research

On Optimal 2- and 3-Planar Graphs

Abstract

A graph is kk-planar if it can be drawn in the plane such that no edge is crossed more than kk times. While for k=1k=1, optimal 11-planar graphs, i.e., those with nn vertices and exactly 4n84n-8 edges, have been completely characterized, this has not been the case for k2k \geq 2. For k=2,3k=2,3 and 44, upper bounds on the edge density have been developed for the case of simple graphs by Pach and T\'oth, Pach et al. and Ackerman, which have been used to improve the well-known "Crossing Lemma". Recently, we proved that these bounds also apply to non-simple 22- and 33-planar graphs without homotopic parallel edges and self-loops. In this paper, we completely characterize optimal 22- and 33-planar graphs, i.e., those that achieve the aforementioned upper bounds. We prove that they have a remarkably simple regular structure, although they might be non-simple. The new characterization allows us to develop notable insights concerning new inclusion relationships with other graph classes

    Similar works