number r of size log2 n− 1
2: S computes [z] = [x+ r] = [x] · [r] mod n and sends [z] to CP.
3: CP decrypts [z], and computes z mod d.
4: CP computes c = z ÷ d, encrypts it, and sends [c] to S.
5: S computes [x÷ d] = [(z ÷ d)− (r ÷ d)] = [c] · [r ÷ d]−1 mod n.

4.5.5 Privacy-preserving SCOPF

Our Privacy Preserving SCOPF algorithm can fall into 4 phases:

• Phase 1: Key Generation and Distribution. After the system is activated,

Cryptographic Provider initializes the Paillier cryptosystem as described in Section

4.4.2 with a public key Kpub and a private key Kpriv. The Cryptographic Provider
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sends the private key to the control center and keeps a copy to itself and assigns the

public key to server S and balancing authorities BA.

• Phase 2: System Initialization. With the public key generated by the Crypto-

graphic Provider, each area can encrypt its subproblem and upload it to the server.

The server then collects all the encrypted data and sets up the system by initializing

the following variables: [θc], [Pg,c], [Pg,c
o ], [µc], ρ, k = 0. It should notice that ADMM

converges to the optimum geometrically for the convex optimization problem [35], and

the convergence time will be significantly reduced by using the warm start technique

[92].

• Phase 3: Privacy-preserving SCOPF. With the encrypted input, the server se-

curely operates the privacy-preserving SCOPF Algorithm 4, which calls two supporting

algorithms, i.e., Algorithms 2 and 3. Since all computations are carried out in the

ciphertext domain, no information about the measurement is revealed.

• Phase 4: Result Decryption. The ISO receives the encrypted θc,Pg,c, c = 0, ..., C

as a result of Algorithm 4 from the server. It then decrypts for the optimized variables

using the private key. Also, since the uploaded power variables are multiplied by K,

the optimized power variables should be divided by K accordingly.

4.5.6 Discussion

The proposed algorithm has several strengths that make them efficient and practical in

real-world scenarios:

• First, both balancing authorities and control center do not need to stay online during

the process. The ISO can leave the system after submitting the SCOPF problem and

wait until final optimization is reached.

• Second, each local area can upload data in the encrypted form directly to the server

to avoid the communication delay that costs by routing through the control center.

The data integrity can be preserved using the Internet layer security protocol such as

IPsec.
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Algorithm 4 Privacy preserving SCOPF

Input: ISO: [P g,0], [Pg,c], [Pg,c], [Pd,c], Bc
bus, B

c
f , A

g,c,
Initialize: S: [θc], [Pg,c], [Pg,c

o ], [µc], ρ, k = 0
while not converge do
P g,0-update:
S computes OPg,0Lρ(Pg,0k)

S computes Pg,0k+1 ← proj[s,t](P
g,0k − αOPg,0Lρ(Pg,0k))

/* Using Algorithm 2 */
S computes Pg,0k+1

/K
/* Using Algorithm 3 */
Pg,c-update:
while c < C do

S computes OPg,cLρ(Pg,ck)

S computes Pg,ck+1 ← proj[u,v](P
g,ck − αOPg,cLρ(Pg,ck))

/* Using Algorithm 2 */
S computes Pg,ck divide by K
/* Using Algorithm 3 */

end while
while c < C do

Update µck+1
= µck + ρ(Pg,c −Pg,c

o )
end while
Adjust penalty parameter ρc when necessary
k = k + 1

end while
return [θc], [Pg,c], c = 0, ..., C
CC decrypts [Pg,0] and [Pg,c], divides it by K to get final result.
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• Furthermore, the system can be easily applied to solve SCOPF multiple times.

Assuming that utility companies wish to perform optimization with different settings, it

can initiate multiple instances. Consider an ISO want to know their system’s operating

performance under different numbers of secure constraint. The server can start our

systems and testing SCOPF with 20 and 40 secure constraints at the same time.

• Also, multiple estimations can be started when the ISO upload addition secure

constraints. In particular, the cryptographic provider does not need to refresh public

key too often since the public keys are long-lived, meaning that the ISO can submit

more secure constant to the server without changing the previous ones.

4.5.7 Security Analysis

In our model, what we are mainly trying to preserve is the value of θc,Pg,c, c = 0, ..., C.

Since the computation procedure of ADMM is publicly available, there is no need to hide

the computation procedure. We will show the correctness of the algorithms, and then give a

proof of security in the honest-but-curious model. For the correctness, we modify the proof

of [20].

Definition. The two-party protocol securely computes the function f if there exists two

probabilistic polynomial time algorithms for every possible input a, b, f , it is computationally

indistinguishable against probabilistic polynomial time adversaries.

SA(a, b, fA(a, b)) ≡c VA(a, b). (4.55)

Here, SA means all the input of A, ≡c means statistically indistinguishable for the

adversaries, and VA means the view of A. Since we do not need to hide the computation

procedure, we can reduce the secure definition to if the input and output are statistically

indistinguishable for the adversaries.

SA(a, b) ≡c VA(a, b). (4.56)

Proposition 1. Algorithm 2 is correct and secure in the honest-but-curious model.
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Proof: Since the process of upper and lower projections are identical here, we only try

to prove the security of the process of lower boundary projection.

A’s view is VA = ([x], [s], r, [x < s]) and the output is [xk+1], [x−s]r. According to [93], it

is sufficient to show that there exists a probabilistic polynomial-time algorithm S such that

S(x, f(x)) is computationally indistinguishable from V . By semantic security of the Paillier

cryptosystem, each encryption are computationally indistinguishable, so this condition is

easily verified if S randomly generating r of logcN − 1 bits. However, the following security

is not guaranteed because A will get the xk < s by comparing [xk+1] with [s]. But it does

not compromise the privacy of x, since the boundary values s and t are both encrypted.

([x], [s], r, (x < s)) 6=c ([x], [s], r, (x > s)). (4.57)

B’s view is VB = (SKp, r · (x− s)) and the output is r · (x− s) > 0. So if r1 and r2 are

taken from the same distribution, independently from any other parameter, VB = ((x− s) <

0) = ((x−s) > 0). Here, since r is taken randomly in (−2l, 2l), the distribution of (x−s > 0)

and (x − s < 0) are identical. Therefore, ([x], [s], r, (x < s), ) and ([x], [s], r, (x > s)) are

statistically indistinguishable. In this case, we conclude that Algorithm 2 is secure in the

semi-honest model.

Proposition 2. Algorithm 3 is correct and secure in the honest-but-curious model.

Proof: The view of A consists of its encrypted value [x], and d, its random number

r, its output [(x + r) ÷ d], and all intermediate messages received from B: the encrypted

comparison [c]. Summarizing, A’s view is VA = ([x], [z ÷ d], r) and the output is [x+ r].

