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Despite numerous techniques for measuring and estimating water depth, bathymetry in the 

nearshore zone is notoriously difficult to map. Dangerous sea states, noisy environmental 

conditions, and expensive survey operations, particularly in remote areas, contribute to the 

difficulties of obtaining data along the coast. Global datasets, derived mainly from satellite 

altimetry methods, do exist, but they have significant limitations nearshore. Numerous high-

resolution datasets, conventionally acquired with acoustic and lidar techniques, also exist, but they 

cover only a small percentage of the world's coasts. Spaceborne data fusion employing 

multispectral satellite derived bathymetry (SDB) offers the potential to significantly reduce the 

global lack of nearshore bathymetry, coined the "white ribbon" by the hydrographic community, 

referring to the alongshore data gap on many nautical charts. A broad term, multispectral SDB 

spans a diverse spectrum of methods that have been used extensively in specific case studies, but 

the application of multispectral SDB on a global or regional scale is significantly limited by the 

availability of in situ reference depths needed to tune derived values. Additionally, many existing 

approaches only use a single multispectral image, which can result in significant errors or missing 

data if the image contains environmental or sensor noise, such as clouds, sediment plumes, or 

detector-edge artifacts. This dissertation presents two spaceborne empirical multispectral SDB 

methods to address shortcomings of existing SDB approaches and reduce the global shortage of 

nearshore bathymetry – (1) active/passive spaceborne data fusion combining MABEL/ICESat-2 

and multispectral data and (2) state space modeling of Sentinel-2 and Landsat 8 multispectral data 

to generate gap-free models of relative SDB (rSDB) with corresponding uncertainty estimates. 

 The recently launched ICESat-2 mission offers an opportunity for a completely spaceborne 

active-passive data fusion approach to nearshore bathymetry by potentially providing a global 

source of nearshore reference depths to tune empirical multispectral SDB algorithms. The main 



 
 

 

objectives of the ICESat-2 mission are to measure ice-sheet elevations, sea-ice thickness, and global 

biomass, but ICESat-2’s 532-nm wavelength photon-counting Advanced Topographic Laser 

Altimeter System (ATLAS) was first posited, then demonstrated capable of detecting bathymetry 

in certain nearshore environments. Presented in two studies conducted prior to ICESat-2’s launch, 

the active-passive approach is demonstrated with data from MABEL, NASA’s high-altitude 

ATLAS simulator system. The first study assessed the ability to derive bathymetry from MABEL 

and then evaluated the accuracy and reliability of MABEL bathymetry using data acquired in 

Keweenaw Bay, Lake Superior. The study also developed and verified a baseline model to predict 

numbers of bottom returns as a function of water depth. The second study completed the 

demonstration of the spaceborne active/passive data fusion method by synergistically fusing 

MABEL-derived bathymetry and Landsat 8 multispectral Operational Land Imager (OLI) imagery 

over the entire Keweenaw Bay study site using the Stumpf band-ratio algorithm. The study also 

assessed the spatiotemporal viability of the data fusion approach by characterizing the variability 

of global coastal water clarity as interpreted from Visible Infrared Imaging Radiometer Suite 

(VIIRS) Kd(490) data. The calculated SDB agreed with a high-resolution topobathymetric lidar 

dataset to within an RMSE of 0.7 m, and the spatiotemporal viability analysis indicated that the 

spaceborne active-passive data fusion approach may be viable over many regions of the globe 

throughout the course of a year. 

 State space modeling of empirical multitemporal SDB overcomes limitations of single-

image SDB by leveraging the bathymetric signal in multispectral time series to create gap-free 

models of relative SDB (rSDB) for an arbitrary date, enabling SDB for dates with noisy or no data. 

State space models (SSMs) are well established in many applications but are absent in empirical 

SDB literature. Consisting of a state equation, which relates consecutive state vectors, and an 

observation equation, which relates observations to the state vector, SSMs are typically solved 

using Kalman filtering techniques, which provide estimates of uncertainties along with state 

estimates. SSMs also provide a mechanism for data fusion by allowing an observation equation for 

multiple observed time series. The third study demonstrates a state space approach to empirical 

multispectral SDB by applying local level SSMs to Landsat 8 OLI and Sentinel-2 MSI rSDB time 

series, both separately and fused. A representative single-sensor SSM (Landsat 8) was transformed 

to SDB that agreed with a high-resolution topobathymetric lidar dataset to within an RMSE of 0.29 

m, which indicates the promising performance of the state space framework. Internally consistent 

fused-sensor SSMs verified that state space modeling also offers a data-fusion method capable of 

incorporating time series from a diverse suite of multispectral sensors. 
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INTRODUCTION 

Despite a wide variety of techniques for measuring or estimating water depth, there exists a global 

shortage of nearshore bathymetry. Even in countries with dedicated mapping agencies, “there is a 

widespread need for more and better data in the coastal zone,” particularly along the water/land interface 

(NRC, 2004). In fact, the hydrographic community has coined the term white ribbon to describe this general 

lack of data, referring to the alongshore strip of whitespace (i.e., no data) present on many nautical charts. 

The white ribbon, however, affects numerous domains beyond hydrography and nautical charting. Benthic 

mapping, sea-level change and inundation modeling, coastal engineering, and digital terrain modeling are 

among applications negatively impacted by sparse or missing bathymetric data. Global bathymetric datasets 

do exist, but most global-scale data have been derived from coarse-resolution gravity/altimetry techniques 

with significant limitations in the coastal zone. High-resolution nearshore datasets, such as those produced 

by shipborne acoustic, airborne lidar, and land-based imaging techniques, are limited because of high 

operational costs, environmental constraints, and difficulties and hazards of working in remote and 

dangerous places.  

Multispectral remote sensing offers the potential to significantly shrink the white ribbon. Even 

before the launch of Landsat 1, in 1972, researchers were contemplating how to use airborne multispectral 

data to better understand shallow water environments (Polcyn and Rollin, 1969). With the launch of the 

Landsat series of satellites and the ensuing host of spaceborne multispectral platforms, including the 

Copernicus Sentinel-2 satellites, algorithms for generating bathymetry from high- and moderate-resolution 

satellite imagery data have proliferated. Multispectral satellite derived bathymetry (SDB) spans a diverse 

spectrum of techniques, including analytical methods based on radiative transfer theory, empirical methods 

based on the attenuation of light as defined by the Beer-Lambert Law, and statistical methods including 

ensemble learning and artificial neural networks (ANNs). The term SDB also encompasses a broader 

category of spaceborne techniques including methods based on wave kinematics and photogrammetry, but 

this dissertation focuses on empirical spectral-based SDB.  

Popular empirical multispectral SDB algorithms include linear multiband regression, band-ratio 

transforms, and depth of penetration (DOP) zones, along with numerous variations incorporating 

geographically adaptive coefficients and optimization techniques. Although these techniques have been 

used extensively in specific case studies and are being considered by various hydrographic offices to 

supplement regional-scale bathymetric databases, their applicability on a global scale is limited by the 

availability of in situ reference depths, particularly in remote and difficult-to-map areas. In addition to 

relying on available reference data, most empirical SDB methods use single images, which can result in 

significant errors or missing data resulting from ephemeral water-column, surface, and atmospheric 
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conditions, such as sediment plumes, algal blooms, and clouds. A growing number of studies are exploring 

multitemporal methods using multiple images, but they generally rely on only a handful of images and do 

not leverage frameworks capable of supporting entire time series of multispectral imagery. Another 

drawback of existing empirical SDB approaches is the absence of uncertainty estimates of the spectral data 

used to derive bathymetry. In general, uncertainty has received little attention in the SDB literature, with 

only a few recent studies addressing the topic beyond the traditional RMSE statistic, which conflates the 

uncertainties of the multispectral data and reference bathymetry. 

This dissertation presents two spaceborne empirical multispectral remote sensing SDB methods to 

address shortcomings of existing SDB approaches and reduce the global shortage of nearshore bathymetry 

data – (1) active/passive spaceborne data fusion combining either MABEL or ICESat-2 ATLAS and 

multispectral data and (2) state space modeling of Sentinel-2 and Landsat 8 multispectral data to generate 

gap-free models of relative SDB (rSDB) with corresponding uncertainty estimates.  

Active/Passive Spaceborne Data Fusion 

 The recently launched Ice and Land Elevation Satellite-2 (ICESat-2) mission offers an opportunity 

for a completely spaceborne data fusion approach to nearshore bathymetry by potentially providing a global 

source of nearshore reference depths to tune empirical multispectral SDB algorithms. The primary 

objectives of ICESat-2 are to measure ice-sheet elevations, sea-ice thickness, and global biomass (Abdalati 

et al., 2010), but the 532-nm (green) wavelength photon-counting Advanced Topographic Laser Altimeter 

System (ATLAS), the sole instrument onboard ICESat-2, was posited (Forfinski-Sarkozi and Parrish, 

2016), and has since been shown (Parrish et al., 2019), capable of detecting bathymetry in certain nearshore 

environments. ATLAS data are acquired along narrow tracklines, but any detected bathymetry could be 

used to infer depth over a much broader area by synergistically fusing the active lidar data with passive 

multispectral imagery using empirical SDB algorithms. The active/passive spaceborne data fusion method 

was presented in two studies in anticipation of the launch of ICESat-2, which occurred just prior to the 

publication of the second study. As such, the data analyzed in these publications are not from ICESat-2 but 

from the Multiple Altimeter Beam Experimental Lidar (MABEL), NASA’s high-altitude ICESat-2 

simulator system, which was designed to provide ATLAS-like data for concept verification and algorithm 

development.  

Analysis of Mabel Bathymetry in Keweenaw Bay and Implications for Icesat-2 Atlas  

 The goals of this study were to (1) assess the ability to derive bathymetry from MABEL and (2) 

evaluate the accuracy and reliability of MABEL bathymetry. The first goal was achieved by identifying 

bathymetric returns in MABEL data acquired in Keweenaw Bay, Lake Superior, and applying a first-order 
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refraction correction and a vertical datum offset to reduce the ellipsoidally referenced photon returns to the 

local chart datum. The second goal was achieved by comparing the MABEL-derived bathymetry to a high-

resolution bathymetric lidar dataset acquired with a Fugro LADS MKII lidar system. The results indicated 

that MABEL reliably detected bathymetry in depths of up to 8 m, with a root mean square error (RMSE) 

of 0.7 m, with respect to the reference data. In addition to demonstrating MABEL’s ability to detect 

bathymetry, this study developed and verified a baseline model to predict numbers of bottom returns as a 

function of water depth. 

Active-Passive Spaceborne Data Fusion for Mapping Nearshore Bathymetry  

The goals of this study were to (1) demonstrate a completely spaceborne date fusion approach 

capable of creating datum-based bathymetry over large spatial extents and (2) assess over which portion of 

the world’s coastal regions the data fusion approach might be viable. The first goal was achieved by 

synergistically fusing MABEL-derived bathymetry and Landsat 8 multispectral Operational Land Imager 

(OLI) imagery over Keweenaw Bay, Lake Superior, using the Stumpf band-ratio SDB algorithm to generate 

bathymetry that agreed with a high-resolution bathymetric lidar dataset to within an RMSE of 1.1 m. The 

second goal was achieved by assessing the spatiotemporal variability of global costal water clarity as 

interpreted from Visible Infrared Imaging Radiometer Suite (VIIRS) Kd(490) data. The spatiotemporal 

viability results indicate that the spaceborne active-passive data fusion approach may be viable for filling 

the nearshore data void in many regions of the globe over the course of a year. 

State Space Modeling for Empirical Multispectral Satellite Derived Bathymetry 

State space modeling of empirical multitemporal SDB overcomes limitations of single-image SDB 

by leveraging the bathymetric signal in multispectral time series to create internally consistent gap-free 

models of relative SDB (rSDB) for an arbitrary date, enabling SDB for dates affected by missing or noisy 

data. Characteristically solved using Kalman filtering, state space models (SSMs) generate statistically 

optimal estimates of a state vector, with corresponding uncertainty estimates. State space approaches are 

well established in many applications, including navigation, normalized difference vegetation index 

(NDVI) studies, and certain coastal mapping applications, but are absent in empirical SDB literature. In 

addition to estimating an underlying state from a single observed time series, SSMs provide a data-fusion 

mechanism to combine time series from a diverse suite of multispectral sensors. By including an 

observation equation for each time series, SSMs are able to estimate a single underlying state, expressed 

by a state equation, from different data sources. 

The goals of the final study are to (1) demonstrate the ability of state space modeling to generate 

gap-free rSDB models from noisy and incomplete individual time series of multispectral data and (2) 
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demonstrate the ability of state space modeling to fuse rSDB time series from different multispectral 

sensors. The first goal was achieved by applying separate local level SSMs, consisting of a single 

observation equation, to Landsat 8 OLI and Sentinel-2 MSI time series. The second goal was achieved by 

using a single SSM with two observation equations to create a fused Landsat 8 and Sentinel-2 rSDB model. 

