83,135 research outputs found

    On Optimal 2- and 3-Planar Graphs

    Get PDF
    A graph is kk-planar if it can be drawn in the plane such that no edge is crossed more than kk times. While for k=1k=1, optimal 11-planar graphs, i.e., those with nn vertices and exactly 4n−84n-8 edges, have been completely characterized, this has not been the case for k≥2k \geq 2. For k=2,3k=2,3 and 44, upper bounds on the edge density have been developed for the case of simple graphs by Pach and T\'oth, Pach et al. and Ackerman, which have been used to improve the well-known "Crossing Lemma". Recently, we proved that these bounds also apply to non-simple 22- and 33-planar graphs without homotopic parallel edges and self-loops. In this paper, we completely characterize optimal 22- and 33-planar graphs, i.e., those that achieve the aforementioned upper bounds. We prove that they have a remarkably simple regular structure, although they might be non-simple. The new characterization allows us to develop notable insights concerning new inclusion relationships with other graph classes

    The degree/diameter problem in maximal planar bipartite graphs

    Get PDF
    The (¿;D) (degree/diameter) problem consists of nding the largest possible number of vertices n among all the graphs with maximum degree ¿ and diameter D. We consider the (¿;D) problem for maximal planar bipartite graphs, that are simple planar graphs in which every face is a quadrangle. We obtain that for the (¿; 2) problem, the number of vertices is n = ¿+2; and for the (¿; 3) problem, n = 3¿¿1 if ¿ is odd and n = 3¿ ¿ 2 if ¿ is even. Then, we study the general case (¿;D) and obtain that an upper bound on n is approximately 3(2D + 1)(¿ ¿ 2)¿D=2¿ and another one is C(¿ ¿ 2)¿D=2¿ if ¿ D and C is a sufficiently large constant. Our upper bound improve for our kind of graphs the one given by Fellows, Hell and Seyffarth for general planar graphs. We also give a lower bound on n for maximal planar bipartite graphs, which is approximately (¿ ¿ 2)k if D = 2k, and 3(¿ ¿ 3)k if D = 2k + 1, for ¿ and D sufficiently large in both cases.Postprint (published version

    Intersection Graphs of L-Shapes and Segments in the Plane

    Get PDF
    An L-shape is the union of a horizontal and a vertical segment with a common endpoint. These come in four rotations: ⌊,⌈,⌋ and ⌉. A k-bend path is a simple path in the plane, whose direction changes k times from horizontal to vertical. If a graph admits an intersection representation in which every vertex is represented by an ⌊, an ⌊ or ⌈, a k-bend path, or a segment, then this graph is called an ⌊-graph, ⌊,⌈-graph, B k -VPG-graph or SEG-graph, respectively. Motivated by a theorem of Middendorf and Pfeiffer [Discrete Mathematics, 108(1):365–372, 1992], stating that every ⌊,⌈-graph is a SEG-graph, we investigate several known subclasses of SEG-graphs and show that they are ⌊-graphs, or B k -VPG-graphs for some small constant k. We show that all planar 3-trees, all line graphs of planar graphs, and all full subdivisions of planar graphs are ⌊-graphs. Furthermore we show that all complements of planar graphs are B 19-VPG-graphs and all complements of full subdivisions are B 2-VPG-graphs. Here a full subdivision is a graph in which each edge is subdivided at least once
    • …
    corecore