B’s view is VB = (Kpriv, x + r, z/d) and the output is [x÷ d]. So if r1 and r2 are taken

from the same distribution, independently from any other parameter. Here, since r is taken

randomly in (−2l, 2l), the distribution of r1 ÷ d and r2 ÷ d are identical. Therefore, follow

the similar steps, we conclude with the computational indistinguishability of VA and VB.

Proposition 3. Algorithm 4 is correct and secure in the honest-but-curious model.

Proof: Algorithm 4 is semantically secure because the algorithm only calls Algorithm 2

and Algorithm 3, and does not include computations other than the underlying Paillier

cryptosystem. Both the called algorithms are semantically secure by our analysis.
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Table 4.2: Test cases

Case |N | |G| |B| Number of Contingency Cases
IEEE 57 buses 57 7 80 50
IEEE 118 buses 118 54 186 100

4.6 Evaluation

In this section, the numerical tests are given to evaluate the performance of the proposed

algorithm. Two classical test systems are used the formulate the SCOPF problem: IEEE 57

bus, IEEE 118 bus, whose structures and characteristics are summarized in Table 4.2. Two

kinds of contingencies are considered in numerical tests: branch outage and generator failure.

The contingencies are artificially generated, and the number of contingencies considered is

listed in Table 4.2. We follow the physical limits on the equipment of test systems and

assume every active generator is able to reschedule up to 50% of its maximum real power

capacity.

The numerical tests are implemented in Java and run on a personal computer with

a 2.2GHz processor and 16GB memory. We use the key length of 1024 bits to initialize

the Paillier cryptosystem. The basic OPF solver is the same for all test systems.

The performance of the convergence and computing time of the proposed algorithm are

investigated in the following parts.

4.6.1 Accuracy

One of the most dominant features that affects performance of our system is the number

K used in the Paillier cryptosystem. Through synthetic experiments based on IEEE 57 bus

case, Table 4.3 illustrates the trade-off between the number of bits of K, with the relative

error and time. Suppose r[k] is the result of the value of objective function at the kth

iteration, and r∗ is the optimal solution. The relative error e is defined as e = | r[k]−r
∗

r[0]−r∗ |.

Relative time is defined as t = | t[k]−tmin

tmin
| where tmin is the lowest time in the test. It is shown

that the larger selection of K will increase the computation time while reducing the relative

errors. However, when K is larger than 20 bits, the relative error will significantly increase.

This is because the plaintext space of Paillier cryptosystem is overflowed when K is larger
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Table 4.3: Trade-offs between the number of bits used for K, relative errors and time

Number of Bites of K Relative Time Relative Errors
2 0 0.1409
5 0.0017 0.0389
10 0.2152 0.0247
13 0.2303 0.0073
18 0.2877 0
20 0.3009 1.7819 e+04
25 0.3909 1.7819 e+4

than 20 bits. In this case, for efficient and accuracy consideration, we choose 15 bits as the

length of K in the following experiment.

4.6.2 Convergence Rate

We then consider the convergence issue of the proposed algorithm. To better understand the

convergence rate between different cases, the relative error is used here to demonstrate the

results. The convergence performances are shown in Figure 4.3. It shows that the proposed

algorithm converges to the optimal values in all two cases after a few iterations. We can see

that with a larger scale of the test system and the number of contingencies, the proposed

algorithm has a slower convergence rate, which is due to the fact that a larger system and

the number of contingencies considered, lead to a larger optimization problem.

4.6.3 Performance

In this part, we compare the computing time of the proposed algorithm with the centralized

approach to solve the SCOPF problem. Note that, both algorithms are performed over the

same personal computer. The performance can be further optimized when outsourcing to

the cloud like Amazon EC2.

The computing time to obtain the optimal solution is considered in both cases.

Communication overhead is also presented. The results of the computing time performance

and communication overhead are presented in Table 4.4. From the table, we can see

that the computing time of our system is slower than the centralized algorithm. This is

because our methods perform entire over the encrypted data. However, compared with the
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Figure 4.3: Convergence performance

Table 4.4: Computing time of proposed algorithm

Case Centralized Algorithm Proposed Algorithm
Time (s) Comm. (MB) Time (s)

IEEE 57 buses 5.22 3.59 57.98
IEEE 118 buses 36.03 7.40 208.53

performance of Yao’s garbled circuit [88], which is usually 210 time slower than plaintext

implementations, our system is significantly more efficient. Besides, the gap between

centralized and proposed algorithms becomes smaller when the testing case is larger. This

is due to the communication overhead between different processes during the simulations.

A larger problem can be achieved on a large-scale test system because the communication

overhead is negligible compared with the computing time of the optimization subproblem

handled by each computing nodes.
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Chapter 5

Privacy-preserving Dynamic

Simulations in Power Grid

5.1 Introduction

Dynamical simulations play a critical role in power system research and operations. It is

an important approach to accurately predict the dynamic behaviors of power systems under

contingencies such as generator tripping, line switching, and short circuit. In the U.S.,

electricity utilities, regional transmission organizations (RTOs), and independent system

operators (ISOs) run dynamic simulations of power system models that are built from large-

scale interconnection-wide models with 50,000 or more buses. However, due to the heavy

computational burden, dynamic simulations are currently conducted off-line on an hourly or

daily basis, limiting their uses in time-critical or real-time power system applications. For

example, for a system of comparable size to the Western Electricity Coordinating Council

(WECC), commercial power system software takes approximately 60 seconds to simulate 30-

second system dynamics following a single contingency using a local workstation with Intel

Xeon(R) 3. 2 GHz CPU and 12.0 GB memory. The fact that dynamic simulations take too

much time to perform has unfortunately been limiting its online applications in operating

modern power systems against a massive list of critical contingencies.

Recently, outsourcing the dynamic simulations to the cloud has emerged as a promising

solution to aforementioned problem[76, 59, 77]. Pilot studies conducted by ISO New England
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[59][77] showed that by outsourcing the heavy computational burden to the cloud, it is

possible to perform power system simulations, not only much faster but also with less cost.

According to [77], an N-1-1 contingency analysis with 4,100 scenarios, which would have

taken 1,700 hours at a commodity laptop, or 40 hours at the internal computing cluster of

40 cores, now takes a running time of only 1.5 hours with 150 Amazon EC2 nodes for a total

monetary cost of about $60. Take another example, it takes around 10 hours to run one

study with GE MARS, the Monte Carlo simulation based tool for power system resources

adequacy analysis, on a typical commodity laptop. By contrast, with 32 C3.large type of

Amazon EC2 instances, the running time comes down to 12 minutes and the cost $1.66.

