3,294 research outputs found

    Boost converter fed high performance BLDC drive for solar PV array powered air cooling system

    Get PDF
    This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV) array and the Voltage Source Inverters (VSI) in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC) motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC) motor drive system and from the simulated results it is found that the proposed system performs better

    Solar array fed synchronous reluctance motor driven water pump : an improved performance under partial shading conditions

    Get PDF
    An improved performance of a photovoltaic (PV) pumping system employing a synchronous reluctance motor (SynRM) under partial shading conditions is proposed. The system does not include the dc-dc converter that is predominantly being utilized for maximizing the output power of the PV array. In addition, storage batteries are also not contained. A conventional inverter connected directly to the PV array is used to drive the SynRM. Further, a control strategy is proposed to drive the inverter so that the maximum output power of the PV array is achieved while the SynRM is working at the maximum torque per Ampere condition. Consequently, this results in an improved system efficiency and cost. Moreover, two maximum power point tracking (MPPT) techniques are compared under uniform and partial shadow irradiation conditions. The first MPPT algorithm is based on the conventional perturbation and observation (P&O) method and the second one uses a differential evolution (DE) optimization technique. It is found that the DE optimization method leads to a higher PV output power than using the P&O method under the partial shadow condition. Hence, the pump flow rate is much higher. However, under a uniform irradiation level, the PV system provides the available maximum power using both MPPT techniques. The experimental measurements are obtained to validate the theoretical work

    Literature Survey On Standalone Pumping Station For Agriculture Purpose Using Solar PV

    Get PDF
    The concept of the project is to utilize the abundant solar energy available, harness it for effective work output. Here we are trying to use solar energy to run the centrifugal pump for lifting the water from the well. This can be utilized for different purpose like irrigation for agriculture & nurseries, etc. Here we are collecting all information about which kind of constraints required for planning of standalone pumping station for agriculture purpose. In this paper we are finding out which are power electronics applications in renewable energy sources. This document will help all researcher to start work on Solar PV’s, irrigation using renewable energy , as well as for finding the power electronics application in renewable energy sources. DOI: 10.17762/ijritcc2321-8169.15036

    Hybrid photovoltaic-thermoelectric generator powered synchronous reluctance motor for pumping applications

    Get PDF
    The interest in photovoltaic (PV) pumping systems has increased, particularly in rural areas where there is no grid supply available. However, both the performance and the cost of the whole system are still an obstacle for a wide spread of this technology. In this article, a hybrid photovoltaic (PV)-thermoelectric generator (TEG) is investigated for pumping applications. The electric drivetrain comprises a synchronous reluctance motor and an inverter. A control strategy for the drivetrain is employed to execute two main tasks: 1) driving the motor properly to achieve a maximum torque per Ampere condition and 2) maximizing the output power of the PV system at different weather conditions. This means that the conventional DC-DC converter is not used in the proposed system. Moreover, batteries, which are characterized by short life expectancy and high replacement cost, are also not used. It is found that the motor output power and the pump flow rate are increased by about 9.5% and 12% respectively when the hybrid PV-TEG array is used compared to only using PV array. Accordingly, the performance, cost and complexity of the system are improved. Measurements on an experimental laboratory setup are constructed to validate the theoretical results of this work

    Power converters control for photovoltaic water pumping system

    Get PDF
    This work proposes solutions to challenges encountered in photovoltaic water pumping systems, such as the issue in the number of photovoltaic modules in low power systems, the maximum power point tracking and its implementation, as well as the pump control system. The maximum power point tracking is achieved via the addition of a step-up converter controlled by a proportional-integral controller. The system load is comprised by an induction motor, controlled by an open-loop scalar strategy. Simulations and real platform tests with solar radiance variation and variable number of photovoltaic modules were performed, validating the operation of the proposed solutions.Este trabalho propõe soluções para os desafios encontrados nos sistemas de bombagem fotovoltaica, como a questão do número de módulos fotovoltaicos em sistemas de baixa potência, o seguimento do ponto de potência máxima e sua implementação, bem como o sistema de controle da bomba. O seguimento do ponto de potência máximo é obtido através da adição de um conversor elevador, controlado por um controlador proporcional-integral. A carga do sistema é compreendida por um motor de indução, controlado por uma estratégia de controle escalar em malha aberta. Simulações e testes em uma plataforma real, com variação do nível de radiação solar e um número variável de módulos fotovoltaicos foram realizados, validando o funcionamento das soluções propostas

    Implementation of solar photovoltaic array and battery powered enhanced DC-DC converter using B4-inverter fed brushless DC motor drive system for agricultural water pumping applications

    Get PDF
    The proposed research involves, an implementation of solar photovoltaic array and battery powered enhanced dc-dc converter using B4-inverter fed brushless dc motor drive system for agricultural water pumping applications. It consists of step up and step-down converter, DC-link module. DC-link switching is achieved by reduced ripple voltage which results in improved quality of obtained output power. The Three Port Converter has been proposed and operated in unidirectional and/or bidirectional way simultaneously, for achieving an inherent dual voltage and power flow control. Switch count makes the system more cost effective. An excellent tracking performance under dynamic condition with negligible oscillations around optimum operating point is achieved. Optimally selecting the initial value of duty ratio and its perturbation size offer soft starting of BLDC motor by slowly increasing the DC-link voltage of VSI. A simulation model of solar photovoltaic array and battery powered enhanced DC-DC converter is developed and its performance is analysed for various operating conditions

