7 research outputs found

    Supplementary report to the final report of the coral reef expert group: S6. Novel technologies in coral reef monitoring

    Get PDF
    [Extract] This report summarises a review of current technological advances applicable to coral reef monitoring, with a focus on the Great Barrier Reef Marine Park (the Marine Park). The potential of novel technologies to support coral reef monitoring within the Reef 2050 Integrated Monitoring and Reporting Program (RIMReP) framework was evaluated based on their performance, operational maturity and compatibility with traditional methods. Given the complexity of this evaluation, this exercise was systematically structured to address the capabilities of technologies in terms of spatial scales and ecological indicators, using a ranking system to classify expert recommendations.An accessible copy of this report is not yet available from this repository, please contact [email protected] for more information

    Coral Reef Change Detection in Remote Pacific Islands Using Support Vector Machine Classifiers

    Get PDF
    Despite the abundance of research on coral reef change detection, few studies have been conducted to assess the spatial generalization principles of a live coral cover classifier trained using remote sensing data from multiple locations. The aim of this study is to develop a machine learning classifier for coral dominated benthic cover-type class (CDBCTC) based on ground truth observations and Landsat images, evaluate the performance of this classifier when tested against new data, then deploy the classifier to perform CDBCTC change analysis of multiple locations. The proposed framework includes image calibration, support vector machine (SVM) training and tuning, statistical assessment of model accuracy, and temporal pixel-based image dierencing. Validation of the methodology was performed by cross-validation and train/test split using ground truth observations of benthic cover from four dierent reefs. These four locations (Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland Island) as well as two additional locations (Kiritimati Island and Tabuaeran Island) were then evaluated for CDBCTC change detection. The in-situ training accuracy against ground truth observations for Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland Island were 87.9%, 85.7%, 69.2%, and 82.1% respectively. The classifier attained generalized accuracy scores of 78.8%, 81.0%, 65.4%, and 67.9% for the respective locations when trained using ground truth observations from neighboring reefs and tested against the local ground truth observations of each reef. The classifier was trained using the consolidated ground truth data of all four sites and attained a cross-validated accuracy of 75.3%. The CDBCTC change detection analysis showed a decrease in CDBCTC of 32% at Palmyra Atoll, 25% at Kingman Reef, 40% at Baker Island Atoll, 25% at Howland Island, 35% at Tabuaeran Island, and 43% at Kiritimati Island. This research establishes a methodology for developing a robust classifier and the associated Controlled Parameter Cross-Validation (CPCV) process for evaluating how well the model will generalize to new data. It is an important step for improving the scientific understanding of temporal change within coral reefs around the globe

    Bias Reduction in Machine Learning Classifiers for Spatiotemporal Analysis of Coral Reefs using Remote Sensing Images

    Get PDF
    This dissertation is an evaluation of the generalization characteristics of machine learning classifiers as applied to the detection of coral reefs using remote sensing images. Three scientific studies have been conducted as part of this research: 1) Evaluation of Spatial Generalization Characteristics of a Robust Classifier as Applied to Coral Reef Habitats in Remote Islands of the Pacific Ocean 2) Coral Reef Change Detection in Remote Pacific Islands using Support Vector Machine Classifiers 3) A Generalized Machine Learning Classifier for Spatiotemporal Analysis of Coral Reefs in the Red Sea. The aim of this dissertation is to propose and evaluate a methodology for developing a robust machine learning classifier that can effectively be deployed to accurately detect coral reefs at scale. The hypothesis is that Landsat data can be used to train a classifier to detect coral reefs in remote sensing imagery and that this classifier can be trained to generalize across multiple sites. Another objective is to identify how well different classifiers perform under the generalized conditions and how unique the spectral signature of coral is as environmental conditions vary across observation sites. A methodology for validating the generalization performance of a classifier to unseen locations is proposed and implemented (Controlled Parameter Cross-Validation,). Analysis is performed using satellite imagery from nine different locations with known coral reefs (six Pacific Ocean sites and three Red Sea sites). Ground truth observations for four of the Pacific Ocean sites and two of the Red Sea sites were used to validate the proposed methodology. Within the Pacific Ocean sites, the consolidated classifier (trained on data from all sites) yielded an accuracy of 75.5% (0.778 AUC). Within the Red Sea sites, the consolidated classifier yielded an accuracy of 71.0% (0.7754 AUC). Finally, long-term change detection analysis is conducted for each of the sites evaluated. In total, over 16,700 km2 was analyzed for benthic cover type and cover change detection analysis. Within the Pacific Ocean sites, decreases in coral cover ranged from 25.3% reduction (Kingman Reef) to 42.7% reduction (Kiritimati Island). Within the Red Sea sites, decrease in coral cover ranged from 3.4% (Umluj) to 13.6% (Al Wajh)