Despite that outsourcing the dynamical simulations to the public cloud have demon-

strated a faster and more cost-effective way to conduct dynamic simulations, potential

users like utility companies and ISOs still have reasonable data privacy concerns. It is

because the outsourcing also means releasing sensitive and private power system operation

data and information to the third-party cloud computing facilities, whose trustability is not

always determined. Instead, power companies would opt for conservative approaches such

as keeping all the computations local in exchange for the absolute data privacy assurance.

Our primary goal of this work is to explore the possibility to outsource the computation

without compromising data privacy. The major beneficiaries of our scheme are parties who

would like to have the dynamic simulations done in a faster, more economical, and secure

way. Those include electrical utilities, regional transmission organizations (RTOs), and

independent system operators (ISOs). Cloud-computing service providers may also benefit

because the schemes eliminate the user’s privacy concern and hence encourages more use of

cloud computing service.

5.1.1 Challenges

As mentioned earlier, dynamic simulation is computational extensive and one of the most

promising applications in power grid to leverage cloud computing. Similar to the SCOPF

problem, the dynamic simulation also contains a set of sensitive parameters which is the

primary reason why dynamic simulations are expected to calculate offline.
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One obvious way to mitigate this concern is to use secure multi-party computations.

However, dynamic simulations are performed at a variety of entities, i.e., utilities, RTOs,

and ISOs, which have different requirement and computing power. In this case, it is more

practical for a system that has multiple secure level and performance. As such, we are

motivated to build a system that has two security level: a provably secure dynamic simulation

algorithm with higher computation overhead and an efficient secure dynamic simulation

algorithm without mathematical guarantee.

5.1.2 Outlines

The remainder of this chapter is structured as follows. Section 5.2 reviews the related works.

Section 5.3 introduces the system model. Background for dynamic simulation is presented

in Section 5.4. Privacy-preserving dynamic simulations is covered in Section 5.5. Section 5.6

portrays the evaluations of the proposed algorithm.

5.2 Related Work

The problem of secure outsourcing of scientific computation or performing scientific

computation over encrypted data has received considerate attention.

The groundbreaking works by Yao et al.[126, 127, 28] demonstrates that any function

can be securely computed with garbled circuits. Namely, a user can convert a plain circuit

(function) to a garbled circuit and private input to a garbled input; a third-party can

then evaluate the garbled circuit with the garbled input to generate the same output as

if the original function and input are used. It is guaranteed that the evaluation leaks no

more information than the evaluation result. However, the overheads for constructing and

evaluating garbled circuits are prohibitively significant for everyday practical computation.

More recently, the breakthrough of fully homomorphic encryption[45] allows one to perform

unlimited analysis over encrypted data and, thus, appears as the most straightforward

solution to outsource of scientific computation. However, like the garbled circuit, even the

state-of-the-art fully homomorphic encryption [45] is too inefficient for practical uses.
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Another line of research [85, 18, 116, 90, 130] focuses on applying partially homomorphic

encryption, or together with garbled circuits, to enable limited processing over encrypted

data. Those works, however, focused on securing specific applications. None of them can

be applied to solve the problem considered by this chapter, i.e. securing the outsourcing of

power system dynamical simulations.

Aside from homomorphic encryption and garbled circuit encryption enabled secure

outsourcing, it is also reported in the literature that secure outsourcing of scientific

computation does not necessarily rely on cryptography [122, 10, 117]. Wang et al.[122]

proposed secure outsourcing of linear programming. The proposed outsourcing scheme

transforms the original linear programming (LP) into a random LP problem. By having the

semi-honest cloud solving the random problem and the user transforming the solution back

to the original solution, the scheme enables a user to outsource the computation without

revealing the original LP problem. Atallah et al.[10] also explores the secure outsourcing

of scientific computations such as sorting, template matching, string pattern matching

by either transforming the original problems into another seemingly different ones or by

hiding the original problem in large a collection of similar problems. Nevertheless, unlike

cryptography based approaches, those propositions are not provably secure due to lacking a

precise definition of security. Our work is based on a provably secure Paillier cryptosystem,

and we analyzed the security proposed scheme in Section 5.5.3.

5.3 System Architecture

5.3.1 System Model

Figure 5.1 captures the system model for our scheme. In this chapter, we consider two

type of scenarios. For the first scenario, in support of quicker contingency resolution, ISO

wishes to get the results of dynamic simulation faster. To that end, the ISO outsources the

computations caused by the dynamic simulations to the cloud. However, due to that, the

public cloud is an external entity, neither utility companies or ISO fully trusts the cloud;

they would like a provably secure way to outsource the computation such that the cloud
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Figure 5.1: Ideal system model for secure computation outsourcing

would assume the computations but without knowing any the private data nor the result

of the dynamic simulations. In this case, each utility company encrypt their private date

separately and uploaded to the ISO. The ISO then upload encrypted data along with initial

conditions to the cloud for computing the dynamic simulation result.

For the second scenario, the ISO wishes to outsource to the cloud power system dynamic

simulations with privacy-preservation to the trusted cloud, by uploading a configured black

box to the cloud. Here trusted cloud can be private cloud or cloud which are trustworthy.

An ideal black box is a piece of executable software that encapsulates all the information

it requires, except for the external input, to complete the computation while looking

“unintelligible” to the cloud. The cloud performs all computations through the black box.

To preserve the privacy of both the input and output values, the black box is constructed

in such as way that it takes protected inputs and produce protected outputs, which will be

recovered by the user later. This part of the work is done by T. Yue et al. [117]. In this

work, we only cover how to secure dynamic simulation in the first scenario, i.e., in the public

domain.

As data confidentiality is of the major interest of this work, we enumerate in the following

the private data involved in a typical dynamic simulation.
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• Power System Models: these are the mathematical models, usually non-linear

differential algebraic equations, of machines and control systems, such as generators,

governors, motor load, etc..

• Model and contingency data: the specific parameters and configurations with

respect to power system models, including the bus connectivity and information about

where and when to apply faults and other disturbances to the system during the

simulation period. Model data are usually measured, validated or defined by utility

planning engineers.

• Operating conditions of the system: the values of system states at the beginning

of the simulation. They are updated based on the real-time data from the SCADA

(Supervisory Control and Data Acquisition)/EMS (Energy Management System) in

the control room.

• Simulation results: the output of the contingency simulation in the form of

trajectories of state variables over the simulated time.

