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Abstract— Electric Vehicles (EV) charging from a domestic 

power socket are becoming increasingly popular due to their 

economic and environmental benefits. The large number of such 

vehicles presents a significant additional load on existing low 

voltage (LV) power distribution networks (PDN). Evaluating 

this impact is essential for distribution network operators 

(DNO) to ensure normal functioning of the distribution grid. 

This research uses predictions of EV development and 

penetration levels to create a stochastic model of aggregate 

charging demand in a neighbourhood. Combined with historic 

distribution substations data from the Milton Keynes, UK total 

loads on the distribution transformers are projected. The results 

show significant overloading can occur with uncoordinated 

charging with just 25% of EVs on the road. The traditional way 

to solve this problem would be upgrading the transformer; 

however, that could be avoided by implementing coordinated 

charging to redistribute the load.    

Index Terms—Electric vehicle, Load Modeling, Power system 

planning, Substations 

I. INTRODUCTION 

Electric vehicles (EV) are becoming increasingly popular 
and are set to become very common in the near future. Some 
reasons for their popularity identified by Go Ultra Low 
campaign [1] are environmental friendliness, comfort (low 
noise), good performance and low running costs. With the 
anticipated high penetration ratio in future vehicle market and 
proposition of majority of them being charged at home, 
concerns regarding their impact on domestic low voltage (LV) 
electric distribution networks have been raised. This particular 
study was initiated by Western Power Distribution (WPD), the 
electric distribution network operator (DNO) serving 7.8 
million customers across UK [2]. WPD have provided real 
data on distribution network layout, customers and current 
loads in the area of Milton Keynes, UK (MK) to support the 
research. Our aim is to use the data and combine them with 
literature sourced predictions to determine the expected impact 
of EVs on LV networks in the future. The analysis will serve 
UK DNOs as an indicator of the required investment in 
infrastructure to support these additional upcoming loads.  

A. Background 

In the UK Ultra Low Emission Vehicles (ULEV; vehicles 
producing 75g or less of CO2 per kilometre from the tailpipe) 
already had more than 1% market share in last quarter of 2014 
and first quarter of 2015 [3]. One very important factor 
affecting the sales is governmental activity. UK Government’s 
influence includes investments in industry, subsidizing 
purchase of ULEVs and other stimulations, for instance lower 
taxes and levies for such vehicles; currently there is a plug-in 
grant of up to £5000 for eligible cars and up to £8000 for light 
commercial vehicles [4]. The driving force behind these 
activities is the UK Government’s commitment to the legally 
binding obligation to cut greenhouse emissions by 80% by 
year 2050 in comparison with 1990, introduced in The UK 
Renewable Energy Strategy in 2011 [5]. Another motivator is 
the determination to pursue the strategic opportunity of the 
new technologies and help the UK’s automotive industry be at 
the forefront of ULEV design, development and 
manufacturing [4].  

B. Related Work and the Research Gap 

Case study of New York state undertaken by New York 
Independent System Operator (operates the state’s high-
voltage transmission network) highlighted that delivery ‘‘to 
the last mile’’ in the local energy system could be a great 
challenge [6]. To fully exploit EVs’ potential positive impact, 
a third party control over the charging process would be the 
best option, but even simple time-of-use residential meters 
coupled with revised retail rate structures would have an 
enormous positive influence. A low voltage network case 
study was made for the city of Blackburg, Virginia, US where 
the typical 25 kVA distribution transformer serves 4-7 homes 
in a neighbourhood [7]. The drawback of using hourly data is 
pointed out; domestic load curve is greatly smoothened [7]. 
Salah, Ilg, Flath, Basse and Dinther [8] made a study of 
impacts on distribution substations in Switzerland and find 
that using dynamic pricing is potentially more problematic as 
the majority of the vehicles would start charging at exactly the 
same time: the start of the lowest price period, thus creating a 
pronounced peak. Another study identifies potential issues of 
high EV penetration: excessive wear on residential 
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transformers, transformer overloads, transmission bottlenecks, 
increased line losses and power quality issues, meaning 
network reinforcements or charging management technologies 
will be needed to safely integrate large numbers of EVs [8]. 
These technologies are: stagger charge (charging in steps) and 
household load control (giving customer the choice to shed 
non-essential load in exchange for quicker EV recharging) [7].  

