6 research outputs found

    Simplified Lower Bounds on the Multiparty Communication Complexity of Disjointness

    Get PDF
    We show that the deterministic number-on-forehead communication complexity of set disjointness for k parties on a universe of size n is Omega(n/4^k). This gives the first lower bound that is linear in n, nearly matching Grolmusz\u27s upper bound of O(log^2(n) + k^2n/2^k). We also simplify the proof of Sherstov\u27s Omega(sqrt(n)/(k2^k)) lower bound for the randomized communication complexity of set disjointness

    Simulation Theorems via Pseudorandom Properties

    Full text link
    We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadget's input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G\"{o}\"{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17]

    Simplified lower bounds on the multiparty communication complexity of disjointness

    No full text
    Non UBCUnreviewedAuthor affiliation: Technion-IITFacult

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore