18,977 research outputs found

    Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response

    Get PDF
    The rollout of smart meters raises the prospect that domestic customer electrical demand can be responsive to changes in supply capacity. Such responsive demand will become increasingly relevant in electrical power systems, as the proportion of weather-dependent renewable generation increases, due to the difficulty and expense of storing electrical energy. One method of providing response is to allow direct control of customer devices by network operators, as in the UK 'Economy 7' and 'White Meter' schemes used to control domestic electrical heating. However, such direct control is much less acceptable for loads such as washing machines, lighting and televisions. This study instead examines the use of real-time pricing of electricity in the domestic sector. This allows customers to be flexible but, importantly, to retain overall control. A simulation methodology for highlighting the potential effects of, and possible problems with, a national implementation of real-time pricing in the UK domestic electricity market is presented. This is done by disaggregating domestic load profiles and then simulating price-based elastic and load-shifting responses. Analysis of a future UK scenario with 15 GW wind penetration shows that during low-wind events, UK peak demand could be reduced by 8-11 GW. This could remove the requirement for 8-11 GW of standby generation with a capital cost of ÂŁ2.6 to ÂŁ3.6 billion. Recommended further work is the investigation of improved demand-forecasting and the price-setting strategies. This is a fine balance between giving customers access to plentiful, cheap energy when it is available, but increasing prices just enough to reduce demand to meet the supply capacity when this capacity is limited

    Energy use in residential buildings: Impact of building automation control systems on energy performance and flexibility

    Get PDF
    This work shows the results of a research activity aimed at characterizing the energy habits of Italian residential users. In detail, by the energy simulation of a buildings sample, the opportunity to implement a demand/response program (DR) has been investigated. Italian residential utilities are poorly electrified and flexible loads are low. The presence of an automation system is an essential requirement for participating in a DR program and, in addition, it can allow important reductions in energy consumption. In this work the characteristics of three control systems have been defined, based on the services incidence on energy consumptions along with a sensitivity analysis on some energy drivers. Using the procedure established by the European Standard EN 15232, the achievable energy and economic savings have been evaluated. Finally, a financial analysis of the investments has been carried out, considering also the incentives provided by the Italian regulations. The payback time is generally not very long: depending on the control system features it varies from 7 to 10 years; moreover, the automation system installation within dwellings is a relatively simple activity, which is characterized by a limited execution times and by an initial expenditure ranging in 1000 € to 4000 €, related to the three sample systems

    Electric vehicles – effects on domestic low voltage networks

    Get PDF
    Electric Vehicles (EV) charging from a domestic power socket are becoming increasingly popular due to their economic and environmental benefits. The large number of such vehicles presents a significant additional load on existing low voltage (LV) power distribution networks (PDN). Evaluating this impact is essential for distribution network operators (DNO) to ensure normal functioning of the distribution grid. This research uses predictions of EV development and penetration levels to create a stochastic model of aggregate charging demand in a neighbourhood. Combined with historic distribution substations data from the Milton Keynes, UK total loads on the distribution transformers are projected. The results show significant overloading can occur with uncoordinated charging with just 25% of EVs on the road. The traditional way to solve this problem would be upgrading the transformer; however, that could be avoided by implementing coordinated charging to redistribute the load

    Persim - Simulator for Human Activities in Pervasive Spaces

    Get PDF
    Activity recognition research relies heavily on test data to verify the modeling technique and the performance of the activity recognition algorithm. But data from real deployments are expensive and time consuming to obtain. And even if cost is not an issue, regulatory limitations on the use of human subjects prohibit the collection of extensive datasets that can test all scenarios, under all circumstances. A powerful and verifiable simulation tool is needed to accelerate research on human activity recognition. We present Persim, an event driven simulator of human activities in pervasive spaces. Persim is capable of capturing elements of space, sensors, behaviors (activities), and their inter-relationships. We focus on presenting the five main use cases for Persim addressing dataset synthesis, reuse and extension of existing datasets, sharing of data and simulation projects, as well as data validation. © 2011 IEEE

    Integrating big data into a sustainable mobility policy 2.0 planning support system

    Get PDF
    It is estimated that each of us, on a daily basis, produces a bit more than 1 GB of digital content through our mobile phone and social networks activities, bank card payments, location-based positioning information, online activities, etc. However, the implementation of these large data amounts in city assets planning systems still remains a rather abstract idea for several reasons, including the fact that practical examples are still very strongly services-oriented, and are a largely unexplored and interdisciplinary field; hence, missing the cross-cutting dimension. In this paper, we describe the Policy 2.0 concept and integrate user generated content into Policy 2.0 platform for sustainable mobility planning. By means of a real-life example, we demonstrate the applicability of such a big data integration approach to smart cities planning process. Observed benefits range from improved timeliness of the data and reduced duration of the planning cycle to more informed and agile decision making, on both the citizens and the city planners end. The integration of big data into the planning process, at this stage, does not have uniform impact across all levels of decision making and planning process, therefore it should be performed gradually and with full awareness of existing limitations
    • …
    corecore