All three SSMs generated internally consistent, gap-free models of rSDB, with corresponding uncertainties. 

To assess the state space framework, a representative SSM was then transformed to SDB using 

geographically adaptive transformation parameters derived using a one-to-one correspondence with a high 

resolution bathymetric lidar data set resampled to match the resolution of Landsat 8 OLI (30 m). The 

transformed bathymetry agreed with the reference bathymetry to within an RMSE of 0.29 m, which serves 

as a proxy indicator of the promising performance of the underlying state space framework. The internally 

consistent fused SSMs show that state space modeling also offers a data-fusion method capable of 

incorporating time series from a diverse suite of multispectral sensors. 
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ANALYSIS OF MABEL BATHYMETRY IN KEWEENAW BAY AND IMPLICATIONS FOR 
ICESAT-2 ATLAS 

Abstract 

In 2018, the National Aeronautics and Space Administration (NASA) is scheduled to launch the 

Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), with a new six-beam, green-wavelength, photon-

counting lidar system, Advanced Topographic Laser Altimeter System (ATLAS). The primary objectives 

of the ICESat-2 mission are to measure ice-sheet elevations, sea-ice thickness, and global biomass. 

However, if bathymetry can be reliably retrieved from ATLAS data, this could assist in addressing a key 

data need in many coastal and inland water body areas, including areas that are poorly-mapped and/or 

difficult to access. Additionally, ATLAS-derived bathymetry could be used to constrain bathymetry derived 

from complementary data, such as passive, multispectral imagery and synthetic aperture radar (SAR). As 

an important first step in evaluating the ability to map bathymetry from ATLAS, this study involves a 

detailed assessment of bathymetry from the Multiple Altimeter Beam Experimental Lidar (MABEL), 

NASA’s airborne ICESat-2 simulator, flown on the Earth Resources 2 (ER-2) high-altitude aircraft. An 

interactive, web interface, MABEL Viewer, was developed and used to identify bottom returns in Keweenaw 

Bay, Lake Superior. After applying corrections for refraction and channel-specific elevation biases, 

MABEL bathymetry was compared against National Oceanic and Atmospheric Administration (NOAA) 

data acquired two years earlier. The results indicate that MABEL reliably detected bathymetry in depths of 

up to 8 m, with a root mean square (RMS) difference of 0.7 m, with respect to the reference data. 

Additionally, a version of the lidar equation was developed for predicting bottom-return signal levels in 

MABEL and tested using the Keweenaw Bay data. Future work will entail extending these results to 

ATLAS, as the technical specifications of the sensor become available.  

Introduction 

NASA’s upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission, with a 91-day repeat 

period and near-polar orbit (Abdalati et al., 2010), provides a unique opportunity to assess ice sheet 

elevation change. The sole instrument aboard ICESat-2 will be the Advanced Topographic Laser Altimeter 

System (ATLAS), a micro-pulse, photon-counting lidar system operating at 532 nm using a frequency-

doubled neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (Abdalati et al., 2010; McGill et al., 

2013). Although the primary objectives of ICESat-2 will be to measure ice-sheet elevations, sea-ice 

thickness, and global biomass (Abdalati et al., 2010), the ATLAS design specifications suggest the 

feasibility of bathymetry retrieval from ATLAS data. If it can be demonstrated that reliable bathymetry 

estimation from ATLAS is, in fact, possible, this could greatly benefit studies of coastal and inland water 

bodies, which are often hindered by a dearth of shallow-water bathymetry (NRC, 2004). The fact that 
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ATLAS is an active remote sensing system makes it of particular interest for bathymetric mapping, since it 

may be possible to synergistically fuse water depth estimates from ATLAS with bathymetry retrieved from 

a variety of sources, including passive multispectral satellite imagery (Hamylton et al., 2015; Pe’eri et al., 

2013; Stumpf et al., 2003; Taramelli et al., n.d.) , such as from Landsat 8 and Sentinel-2, and synthetic 

aperture radar (SAR) data (Calkoen et al., 2001; Huang and Fu, 2004; Ludeno et al., 2015; Stewart et al., 

2016). Using ATLAS to measure bathymetry and complement other bathymetric techniques is well aligned 

with NASA’s Applied Sciences Program mission to discover innovative and practical uses for Earth 

observations (NASA, 2010). Additionally, the bathymetric mapping capability would represent an important 

advancement over ICESat-2’s predecessor, the original ICESat, which carried the Geoscience Laser 

Altimeter System (GLAS). While GLAS did contain a green laser, it was designed with a different laser 

architecture (Yu et al., n.d.) for the secondary mission of measuring optically thin clouds and atmospheric 

aerosols (Abshire et al., 2005; Krainak et al., n.d.). GLAS used a 1064-nm laser, incapable of penetrating 

the water column to provide bathymetry, for elevation mapping.  

In empirically evaluating the potential to derive bathymetry from ATLAS, a logical place to start is 

with NASA’s airborne photon-counting ATLAS simulator, the Multiple Altimeter Beam Experimental 

Lidar (MABEL), which has been flown on the NASA Earth Resources 2 (ER-2) high-altitude aircraft on 

over 50 missions since 2010. It is important to note that MABEL is not an exact model of what ATLAS 

will be (McGill et al., 2013), but its main purposes are to verify the ATLAS measurement concept and 

provide data similar to ATLAS data for algorithm development.  

In keeping with the above considerations, our long-range research goals are to: (1) assess the ability to 

derive bathymetry from MABEL; (2) evaluate the accuracy and reliability of MABEL bathymetry; (3) 

extend the analysis of MABEL data to ATLAS; and (4) (pending the results of the previous phases) develop 

tools and techniques for bathymetric mapping using fusion-based approaches that leverage ATLAS 

bathymetry. The motivation for our long-range research program stems from the large number of nearshore, 

coastal areas around the world for which bathymetric data are entirely lacking, and the need for such data 

for applications ranging from modeling inundation, due to storm surge and sea level rise, to nautical charting 

(NRC, 2004). The broad objective of obtaining coastal bathymetry worldwide is entirely aligned with 

initiatives to manage, expand, and add value to the suite of global bathymetry obtained through a variety of 

techniques by a number of national and international organizations (EMODNET Coastal Mapping, n.d.; 

Intergovernmental Oceanographic Commission, n.d.; International Hydrographic Organization - 

Organisation Hydrographique Internationale (IHO), n.d.; GEBCO, n.d.; US Department of Commerce, 

n.d.). Due to the challenges of mapping bathymetry in very shallow waters with any one particular 

technology (NRC, 2004), the synergistic fusion of spaceborne, active sensor bathymetric data with 
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complementary data sets, including airborne bathymetric lidar, shipborne sonar, airborne and spaceborne 

multi-and hyperspectral imagery, and synthetic aperture radar (SAR), affords the best option for filling the 

voids in worldwide shallow bathymetric coverage.  

This study presents the results of the first two phases of the long-range research program outlined 

above. MABEL Viewer, a web-application developed in this study to facilitate interactive identification of 

MABEL bottom returns, was used to identify bathymetric returns in MABEL data acquired over Keweenaw 

Bay in Lake Superior. To quantitatively assess the quality of bathymetry from MABEL, the identified 

bottom returns were first corrected using National Oceanic and Atmospheric Administration (NOAA), 

Great Lakes Coastal Forecasting System (GLCFS) data and a first-order refraction correction. These 

corrected depths were compared against high-accuracy bathymetry acquired for NOAA with a Fugro Laser 

Airborne Depth Sounder (LADS) Mk II in 2010. The results show good agreement between MABEL 

bathymetry and the NOAA reference bathymetry, with a z-component root mean square error (RMSEz) of 

0.7 m in water depths of up to 8 m. Concurrently with this analysis, a version of the lidar equation was 

developed for predicting the number of bottom returns in the data set as a function of depth within the 

project site. The predictions were compared against the observed data to assess the general validity of our 

baseline model. We conclude with a discussion of the next steps, including the extension of this work to 

ATLAS, using simulations generated by project partners at the University of Houston, National Center for 

Airborne Laser Mapping (NCALM). 

Bathymetric Lidar Background 

Almost as old as the laser itself, airborne lidar (light detection and ranging) has its roots in the mid-

1960s. The reader is directed to Guenther (Guenther, 2007) and Petrie and Toth (Petrie and Toth, 2009) for 

a detailed history of airborne lidar remote sensing, including the first practical demonstration of the 

capability of measuring depth in 1969 (Hickman and Hogg, 1969). Lidar technology evolved rapidly over 

subsequent decades, leveraging developments in enabling technologies, including inertial and satellite 

navigation systems (Guenther, 2007; Petrie and Toth, 2009). Conventionally, lasers operating in the near 

infrared (typically, 1064 and 1550 nm) have been preferred for topographic lidar, while bathymetric lidar 

has used water-penetrating 532 nm lasers, sometimes in combination with 1064 nm for obtaining water 

surface returns and simultaneously mapping topography. Industry-standard bathymetric lidar systems 

include the Optech Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) system and 

Coastal Zone Mapping and Imaging Lidar (CZMIL), Leica Airborne Hydrography AB (AHAB) Chiroptera 

II and HawkEye II and III, National Aeronautics and Space Administration (NASA) Experimental 

Advanced Airborne Research Lidar (EAARL), United States Geological Survey (USGS) EAARL-B, and 

Fugro LADS Mk II and Mk 3 (Guenther, 2007; Pack et al., 2012; Quadros, 2013). Even more varied than 
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the number of systems are the applications of these systems, including benthic habitat classification (Miller 

et al., 2016; Tulldahl et al., n.d.; Wedding et al., 2008; Zavalas et al., 2014), shoreline delineation (Pe’eri 

et al., 2011), inundation modeling (Chamberlin and Arcas, 2015), river morphodynamics (Mandlburger et 

al., 2015; McKean et al., 2014), geomorphological mapping (Finkl et al., 2005; Houser et al., 2015; 

Kennedy et al., 2014), and hydrography (Guenther, 2007; Irish and Lillycrop, 1999; Kinzel et al., 2007). 

The conventional bathymetric lidar systems listed above are all waveform resolving, meaning they record 

and/or analyze in real time digitized, backscattered pulses containing up to thousands of photons.  

In the topographic lidar community, an emerging technology is photon-counting lidar, which uses 

either photomuliplier tubes (PMTs) or avalanche photodiodes (APDs) operated well above the breakdown 

voltage (i.e., in Geiger mode) to record returns as low as a single photon as individual points. The low 

power consumption of photon-counting lidar systems, which also have low signal-to-noise ratios (SNR), 

make them ideal systems for spaceborne platforms with strict power budgets. However, photon-counting 

lidar systems, despite first being identified as a potential mapping technology in 1996 (Priedhorsky et al., 

1996), have received considerably less attention in the ocean and coastal mapping community. Only with 

advances in photon-detector ranging resolution and dead time have photon-counting systems become viable 

mapping tools (Degnan, 2002). A number of recent publications target terrestrial and cryospheric 

applications, such as canopy extraction (Awadallah et al., n.d.; Herzfeld et al., 2014; Moussavi et al., 2014) 

and sea-ice and glacier profiling (Brunt et al., 2016, 2014; Farrell et al., 2011; Kwok et al., 2014), and noise-

filtering techniques (Horan and Kerekes, n.d.; Magruder et al., n.d.; Wang et al., 2016), but research 

pertaining to using photon-counting lidar for bathymetric mapping remains limited.  