    Experimental and numerical study of a directly PV-assisted domestic hot water system

    Get PDF
    International audienceThe solar domestic hot water (SDHW) system is the most highly developed system for use of solar energy. The developments for the thermal regulation of buildings should reinforce this trend given the significant reduction of heating needs. Currently, the design of these SDHW installations is well controlled and the system performance is reasonably good. The annual average solar fraction is consistent with expected level (between 60% and 70%) according to a report of CSTB by evaluating 120 SDHW installations (Buscarlet and Caccavelli, 2006). However, the control mode of conventional SDHWs induces additional costs related to the consumption of auxiliaries and other risks of dysfunction of the circulation pump due to the temperature probes and controller setup which induces a lower annual productivity of solar collector (200 instead of 400 kWh/m 2). From this point of view, the photovoltaic pumped system seems suitable since it eliminates the controller and temperature sensors. This paper focuses on an experimental and numerical study of the behavior of a PV-SDHW system, focusing on the start-up phase optimized through various electronic devices. A detailed model of a circulation pump was developed by considering a direct current (DC) circulation pump coupled with various electronic devices (linear current booster and maximum power point tracker). The developed models were then validated experimentally, to reveal the influence of the threshold solar radiation on the circulation pump start-up and the pump flow rate as a function of the solar radiation, and its effects on the annual energy performance of PV-SDHW systems

    AN APPROACH FOR DESIGN AND MANAGEMENT OF A SOLAR-POWERED CENTER PIVOT IRRIGATION SYSTEM

    Get PDF
    Emerging financial and environmental challenges associated with conventional power sources have increased global interest in consuming unpolluted, renewable energy sources for irrigation sector. Solar energy may be an attractive choice in this regard due to its strong influence on crop water use and related energy requirement. However, a comprehensive approach for a reliable and economically viable photovoltaic (PV) system design to produce energy from solar source is required to accurately explore its potential. This thesis describes the development and application of a reliability assessment model, identifies a suitable solar irrigation management scheme, and provides guidelines for evaluating economic viability of a solar-powered center pivot irrigation system. The reliability model, written in MATLAB, was developed based on the loss of power supply probability (LPSP) technique in which various sub-models for estimating energy production, energy requirement and energy storage were combined. The model was validated with actual data acquired from the study site located at Outlook, Saskatchewan, Canada and an excellent agreement was found. For example, normalized root mean square error (NRMSE) for the battery current was found to be 0.027. Irrigation management strategies (irrigation depth, frequency and timing) were investigated by comparing the PV system sizing requirement for a conventional (25-35 mm per application) and for a frequent light irrigation management strategy (5-8 mm per application). The results suggest that the PV sizing can be reduced significantly by adopting frequent light irrigations which utilize the power as it is produced during daylight hours, rather than relying on stored energy. The potential of a solar-powered center pivot irrigation system was revealed for three different crops (canola, soybean and table potato) at the site by conducting a detailed economic analysis for the designed PV system. High value crops with moderate water requirements such as table potatoes appeared to be the most feasible choice for the study site. However, the potential may greatly vary for different crops in altered locations due to management, agronomic, climate, social, and economic variations. It can be concluded that a holistic approach described here can be used as a tool for designing an appropriate PV powered center pivot irrigation system under variable operating and meteorological conditions. Furthermore, its potential can be accurately explored by conducting a detailed economic analysis for a given location, considering different available crop choices

    Simulation-based coyote optimization algorithm to determine gains of PI controller for enhancing the performance of solar PV water-pumping system

    Get PDF
    In this study, a simulation-based coyote optimization algorithm (COA) to identify the gains of PI to ameliorate the water-pumping system performance fed from the photovoltaic system is presented. The aim is to develop a stand-alone water-pumping system powered by solar energy, i.e., without the need of electric power from the utility grid. The voltage of the DC bus was adopted as a good candidate to guarantee the extraction of the maximum power under partial shading conditions. In such a system, two proportional-integral (PI) controllers, at least, are necessary. The adjustment of (Proportional-Integral) controllers are always carried out by classical and tiresome trials and errors techniques which becomes a hard task and time-consuming. In order to overcome this problem, an optimization problem was reformulated and modeled under functional time-domain constraints, aiming at tuning these decision variables. For achieving the desired operational characteristics of the PV water-pumping system for both rotor speed and DC-link voltage, simultaneously, the proposed COA algorithm is adopted. It is carried out through resolving a multiobjective optimization problem employing the weighted-sum technique. Inspired on theCanis latransspecies, the COA algorithm is successfully investigated to resolve such a problem by taking into account some constraints in terms of time-domain performance as well as producing the maximum power from the photovoltaic generation system. To assess the efficiency of the suggested COA method, the classical Ziegler-Nichols and trial-error tuning methods for the DC-link voltage and rotor speed dynamics, were compared. The main outcomes ensured the effectiveness and superiority of the COA algorithm. Compared to the other reported techniques, it is superior in terms of convergence rapidity and solution qualities
    corecore