Data are divided into two categories: input data and output data. Input data are defined

as the data submitted to the cloud so that the simulation can be conducted on the cloud

end. Output data refer to any information that is generated as the result of the dynamic

simulation. Naturally, all kinds of data listed above except for the simulations results belong

to the input data. Simulation results are the only kind of output data. Both input data and

output data are at risk of unauthorized disclosure if left unprotected.

5.3.2 Design Goals and Threat Model

In this work, we deal with a specific threat that stems from semi-honest cloud service

providers, who possess cloud servers that perform the delegated computational tasks and,

thus, may knowingly or unknowingly leak private data provided by the data providers,

including the utility companies and the ISO in our system model. More specifically, data

providers, only partly trust a cloud service provider, in the sense that they believe the cloud

service providers will honestly carry out the delegated computation tasks, while they are
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also aware of that the provider might be curious about and even record any information that

pertains to the delegated functions.

The reason for the assumption of the semi-honest adversary is twofold. First, cloud

service providers are assumed to honestly perform outsourced tasks because a rational cloud

service provider will not do so only if there is a strong incentive and it is certain that not

being honest will not be caught. In reality, consider large public cloud providers, for example,

Amazon, Microsoft, and Google. For them, the incentive to misconduct pales in comparison

with the risk of damaging their reputations. Moreover, providing falsifying computation

results can be easily exposed. Second, having the physical control over the cloud servers

makes a cloud service provider technically possible to comprise the cloud users’ privacy by

passively eavesdropping any data that flows in and out the cloud. In practice, the semi-honest

model has been increasingly adopted by research work on secure multi-party computation.

[121, 85, 90]. Therefore, the assumption of the semi-honest model is reasonable in the setting

that the proposed scheme tries to deal with.

The security goal of our work is to limit the adversaries’ ability to compromise the users’

data confidentiality, which is defined as no private data provided by the utility company are

exposed to the cloud. It is worth emphasizing that the confidentiality of the user’s data is

protected not only when the data is in transit or at rest, but also when they are used in a

delegated computation task.

5.4 Preliminaries

In this section, we briefly revisit preliminaries before we present the proposed scheme.

5.4.1 Dynamic Simulations and Runge-Kutta Method

Dynamic simulation refers to using a computer-based approach to study a system’s dynamic

behavior as a function of time [131]. Dynamic simulation centers around finding the

trajectories of state variables by solving the respective initial value problem. In the context

of the power system research and operations, dynamic simulations are often performed by

numerically solving the differential algebraic equations (DAEs). The resulting trajectories
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could be examined so as to study the dynamical performance of the system, e.g. damping

performance of the oscillatory modes w/o additional control scheme and the stability of the

under certain disturbances. For instance, to simulate a specific disturbance, the fault-on

period is first simulated with a pre-disturbance steady state as the initial condition, and

then the last point from the fault-on trajectory is taken as the initial condition to simulate

the post-disturbance period.

The classical Runge-Kutta method, a.k.a RK4, may be employed to solve an initial value

problem as follows.

ẏ = f(t, y) and y(t0) = y0

The objective of the initial value problem is to find y(t), which is an unknown function

of time. The derivative of y is given by f , a function of time t and y itself. The initial value

of y is also given as y0.

RK4 methods starts with determining a step-size h, so that y’s values are approximated

every h worth of time along the axis of time. y’s value is approximated by the following

iterative process.

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

for n = 0, 1, 2, 4, ... using

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
k1)

k3 = f(tn +
h

2
, yn +

h

2
k2)

k4 = f(tn + h, yn + hk3)
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Figure 5.2: IEEE 3-machine, 9-bus system

5.4.2 Paillier Cryptography

Paillier cryptosystem is a provable secure cryptosystem that is based on the decisional

composite residuosity assumption [97]. It is widely known as an additive homomorphic

cryptography, as it enables one to compute the encryption of the sum of two value, say

m1 +m2, given only the encryption of m1 and m2. In this work, we use Paillier cryptosystem

which is discribed in Section 4.4.2.

5.4.3 IEEE 3-machine, 9-bus System

The IEEE 3-machine, 9-bus system, as depicted in Figure 5.2, is a simplified model of the

Western Electricity Coordinating Council (WECC) system. Without losing generality and

for ease of presentation in the following section, we assume that Machine 1 and 2 belong to

Area 1 utility and Machine 3 belongs to Area 2 utility. The operation of the whole electrical

power grid system is coordinated by a regional ISO.

5.5 Privacy-preserving Dynamical Simulations

In this section, we present how homomorphic encryption is used to secure the outsourcing of

dynamic simulations of a particular power system model. We first use the aforementioned
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exemplary IEEE 3-Machine, 9-Bus system to facilitate the presentation. Next, we generalize

the methodology for nonspecific power system models.

5.5.1 Dynamical Simulations for IEEE 3-Machine, 9-Bus System

For the initial discussion and ease of presentation, we consider only the post-disturbance

simulation of the contingency: a three-phase fault is added at bus 7 and cleared after five

cycles by tripping the Line 5-7 [120].

When the ISO needs to perform the post-disturbance simulation described above, the

ISO collect from the utility companies from both areas all inertia constant Hi, all mechanical

power Pmi, all field voltage Ei, all loads and all transmission line impedances, with which

ISO can formulate the admittance matrix.

With all information received from both utility companies, the ISO formulates the

following initial value problem to be solved.

ẋ1 = x4 (5.1)

ẋ2 = x5 (5.2)

ẋ3 = x6 (5.3)

ẋ4 = πf/H1 · (Pm1 − Pe1) (5.4)

ẋ5 = πf/H2 · (Pm2 − Pe2) (5.5)

ẋ6 = πf/H3 · (Pm3 − Pe3) (5.6)

The initial condition is given as

xi(t0) = xi0 for i = 1, 2, ..., 6

where xi and xi+3 are state variables representing the angle and speed of the ith machine,

respectively; Hi, Pmi, and Pei are the inertia constant, mechanical and electrical power of

machine i; f is the synchronous frequency, i.e. 50Hz or 60Hz.
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Unless a governor is considered, Pmi can be regarded as constant, which is the case for this

work; The electrical power is calculated as Pei =
∑

j=1,2,3EiEjYi,jcos(θi,j − xi + xj), where

Yi,j and θi,j are the magnitude and phase of the element in the ith row and jth column of the

admittance matrix; Ei is the field voltage of the ith machine. Unless the excitation system

is considered, Ei is treated as constant, which is the case in this exemplary model.
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Apply the RK4 method to solve the initial value problem. First, we calculate the four

increments, as

k1 =



x4

x5

x6

πf/H1 · (Pm1 − Pe1)

πf/H2 · (Pm2 − Pe2)

πf/H3 · (Pm3 − Pe3)