Examples of photon-counting systems that have been shown to detect bathymetry are the Coastal Area 

Tactical-mapping System (CATS) (Shrestha et al., 2012) and the NASA Airborne Multi-kilohertz 

Microlaser Altimeter Instrument (Degnan, 2002). MABEL has also been shown to detect bathymetry, in 

the low-turbidity waters of Lake Mead and depths of up to approximately one Secchi depth (Jasinski et al., 

2016). Focused primarily on the retrieval of water surface height statistics, Jasinski et al. (2016) includes a 

brief qualitative discussion of depth profiles observed in the photon-elevation data. However, the study did 

not account for index-of-refraction and vertical-datum corrections or include a quantitative comparison with 

existing bathymetry from dedicated bathymetric-mapping instruments. Whereas CATS and the NASA 

microaltimeter were operational at heights above ground level (AGLs) of 500 to 6,700 m, MABEL is 

operational at an AGL of up to 20,000 m. A detailed investigation of MABEL, which is flown above 95% 

of Earth’s atmosphere, is, therefore, an important step toward evaluating the possibility of measuring 

bathymetry from photon-counting, spaceborne lidar. 
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Lidar Equation 

In addition to the empirical analysis, it is also of interest to develop a model for predicting the bottom 

return signal level, given a specified set of environmental conditions and system parameters. Such a model 

is not only beneficial for evaluating the expected depth ranges in which bathymetry retrieval might be viable 

using MABEL, but, in future work, it could be extended to ATLAS, as the final system parameters are 

made available by NASA. In this study, the expected number of photoelectrons corresponding to bottom 

(seafloor) returns, 𝑛௕௢௧, is evaluated using a modified version of the lidar equation in (Cossio et al., 2009): 

𝑛௕௢௧ = 𝜂௤𝜂௧𝜂௥

𝐸௧

ℎ𝑣
𝜌ఒ cos(𝛼௧)

𝐴௥

𝜋(𝑅௔௜௥ + 𝑅௪)ଶ ൫1 − 𝑟௜௡௧(𝛼௦)൯
ଶ

𝑇ఒ
ଶ𝑒ିଶ௖ഊோೢ , (1) 

In Equation 1, h is Planck’s constant; v is the photon frequency; Rw is the pulse travel distance in 

water; 𝑅௔௜௥ is the pulse travel distance in air; 𝜂௤ is the detector quantum efficiency; 𝜂௧ is the transmitter 

optical efficiency; 𝜂௥ is the receiver optical efficiency; 𝐸௧ is the transmitted energy per channel per pulse; 

𝜌ఒ is the bottom reflectance at the laser wavelength, λ; 𝛼௧ is the incidence angle on the bottom; 𝐴௥ is the 

collecting area of receiver aperture; 𝑟௜௡௧ is the air-water interface reflectance; 𝑇ఒ
ଶ is the two-way atmospheric 

transmittance; 𝛼௦ is the local incidence angle on water surface; and 𝑐ఒ is the effective attenuation coefficient 

(for which the water column diffuse attenuation coefficient, Kd, establishes a lower bound). The two-way 

atmospheric transmittance can be further expressed as: 

𝑇ఒ
ଶ = 𝑒ିଶ ∫ ఙ(௭)ௗ௭

ಹ

బ , (2) 

where 𝜎(𝑧) is the total atmospheric extinction coefficient, at the laser wavelength, as a function of altitude, 

z, and H is the altitude of the ER-2 aircraft at the time of the MABEL overflight.  

Materials and Methods  

MABEL Data 

In missions spanning from December 2010 to August 2014, MABEL data have been acquired across 

North America, over a variety of landforms, marine environments, and vegetative regimes, including inland 

and coastal mountain ranges, Arctic sea ice and ice sheets, prairies, deserts, savannah, and coastal plains. 

This study focuses on two sites along the “Transit to KPMD” mission (where KPMD refers to the Palmdale 

Regional Airport, in Palmdale, CA) identified using MABEL Viewer, an in-house prototype data-explorer 

web application built on Python and JavaScript. This custom software tool facilitates examining the existing 

MABEL data archive by providing a graphical user interface (Figure 1) to select a flight line of interest and 

interactively view and classify the photon elevation data for each channel. During future phases of the 

project, MABEL Viewer is intended to also serve as an algorithm-development environment and a template 

for distributing MABEL data. 
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Figure 1. MABEL Viewer prototype interface for interactive identification of bottom returns from the 
Multiple Altimeter Beam Experimental Lidar (MABEL). 

 

The two study sites are in Lake Superior, at the eastern base of Michigan’s Keweenaw Peninsula 

(Figure 2). No local water-clarity information is available in the study area during the time of data 

acquisition, but in general, Lake Superior is an optically complex, oligotrophic case 2 water body (Effler et 

al., 2010). Dominant coastal substrates in the region include high-reflectance white quartz sand derived 

from Jacobsville sandstone, lower-reflectance gray stamp sands, a product of the region’s historic copper 

mining, and localized cobble fields (Biberhofer, 2002; Kerfoot et al., 2012; Yousef et al., 2013).  
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Figure 2. The study site is at the southern end of Keweenaw Bay, Lake Superior, at the eastern base of 
Michigan’s Keweenaw Peninsula. 

 

MABEL has 16 green (532 nm) channels and eight near infrared (1064 nm) channels, with a laser 

pulse length of 2 ns and an operational laser repetition rate of 5–20 kHz. The geometry of the channels is 

defined by selecting various fibers within the 215-fiber transmitter and receiver arrays located at the foci 

of the corresponding matched transmitter and receiver telescopes. This study examines data acquired during 

the “Transit to KPMD” mission, for which only 13 of the 16 green channels were configured. The 

corresponding beam angles, elevations, and relative energy levels for this mission are listed in Table 1. 

Only the green channels are considered in this study because ATLAS will operate only at the green 

wavelength and because it is the only one of the two wavelengths capable of penetrating the water column 

to provide bottom returns. At a nominal mission AGL of 20,000 m, the 13 green channels cover a swath of 

200 m (Figure 3) and have a nominal footprint of 2 m. The channels corresponding to the anticipated low- 

and high-energy levels of ICESat-2, as per MABEL metadata, are also listed in Table 1; however, according 

to NASA, the documented power levels have not been rigorously verified and are affected by a number of 

environmental factors and configuration procedures (Cook, 2016). To more closely represent the relative 

energies “as flown”, we reclassified the relative ICESat-2 energy level of each channel according to the 

along-track density of water-surface returns, which was used as a proxy indicator of signal strength. The 
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energy level for each channel was then linearly scaled based on an assumed channel 6 energy level of 0.2 

µJ, a value taken from a previous study examining MABEL data acquired 5 months prior under a similar 

energy regime (Kwok et al., 2014; Neumann, 2016). The average low and high energy levels were 

calculated to be 0.04 and 0.2 µJ, up to two orders of magnitude lower than the 5–7 µJ reported in the original 

design specifications (McGill et al., 2013). 

 
Table 1. MABEL channel specifications for the 13 green channels configured for the “Transmit to KPMD” 
mission. 
 

Green 
Channel 

Energy Level 
(metadata) 

Energy Level 
(reclassified) 

Angle 
(mrad) 

Elevation 
(mrad) 

1 Low Low 5.0 −1.5 
3 High Low −2.2 −0.5 
4 High Low −0.2 −0.5 
5 High High −5.0 −1.5 
6 High High 0.0 −1.5 
7 Low Low 1.8 −0.5 
8 Low High −2.0 −1.5 
9 Low Low 2.2 −2.5 

10 High Low 0.2 −2.5 
11 Low High 2.0 −1.5 
12 High Low −1.9 −2.0 
14 Low Low −2.1 −1.0 
15 Low Low −1.8 −2.5 

 

 

Figure 3. Thirteen green channels were configured for the MABEL “Transit to KPMD” mission. The graph 
shows the across- and along-track distances for each channel, given a nominal operational height above 
ground level (AGL) of 20,000 m. 

 

The MABEL data were directly georeferenced with a NovAtel GPS-aided inertial navigation system 

(INS) (Brunt, 2016). The MABEL trajectory and photon-elevation data, available from the online L2A 

product data archive, are relative to the WGS84 (G1674) ellipsoid, having been processed in NovAtel 

Inertial Explorer with a PPP (precise point positioning) post-processing paradigm, using precise ephemeris 
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data obtained from the International GNSS (Global Navigation Satellite System) Service (IGS) (Brunt, 

2016). The roll, pitch, and heading accuracies are documented to be, respectively, 0.007°, 0.007°, and 

0.010°. Rotations between MABEL and the inertial measurement unit (IMU) reference frames and between 

the IMU and the aircraft reference frames are recorded in the MABEL data files. 

Figure 4 shows example MABEL data with a distinctive bathymetric profile, along with discernable 

ground and vegetation returns. Raw photon elevations for each channel from the entire data file are shown 

in Figure 5. Photon classifications of water-surface and bottom were assigned manually using a 

classification tool in MABEL Viewer. Bottom returns were visually identified via expert knowledge of 

typical bathymetric profiles, in which the topographic surface can be seen to extend continuously below the 

water surface to the extinction depth of the lidar. The density of the data relative to ambient noise levels 

was also considered. The classification scheme shown in Figures 4 and 5 is as follows: red = bottom; dark 

blue = water surface; light blue = all others (vegetation, land and noise classes).  

 

Figure 4. Characteristic water-surface and bottom profiles are clearly discernable in the MABEL data. The 
delta time on the x-axis is shown in reverse order so that the spatial orientation of the photon elevation data 
coincides with the 1-m resolution National Agriculture Imagery Program (NAIP) imagery shown above 
(i.e., viewing the track left-to-right in the above image). In addition to the surface and bathymetric returns, 
ground and vegetation returns are also discernable in the MABEL photon elevation data. The overlain grid 
shows World Geodetic System 1984 (WGS84), Universal Transverse Mercator (UTM) zone 16N 
coordinates. 
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Figure 5. Surface returns (blue dots) and bottom returns (red dots) are shown for each green channel. 
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Reference Data  

The reference data set used in this study was a 2010 NOAA Coastal Services Center data set acquired 

with the Fugro LADS Mk II airborne bathymetric lidar system (NOAA CSC, 2011). A high-power, full-

waveform lidar, the LADS Mk II was operated at an altitude of 365 to 670 m, at 140 to 175 kts, with a pulse 

rate of 900 Hz and a scan rate of 18 Hz. Horizontal control, referenced to NAD83(CORS96), a realization 

of the North American Datum of 1983 based on Continuously Operating Reference Stations (CORS), was 

achieved with a control network consisting of two dedicated GPS base stations and seven CORS. Vertical 

control, referenced to the International Great Lakes Datum 1985 (IGLD85), was based on water-level data 

from four NOAA National Water Level Observation Network (NWLON) stations and a co-tidal model. 

The data set is documented in the distributed metadata as having a horizontal accuracy of 2.97 m and a 

vertical accuracy, after transformation to the Geodetic Reference System 1980 (GRS80) ellipsoid, of 0.29 

m. The average point density was calculated to be 0.27 points per m2. The data were obtained from NOAA 

Digital Coast referenced to WGS84 (G1674). 

Predicted Number of Photoelectrons 

The predicted number of photoelectrons per pulse as a function of depth for each channel was 

calculated by applying Equation 1. For the purposes of this study, the expected number of photoelectrons 

given by Equation 1 is assumed to also be the expected number of signal events, given a signal threshold 

of one photoelectron. The values used in Equation 1 are summarized in Table 2. In order of preference, the 

values were obtained from: (1) NASA specifications, data sheets and correspondence (nominal energy 

level, collecting area of receiver aperture, pulse travel distance in air); (2) manufacturer specifications 

(detector quantum efficiency); (3) typical values for similar systems and environmental conditions obtained 

from published papers or reports (bottom reflectance); or (4) reasonable, assumed values (optical 

efficiencies, air-water reflectance, atmospheric transmittance, and effective total beam attenuation 

coefficient). The values stated in the table are purposefully listed with variable precisions, which reflect our 

relative level of knowledge of each. Project partners at the University of Houston are concurrently working 

on more rigorous simulations (Glennie, 2016), which will be continually updated as new/improved system 

specifications for MABEL and ATLAS become available. 
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Table 2. Parameter values used in a photon-counting version of the lidar equation to predict the number of 
photon returns from the bottom. Parameter values are purposefully stated with variable precisions, which 
reflect our relative level of knowledge of each. 
 

Variable Value Unit Description 

𝜂௤  0.18 - 
Detector quantum efficiency 
(Hamamatsu PMT H7260) 

𝜂௥  0.4 - Receiver optical efficiency 
𝜂௧  0.4 - Transmitter optical efficiency 
𝐸௧  0.04 and 0.2 µJ Transmitted energy per channel pulse 
𝜌ఒ  0.3 - Bottom reflectance at laser wavelength, λ 
𝛼௧  0.1 rad Incidence angle on lake bottom 
𝐴௥  0.01 m2 Collecting area of receiver aperture 

𝑅௔௜௥  20,000 m Pulse travel distance in air 
𝑟௜௡௧  0.1 - Reflectance of air-water interface 
𝑇ఒ  0.8 - One-way atmospheric transmittance 
𝑐ఒ  0.25 m−1 Effective total beam attenuation coefficient 

 

The expected numbers of photoelectrons were calculated in 2-D bins extending nominally 20 m along-

track and 1-m vertically. Each bin corresponded to 0.1 sec, or 500 laser shots, assuming an operational 

pulse rate of 5 kHz and speed of 200 m/s. Individual channel track lines were modeled by fitting a curve to 

the positions of the water-surface returns within each channel. The track lines were projected onto the 

bathymetric surface defined by the LADS Mk II reference bathymetry, and the average bottom elevation 

along each bin was used in Equation 1 to calculate the predicted number of photoelectrons for that bin. The 

average number of expected photoelectrons for each depth range for each channel was then calculated by 

averaging the populated bins at that depth range. High- and low-energy averages for each depth range were 

then calculated by averaging the corresponding channels. 