    An unsupervised classification-based time series change detection approach for mapping forest disturbance

    Get PDF
    Unsupervised Classification to Change (UC-Change) is a new remote sensing approach for mapping areas affected by logging and wildfires. It addresses the main limitations of existing image time-series change detection techniques, such as limited multi-sensor capabilities, use of purely spectral-based forest recovery metrics, and poor detection of salvage harvesting. UC Change detects disturbances and tracks forest recovery by analyzing changes in the spatial distribution of spectral classes over time. The algorithm detected approximately 85% and 70% of reference cutblock and fire scar pixels at a ±2-year temporal agreement, respectively, consistently outperforming existing algorithms across different biogeoclimatic zones of British Columbia, Canada. The results indicate an upper estimate of 7.5 million ha of forest cleared between 1984 and 2014, which is above estimates based on existing maps and databases (6.3 – 6.7 million ha). Also presented is a new framework for using open-access data for validation of change detection results.Natural Sciences and Engineering Research Council of Canada (NSERC) Collaborative Research and Training Experience (CREATE) grant entitled Advanced Methods, Education and Training in Hyperspectral Science and Technology (AMETHYST). Financial code: KS-NSERC2 Staenz 40307-4185-800

    Coastal Eye: Monitoring Coastal Environments Using Lightweight Drones

    Get PDF
    Monitoring coastal environments is a challenging task. This is because of both the logistical demands involved with in-situ data collection and the dynamic nature of the coastal zone, where multiple processes operate over varying spatial and temporal scales. Remote sensing products derived from spaceborne and airborne platforms have proven highly useful in the monitoring of coastal ecosystems, but often they fail to capture fine scale processes and there remains a lack of cost-effective and flexible methods for coastal monitoring at these scales. Proximal sensing technology such as lightweight drones and kites has greatly improved the ability to capture fine spatial resolution data at user-dictated visit times. These approaches are democratising, allowing researchers and managers to collect data in locations and at defined times themselves. In this thesis I develop our scientific understanding of the application of proximal sensing within coastal environments. The two critical review pieces consolidate disparate information on the application of kites as a proximal sensing platform, and the often overlooked hurdles of conducting drone operations in challenging environments. The empirical work presented then tests the use of this technology in three different coastal environments spanning the land-sea interface. Firstly, I use kite aerial photography and uncertainty-assessed structure-from-motion multi-view stereo (SfM-MVS) processing to track changes in coastal dunes over time. I report that sub-decimetre changes (both erosion and accretion) can be detected with this methodology. Secondly, I used lightweight drones to capture fine spatial resolution optical data of intertidal seagrass meadows. I found that estimations of plant cover were more similar to in-situ measures in sparsely populated than densely populated meadows. Lastly, I developed a novel technique utilising lightweight drones and SfM-MVS to measure benthic structural complexity in tropical coral reefs. I found that structural complexity measures were obtainable from SfM-MVS derived point clouds, but that the technique was influenced by glint type artefacts in the image data. Collectively, this work advances the knowledge of proximal sensing in the coastal zone, identifying both the strengths and weaknesses of its application across several ecosystems.Natural Environment Research Council (NERC
    corecore