(5.7)

k2 =



x4 + h
2
x4

x5 + h
2
x5

x6 + h
2
x6

πf/H1 · (Pm1 − Pe1)

πf/H2 · (Pm2 − Pe2)

πf/H3 · (Pm3 − Pe3)


(5.8)

k3 =



x4 + h
2
(x4 + h

2
x4)

x5 + h
2
(x5 + h

2
x5)

x6 + h
2
(x6 + h

2
x6)

πf/H1 · (Pm1 − Pe1)

πf/H2 · (Pm2 − Pe2)

πf/H3 · (Pm3 − Pe3)


(5.9)

k4 =



x4 + h(h
2
(x4 + h

2
x4))

x5 + h(h
2
(x5 + h

2
x5))

x6 + h(h
2
(x6 + h

2
x6))

πf/H1 · (Pm1 − Pe1)

πf/H2 · (Pm2 − Pe2)

πf/H3 · (Pm3 − Pe3)


(5.10)

Since,

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4) (5.11)
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Therefore,

xn+1 =



x1 + x4(1 + 1
3
h+ 1

6
h2 + h3

24
)

x2 + x5(1 + 1
3
h+ 1

6
h2 + h3

24
)

x3 + x6(1 + 1
3
h+ 1

6
h2 + h3

24
)

x4 + hπf/H1 · (Pm1 − Pe1))

x5 + hπf/H2 · (Pm2 − Pe2))

x6 + hπf/H3 · (Pm3 − Pe3))


(5.12)

Note that h is the step size in RK-4 and is thus constant. Therefore, we denote a constant

C1

C1 = 1 +
1

3
h+

1

6
h2 +

h3

24

.

Although Pei =
∑

j=1,2,3EiEjYi,jcos(θi,j − xi + xj) is a nonlinear function of xi, its value

can be calculated, as the present value of xi are known in the beginning of a iteration, and the

value remains constant throughout the iteration. Moreover, f,H1, H2, H3, and Pm1, Pm2, Pm3

are all constant. As such, we may denote additional constants C2i and

C2i = hπf/Hi · (Pmi − Pei) for i = 1, 2, 3

As a result of the new denotations, we may rewrite xn+1 as

xn+1 =



x1 + x4C1

x2 + x5C1

x3 + x6C1

x4 + C21

x5 + C22

x6 + C23


(5.13)

As seen, it turns out that the next values of the state variables, xn+1, are a linear function

of the present values, when Pei’s are treated as constants. It follows that, because of Paillier
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encryption’s additivity, given the current values of xi’s Paillier encryption, for i = 1, 2, .., 6,

and constant values of C1 and C2, one can calculate the Paillier encrypted next values of xi,

for i = 1, 2, .., 6.

Let Enc(·) denote a Paillier encryption operator and ||·|| the respective ciphertext. Recall

that Paillier encryption’s the additive homomorphism and its homomorphic multiplication

by a plaintext that are covered in Section. 5.4. It follows that, Enc(xn+1) is equivalent to,



Enc(x1,n+1)

Enc(x2,n+1)

Enc(x3,n+1)

Enc(x4,n+1)

Enc(x5,n+1)

Enc(x6,n+1)


=



Enc(x1) · Enc(x4)C1

Enc(x2) · Enc(x5)C1

Enc(x3) · Enc(x6)C1

Enc(x4) · Enc(C21)

Enc(x5) · Enc(C22)

Enc(x6) · Enc(C23)


(5.14)

As such, the ISO can securely outsource the initial value problem described in Equation

5.2 through 5.6 with Algorithm 5 and Algorithm 6.

5.5.2 Privacy-preserving RK4 Protocol

In this subsection, we generalize the above processes, which works for a specific power system

model, in order to securely outsource dynamical simulations to the cloud in general. We

present the generalized method as a protocol that consists of four phases, as shown in

Figure 5.3.

• Preparation Phase The ISO server bootstraps the Paillier cryptosystem by taking

a set of security parameter, generating the private-key and public-key pair. The ISO

server then distributes the public key to all cloud server instances it has started and all

utility companies that are involved in the dynamical simulations that need to perform.

• Phase 1 Each utility company ui involved in the dynamical simulation conducts

the power flow studies locally to obtain its share of the information necessary for

converting the dynamic simulation to an initial value problem. This information may
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Algorithm 5 Secure outsourcing IVPs for IEEE 3-Machine 9-Bus system to public cloud

Input: an IVP defined with Eq. 5.2-5.6
h
tend

Output: Trajectories of state variables C1 ← (1 + 1
3
h+ 1

6
h2 + h3

24
)$;

for i in {1, 2, ..., 6} do
xi ← xi0

end for
while tn < tend do

for i in {1, 2, 3} do
C2i ← hπf/Hi · (Pmi −

∑
j=1,2,3EiEjYi,jcos(θi,j − xi + xj)) /* Update C2i */

end for
for i in {1, 2, ..., 6} do
||xi|| ← Enc(xi) /* Re-encrypt current values of xi */

end for
||xn|| ← ||x1||, ||x2||, ||x3||, ||x4||, ||x5||, ||x6||
||xn+1|| ← OutsourceToCloud (||x||,C1,||C2i||) /* Outsource the iteration to the cloud*/

||x1,n+1||, ||x2,n+1||, ...||x6,n+1|| ← ||xn+1||
for i in {1, 2, ..., 6} do

/* Decrypt and update current values */
xi(tn)← xi
xi ← Dec(||xi,n+1||)

end for
tn ← tn + h

end while
Return xi(t0 + kh) for i ∈ [1, 6] and k such that t0 + kh ≤ tend

Algorithm 6 OutsourceToCloud (executed on the cloud servers)

Input: ||xn||,C1,||C2i||
Output: ||xn+1||
||x1||, ||x2||, ..., ||x6|| ← ||xn||
for i in {1, 2, 3} do
||xi,n+1|| ← ||xi|| · ||xi+3||C1

end for
for i in {1, 2, 3} do
||x3+i,n+1|| ← ||xi|| · ||C2i||

end for
||xn+1|| ← ||x1,n+1||, ||x2,n+1||, ...||x6,n+1||
Return ||xn+1||
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Figure 5.3: Description of proposed protocol.

include inertia constants, mechanical power of all machines, field voltages, loads and

transmission line impedances, etc.. Each utility company then sends the information

to the ISO server through a secure channel between the utility company and the ISO

established with the private and public key pair.