Deriving MABEL Bathymetry 

The next steps in our analysis focused on the quantitative comparison of MABEL bathymetry against 

the reference bathymetry. Before the identified MABEL bottom returns were analyzed for bathymetric 

accuracy and internal consistency, the data were corrected for water-surface refraction and vertically 

reduced to Lake Superior low water datum (LWD). The full workflow for generating bathymetry from 

MABEL data is illustrated graphically in Figure 6, and the steps which have not yet been described (i.e., 

those following the point classification in MABEL Viewer) are outlined below: 
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Figure 6. Workflow for generating bathymetry from MABEL data. 
 

Refraction Correction 

Because the native MABEL photon-elevation calculation assumes subaerial travel times only, a 

refraction correction was needed to account for the speed of light in the water column. In this study, a first-

order depth correction factor was used, computed as the ratio of the index of refraction of air to that of fresh 

water, 0.7521. Planimetric corrections (which would require a water surface model for rigorous 

implementation) were not considered, because the maximum error associated with not applying them (~0.3 

m for a 3° angle of incidence in 8 m water depth, assuming a flat water surface and no surface waves) was 

at the noise level for the purposes of this study. The raw depths were calculated by subtracting each bottom 

photon elevation from the mean elevation of all the water-surface photons in the corresponding data file.  
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Vertical Datum Transformation 

The raw photon elevations were referenced to the WGS84 ellipsoid. Additional vertical corrections 

were necessary to account for the observation that the water level as inferred from the surface returns did 

not match the water level as portrayed by NOAA Great Lakes Environmental Research Laboratory 

(GLERL) data. The data reduction methodology used in this study incorporates both the traditional 

hydrographic practice of making water-level corrections based on local water-level observations (Arroyo-

Suarez et al., n.d.) and the modern initiative to make “GPS-tide” corrections based on chart-datum—

ellipsoid separation models (Dodd and Mills, 2011). 

Figure 7 shows the vertical differences between the water-surface as calculated from the surface-return 

elevations for each channel and the known water level elevation at the time of data acquisition. The average 

bias is 2.1 m, with a standard deviation of 0.2 m. The source of these channel-specific biases is unknown, 

but possible explanations include uncalibrated, channel-specific range error and any error in the z-

component of the instrument installation lever-arms. 

 

 

Figure 7. Channel-specific biases were observed in the mean surface elevations. The biases are the 
differences between the average surface photon elevation and the elevation of the actual water level, as 
modeled based on a Great Lakes Coastal Forecasting System (GLCFS) water level point query. The range 
of values for each channel are shown as vertical bars. 

 

The channel-specific biases were calculated by differencing each channel’s average surface photon 

elevation and the elevation of the actual water level as modeled based on a regional Great Lakes Coastal 

Forecasting System (GLCFS) water-level value (Figure 8). The GLCFS water level, originally referenced 

to Lake Superior low water datum (LWD), was converted to a WGS84 (G1674) ellipsoid height based on 

a constant WGS84-IGLD85 separation of 35.38 m, which was derived from a model that was created using 

VDatum, a vertical datum transformation tool that uses a collection of transformation grids to transform 

vertically referenced data to and from a number of ellipsoidal, orthometric, and tidal datums (Myers et al., 
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n.d.; Parker et al., 2003). Lake Superior LWD is defined as 183.2 m above IGLD85 (NOAA NGS, 2013). 

The WGS84-IGLD85 separation model, shown in Figure 8, was generated by summing two component 

separation values at each node of a 100-m resolution 2-D grid: (1) the separation between WGS84 and 

NAD83 and (2) the separation between NAD83 and IGLD85. The single value used in the GLCFS water-

level conversion was calculated by averaging the gridded separation values along the MABEL track line in 

the project site, the variation of which (σ = 3 cm) was deemed to be insignificant for the purposes of this 

study. 

 

 

Figure 8. GLCFS water-level data and a WGS84-IGLD85 separation model generated in VDatum, a vertical 
datum transformation tool, were used to reduce refraction-corrected depths to the WGS84 (G1674) 
ellipsoid. The datum separation used for this study was 35.38 m, the average separation value along the 
MABEL track line in the study area. 

 

The vertical reduction methodology is summarized in Figure 9, and the corresponding variables are 

listed in Table 3. The final ellipsoid elevation for each bottom return was calculated using Equations (3)–

(6). 
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Figure 9. The vertical-control methodology used to reduce the raw bottom photon elevations to WGS84 
(G1674) includes traditional hydrographic water-level corrections and modern datum-separation models. 
 
 
Table 3. Values used to reduce raw bottom elevations to WGS84 (G1674) elevations corrected for index-
of-refraction and channel-specific water level biases. 
 

Variable Description 
𝒄𝑵𝑪  GLFCS water level (w.r.t. Lake Superior low water datum) 
𝒄𝒔  Channel-specific water-level bias 

∆𝑳𝑾𝑫ି𝑰𝑮𝑳𝑫 Lake Superior LWD - IGLD85 offset (183.2 m, by definition) 
𝑺𝒓𝒂𝒘  Uncorrected channel water-surface ellipsoid height 
𝑫𝒓𝒂𝒘  Raw depth (without index-of-refraction correction) 

𝑫  Depth (with index-of-refraction correction) 
𝑫′  D adjusted vertically for 𝒄𝒔 

𝑯𝒓𝒂𝒘  Raw photon ellipsoid elevation 
𝑯  Final photon ellipsoid elevation 
𝒔𝟏  WGS84-NAD83 separation 
𝒔𝟐  NAD84-IGLD85 separation 

𝒏𝒂𝒊𝒓  Index of refraction for air  
𝒏𝒘𝒂𝒕𝒆𝒓  Index of refraction for fresh water  
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Results 

Predicted Photon Returns 

Figure 10 shows the predicted numbers of photoelectrons vs. depth for depths of 0–10 m, for each 

energy level, based on applying the values in Table 2 to Equation 1.  

 

 

Figure 10. The predicted numbers of photoelectrons per pulse (or shot) vs. depth are shown for each energy 
level, for the Keweenaw Bay project site. 

 

Figure 11 shows example results, from channel 6, comparing the expected and observed numbers of 

photoelectrons. The left panel displays the reference depth profile, with the along-track 2-D depth bins, and 

the derived MABEL depths. The right panel displays the average number of expected and observed 

photoelectrons per shot bin for each depth range. 

 

𝑐௦ = ∆௅ௐ஽ିூீ௅஽ + 𝑐ே஼ − (𝑠ଵ + 𝑠ଶ + 𝑠௥௔௪  ), (3) 

𝐷௥௔௪ = 𝑆௥௔௪ − 𝐻௥௔௪, (4) 

𝐷′ = 𝐷௥௔௪ ቀ
௡ೌ೔ೝ

௡ೢೌ೟೐ೝ
ቁ, (5) 

𝐻 = 𝑆 + 𝑐௦ − 𝐷′, (6) 
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Figure 11. Left: A portion of the depth profile from channel 6 illustrates the comparison between the 
observed photon returns and the reference Laser Airborne Depth Sounder (LADS) MkII dataset. The 
expected numbers of photoelectrons (p.e.) for each shot bin was calculated based on the average depth of 
the shot bin. Right: The corresponding (channel 6) average expected and observed numbers of 
photoelectrons for each depth range were calculated by averaging the respective values from the populated 
shot bins in that depth range. 

 

Figure 12 summarizes the average corresponding numbers of expected and observed photoelectrons 

per pulse for each energy level. Table 4 lists the corresponding values. Overall, the number of observed 

photoelectrons decreases with increasing depth at a decay rate similar to the expected numbers of p.e. for 

each energy level. One noticeable exception is the relatively low number of observed photoelectrons in the 

0–1 m depth range for both the high and low energy channels. This is not unexpected, as the shallow 

nearshore zone generally poses challenges for all bathymetric lidar systems (Pe’eri and Philpot, 2007; 

Quadros et al., 2008; Tuell et al., n.d.). The challenges associated with this depth range stem from a number 

of environmental factors in the surf zone, such as breaking waves, the associated bubbles, foam, and re-

suspended sediment, which are often unavoidable. (As an aside, an additional challenge with waveform-

resolving lidar systems in this very shallow depth range is that the convolution of the laser pulse with the 

water surface may result in a broadened pulse in which the bottom return is obscured.) Spatial variability 

of bottom reflectance, which was assumed to be constant in our model, is also a plausible contributing 

factor, because, as mentioned in Section 2.1, the region is characterized by high-reflectance natural white 

sand and lower-reflectance anthropogenic stamp sands that are transported along the coast.  
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Figure 12. The average observed and expected numbers of photoelectrons (p.e.) are shown for the (a) low-
energy and (b) high-energy channels. The results show good qualitative agreement between observed and 
expected numbers of p.e. in the 1–8 m depth range, but anomalous, shallow, near-shore effects in the 0–1 
m depth range, which is typically challenging for bathymetric lidar mapping. 
 
 
Table 4. Average expected and observed numbers of photoelectrons per pulse for the reclassified low- and 
high-energy channels, which reflect the “as flown” energy regime. 
 

Depth (m) 
Low Energy Channels (0.04 µJ) High Energy Channels (0.2 µJ) 
(1, 3, 4, 7, 9, 10, 12, 14, 15) (5, 6, 8, 11) 
Expected Observed Difference Expected Observed Difference 

0–1 0.003 0.001 −0.003 0.017 0.005 −0.013 
1–2 0.002 0.002 0.000 0.012 0.015 0.003 
2–3 0.001 0.001 −0.001 0.007 0.003 −0.003 
3–4 0.001 0.001 0.000 0.004 0.004 0.000 
4–5 0.001 0.000 0.000 0.003 0.001 −0.001 
5–6 0.000 0.000 0.000 0.002 0.002 0.000 
6–7 0.000 0.000 0.000 0.001 0.001 0.000 
7–8 0.000 0.000 0.000 0.001 0.000 0.000 

 

The general (order-of-magnitude) agreement between the expected and observed signal levels both 

corroborates the observed results and provides an indication that our model produces reasonable estimates, 

which is important if the model is to be refined and extended to ATLAS in future work. Care should be 

taken to not over interpret the results of our prediction model, because the transmit energy levels have 

relatively high uncertainty that is difficult to quantify, given the limitations discussed in Section 2.1. The 

model suffices for the goals of the current phase of research: namely, it provides a means of assessing the 

general feasibility of deriving bathymetry from MABEL and developing a baseline model to be refined and 

extended in subsequent project phases. 
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Bathymetry Accuracy Assessment 

The accuracy of the MABEL bathymetry was assessed by quantitatively comparing elevation 

differences between the reduced bottom-return ellipsoid heights with the reference bathymetry acquired in 

2010 with the Fugro LADS MkII system. A detailed approach resolving uncertainties into vertical and 

horizontal components was not pursued because well-defined discrete features to use for planimetric 

positional comparisons were not discernable in the sparse photon data; however, we suspect that the 

MABEL photon positioning contains a horizontal or angular bias because the positioning of the shoreline 

relative to the channel track lines, which extend landward of the coast, suggests a nominal southwestward 

offset of the MABEL photon returns. The comparison was performed with the reduced ellipsoid heights 

and not the calculated depths to avoid introducing errors associated with additional vertical datum 

transformations. Differences were calculated for all photon returns classified as bottom, including the 

returns positioned up to 35 m outside of the extents of the reference data due to the suspected horizontal or 

angular bias.  

The distribution of differences between the bottom-return ellipsoid heights and the ellipsoid heights of 

the nearest reference bathymetry data points, as found by a k-d tree nearest neighbor search, are shown in 

Figure 13. With an overall bias of -0.59 m, the two datasets agree to within an RMS difference of 0.74 m. 

Numerous factors could explain the general trend of the MABEL-derived depths being generally deeper 

than the reference surface, including depth and vertical-datum biases in the reference bathymetry and the 

suspected horizontal bias in the MABEL photon positioning. Conversely, the observed bias may also 

include a systematic underestimation of depth resulting from the possible penetration of “surface returns” 

into the upper portions of the water column (Guenther et al., n.d.). A small, slope-induced high depth bias 

is also possible due to the LADS MKII system having a slightly larger footprint (nominally 2.5 m) than 

MABEL (2 m). A change in actual bathymetry over the intervening two years is also a likely factor, as the 

project area is characterized by dynamic bedform features, including nearshore sand bars and troughs and 

offshore shoals likely influenced by migrating sand (Ward, 2016). The sedimentary regime of Keweenaw 

Bay has not been fully described, but a key regional sedimentary process occurring along the northern 

reaches of the Bay is the southwestward long-shore movement and deposition of stamp sands, which 

eventually migrate laterally to coalesce with deeper, larger bars (Kerfoot et al., 2012; Yousef et al., 2013). 

