8,039 research outputs found

    Computer program for a four-cylinder-Stirling-engine controls simulation

    Get PDF
    A four cylinder Stirling engine, transient engine simulation computer program is presented. The program is intended for controls analysis. The associated engine model was simplified to shorten computer calculation time. The model includes engine mechanical drive dynamics and vehicle load effects. The computer program also includes subroutines that allow: (1) acceleration of the engine by addition of hydrogen to the system, and (2) braking of the engine by short circuiting of the working spaces. Subroutines to calculate degraded engine performance (e.g., due to piston ring and piston rod leakage) are provided. Input data required to run the program are described and flow charts are provided. The program is modular to allow easy modification of individual routines. Examples of steady state and transient results are presented

    Coherent laminar and turbulent motion of toroidal vortex bundles

    Full text link
    Motivated by experiments performed in superfluid helium, we study numerically the motion of toroidal bundles of vortex filaments in an inviscid fluid. We find that the evolution of these large-scale vortex structures involves the generalised leapfrogging of the constituent vortex rings. Despite three dimensional perturbations in the form of Kelvin waves and vortex reconnections, toroidal vortex bundles retain their coherence over a relatively large distance (compared to their size), in agreement with experimental observations.Comment: 22 pages, 12 figure

    Optimal Reconstruction of Inviscid Vortices

    Full text link
    We address the question of constructing simple inviscid vortex models which optimally approximate realistic flows as solutions of an inverse problem. Assuming the model to be incompressible, inviscid and stationary in the frame of reference moving with the vortex, the "structure" of the vortex is uniquely characterized by the functional relation between the streamfunction and vorticity. It is demonstrated how the inverse problem of reconstructing this functional relation from data can be framed as an optimization problem which can be efficiently solved using variational techniques. In contrast to earlier studies, the vorticity function defining the streamfunction-vorticity relation is reconstructed in the continuous setting subject to a minimum number of assumptions. To focus attention, we consider flows in 3D axisymmetric geometry with vortex rings. To validate our approach, a test case involving Hill's vortex is presented in which a very good reconstruction is obtained. In the second example we construct an optimal inviscid vortex model for a realistic flow in which a more accurate vorticity function is obtained than produced through an empirical fit. When compared to available theoretical vortex-ring models, our approach has the advantage of offering a good representation of both the vortex structure and its integral characteristics.Comment: 33 pages, 10 figure

    Numerical dynamic analysis of reciprocating compressor mechanism. Parametric studies for optimization purposes

    Get PDF
    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A complete numerical dynamic analysis of reciprocating compressor mechanism is presented, coupling the instantaneous pressure in the compression chamber, the electric motor torque and the hydrodynamic reactions, which arise from the piston and crankshaft secondary movements. Additionally, non-constant crankshaft angular velocity and the piston and crankshaft misalignment torques have also been considered. Two sensitivity analyses have been carried out to prove that neither the inertial forces in the directions of the secondary movements, nor the oscillations of the angular velocity produce significant differences in the compressor behaviour. Finally, a set of parametric studies has been developed to evaluate the influence of geometrical parameters in the stability of the secondary movements, the friction power losses and the compressor consumptionPeer ReviewedPostprint (author's final draft

    Numerical experiments on vortex ring formation

    Get PDF
    Numerical simulations are used to study the formation of vortex rings that are generated by applying a non-conservative force of long duration, simulating experimental vortex ring generation with large stroke ratio. For sufficiently long-duration forces, we investigate the extent to which properties of the leading vortex ring are invariant to the force distribution. The results confirm the existence of a universal ‘formation number’ defined by Gharib, Rambod & Shariff (1998), beyond which the leading vortex ring is separated from a trailing jet. We find that the formation process is governed by two non-dimensional parameters that are formed with three integrals of the motion (energy, circulation, and impulse) and the translation velocity of the leading vortex ring. Limiting values of the normalized energy and circulation of the leading vortex ring are found to be around 0.3 and 2.0, respectively, in agreement with the predictions of Mohseni & Gharib (1998). It is shown that under this normalization smaller variations in the circulation of the leading vortex ring are obtained than by scaling the circulation with parameters associated with the forcing. We show that by varying the spatial extent of the forcing or the forcing amplitude during the formation process, thicker rings with larger normalized circulation can be generated. Finally, the normalized energy and circulation of the leading vortex rings compare well with the same properties for vortices in the Norbury family with the same mean core radius

    A 4-cylinder Stirling engine computer program with dynamic energy equations

    Get PDF
    A computer program for simulating the steady state and transient performance of a four cylinder Stirling engine is presented. The thermodynamic model includes both continuity and energy equations and linear momentum terms (flow resistance). Each working space between the pistons is broken into seven control volumes. Drive dynamics and vehicle load effects are included. The model contains 70 state variables. Also included in the model are piston rod seal leakage effects. The computer program includes a model of a hydrogen supply system, from which hydrogen may be added to the system to accelerate the engine. Flow charts are provided

    Optimal vortex formation as a unifying principle in biological propulsion

    Get PDF
    I review the concept of optimal vortex formation and examine its relevance to propulsion in biological and bio-inspired systems, ranging from the human heart to underwater vehicles. By using examples from the existing literature and new analyses, I show that optimal vortex formation can potentially serve as a unifying principle to understand the diversity of solutions used to achieve propulsion in nature. Additionally, optimal vortex formation can provide a framework in which to design engineered propulsions systems that are constrained by pressures unrelated to biology. Finally, I analyze the relationship between optimal vortex formation and previously observed constraints on Strouhal frequency during animal locomotion in air and water. It is proposed that the Strouhal frequency constraint is but one consequence of the process of optimal vortex formation and that others remain to be discovered
    • 

    corecore