• Phase 2 Upon receiving the information from all concerned utility companies, the

ISO server performs necessary processing to generate the dynamical simulations and

the corresponding initial value problems. Each IVP is then to be outsourced to a

cloud server employed by the ISO. As our goal is to securely outsource part of the

computation to the cloud server, for each IVP, the ISO server needs to pick out the

non-linear operation that cannot be calculated homomorphically by Paillier encryption

and performs them locally. For instance, Pei =
∑

j=1,2,3EiEjYi,jcos(θi,j−xi+xj) for i =

1, 2, 3 in the above example. Following that, the ISO server also combines the constant

terms, if any, into a single term like C1 in the above example. In addition, the ISO

server calculates the coefficient for the current values in an iteration of RK4 method,

like C2i = hπf/Hi · (Pmi − Pei) for i = 1, 2, 3. Note that for a particular model, the

determinations of which non-linear operation must be carried out, constant terms need
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to combine, and coefficient to calculate out before each iteration can be done once and

for all. Constant coefficients or terms like C1 in the above example can also be used

across all iterations.

• Phase 3 This is the only phase that requires both the ISO server and the cloud server

to be online at the same time. Once an iteration of the RK4 integration is expressed

such the next values of the unknown function are linear functions of present values,

the initial value problem can be securely outsourced to the public cloud. In support

of outsourcing, the ISO server encrypts the current values of the state variables and

sends the ciphertext to the cloud server, along with the constants in plaintext like

C1 and C2i. With the information received from the ISO server, the cloud server can

homomorphically calculate the ciphertexts of the next values of the state variables.

The cloud server returns the ciphertexts to the ISO server, which then uses the public

key to decrypt for the next values in plaintext. Next, the ISO server saves the actual

subsequent values of the state variable as part of the final solution of the IVP. The

ISO server then updates the current state variables’ value with the next ones and also

updates the constant terms and coefficients as necessary. With the new current values

and updated values of the constant terms, the ISO server initiates another iteration

of the secure outsourcing. In the same manner, iterations continue till the end of the

simulated period is reached.

5.5.3 Discussion

In this subsection, we examine the correctness and security of our algorithms in the semi-

honest model [47].

The correctness property is straightforward which underlies the correctness of Paillier

cryptosystem. However, since Paillier cryptosystem only works for integers, we have to

introduce a constant k (e.g.k = 252 for IEEE 754 doubles) and multiply it with each floating

point value before each operation and thus support finite precision. The selection of k will

inevitably introduce error into the dynamic simulation. Nonetheless, the experimental result

shows that the relative error is on the order of 10−6 which is analyzed in the next section.
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Then let’s consider the security of our algorithm. Recall that in the semi-honest model,

the parties honestly follow the protocol but may motivate to misbehave and potentially learn

the data provided by the service initiator. To guarantee security in the semi-honest model,

we must show that parties can learn nothing beyond their outputs from the information they

get throughout the entire process. In our system, the cloud can only view ciphertexts from

the ISO and from iterative outputs and the public key Kpub which it may use to generate

any number of ciphertexts. First of all, in cryptography, the privacy of the data is preserved

when it is processed over an algorithm that is semantic secure.

Definition 1: A cryptosystem is semantic secure if given a ciphertext encrypted from

a known plaintext set (m1,m2), the adversary cannot determine which of the two plaintexts

was encrypted, with probability significantly greater than 1/2.

Paillier cryptosystem which used in our system is proved to have semantic security in

[97]. Although the cloud undertakes most of the computations, all the operations are carried

over the ciphertext encrypted under the Paillier public key. In this case, our algorithm is

semantically secure because the cloud does not learn intermediary results in the computation,

because of the security of the Paillier cryptosystem, and because it gets a refreshed ciphertext

from the server which the cloud cannot couple to a previously seen ciphertext.

5.6 Evaluation

5.6.1 Implementation

We implemented the proposed secure dynamic simulation scheme using the IEEE 3-Machine

9-Bus System. The numerical tests are implemented via C++ on a regular laptop with an

Intel 2.20GHz and 16Gb memory. The program uses GNU Multiple Precision Arithmetic

Library in the implementation of Paillier cryptosystem. Step size is set to fix 1/120 second.

For Paillier cryptosystem, we use the key length of 128 bits. The cloud and server run on

different Virtual Machines, each using a single processor. The performance of the computing

time and communication overhead of the proposed algorithm are investigated in the following

parts.
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Figure 5.4 shows the original, disguised, encrypted, and recovered trajectories of the

generators’ angles and speeds. It is shown that the original and the recovered trajectories

are identical. Taking the difference between the two, which is a zero vector, verifies our

observation. Thereby, the outsourcing scheme can disguise the original result and also recover

the disguised results without any error.
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(c) Encrypted machine angles
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(d) Recovered machine angles
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(f) Disguised machine speeds
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(g) Encrypted machine speeds
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(h) Recovered machine speeds

Figure 5.4: Original, disguised, encrypted, and recovered curves of machine angles and machine speeds
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5.6.2 Performance

We now analyze the computation and communication overhead of our algorithm. More

specifically, we measure the overall time for privacy computation and the amount of data

moving across parties in the entire process.

Phase 1

The performance of Phase 1 depends on the problem size. For instance, a typical 3 machine 9

bus model will incur a one-time 674 bytes communication overhead between utility companies

and the ISO.

Phase 2

Next, the implementation of Phase 2 using Paillier’s scheme consists of two part: the

computation overhead to perform Paillier encryption and the communication overhead.

Based on our experiments, the Paillier encryption will incur a 0.01 s computation overhead

for IEEE 3 machine 9 bus system. This overhead will possibly increase when we solve larger

problems. However, this overhead is one-time and can be further reduced by parallelization

or using specialized hardware, such as FPGA, optimized for cryptographic operations.

Phase 3

To better understanding the trade-off for adding privacy-preserving, we first consider the

execution time of non-privacy-preserving dynamic simulation algorithm. As shown in Table

5.1, computation cost, and communication overhead are listed. From the table, we can

see that our algorithm is slower than the plaintext implement due to the added security

guarantee. However, given the same computation resource, our algorithm is only less than

102 times slower with a reasonable amount of communication overhead.

Since we are the first to study privacy preserving power system simulations, no other

algorithm is available for similar problems. A generic solution to perform operations over

encrypted data is to use Yao’s garbled circuit. However, given a 104 to 106 times [72]
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Table 5.1: Computing time and communication overhead of proposed algorithm

Time Span Non-privacy-preserving Approach Proposed Algorithm
Time (s) Comm. (MB) Time (s)

1s 0.0049 0.45 0.47
5s 0.011 2.11 2.47
15s 0.022 6.88 6.94
30s 0.034 13.545 13.41

slowdown and the real-time requirement for dynamic simulation, for practical purposes, our

algorithm is significantly more suitable than garbled circuit based methods.