Keweenaw Bay’s exposure to an approximately 230-km northeasterly fetch could also play a significant 

role in the sediment dynamics of the project area (Biberhofer, 2002). 
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Figure 13. The distribution of differences between the ellipsoid heights of the detected bottom photons and 
the nearest reference depth has a root mean square (RMS) error of 0.74 m. 

 

Figure 14 shows the spatial variability of the ellipsoid-height differences plotted over 1-m resolution 

NAIP imagery. Nearshore clusters of positive and negative differences are consistent with the combined 

effects of migrating sand bars and the suspected horizontal bias. Although the imagery does not temporally 

coincide with the MABEL and reference data, it offers insight into the observed spatial distribution of the 

ellipsoid height differences by revealing the dynamic geomorphological nature of the project area.  

 

 

Figure 14. The spatial distribution of ellipsoid-height differences at the western edge of the project area are 
plotted over 1-m resolution NAIP imagery. Blue colors (negative numbers) represent MABEL depths that 
are deeper than the corresponding reference depths, and Red colors (positive numbers) represent MABEL 
depths that are shallower than the corresponding reference depths. Clusters of differences, such as the one 
highlighted with the black circle labeled ‘A’, are consistent with a sand bar that has migrated and/or the 
horizontal positioning error of a sand bar that has not migrated. Certain geomorphological features are 
labeled to aid interpretation of the background imagery. 
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Discussion 

As noted earlier, MABEL is not intended to be an exact replica of ATLAS. Table 5 lists some of 

the significant parameter differences between the two sensors. 

 

Table 5. Comparison between MABEL and future Advanced Topographic Laser Altimeter System 
(ATLAS) system parameters. Note: the values in parentheses in the MABEL pulse energy field denote the 
reclassified, “as flown” energy levels, as opposed to the original design specifications. 
 

Parameter MABEL ATLAS 
Laser footprint (1/𝑒ଶ) 2 m (100 µrad) 15 m (31 µrad) 

Field of View 4.2 m (210 µrad) 41 m (83 µrad) 
Laser pulse repetition freq. 5–20 kHz 10 kHz 

Pulse energy 5–7 µJ (0.04–0.2 J) 41/160 µJ 
Pulse pattern 16 532-nm beams, 8 1054-nm beams 6 beams (3 pairs of 2) 
Swath width 2 km (max) (variable) 6 km 
Wavelength 532 and 1064 nm 532 nm 
Filter width ~150/~400 pm (532/1064 nm) 30 pm 

Receiver aperture area 0.013 m2 0.79 m2 
Operational altitude 20 km 500 km 

 

Many of the parameter values needed to quantitatively assess ATLAS expected signal levels from the 

bottom in a particular area using Equation 1 are not currently available. However, given the significantly 

higher pulse energies and receiver aperture, it is reasonable to expect that the depth penetration capabilities 

of ATLAS will at least equal, if not exceed, those of MABEL. The much greater altitude of the ICESat-2 

satellite (as compared with the ER-2 aircraft during the MABEL flights) impacts the reflected beam solid 

angle, but has relatively little impact on atmospheric transmittance, since the ER-2 operational altitude is 

already above ~95% of the Earth’s atmosphere. The fundamental spatial resolution of ATLAS will also be 

coarser, given its larger footprint. 

If ICESat-2 ATLAS is found to have similar or greater bathymetric mapping capabilities than MABEL, 

the resulting bathymetric data may be useful for small-scale nautical charting in poorly mapped areas, as 

well as for inundation and storm surge modeling and related coastal zone management and science needs. 

Only one, small area was examined in this study, but a preliminary review of the suite of existing MABEL 

data reveals high-probability returns in other parts of Lake Superior, as well as a location along the Northern 

Icelandic coast. Additionally, Jasinski et al. (Jasinski et al., in press) noted MABEL bathymetry in Lake 

Meade. (These data were qualitatively assessed, but not included in the quantitative analysis of bathymetry 

in this study, due to a lack of available reference bathymetry for the sites.) 

Although the observed MABEL and anticipated ATLAS data densities and vertical uncertainties do 

not approach those of dedicated airborne bathymetric lidar using full-waveform systems, a satellite platform 



 
 

28 

 

allows regular data acquisition in remote, poorly mapped areas, where high-resolution bathymetric lidar 

and shipborne acoustic data are typically scarce or altogether absent. Hence, there are multiple opportunities 

to acquire data in areas in which there are large seasonal—or even daily—variations in water clarity. 

Additionally, the repetitive coverage offered by repeat orbits may densify bottom returns and improve SNR. 

Another potential application of ICESat-2 bathymetry data is to serve as a constraint in bathymetry 

retrieval from a variety of synergistic methodologies using various data sources, including passive, 

multispectral satellite imagery (Gao, 2009; Pe’eri et al., 2013; Stumpf et al., 2003) and synthetic aperture 

radar (SAR) (Brusch et al., 2011; Huang and Fu, 2004; Ludeno et al., 2015). Imagery-derived bathymetry 

is inferred from the relative reflectance of different bands (e.g., blue and green), and SAR-derived 

bathymetry is inferred based on variations of surface roughness. Each of these methods has the advantage 

of providing dense depth estimates over large spatial extents; however, each method usually relies on “seed 

depths” typically soundings from nautical charts or lidar surveys (Stumpf et al., 2003) or shipboard sonar 

data (Hogrefe et al., 2008), to calibrate derived values to meaningful local depths. By providing a more-

direct form of depth measurement, MABEL (and, ultimately, ATLAS) bathymetry does not require existing 

reference soundings. On the other hand, bathymetry from MABEL or ATLAS has the disadvantage of being 

spatially sparse, as depths are constrained to lie along discrete track lines. MABEL (or ATLAS) bathymetry 

and bathymetry from multispectral satellite imagery and SAR data are, therefore, highly complementary, 

such that the fusion of each could potentially combine the strengths and overcome the limitations of each 

method individually. By providing a nearly seamless transition across the shoreline, ICESat-2 bathymetry 

is also a natural complement to coastal-mapping applications incorporating infrared, terrestrial lidar (Arsen 

et al., 2013; Chust et al., 2008; Deronde et al., 2006; Elaksher, 2008; Gilvear et al., 2004; Jones et al., 2010; 

Lee and Shan, 2003). 

Conclusions  

MABEL, the airborne simulator for NASA’s upcoming ICESat-2 mission, has been shown to detect 

bathymetry up to 8 meters deep in the oligotrophic waters of Keweenaw Bay, Lake Superior. The depths 

were derived by applying index-of-refraction and water-level corrections to the raw MABEL photon 

elevations and were shown to be in good agreement with the NOAA reference data acquired two years 

earlier. Resolving positional uncertainty into vertical and horizontal components requires further research 

evaluating system and procedural parameters such as boresight calibration angles and georeferencing 

settings; and incorporating a thorough index-of-refraction model, accounting for the orientation of the 

aircraft, the corresponding angle of incidence of each beam relative to the water surface, and a water-surface 

model. Before MABEL data—and potentially ICESat-2 ATLAS data—can be reliably reduced to specific 

vertical data with sub-meter accuracy without directly relying on local water-level measurements at the 



 
 

29 

 

time of data acquisition, vertical uncertainties resulting from 3-D georeferencing and channel-specific range 

calculations need to be refined. 

In addition to assessing the depth accuracy of the derived MABEL bathymetry through a comparison 

with a high-accuracy reference dataset, a photon-counting version of the lidar equation was used to predict 

the number of signal events (taken to be one photoelectron) in 2-D bins along each channel track line. 

Anomalies in the 0–1 m depth range are consistent with known environmental limitations; and uncertainties 

in the assumed transmit-energy levels limit the applicability of our results, but the general agreement 

between the average observed and expected numbers of photoelectrons in the 1–8 m depth range for the 

low- and high-energy channels substantiates our approach and justifies developing our baseline model in 

future project phases.  

Future research plans include developing an algorithm to automatically classify and process bottom 

returns from photon-counting lidar data and a corresponding uncertainty model. Research plans also include 

collaboration with the National Center for Airborne Laser Mapping (University of Houston) to extend this 

MABEL analysis to incorporate theoretical performance characteristics of the ATLAS sensor. 
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ACTIVE-PASSIVE SPACEBORNE DATA FUSION FOR MAPPING NEARSHORE 
BATHYMETRY 

Abstract 

In anticipation of NASA’s ICESat-2 mission, which will employ ATLAS, a 532-nm photon-

counting lidar, we demonstrate a spaceborne data-fusion approach that has the potential to significantly 

shrink the global nearshore data gap often referred to as the “white ribbon.” Bathymetry algorithms relying 

on multispectral imagery are conventionally limited by the availability of in situ reference depths, 

particularly in remote or difficult-to-map areas. Therefore, a completely spaceborne approach could greatly 

extend the usefulness of such algorithms. The approach is tested with data from NASA’s airborne ICESat-

2 ATLAS simulator, MABEL, and passive optical imagery from Landsat 8 using an existing spectral-ratio 

algorithm. The output bathymetric data set agrees with high-resolution Fugro LADS MK II bathymetric 

data to within an RMS difference of 1.1 m. The spatiotemporal variability of areas where this spaceborne 

data-fusion approach will potentially be useful is evaluated, based on worldwide coastal water clarity as 

interpreted from VIIRS Kd(490) data.  

Introduction 

Despite a large variety of remote sensing techniques that measure or estimate water depth (Gao, 

2009; Jawak et al., 2015), there remains a global lack of nearshore bathymetry data (IHO, 2018a; NRC, 

2004). The hydrographic community has called this data gap the “white ribbon,” referring to the 

corresponding along-shore empty space on many nautical charts (Leon et al., 2013; Mason et al., 2006). 

Inadequate or nonexistent chart data is particularly an issue in the Arctic, which has seen an increase in ship 

traffic (NOAA, 2016a), and in the southwest Pacific (IHO, 2018a). The white ribbon affects numerous 

research domains and coastal-management applications beyond navigation, such as coral-reef studies 

(Miller et al., 2011), river geomorphology (Legleiter and Overstreet, 2012), reservoir management (Moses 

et al., 2013), inundation modeling, and broader efforts to generate seamless topographic/bathymetric digital 

elevation models (DEMs) (Eakins and Grothe, 2014). Even in countries with dedicated coastal-mapping 

agencies, populating and maintaining coastal bathymetric databases is challenging, given environmental 

constraints, limited resources, and difficulties and hazards of working in remote and dangerous areas. 

Global and regional bathymetric datasets do exist, but high-resolution datasets are limited, and much of the 

global-scale data is derived from altimeter/gravity techniques that have significant limitations in coastal 

areas (Smith and Sandwell, 2004; Weatherall et al., 2015). These methods generally produce low-resolution 

(nominally 5- to 100-km spatial resolution) estimates of bathymetry, and, therefore, are unsuitable for many 

nearshore applications. While these existing methods and data sets are valuable for physical oceanographic 

studies and analysis over broad spatial extents, our aim is to improve on the accuracy and spatial resolution 
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in the nearshore domain.  

Relying solely on conventional acoustic (i.e., ship- or boat-based echosounder) methods to map the 

nearshore zone would be expensive and time-consuming, as well as dangerous in the shallowest areas and 

near reefs, rocks, and other dangers to navigation. According to Weatherall et al. (2015), approximately 

900 ship-years of sonar-based acquisition time (ignoring logistics, data processing, and repeat-survey 

requirements) are needed to map Earth’s oceans, with the 0-200 m depth range requiring two thirds of that 

time. Another technology for bathymetric mapping that merits discussion is airborne bathymetric lidar 

(ALB). The use of airborne (i.e., airplane- or helicopter-mounted) laser mapping systems extends back at 

least as far as 1968 and a study done by Hickman and Hogg (1969), but widespread use of ALB only 

occurred in the 1990s through early 2000s, as GNSS-aided inertial navigation systems (INS) and related 

technologies matured to the point of facilitating broad, operational use. Current, commercial ALB systems 

include: CHARTS, SHOALS, CZMIL, HawkEye, Chrioptera I and II, LADS Mk II and III, and the Riegl 

VQ-880-G. Despite the widespread use of ALB, it remains difficult to deploy—especially in remote 

regions—and requires significant resources. Hence, it is a great option for localized acquisition, but not 

feasible as a sole means of filling the nearshore data void. Multispectral remote sensing methods of deriving 

bathymetry have been appealing ever since the mid-1960s, when Gilg and McConnell, Jr. (1966) considered 

using spaceborne photography for bathymetric reconnaissance.  