Plenty of work has been focused on implementing new 
smart charging technologies, with the aim of smoothening the 
load curve rather than creating new peaks with EV charging. 
Schuller, Flath and Gottwald [9] assume a bundle of many 
EVs being charged together in a coordinated way (EV 
aggregator) and evaluate their system balancing potential. The 
study found that EVs have a huge potential for balancing the 
grid if coordinated properly in case of wind power generation; 
it was previously indicated that only 1 million EVs in use 
could provide half of the balancing power for a 30% wind 
power share in the UK [9]. Acha, Green and Shah [10] go a 
step further with optimisation and propose time coordinated 
optional power flow (TCOPF), which includes vehicle to grid 
(V2G) mode. This enables the EV to act as a power source or 
load, depending on other loads on the network. 

A limitation of the previous studies is the lack of precise 
input data. There were few studies using real transformer data; 
and the ones that were used hourly ([7] and [11]) or half-
hourly data [10]. The consequence of this is a much 
smoothened daily consumption curve, which is not 
representative of normal peaks and fluctuations. Another area 
that could be improved are the vehicle charging patterns. 
Often different states of charge of a large number of vehicles 
and home arrival times were not based on any real historic 
data. None of the reviewed works had taken the users already 
using Economy 7 (E7) or similar split tariff scheme into 
account. That way, a mixed scenario can be created, where the 
majority of people are ignorant towards charging start time, 
but a minority using some sort of coordination is present.  

 

II. METHODOLOGY AND MODELLING  

After thorough understanding of the subject, gained 
through the extensive literature review we determined worst 
case scenarios for EV charging. Next step was to create a 
model illustrating those scenarios and determine the effects on 
LV networks (Figure 1). At the end we analyzed possible 
solutions and indicated the most suitable ways to overcome 
potential threats.    

A. Data Collection 

Historic transformer loadings data were provided by WPD 
from 6 neighbourhoods in MK. Loadings were in the form of 
10 minute averages for winter months from November till 
March, when the consumption is at its highest. From those 
data, we picked the days with highest the peak load and 
highest daily average consumption. The latter were considered 
because of potentially being more problematic for the off peak 
charging scenarios. Interestingly, only in one out of the 6 
cases max. peak and max. daily average transformer loading 
occurred on the same day. Another surprising fact is that most 
of these days were Sundays and after closer inspection we 
realized that consumption was generally greater during the 
weekends. The reason for such distribution is probably in the 
fact that all areas are predominantly residential and people 
spend more time at home during the weekend, increasing the 
electricity consumption.  

Next parameter needed to be determined was number of 
cars per household. Long-term trends are hard to predict, as 
they depend on technology advancements, government 
policies, personal preferences and many other factors [12].  

Due to the lack of dependable trends we assume this to remain 
on the same level as today 1.30 cars per household [14]. For 
small commercial customers we assume 2 cars and for large 
commercial customers a 10 car fleet. Having established the 
number of vehicles present we had to define the share of EVs.  

 

 

 

Figure 1. Work flow for Total Load on distribution transformer calculation 



There is no agreement between different authors regarding the 
predicted EV penetration levels. We will assume the 
prediction already used in Project FALCON by WPD, which 
matches the medium DECC projection [13]. A strong 
argument for using the official governmental prediction is 
their knowledge of the funds planned for EV technology 
improvement [4]. The share of EVs on the road resembles 
their market share from 7 years before (the average age of a 
car on the UK roads) [14].  

Charging power of the vehicle depends on the type of 
charger installed at owner’s home or availability of on-board 
charging. EVs are charging with either 16A or 32A current 
[15]. Manufacturers usually specify charging power of 3.3 kW 
([16]) and 6.6 kW ([17]) for slow and quick domestic charging 
respectively. We assume that the share of quick chargers will 
increase with time because of an increased share of Battery 
Electric Vehicles (BEV) and Range Extended Electric 
Vehicles (E-REV). These vehicles have larger batteries, 
requiring more time to recharge. Other factors driving more 
fast chargers are likely to be their decreasing cost and a need 
for quicker charging in the case of dynamic tariffs for better 
economic efficiency. 

State of discharge of the battery depends on the distance 
driven and the vehicle’s power consumption. Consumption 
was determined at 0.35 kWh per mile driven, which is in the 
middle of figures claimed for ULEVs currently on sale [18]. 
The distance driven was sourced from National Travel Survey 
(NTS); the data were for South East England in 2012/13 [19].  