5.6.3 Accuracy

Since our proposed system implements dynamic simulation in a numerical way with fixed-

point numbers, it will inevitably introduce errors. Denote by x∗ the solution in the plaintext

using Matlab on a 64bit commodity server, and x to be the solution using our system. We

define the relative error as:

e = ‖x− x∗

x∗
‖22

Through a broad of experiments, k in our system is expected to be 106, and the cloud seeks

an error on the order of 10−6. Although the cloud can decide to use a larger k to lower the

error, however, it will raise the risk that the crypto space being overflowed.
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Chapter 6

Conclusions and Future Works

In this dissertation, we investigate vulnerability assessment and privacy-preserving compu-

tations in the smart grid.

6.1 Conclusions

In Chapter 2, we present the vulnerability assessment over the synchrophasor network.

Unlike previous works, our work primarily focuses on testing the effeteness of cyber attacks

in real-world scenarios. Specifically, three practical cyber attack schemes (DoS attack,

sniffing attack, false data injection attack) over synchrophasor networks is demonstrated

on CURENT Hardware. We also discussed how each cyber attack could impact the syn-

chrophasor network based Wide-area monitoring system (WAMS). In addition, symmetric-

key algorithm and keyed-hash message authentication code (HMAC) for message encryption,

integrity verification, and authentication are tested over C37.118. We also carry out

practical recommendations to secure synchrophasor networks for different attacks including

cryptographic techniques, key management, intrusion detection systems, etc.

In Chapter 3, we propose a deep learning based framework to detect measurement anoma-

lies due to False Data Injection (FDI) attacks. We described our detection methodology that

leverages both convolutional neural network and recurrent neural networks. Our model learns

normal behavior from normal data and is not restricted to FDI attacks, and thus can detect

other unseen attacks. Additionally, our two-level detector is robust using hybrid features
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and can detect the attack when state vector estimator fails. We provided critical insights

into various factors that impact the performance of the proposed algorithm. We presented

a detailed case study of the proposed algorithm on the IEEE 39-bus system.

In Chapter 4, the original SCOPF problem is decoupled and divided into small

subproblems. The subproblems are approximately the same size and optimized in a parallel

fashion on distributed nodes. We then presented a practical approach that can solve the

large-scale SCOPF problem directly over the encrypted SCOPF problem to guarantee the

security and privacy of the system. The privacy-preserving ADMM and gradient projection

algorithms were also proposed to support the scheme. The scheme is computationally secure

and parallelizable based on additive homomorphic cryptosystem. The numerical tests on

IEEE buses were carried out, which showed that our proposed scheme is less than 24

times slower than the non-privacy-preserving method. Moreover, security analysis proves

that our algorithm can preserve both system confidentiality and data privacy against semi-

honest attackers. As a result, the SCOPF problem can be solved by entities with abundant

computational resources to achieve better efficiency and economy using our scheme.

In Chapter 5, a novel scheme was proposed to securely outsource nonlinear power system

dynamical simulations to the semi-honest public cloud. The goal of the proposition was to

protect the data privacy of the data providers, i.e. ISO and utility companies, when the

ISO offloads part of the computation burden to a not fully trusted cloud, so that ISO or

utility companies may take advantage of the lower cost, agility, scalability, and on-demand

provisioning offered by the cloud computing, without the risk of data breach. The security of

the proposed scheme was analyzed. The proposed scheme was implemented and tested with

the IEEE 3-Machine 9-Bus System. The performance of the implementation was evaluated

and compared with that of Yao’s garbled circuit based approaches.

6.2 Future Research Directions

Based on the work to date, continuing research in the following direction is needed:

• Addition cyber attacks against other communication networks in smart grid should be

tested. For instance, in Substation Automation System (SAS), traditional electronic
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devices at substations have been upgraded to intelligent electronic devices (IEDs).

With IEDs, power system operators are able to monitor and control a power system

from a remote control center.

• The redundancy of and how easy to get measurement Jacobian matrix H for false data

inject attacks should be examined. We also want to see if adversaries can generate H

from other power system data.

• It is helpful to extend the idea of using homomorphic cryptosystem to build more

applications. For example, Prony analysis is an emerging methodology that extends

Fourier analysis by directly estimating the frequency, damping, and strength for a given

signal which is widely adopted in power system monitoring and controls.
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[107] Šandi, S., Krstajić, B., and Popović, T. (2016). pypmu—open source python package

for synchrophasor data transfer. In Telecommunications Forum (TELFOR), 2016 24th,

pages 1–4. IEEE. 40

[108] Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681. 53

[109] Stallings, W. (2010). Network Security Essentials: Applications and Standards.

Prentice Hall Press, Upper Saddle River, NJ, USA, 4th edition. 21

[110] Stallings, W. (2013). Cryptography and Network Security: Principles and Practice.

Prentice Hall Press, Upper Saddle River, NJ, USA, 6th edition. 8

[111] Stewart, J., Maufer, T., Smith, R., Anderson, C., and Ersonmez, E. (2011).

Synchrophasor security practices. In 14th Annual Georgia Tech Fault and Disturbance

Analysis Conference. 38

[112] Sun, C.-C., Hahn, A., and Liu, C.-C. (2018). Cyber security of a power grid: State-of-

the-art. International Journal of Electrical Power & Energy Systems, 99:45–56. 5, 8, 14,

15, 16

[113] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 1–9. 60

[114] Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. (2009). A detailed analysis

of the kdd cup 99 data set. In Computational Intelligence for Security and Defense

Applications, 2009. CISDA 2009. IEEE Symposium on, pages 1–6. IEEE. 56

[115] Tong, Y. (2015). Data security and privacy in smart grid. PhD diss., University of

Tennessee. 5, 8, 14, 16

[116] Tong, Y., Sun, J., and Sun, K. (2015a). Privacy-preserving spectral estimation

in smart grid. In IEEE International Conference on Smart Grid Communications

(SmartGridComm), pages 43–48. 67, 83, 95

129



[117] Tong, Y., Sun, J., Sun, K., and Li, P. (2015b). Outsourcing power system simulations.

In 2015 IEEE Global Communications Conference (GLOBECOM), pages 1–6. 10, 95, 96

[118] Veugen, T. (2010). Encrypted integer division. In IEEE International Workshop on

Information Forensics and Security. 84

[119] Veugen, T. (2011). Comparing encrypted data. Multimedia Signal Processing

Group, Delft University of Technology, The Netherlands, and TNO Information and

Communication Technology, Delft, The Netherlands, Tech. Rep. 82

[120] Wang, B. and Sun, K. (2015). Power system differential-algebraic equations. arXiv

preprint arXiv:1512.05185. 101

[121] Wang, C., Cao, N., and Li, J. (2010). Secure ranked keyword search over encrypted

cloud data. 2010 IEEE 30th International Conference on Distributed Computing Systems,

pages 253–262. 98

[122] Wang, C., Ren, K., and Wang, J. (2011). Secure and practical outsourcing of linear

programming in cloud computing. In 2011 Proceedings IEEE INFOCOM, pages 820–828.