Beginning with the first documented spectral-based approach (Polcyn and Rollin, 1969), methods 

of mapping bathymetry from multi- and hyperspectral imagery have been well established in the published 

literature. However, a major drawback of most spectrally-based bathymetry retrieval approaches is that they 

require in situ data, in the form of reference or “seed” depths. This requirement negates the possibility of 

mapping bathymetry solely from satellite-based data and from using the methods in areas where there are 

no existing reference soundings. To overcome this limitation, we propose an active-passive spaceborne data 

fusion approach, leveraging satellite-based lidar and multispectral imagery. (Note that, for purposes of this 

study, we define data fusion broadly to include any technique leveraging multiple, complementary inputs 

where each provides some information the others do not (Castanedo, 2013; Elmenreich, 2002)).  

Spaceborne lidar (Abdallah et al., 2013), including NASA’s ICESat-2 mission (Abdalati et al., 

2010), offers the potential to map elevations along repeat/near-repeat tracklines and does not require 

existing reference data. (Incidentally, ICESat-2 launched while this study was under review, at 6:02am local 

on September 15, 2018, from Vandenberg AFB in California. As of the time of submitting the revised 

manuscript, ATLAS data were not yet available.) The sole instrument aboard ICESat-2 is the Advanced 

Topographic Laser Altimeter System (ATLAS), a 532-nm (green wavelength) photon-counting lidar. The 

main objectives of ICESat-2 are to measure ice-sheet elevations, sea-ice freeboard, and global biomass, but 
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ATLAS’s green laser makes it a potential candidate for measuring water depth (Forfinski-Sarkozi and 

Parrish, 2016; Jasinski et al., 2016). However, ICESat-2 ATLAS data will be spatially limited to lie along 

discrete track lines. The fusion of ATLAS and multispectral satellite imagery, such as from Landsat 8 OLI 

or Sentinel-2A MSI, may afford the ability to combine the strengths and eliminate the weaknesses of passive 

(multispectral imagery) and active (lidar) space-based bathymetric mapping techniques and, therefore, to 

significantly shrink the white ribbon.  

While previous work by the research team investigated the feasibility of mapping bathymetry from 

ICESat-2 ATLAS (Forfinski-Sarkozi and Parrish, 2016), two important research questions remained: (1) 

Can spaceborne lidar and spaceborne multispectral imagery be fused to overcome the limitations of each 

and create datum-based bathymetry over large spatial extents? (2) Over which portion of the world’s coastal 

regions might this approach be viable? The present study addresses these two questions through a multi-

step approach leveraging a spectral-ratio method of deriving bathymetry from Landsat 8 imagery, combined 

with data from NASA’s airborne ICESat-2 ATLAS simulator, in conjunction with a spatiotemporal 

assessment of global nearshore water clarity along planned ICESat-2 tracklines. The results indicate that 

the spaceborne, active-passive data fusion approach may be viable for filling the nearshore data void in 

many regions of the globe over the course of a year. 

Methods 

To demonstrate how spaceborne lidar and multispectral optical imagery can be synergistically 

combined to map depth over large areas, we use the Stumpf (2003) band-ratio method to fuse MABEL-

derived bathymetry and a Landsat 8 OLI scene acquired over Keweenaw Bay, Lake Superior. The accuracy 

of the resulting satellite derived bathymetry (SDB) is compared to a high-resolution bathymetric lidar 

dataset acquired with a Fugro LADS Mk II. We also assess where this approach might be viable by 

examining the spatiotemporal variability of global nearshore water clarity along expected ICESat-2 ground 

tracks as interpreted from VIIRS diffuse coefficient of downwelling irradiance (Kd(490)) data. The 

spatiotemporal results are presented statistically with standard summary techniques and cartographically in 

conjunction with established biogeographic water regions as defined by the Marine Ecoregions of the World 

(MEOW) and Freshwater Ecoregions of the World (FEOW) datasets.  

Study site: Keweenaw Bay 

The study site is in Keweenaw Bay, Lake Superior, at the eastern base of Michigan’s Keweenaw 

Peninsula (Figure 15). The area of interest (AOI) was defined to be the extents of National Oceanic and 

Atmospheric Administration (NOAA) electronic navigational chart (ENC) US5MI72M. Generally 

considered an optically complex case 2 water body, oligotrophic Lake Superior, including Keweenaw Bay, 
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is characteristically clear (Effler et al., 2010). Regional coastal substrates include high-reflectance quartz 

derived from Jacobsville sandstone, lower-reflectance gray stamp sands, an anthropogenic product of the 

region’s historic copper mining, and localized cobble fields (Biberhofer, 2002; Kerfoot et al., 2012; Yousef 

et al., 2013). Characteristic nearshore bedform morphology includes shifting sandbars and alongshore 

troughs (Ward unpublished data, 2018). 

 

 

Figure 15. The area of interest (AOI) is in Keweenaw Bay, Lake Superior, where photon-counting 
bathymetric lidar data were acquired with the ICESat-2 airborne simulator system, MABEL. The extents 
of NOAA ENC US5MI72M define the AOI, shown by the black polygon. 

Data Sets 

MABEL 

The Multiple Altimeter Beam Experimental Lidar (MABEL) is the airborne simulator for the 

Advanced Topographic Laser Altimeter System (ATLAS), the sole instrument onboard NASA’s ICESat-2 

mission (McGill et al., 2013). MABEL has 16 green (532 nm) channels and eight near infrared (1064 nm) 

channels, the geometry of which is defined by selecting various fibers within the fiber-bundle transmitter 

and receiver arrays. Originally specified to have low- and high-energy levels ranging from 5 to 7 µJ, 

MABEL’s energy regime has been estimated during certain missions to be up to two orders of magnitude 

smaller, due to various environmental and operational factors that have degraded the efficiency of the optics 

over time (Cook unpublished data, 2018). A NovAtel global navigation satellite system (GNSS) -aided 

inertial navigation system (INS) was used to directly georeferenced the MABEL data. The WGS84 (G1674) 

trajectory and photon elevation data made available in the online L2A data product archive were processed 

using a precise point positioning (PPP) paradigm, with precise ephemeris data obtained from the 
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International GNSS Service (IGS) (Brunt unpublished data, 2018). System configuration metadata, 

including rotation angles between MABEL and the inertial measurement unit (IMU), are included in the 

data files. 

The MABEL data used in this study were acquired during the “Transit to KPMD (Palmdale 

Regional Airport, Palmdale, CA, USA)” mission, on September 26, 2012. Only the green channels were 

used in this study, because ATLAS has only a green laser. Depths were calculated from the L2A data 

product photon elevations using the approach documented in Forfinski-Sarkozi and Parrish (2016), with 

one additional corrector. A 70-m (positive to right) across-track, planimetric offset was applied to the depth 

positions to account for an observed horizontal positional offset likely to be the result of an angular 

instrument misalignment. MABEL, a concept-verification instrument, was not optimized for pointing 

accuracy (McGill et al., 2013), and even small misalignments could induce noticeable biases at an 

operational altitude of 20 km ASL. Moreover, the MABEL data available on NASA’s online archive are 

preliminary, as not all calibrations and corrections have been applied (NASA, 2014). The magnitude of the 

across-track correction was empirically determined by visually aligning the shoreline geometry observed 

in the photon-elevation data with the corresponding shoreline geometry observed in high-resolution NAIP 

imagery of the study area. The PPP method used to create the trajectory data in the L2A data product is 

unlikely a significant contributor to the observed horizontal offset, because tropospheric error is minimized 

at MABEL’s operational altitude (Brunt unpublished data, 2018). 

Landsat 8 OLI 

The Operational Land Imager (OLI) instrument onboard the Landsat 8 satellite acquires 30-m 

resolution, multispectral data in 9 visible (VIS) and near-infrared (NIR) bands (USGS, 2016). OLI’s 

improvements over previous Landsat VIS/NIR sensors include a push-broom configuration (as opposed to 

whisk-broom), an increased (12-bit) radiometric resolution, and additional coastal and cirrus bands. With a 

98.2° inclination sun-synchronous orbit at 705 km altitude and 98.9-min orbital period, Landsat 8 has a 

repeat cycle of 16 days and an equatorial crossing time of approximately 10:00 AM local time. Landsat 8 

imagery data are partitioned into nominally 170-km x 183-km scenes, which are organized according to the 

Word Reference System 2 (WRS-2), a notation system identifying each image with a path/row designator. 

As of 2016, Collection 1 Level-1 Landsat data (up-sampled to 16-bit) are placed in one of three tiers, 

according to processing status and geometric and radiometric quality criteria. The 2013 Landsat 8 OLI 

imagery used in this study (scene ID LC80240272013254LGN01) was obtained from the Collection 1 

Level-1 archive via Earth Explorer (Figure 16). Because a spectral ratio method was used to derive 

bathymetry from the imagery, radiance and reflectance corrections were deemed unnecessary. Although 

the image has approximately 43% cloud cover, the AOI is clear. Sedimentary bedforms, including sandbars 



 
 

36 

 

and along-shore troughs, are clearly discernable in the imagery. 

 

 

Figure 16. The natural-color Landsat 8 composite shows a cloud-free view of the AOI in Landsat 8 image 
LC80240272013254LGN01. Sedimentary bedforms are discernable in detail view A, and a dredged 
channel is discernable in detail view B. 

VIIRS Kd(490) 

The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the five payloads onboard the 

Suomi National Polar-orbiting Partnership (NPP) satellite, which has an orbital period of 101 min. 

Extending the science of the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the EOS 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, VIIRS is a scanning radiometer 

acquiring data in the visible and near infrared range that are used in a variety of terrestrial, atmospheric, 

cryospheric, and oceanic applications (Justice et al., 2013). Data from VIIRS form the basis of a rich suite 

of data products, including the monthly global Level 3 binned Kd(490) environmental data records (EDRs) 

used in this study to assess global coastal water clarity (Wang et al., 2016). Generated by the NOAA Center 

for Satellite Applications and Research (STAR) Ocean Color Science Team, the Kd(490) data are generated 

using the algorithm developed by Wang et al. (2009), which combines standard techniques for open-ocean 

waters and a new semi-analytical technique specifically designed for coastal waters. The Kd(490) retrieval 

algorithm is expressed by Equation 7: 
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𝐾ௗ
஼௢௠௕(490) = (1 − 𝑊)𝐾ௗ

஼௟௘௔௥(490) + 𝑊𝐾ௗ
்௨௥௕௜ௗ(490) (7) 

where W is a weighting function bridging the clear open ocean Kd(490) and turbid coastal Kd(490) values. 

𝐾𝑑ௗ
஼௟௘௔௥(490) is derived from standard Kd(490) models for open oceans, and 𝐾𝑑ௗ

்௨௥௕௜ௗ(490) is derived 

using Equation 8, which is based on a strong correlation between Kd(490) and the ratio of R(667) and 

R(488) in turbid waters (Wang et al., 2009):  

𝐾ௗ
்௨௥௜ௗ(490) =

𝑐ଵ

𝑅(488)
+ 𝑐ଶ

𝑅(667)

𝑅(488)
+ 4.18[𝑐ଷ + 𝑐ସ𝑅(645)]

∙ ቊ1 − 0.52 exp ቈ
𝑐ହ

𝑅(488)
− c଺

𝑅(667)

𝑅(488)
቉ቋ 

(8) 

In extremely turbid waters, where band 667 is often saturated, the ratio of R(645) and R(488) is used. Table 

6 lists the constants for the R(667)/R(488) and R(645)/R(488) scenarios. 

 

Table 6. Constants used for calculating turbid coastal Kd(490) values 
 

Constant R(645)/R(488) R(667)/R(488) 
cଵ −9.785 x 10ିସ 2.697 x 10ିସ 
cଶ 0.8321 1.045 
cଷ −2.54 x 10ିଷ 7 x 10ିସ 
cସ 2.1598 2.7135 
cହ 9.19 x 10ିଷ −2.533 x 10ିଷ 
c଺ 7.81 9.817 

 

It would be possible to apply a conversion from Kd(490) to Kd(532), following the methods in, e.g., Feygels 

et al. (2017) and de Rada et al. (2012). However, this conversion was not deemed necessary in this work, 

for the following reasons: 1) from the Jerlov curves for type 1C to 3C waters, the difference between 

Kd(490) and Kd(532) is approximately 3%, and, while the difference can grow to > 10% for more turbid 

coastal water types, these waters will be excluded from consideration, due to being too turbid; and 2) as the 

overall purpose of this assessment is to gain insight into relative water clarity spatially and temporally, 

corrections that are small and/or approximately constant over the ranges of interest have negligible impact 

on the analysis.  