B. Modeling 

The model was made with MS Excel spreadsheets. Each 
car had its own charging power, home arrival time and state of 
charge. The number of cars was determined for each scenario 
and the aggregate demand from all the cars in an area was 
summed up. Due to great uncertainty regarding EV market 
development we considered three scenarios with 25, 50 and 
100% EV share on the road and the same increasing share of 
fast chargers, as shown in Table 1.  

TABLE I.  EV DEPLOYMENT SCENARIOS 

 
The time needed to recharge was derived from battery 

state of charge (SOC), which was dependent on the distance 
driven by the vehicle. We assumed this to be at least twice the 
distance of an average trip, since we assumed vehicles to be 
charging at home only. To make it easier to model and 
introduce an element of randomness we assumed the length of 
the trip to be a normally distributed random variable with a 
mean value of 20 miles and standard deviation of 15 miles. 
With some numbers being negative (simulating cars not in use 
that day and not charging; these values were ignored) that 
gave us an average of around 19 miles, slightly more than 
double the distance of an average trip (8.5 miles for South 

East England in 2012/13). That simulated some cars charging 
after more than 2 trips (multiple destination journeys, e.g. 
shopping and visiting friends). Depending on the type of 
charger, which was chosen randomly with pre-determined 
probability distribution the time needed to recharge was 
calculated and rounded to 10 minute intervals to match the 
base load data. The NTS data were also used for the times of 
trips back home, but a random sample with normal probability 
distribution was again introduced. The distribution has a mean 
at 16:40 and a standard deviation of 100 minutes.  

Time of charging start is possibly the most important 
aspect that will define the impact on the network. Three 
different scenarios with differing structures of charging times 
were constructed:  

 Uncoordinated charging: the most basic scenario, 
very likely in the event of inadequate education and 
incentives to the EV users. It was assumed that fixed 
tariff customers will be charging their vehicles 
directly upon arriving home, on average around 30 
minutes after the start of their trip (average time for a 
car trip + 9 minutes for parking and plugging the car 
at home) [19]. The users already using the E7 scheme 
are expected to start charging their vehicles at 00:30 in 
the morning, at the beginning of the low price period, 
using some form of simple charging start delaying 
device. Commercial users’ cars charge at random 
times between 9-5pm during the day.  

 Off peak clustering: a scenario, where all domestic 
users that own and EV start using the E7 scheme. This 
scenario could lead to severe off peak clustering, if all 
the owners would start charging their cars at the same 
time. The peak load can be more than four times 
higher for the same number of cars as before. 

 Smart Charging: includes some form of load control, 
which distributes the load evenly. This control could 
be external or some sort of integrated intelligence in 
the charger or vehicle. We imitated this logic by 
assigning the vehicles randomly chosen start times 
during the night time. The only form of control is 
internal; depending on SOC the interval is adjusted to 
make sure all charging is finished by 07:30 in the 
morning. The peak EV load itself is somewhat greater 
than in the case of uncoordinated charging, but comes 
at a much more favourable time, when the overall 
electricity demand is at its lowest.  

C. Model Validation 

To validate our model we compared it with similar 
examples from the literature. A good comparison is seen in the 
model from [20], which has 20% EV penetration. When 
compared with our model, (with the same EV penetration 
level) we see a similar 30% increase in peak load. Tehrani and 
Wang [21] produced a probabilistic estimation of EV charging 
load profile; their predicted load distribution is very similar to 
ours.  

Scenario name S25 S50 S100 

EV presence on the road [%] 25 50 100 

Slow (3.3 kW) : Fast (6.6 kW) 

chargers ratio 
25:75 50:50 0:100 

Year of realization according to 

FALCON 
2036 2043 2060 



III. RESULTS AND DISCUSSION 

A. Effects of Increasing EV share 

Figure 2 displays how total load on the transformer (Noon 
Layer Drive West, NLDW) is increasing with rising presence 
of EVs. The maximum historic load was 150 kVA; that rises 
to around 200 kVA at 25%, 300 kVA at 50% and slightly past 
the 500 kVA transformer rating at 100% EV share. 