IEEE. 67, 95

[123] Wang, Q., McCalley, J. D., Zheng, T., and Litvinov, E. (2013). A computational

strategy to solve preventive risk-based security-constrained opf. IEEE Transactions on

Power Systems, 28(2):1666–1675. 67

[124] Xu, W., Trappe, W., Zhang, Y., and Wood, T. (2005). The feasibility of launching

and detecting jamming attacks in wireless networks. In Proceedings of the 6th ACM

international symposium on Mobile ad hoc networking and computing, pages 46–57. ACM.

37

[125] Yang, Q., Yang, J., Yu, W., An, D., Zhang, N., and Zhao, W. (2014). On false data-

injection attacks against power system state estimation: Modeling and countermeasures.

IEEE Transactions on Parallel and Distributed Systems, 25(3):717–729. 25, 46

130



[126] Yao, A. C., Yao, A. C., Yao, A. C., and Yao, A. C. (1982). Protocols for secure

computations. In Foundations of Computer Science, 1982. SFCS ’08. 23rd Annual

Symposium on, pages 160–164. 94

[127] Yao, A. C.-C. (1986). How to generate and exchange secrets. In Foundations of

Computer Science, 1986., 27th Annual Symposium on, pages 162–167. 94

[128] Young, E. . (2014). Cybersecurity: how safe is your smart grid? Accessed: 2018-03-10.

13

[129] Yu, S., Tian, Y., Guo, S., and Wu, D. O. (2014). Can we beat ddos attacks in clouds?

IEEE Transactions on Parallel and Distributed Systems, 25(9):2245–2254. 7

[130] Yuan, J. and Yu, S. (2013). Privacy Preserving Back-Propagation Neural Network

Learning Made Practical with Cloud Computing. IEEE Transactions on Parallel and

Distributed Systems, 99(1):1–1. 95

[131] Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory of modeling and

simulation: integrating discrete event and continuous complex dynamic systems. Academic

press. 98

[132] Zhu, S., Setia, S., Jajodia, S., and Ning, P. (2004). An interleaved hop-by-hop

authentication scheme for filtering of injected false data in sensor networks. In Security

and privacy, 2004. Proceedings. 2004 IEEE symposium on, pages 259–271. IEEE. 25

131



Vita

Xiangyu Niu was born in Jinan, China. He received B.S. degree from Shandong University

in 2013. He is pursuing Ph.D. degree in the Department of Electrical Engineering and

Computer Science (EECS) at the University of Tennessee, Knoxville and is currently a

research assistant under the supervision of Dr. Jinyuan Sun. His research interest includes

but not limited to data security and privacy, applied cryptography, machine learning, and

cyber-physical security for the smart grid.

132


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2018

	Vulnerability Assessment and Privacy-preserving Computations in Smart Grid
	Xiangyu Niu
	Recommended Citation


	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Challenges
	1.4 Dissertation Outline

	2 Cyber-physical Security of the Synchrophasor Networks
	2.1 Introduction
	2.1.1 Challenges
	2.1.2 Outlines

	2.2 Related Work
	2.3 Preliminary
	2.3.1 Synchrophasor
	2.3.2 Phasor Measurement Unit and Phasor Data Concentrator
	2.3.3 Synchrophasor Network Standards

	2.4 Cyber Attacks Targeting Synchrophasor Networks
	2.4.1 Compromising Data Availability
	2.4.2 Compromising Data Confidentiality
	2.4.3 Compromising Data Integrity

	2.5 Vulnerability Assessment for Synchrophasor Networks
	2.5.1 Evaluation Setup
	2.5.2 Vulnerability Exploration

	2.6 Exploit Development for Synchrophasor Networks
	2.6.1 Denial-of-Service Attacks
	2.6.2 Sniffing Attack
	2.6.3 False Data Injection Attacks

	2.7 Attack Mitigation and Countermeasures.
	2.7.1 Protecting Data Availability
	2.7.2 Protecting Data Confidentiality
	2.7.3 Protecting Data Integrity
	2.7.4 A Small-scale Secure Synchrophasor network


	3 Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning
	3.1 Introduction
	3.1.1 Challenges
	3.1.2 Outlines

	3.2 Related Work
	3.3 Preliminary
	3.3.1 False Data Injection Attack
	3.3.2 Convolutional Neural Network
	3.3.3 Recurrent Neural Network

	3.4 Real-time Detection of False Data Injection Attack
	3.4.1 The Combined Attack Detection Method
	3.4.2 Static Detection Method
	3.4.3 Dynamic Detection Method

	3.5 Evaluation

	4 Privacy-preserving Large Scale Security Constrained Optimal Power Flow
	4.1 Introduction
	4.1.1 Challenges
	4.1.2 Outlines

	4.2 Related Work
	4.3 System Architecture
	4.3.1 System Model
	4.3.2 Design Goals and Threat Model

	4.4 Preliminaries
	4.4.1 SCOPF Problem Formulation
	4.4.2 Paillier Cryptosystem
	4.4.3 The ADMM Method

	4.5 Privacy-preserving SCOPF
	4.5.1 Reformulating the Problem
	4.5.2 Solving Subproblems
	4.5.3 Gradient Projection Algorithm
	4.5.4 Dealing with Floating Point Numbers
	4.5.5 Privacy-preserving SCOPF
	4.5.6 Discussion
	4.5.7 Security Analysis

	4.6 Evaluation
	4.6.1 Accuracy
	4.6.2 Convergence Rate
	4.6.3 Performance


	5 Privacy-preserving Dynamic Simulations in Power Grid
	5.1 Introduction
	5.1.1 Challenges
	5.1.2 Outlines

	5.2 Related Work
	5.3 System Architecture
	5.3.1 System Model
	5.3.2 Design Goals and Threat Model

	5.4 Preliminaries
	5.4.1 Dynamic Simulations and Runge-Kutta Method
	5.4.2 Paillier Cryptography
	5.4.3 IEEE 3-machine, 9-bus System

	5.5 Privacy-preserving Dynamical Simulations
	5.5.1 Dynamical Simulations for IEEE 3-Machine, 9-Bus System 
	5.5.2 Privacy-preserving RK4 Protocol
	5.5.3 Discussion

	5.6 Evaluation
	5.6.1 Implementation
	5.6.2 Performance
	5.6.3 Accuracy


	6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Research Directions

	Bibliography
	Vita