The VIIRS monthly average Kd(490) data used in this study to assess the spatiotemporal variability 

of global costal water clarity span one year, from 7/1/2015 to 6/30/2016. Each monthly average map 

consisted of a tiled set of 24 45°x60° netCDF data files, which were downloaded from the NOAA National 

Environmental Satellite, Data, and Information Service (NESDIS) Thematic Real-time Environmental 

Distributed Data Services (THREDDS) server. Two monthly maps had incomplete data coverage. One tile 

(sector XY) was unavailable for 4/2016, and five tiles (sectors UZ, VZ, YX, ZX, and XY) were unavailable 



 
 

38 

 

for 6/2016. Before starting this analysis, an important question that was carefully considered by the research 

team was whether the relatively coarse-resolution (750 m) Kd(490) data would support a sufficiently 

detailed analysis of where and when the fusion-based bathymetry retrieval approach would be viable. 

Detailed visual analysis of the VIIRS Kd(490) data in a number of sites around the world, some of which 

contained higher-resolution data and/or were familiar to the project team, revealed that the VIIRS Kd(490) 

data did, in fact, enable analysis of both large regional variations and localized nearshore variations 

sufficient to assess when and where our spaceborne, fusion-based bathymetric mapping approach might be 

feasible. Specifically, although the VIIRS Kd(490) data do not generally fill the entire nearshore zone, 

enough overlap exists to capture alongshore variation over much of the globe, as depicted in the examples 

in Figure 17.  

 

 

Figure 17. VIIRS Kd(490) data capture nearshore water clarity variability deemed suitable for a global 
spatiotemporal viability analysis of the presented spaceborne data-fusion approach. The top images show 
regional variability, and the bottom images show corresponding details of the VIIRS Kd(490) data 
intersecting the nearshore zone (indicated by black polygons): (a) differences between back-bay and ocean 
sides of barrier islands along NC, USA; (b) sediment plume at the mouth of Sungai Mamberamo, Papau, 
Indonesia; (c) glacial-powder plumes in Prince William Sound, AK, USA; (d) variations along Lakes 
Nasser and Nubia in Egypt and Sudan; (e) predominantly clear waters of the coral-fringed lagoons of French 
Polynesia; (f) variations among lakes of the Tibetan Plateau. 

Reference Bathymetric Lidar Data 

The reference data set used in this study was a Fugro LADS Mk II bathymetric lidar data set that 

was acquired in 2010 as part of a NOAA Coastal Services Center coastal mapping project of Lake Superior 

(NOAA CSC, 2011). The high-power, full-waveform LADS Mk II airborne lidar system was flown at an 

attitude of 365-670 m, at 140 to 175 kts, with a 900 Hz pulse rate and an 18 Hz scan rate. Horizontal control, 

relative to NAD83 (CORS96), was achieved with a control network consisting of two dedicated GPS base 
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stations and seven Continuously Operating Reference Stations (CORS). Vertical control, relative to the 

International Great Lakes Datum 1985 (IGLD85), was based on water-level data from four NOAA National 

Water Level Observation Network (NWLON) stations and a co-tidal model. The associated metadata 

documents the horizontal and vertical accuracy as 2.97 m and 0.29 m, respectively. The average point 

density was calculated to be 0.27 pt/m2. The data were obtained from NOAA Digital Coast referenced to 

WGS84 (G1674). 

Satellite-Derived Bathymetry 

A wide variety of multispectral empirical algorithms have been developed and applied to an 

extensive range of high- and moderate-resolution multispectral sensors (Table 7).  

 

Table 7. Multispectral sensors used in empirical bathymetric data-fusion algorithms, with selected case 
studies. 
 

Sensor Example Case Studies 
MSS (Landsat 1-4, 5) Benny and Dawson, 1983; Lyzenga and Polcyn, 1979; Warne, 1978 
TM (Landsat 4, 5) Liceaga-Correa and Euan-Avila, 2002; van Hengel and Spitzer, 1991 
ETM+ (Landsat 7) Hu et al., 2014 
OLI (Landsat 8) Deidda et al., 2016; Figueiredo et al., 2016; Pacheco et al., 2015 
MSI (Sentinnel-2a/b) Hedley et al., 2012 
IKONOS Fonstad and Marcus, 2005; Mishra et al., 2004; Su et al., 2014 
LISS-III (IRS P6, 1C, 1D) Pattanaik et al., 2015; Tripathi and Rao, 2002 
Quickbird-2 Conger et al., 2006; Kanno et al., 2011a; Lyons et al., 2011 
MERIS Minghelli-Roman and Dupouy, 2012 
MODIS Fitzpatrick et al., 2014 
RapidEye Giardino et al., 2014 
WorldView-2 (3) Bramante et al., 2013; Collin and Hench, 2012; Hamylton et al., 2015 
SPOT 4 (5) Kao et al., 2009; Liu et al., 2010 
GeoEye Niroumand-Jadidi and Vitti, 2016 
ASTER Ceyhun and Yalçın, 2010; Sneed and Hamilton, 2007 
 

Many empirical algorithms are founded on the Beer-Lambert law (Equation 9), which describes the 

approximately exponential attenuation of light with increasing depth due to the combined effects of 

absorption and scattering: 

𝐸ௗ(𝑧) = 𝐸ௗ(0)𝑒ି௄೏௭, (9) 

where 𝐸ௗ(0) and 𝐸ௗ(𝑧) are the irradiances at the surface and depth z, respectively, and Kd is the diffuse 

coefficient of downwelling irradiance. The relationship given in Equation 10 is often expressed in the 

following form 

𝑙𝑛 𝐸ௗ(𝑧) = −𝐾ௗ𝑧 +  𝑙𝑛 𝐸ௗ(0) (10) 
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to emphasize the linear relationship between depth and the natural logarithm of irradiance, which is a key 

component of many empirical methods. The wavelength-dependent diffuse coefficient of downwelling 

irradiance is an apparent optical property of water given by Equation 11. 

𝐾ௗ =  −
𝑑 ln 𝐸ௗ

𝑑𝑧
= −

1

𝐸ௗ

𝑑𝐸ௗ

𝑑𝑧
 (11) 

Equation 11 refers to the theoretical value at in infinitesimally thin layer at depth z, but in practice, 𝐾ௗ often 

refers to the vertically averaged value over the interval of interest, or 𝐾ഥௗ.  

A popular variation of the attenuation-based approach is the Lyzenga (2006) method, which itself 

is an extension of methods by Clark et al. (1987), Lyzenga (1978), and Paredes and Spero (1983), which 

predict depth based on a linear combination of different bands. The Lyzenga method has in turn been 

extended numerous times to include, for example, spatial interpolation based on nonparametric regression 

(Kanno et al., 2011b), geographically adaptive coefficients (Figueiredo et al., 2016; Su et al., 2014), and 

ordinary block kriging to account for scale differences between point measurements and image pixels. 

Related approaches include the Jupp (1988) method, which defines ‘depth of penetration’ (DOP) zones 

based on depths at which particular wavelengths disappear, and the Stumpf (2003) method, a band-ratio 

method assuming the ratio of logarithms of band reflectances varies linearly with depth. Extensions of the 

Jupp and Stumpf methods incorporate, respectively, a stratified genetic algorithm (Gianinetto and Lechi, 

2004) and Levenberg-Marquardt optimization (Su et al., 2008). Other statistical methods employ simple 

regression of single band radiances to reference depths (Fitzpatrick et al., 2014; Legleiter, 2012; Roberts 

and Anderson, J. M., 1999), polynomial fitting (Hernandez and Armstrong, 2016), artificial neural networks 

capable of modeling nonlinearities difficult to capture using other methods (Ceyhun and Yalçın, 2010; Liu 

et al., 2015), supervised classification incorporating inverse probability weighted interpolation of depth 

estimates from complementary Naïve Bayesian (NB) and neural-network models (Salah, 2016), and 

unsupervised segmentation (Provost et al., 2004). The diverse methods are summarized in Table 8.  
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Table 8. Summary of empirical SDB algorithms. Note: this is not intended to be a comprehensive list of 
algorithms; rather, it is a representative sampling of algorithms representing different categories of 
approaches. 
 

Method Study Comments 

BEER-LAMBERT METHODS 

Linear 
multiband 
regression 
 

Lyzenga et al., 2006 
Developed version of (Clark et al., 1987; 
David R. Lyzenga, 1978; Paredes and Spero, 
1983) 

Figueiredo et al., 2016 
Variation of Lyzenga with geographically 
adaptive coefficients 

Kanno et al., 2011b 
Variation of Lyzenga with generalized 
coefficients 

Su et al., 2014 
Variation of Lyzenga with geographically 
adaptive coefficients 

Band-ratio 
transform 

Stumpf et al., 2003 
Simplified ratio approach requiring only 2 
inputs 

Su et al., 2008 
Variation of (Stumpf et al., 2003) using 
optimization to calculate coefficients 

Depth of 
Penetration 
(DOP) 

Jupp, 1988 
Based on depths of extinction of various 
wavelengths 

Gianinetto and Lechi, 2004 
Variation of (Jupp, 1988) using stratified 
genetic algorithm 

STATISTICAL METHODS 
Single-band 
regression 

Roberts and Anderson, J. M., 
1999 

Uses regression between single band DNs 
and reference depths 

Ensemble 
learning 

Manessa et al., 2016 
Machine Learning approach using nonlinear 
Random Forest (RF) regression 

Artificial neural 
network (ANN) 

Ceyhun and Yalçın, 2010 
Uses ANN with back propagation; can 
account for nonlinearities 

Supervised 
classification 

Salah, 2016 
Uses probability weighted interpolation of 
Naïve Bayesian (NB) and neural-network 
models 

Unsupervised 
classification 

Provost et al., 2004 Uses hierarchical Markovian segmentation  
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Most approaches incorporate one or more bands from a single image, but Lee et al. (2013) 

developed a method incorporating multiple images from different viewing angles, and Pe’eri et al. (2016) 

and van Hengal and Spitzer (1991) investigated multi-temporal analysis of images of the same area acquired 

at different times to discern anomalous image values due to ephemeral phenomena such as sediment plumes 

from actual bathymetry. While empirical methods may result in larger errors than analytical methods, the 

relative simplicity with which they are applied to a diversity of multispectral imagery make them appealing 

tools when considering deriving nearshore bathymetry on a global scale. 

In this work, SDB was generated from Landsat 8 OLI imagery, using a process adapted from the 

SDB process documented in the General Bathymetric Chart of the Oceans (GEBCO) Cook Book (IHO, 

2016), which is based on the empirical Stump (2003) band-ratio method. The relative simplicity of the 

Stumpf ratio method, which relies on only two parameters and does not require atmospheric correction, 

facilitates deriving bathymetry on a global scale. The four main steps include masking the land, calculating 

the ratio of the natural logs of spectral bands, calculating the transform coefficients, and transforming the 

relative bathymetry to absolute bathymetry. In Step 1, a NIR threshold of 6000 was used to differentiate 

water pixels from land pixels. In Step 2, the scaling factor, n, was set to 1000. In Step 3, the depths from 

all enabled MABEL channels were included in a single regression. In Step 4, the relative bathymetry was 

linearly transformed to absolute bathymetry, with real-world units, by applying the coefficients calculated 

in Step 3. 

Spatiotemporal Usability Assessment 

The spatiotemporal variability of areas where the presented active/passive data-fusion methodology 

would potentially be useful was assessed by analyzing global, monthly averaged VIIRS Kd(490) values 

along the expected ICESat-2 tracklines within nearshore and shallow coral-reef zones. With the objective 

of identifying sections of coast and coral reef, not depth-dependent zones, this study broadly defined the 

coastal zone as a 1-km buffer of the shoreline. (Performing a global depth-dependent shoreline analysis 

adopting rigorous littoral definitions based on depth of closure and optical properties based on attenuation 

is hindered by the very lack of nearshore bathymetry that this study aims to address.) The shoreline used in 

the analysis was the shoreline depicted in the ArcGIS World Water Bodies basemap layer, which included 

lakes, seas, oceans, large rivers, and dry salt flats (ESRI and Garmin International, Inc., 2017). The shallow 

coral-reef extents used in the analysis where those defined by the United Nations Environment Programme 

World Conservation Monitoring Centre (UNEP-WCMC) Global Distribution of Coral Reefs data layer 

(UNEP-WCMC et al., 2010). The spatiotemporal usability assessment workflow, divided into pre-

processing and analysis, is summarized in Figure 18. 
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Figure 18. The spatiotemporal viability assessment consisted of data pre-processing and analysis 
components. In the pre-processing stage, the monthly ICESat-2 ground tracks are identified and the water-
bodies and land-masses layers are manipulated through a series of spatial overlay operations to create the 
1-km buffer zone taken to represent the nearshore area. In the spatiotemporal analysis, the segments of 
ICESat-2 ground tracks that overlap the nearshore buffer are intersected with the monthly Kd(490) maps. 