 
Figure 2.  Uncoordinated charging loads for different EV penetration levels  

The number of EVs likely to charge is one of the most 
difficult factors to predict, but we can confidently assume that 
the number will rise in the years to come. With 100% EV 
share, their daily electricity consumption in Barnfield Drive 
West (BDW) neighbourhood is in the range of 2600-2900 
kWh, similar to 2850 kWh used on an average winter day 
there now. EVs could therefore more than double the overall 
electricity consumption, which is in line with Kelly’s estimate 
[22].  

B. Effects of Different Charging Schedules 

Loads on Bletchley area A (BAA) transformer for the 
three possible charging patterns (uncoordinated, off-peak 
clustered and coordinated) are shown in Figure 3. The historic 
peak load of 247 kVA rises to 400 kVA with uncoordinated 
and around 470 kVA in the case of off-peak clustered 
charging. If distributed in a coordinated way, EV charging 
does lead to a new peak during the night; however it is lower 
than the maximum daily peak.  

 
Figure 3.  Loads with different charging patterns for a 25% EV share 

Many literature sources consider the uncoordinated 
charging to be the worst case scenario [6], [7]. However, 
results in Figure 3 show the E7 split tariff regime with only 2 
different price periods would likely be even more problematic, 
because it could lead to significant off-peak clustering. In our 
study it was assumed that people using this scheme would use 
simple delay devices to start charging at the desired time. 
While the low price period lasts for 7 hours during the night, 
we expect people would want the charging to begin as soon as 
possible to secure the vehicle would be charged in time for 
morning use. Interestingly, despite those assumptions seeming 
sensible, historic data analysis put us in doubt. The difference 
between daily max and average values is very similar in 
neighbourhoods with low and high share of E7 users, 
indicating that in reality currently people tend to not take 
advantage of the split tariff scheme. This might be due to a 
lack of awareness of the potential benefits or not having 
sufficiently intelligent infrastructure and appliances installed.     

Another observation is that due to the scale of EV loads 
the charging start times make the greatest difference at low 
deployment scenarios. At 25% EV deployment rate in case of 
E7 clustering the EV load peak alone already greatly exceeds 
the previous residential only peak load; when this rate is 
100%, the peak is at least doubled in all areas with smart 
charging as well. Therefore the redistribution strategies should 
aim to avoid creating peaks, rather than shifting them to more 
convenient times.     



C. Significance of the Transformer Rating  

The same scenario (25% EV share being charged in a 
cluster) was compared in two different areas; NLDW and 
BDW. The former has a 500 kVA rated transformer and had 
historic peak load of 150 kVA; for the latter those values are 
315 and 233 kVA, representative of higher number of 
customers in BDW. After adding the EV load the total peak 
load for NLDW didn’t even reach half of the limit, while in 
BDW more than 40% overload occurred. The potential 
overload issues therefore greatly depend on the rating of the 
installed transformer. There are large discrepancies; similarly 
populated neighbourhoods of BDW and Stamford Avenue 
(SA) have 315 and 800 kVA transformers respectively; 
NLDW with slightly more than half the population of BDW 
utilizes 500 kVA transformer. The former will likely need an 
upgrade soon even without significant EV deployment, while 
the one in SA could easily accommodate 50% EV deployment 
in the case of uncoordinated charging. 

D. Effects of Difference in the Base Loads 

For the case of uncoordinated charging the previous max 
peak load days are the most problematic. In the case of 
uncoordinated charging (Perran Avenue Fishermead 
neighbourhood, PAF, 50% EV share) that was not the case; a 
new peak was just below transformer rating with a max peak 
base load, while that limit was exceeded in the case of base 
load with max average. Considering both base load curves 
(with max peak and max daily average) was therefore 
necessary. The max average base load turned out to be worse 
for smart charging, because the base load at the time of new 
smart EV charging (night) was higher than on the day with the 
max peak base load. 

E. Research Limitations and Future Work 

This work only focuses on transformer overloads in intact 
network . Large load increases and fluctuations however 
could have other negative effects, such as increased wear of 
transformers, line limit violations and especially voltage 
quality effects. Voltage fluctuations are caused by significant 
sudden variations in current drawn from the network [23]. 
Start of EV charging causes sudden current increase, 
especially in the case of large scale clustering, such as at the 
beginning of E7 low tariff period. 

