11,752 research outputs found

    Using Surface-Motions for Locomotion of Microscopic Robots in Viscous Fluids

    Full text link
    Microscopic robots could perform tasks with high spatial precision, such as acting in biological tissues on the scale of individual cells, provided they can reach precise locations. This paper evaluates the feasibility of in vivo locomotion for micron-size robots. Two appealing methods rely only on surface motions: steady tangential motion and small amplitude oscillations. These methods contrast with common microorganism propulsion based on flagella or cilia, which are more likely to damage nearby cells if used by robots made of stiff materials. The power potentially available to robots in tissue supports speeds ranging from one to hundreds of microns per second, over the range of viscosities found in biological tissue. We discuss design trade-offs among propulsion method, speed, power, shear forces and robot shape, and relate those choices to robot task requirements. This study shows that realizing such locomotion requires substantial improvements in fabrication capabilities and material properties over current technology.Comment: 14 figures and two Quicktime animations of the locomotion methods described in the paper, each showing one period of the motion over a time of 0.5 milliseconds; version 2 has minor clarifications and corrected typo

    Application of the Method of Means to the Stability Analysis of Unbraced Frames

    Get PDF

    Approaches and possible improvements in the area of multibody dynamics modeling

    Get PDF
    A wide ranging look is taken at issues involved in the dynamic modeling of complex, multibodied orbiting space systems. Capabilities and limitations of two major codes (DISCOS, TREETOPS) are assessed and possible extensions to the CONTOPS software are outlined. In addition, recommendations are made concerning the direction future development should take in order to achieve higher fidelity, more computationally efficient multibody software solutions

    Robotic manipulation of a rotating chain

    Full text link
    This paper considers the problem of manipulating a uniformly rotating chain: the chain is rotated at a constant angular speed around a fixed axis using a robotic manipulator. Manipulation is quasi-static in the sense that transitions are slow enough for the chain to be always in "rotational" equilibrium. The curve traced by the chain in a rotating plane -- its shape function -- can be determined by a simple force analysis, yet it possesses complex multi-solutions behavior typical of non-linear systems. We prove that the configuration space of the uniformly rotating chain is homeomorphic to a two-dimensional surface embedded in R3\mathbb{R}^3. Using that representation, we devise a manipulation strategy for transiting between different rotation modes in a stable and controlled manner. We demonstrate the strategy on a physical robotic arm manipulating a rotating chain. Finally, we discuss how the ideas developed here might find fruitful applications in the study of other flexible objects, such as elastic rods or concentric tubes.Comment: 12 pages, 9 figure

    Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

    Get PDF
    The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures
    • 

    corecore