It is assumed that all vehicles will be charged at home 
overnight, which is a very pragmatic assumption. Daytime 
charging workplace, shopping centre or public parking could 
greatly impact load distribution. The model also made no 
distinction between different days of the week; our charging 
scenario only considers an average day in the year. More 
precise predictions could be made if weekday and weekend 
cases were differentiated. That could impact the distance 
driven as well as home arrival times.  

Some of the assumptions used for designing the model 
require further refinement and validation, such as assuming 
the second half of all the trips made in a day were return home 
trips. However, in every situation like this we took the 
pragmatic approach and normally assumed the situation to be 
worse than it is in reality. Some of the trips in second half of 
the day will be departing from home and some of the trips 

returning home will occur in the morning, meaning the 
distribution of return home trips will be less peaky.  

The main uncertainty is associated with the expected EV 
penetration levels. This has been addressed by modeling three 
different EV penetration scenarios. Studies have been made to 
determine when certain scenarios will most likely realize 
based on economic and technical factors [24]. Battery and 
charging equipment technology advancements will likely 
dictate the future EV market potential. In addition, embedding 
source voltage sensing into EV chargers would help to 
distribute the load on the distribution network.   

Another opportunity for future work is to use an additional 
model to forecast the development of base load in the future. 
We assumed it will remain unchanged; however this might be 
very inaccurate. An important new factor could be large scale 
of electric heat pumps deployment [20]. That would present a 
new load similar in power requirements to EVs. Linking of the 
domestic appliances and assessing the possibilities of 
household load control (shifting other domestic loads) should 
be taken into account. 

Our research used simplified model of smart charging, as it 
was only intended to demonstrate the capability of such 
methods. Models encompassing internal intelligent 
mechanisms, vehicle to vehicle and vehicle to infrastructure 
communication and external control should be considered to 
find the best solution and discover its full potential.  

Assessing the impact of new means of energy production, 
especially renewables and small scale combined heat and 
power will be important. Renewables are largely 
unpredictable, but could help balancing the peak load demand; 
in this context the potential of V2G technologies is being 
explored. Peterson, Whitacre and Apt [25] question the 
economics of V2G; they conclude it would not bring the 
owner adequate profits, especially with battery degradation 
taken into account. The profit would furthermore decrease 
with large EV penetration levels, as that would increase the 
night demand and decrease peak demand, reducing the 
difference in tariffs. Another aspect to consider is the public 
acceptance of V2G. Hidrue and Parsons [26] conducted an 
internet-based survey to predict near-term success of such 
vehicles on the market. The study predicted little chance of 
success, with the main reasons being range anxiety, 
proposition of stringent contract and high battery costs.  

Another aspect that has to be considered is the party taking 
control of charging activities distribution in the case of smart 
grid. DNOs and other stakeholders might have different 
preferences.  

In addition to assessing the impact on existing networks, 
research should be done to produce guidelines for designing 
new networks in residential communities currently being 
planned or under construction. They should be adequately 
dimensioned to cope with increased overall loads and 
changing network dynamics. 

 



IV. CONCLUSIONS 

As predicted, EVs do indeed present a major load on LV 
power distribution networks. Results suggest that in the case 
of uncoordinated charging, some distribution transformers in 
Milton Keynes could get overloaded with less than 25% of 
EVs on the road, potentially affecting the resilience of the 
system.  

This research project showed the risk of distribution 
transformer overloading worsens with increasing EV 
penetration levels. However, a more innovative result showed 
even if EV shares remain the same, the off-peak clustering 
charging scenario would cause more problems of transformer 
overloading than uncoordinated charging and would likely 
cause even worse voltage quality issues. This is a scenario we 
deem is expected to happen. 

These problems can be significantly facilitated by 
implementing smart grid technologies, but even in this case, 
transformer upgrades would be necessary to support high EV 
deployment. This consequentially impacts WPD’s planning 
development; transformer upgrades are required if the future 
projected EV demand will become a reality.  

There are many opportunities for our model to be refined 
for more precise estimations. We recommend a wider range of 
charging patterns, such as including public and workplace 
charging during the day. Moreover, the model should assess 
additional impacts charging has on networks, such as voltage 
quality. Assessment of EV charging impacts on LV domestic 
power network would also greatly benefit from a well-rounded 
assessment of smart grids incorporating technological maturity 
and public acceptance aspects. 
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