Pre-processing 

Pre-processing consisted of two steps. First, the ground tracks corresponding to each monthly time 

period were identified. Second, marine and inland nearshore zones were created through a series of 

geographic information system (GIS) spatial overlay operations on the input land and water-bodies layers. 

Create Monthly ICESat-2 Ground Tracks 

Ground track files corresponding to each monthly time period were identified assuming an initial 

date of January 1, 2019, approximately 2.5 months from the launch of ICESat-2 on September 15, 2018. 

An exact date and ground track number for when and where ICESat-2 will begin acquiring mission data 

will depend on operations during a nominal 60-day operations readiness examination period following 

launch (Magruder unpublished data, 2018). The coordinates for the ground tracks were obtained from kmz 

files available on the ICESat-2 mission website (NASA, 2018). Each monthly ground track file was created 

by grouping integer numbers of ground tracks assuming a 91-day repeat cycle, with a 29/29/33 (days) 

subcycle pattern. Figure 19 shows the ground tracks corresponding to each month, repeat, and subcycle. 
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Figure 19. The ground tracks associated with each month were identified by grouping integer numbers of 
days corresponding to the 29/29/33 (days) subcycles associated with each 91-day repeat cycle. The numbers 
in parentheses are numbers of days. 
 

Define Nearshore Zones 

Defined as a 1-km seaward buffer from marine and inland shorelines, the nearshore zone was 

generated in two steps. First, the land-masses layer (which did not include the extents of inland lakes and 

rivers) was intersected with the water-bodies layer to create a land-masses layer portraying the extents of 

all water bodies. The modified land-only polygons were then buffered to create the nearshore zone. All 

sections of the nearshore zone were assigned a class of either marine or inland coastal waters, based on the 

corresponding water-bodies classification.  

Spatiotemporal Analysis 

The spatiotemporal analysis consisted of first characterizing global nearshore water clarity and then 

examining the water clarity along the planned ICESat-2 ground tracks. Water clarity was described 

according to Jerlov’s coastal water types, with 0.125, 0.208, 0.365, 0.625, and 1.096 the upper Kd(490) 

limits for classes J1, J3, J5, J7, and J9, respectively (Solonenko and Mobley, 2015). Global nearshore water 

clarity was characterized in three steps, using classification and spatial overlay operations in ArcGIS. First, 

each monthly Kd(490) raster was classified according to the coastal Jerlov water types. Second, the 

classified raster data were vectorized to create water-class polygons. Third, the water-class polygons were 

clipped with the pre-processed nearshore-zone polygons. Water clarity along the planned ICESat-2 ground 

tracks was then characterized by overlaying the monthly ground tracks with each corresponding monthly 

classified nearshore zone and recording the water type associated with each resulting ground track segment. 

The monthly nearshore ground track segments were then statistically summarized using standard plotting 

techniques and a series of hexagonal bin maps portraying different levels of cartographic abstraction. To 

emphasize the areas most likely to benefit from the proposed spaceborne data-fusion approach, the J1 

segments were also summarized in terms of the biogeographic water regions of the MEOW and FEOW 

classification systems. The boundaries between the MEOW and FEOW regions were modified to be 
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consistent with the marine, inland, and coral nearshore zones. 

Results 

Satellite-Derived Bathymetry 

Figure 20-a illustrates the regression analysis used to calculate the linear transformation 

coefficients needed to convert the relative SDB (rSDB) to absolute depths. Relative depths < 1 m were 

excluded from the analysis because the relative bathymetry did not exhibit a linear relationship with 

reference depths in the 0-1 m depth range, as seen in Figure 20-a. This breakdown of the linear relationship 

in the shallowest portion of the depth range has been observed in other studies (Pacheco et al., 2015; Pe’eri 

et al., 2014) and may be attributable to breaking waves, foam, suspended sediment, and other nearshore 

environmental conditions that pose challenges for SDB. The spatial distribution of the residuals is shown 

in Figure 20-b.  
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Figure 20. (a) The reference depths are regressed against the relative bathymetry values to derive the 
coefficients of the linear transformation used to convert relative depths to absolute depths. The linear 
regression fit has a coefficient of determination of 0.89. (b) The spatial distribution of the regression 
residuals is plotted over the relative bathymetry. The datum is WGS84 (G1674), and the map projection is 
UTM Zone 16 N, with units of meters. 
 

A histogram of the distribution of differences between the absolute bathymetry and the reference 

bathymetry is shown in Figure 21-a. The absolute bathymetry agreed with the high-resolution bathymetric 

lidar dataset to within an RMS difference of 1.07 m. Figure 21-b shows the spatial distribution of the 

differences. The largest differences form patterns that are indicative of changing bedforms, due to sediment 

transport. 
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Figure 21. (a) The distribution of depth differences (SDB minus reference) has a mean of -0.22 m, a 
standard deviation of 1.04 m, and a root mean square error (RMSE) of 1.07 m. (b) The left panel shows an 
overview of the difference surface (SDB minus reference bathymetry). The subpanels A and B show 
detailed views of patterns likely due to sediment transport. Subpanel C shows an area of minimal difference. 
The blue hatched areas are outside the range of the reference depths. The datum is WGS84 (G1674), and 
the map projection is UTM Zone 16 N, with units of meters. 
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Global Spatiotemporal Usability Assessment 

Nearshore and Coral Kd(490) Summary 

The hexagonal bin map in Figure 22-a shows mean (over time) nearshore Kd(490) in areas where 

data are available. Distinct areas of high and low mean Kd(490) are clearly discernable. While Figure 22-a 

summarizes spatial variability in Kd(490) for the entire globe, 8-b summarizes the temporal variability for 

broadly-defined zones (marine, inland, and coral). A seasonal pattern is observed in the median Kd(490) 

for the marine and inland zones (indicated by the solid black lines in the boxplots in Figure 22-b), with the 

lowest values occurring in December for the marine zone and July for the inland zone. In all months, the 

median marine Kd(490) value is less than the median inland Kd(490) by an order of magnitude, with an 

average of 25% of all monthly marine values classified as J1. The coral zone has low, relatively stable 

median Kd(490) of 0.08 to 0.09 m-1 throughout the year, with 67% of all monthly values classified as J1.  
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Figure 22. (a) The hexagonal bin map shows the mean global nearshore water clarity. (b) Box plots 
summarize the monthly distribution of global nearshore Kd(490) values within the marine, inland, and coral 
zones. The ranges of the Jerlov coastal water types are shown next to each panel for reference. 
 

Figure 23 shows the cumulative Kd(490) data coverage for the 12 months of data used to compute 

the mean nearshore water clarity depicted in Figure 22-a. The areas depicted in dark red in Figure 23 

indicate where a full twelve months’ worth of Kd(490) data were available, whereas areas in purple indicate 

only a single month of available Kd(490) data. A latitudinal gradient associated with seasonality is clearly 

visible, particularly in North America, with data coverage in the most northern latitudes limited to the 
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northern hemisphere summer months. Other broad-scale variability in the marine zone includes a general 

lack of data in Antarctica and limited coverage in western equatorial Africa. Only 3 to 13% of the inland 

zone has monthly Kd(490) data, but many of the larger lakes and reservoirs are represented. Figures 8-a 

and 9 can be used in conjunction to evaluate where the spaceborne bathymetric mapping procedures 

developed in this work are likely to be successful. Areas depicted in dark red in Figure 23 and in deep blue 

in Figure 22-a generally indicate the greatest promise for spaceborne, fusion-based bathymetric mapping, 

as they represent high Kd(490) coverage, indicative of snow- and ice-free conditions over much of the year, 

and good average water clarity. 

 

 

Figure 23. The colors represent the cumulative monthly Kd(490) coverage. The black gridlines show the 
extents of the original Kd(490) data tiles, along with the corresponding label and the number of data files 
within each tile.  
 

Nearshore Water Clarity along Planned ICESat-2 Ground Tracks 

Of the nearly 20 million kilometers of ICESat-2 ground track segments in the nearshore and coral 

zones, 17% of the segments fully or partially intersect the monthly Kd(490) data. Figure 24-a shows the 

proportion of ground tracks intersecting Kd(490) data for each month and zone, and Figure 24-b shows the 

corresponding proportions of classified segments. A clear seasonal pattern is observed in both the total 

length of nearshore and coral ground track segments. Although the marine zone has less than half of the 

total number of nearshore ground track segments, the marine zone accounts for 74% of all classified 
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segments. The clearest water class, J1, accounts for 25% of all classified segments. The relative minimums 

in June are artifacts resulting from certain VIIRS Kd(490) tiles containing data from only 11 months. 

 

 

Figure 24. Panels (a) and (b) show the proportions of nearshore ground track segments that intersect, 
respectively, the corresponding monthly Kd(490) data and each nearshore zone type. Panels (c) and (d) 
show the proportions of nearshore ground track segments falling within each of the Jerlov water classes per 
month and per zone type, respectively. 
 

The spatial distribution of the 3.4 million kilometers of classified ground track segments is shown 

in Figure 25-a. Broad-scale patterns of relatively clear and turbid nearshore areas are clearly discernable. 

Distinct regional and local variability is also observed, as shown in Figure 25-b. The full-resolution data 

depicted in Figure 25-a will be provided as an interactive map in a Jupyter notebook on 

ScholarsArchive@OSU, Oregon State University’s open portal for data sharing.  
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Figure 25. (a) The global spatial distribution of all classified monthly nearshore ground track segments is 
represented by the relative intensities of each class color. (b) A detail shows distinct water clarity variability 
along sections of North America’s Great Lakes. The first month of ICESat-2 ground tracks is included for 
reference. 
 

To highlight broad-scale areas with the clearest water, Figure 26 shows a highly generalized map 

of the total length of J1 ground track segments over the entire 2-yr period. J1 segments are distributed 

around much of Earth’s nearshore/coral zones, with high concentrations in several regions, including the 

Caribbean, Western Greenland, the Mediterranean and Red Seas, and the broad area encompassing much 

of Southeast Asia, Northern Australia, and Polynesia. To facilitate assessing the viability of the current 

spaceborne data-fusion approach in relation to established water regions, Figure 26 also includes the extents 

of the MEOW and FEOW biogeographic regions.  
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Figure 26. The centroids of a coarse-resolution hexagonal bin map are colored according to total length of 
J1 ground track segments to portray broad-scale distributions of areas most likely to benefit from a 
spaceborne data-fusion approach relying on ICESat-2. Included are the extents of the Marine Ecosystems 
of the World (MEOW) and Freshwater Ecosystems of the World (FEOW) biogeographic regions, depicted 
in grey and white, respectively. 
 

Figure 27 summarizes the total length of J1 ground track segments for all 24 months for each 

MEOW/FEOW region. While some regions have consistently low or high monthly totals, other regions 

display seasonal trends. The prominent June data gaps visible in many of the MEOW regions is an artifact 

of VIIRS Kd(490) tiles ZY, YX, and ZX not containing data from that month, not a lack of J1 ground track 

segments. Figure 27 also lists the average regional densities of J1 ground track segments per square 

kilometer. Whereas the Artic has the largest total length of J1 segments, it ranks 37th according to average 

density. Conversely, although Easter Island has a total length of J1 segments three orders-of-magnitude 

smaller than the Arctic, it ranks 1st in average density of J1 segments. Although the freshwater regions 

generally have less total length and a lower density of J1 segments, there are areas with dense J1 coverage, 

such as North America’s Great Lakes, the montane lakes of the Tibetan Plateau, and the large lakes of the 

African Rift Valley. 
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Figure 27. The monthly total length of J1 ground track segments is shown for each MEOW province and 
FEOW major habitat type. The MEOW provinces are grouped according to the parent category, or realm. 
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Discussion  

The spaceborne approach presented in this research offers the potential for mapping nearshore 

bathymetry over much of the globe. Although the uncertainty of multispectral SDB generated in this study 

(nominally 1 m RMSE) is greater than that required by International Hydrographic Organization (IHO) 

specifications for navigation, SDB is valuable to many coastal, coral, and reservoir applications affected by 

the global nearshore data gap. While the spatial resolution of Landsat 8 OLI (30 m) is coarser than other 

available multispectral data, its global coverage, stable radiometry, and historical continuity provide a rich 

open database for SDB. The assumption that optical properties are consistent throughout a scene is also a 

limitation of the ratio method, but the relative simplicity of the approach is appealing when working on a 

global scale. Because a spaceborne approach could accommodate any method of deriving relative 

bathymetry, however, more-stringent methods of deriving relative bathymetry could be employed when 

desired. Another factor potentially limiting the applicability of the present method in certain applications is 

the availability of transformation parameters to convert either the MABEL/ATLAS depths or the calculated 

satellite bathymetry to a particular vertical datum. In areas not covered by well-defined transformations, 

the uncertainty associated with water-level corrections and vertical-datum definitions could be significant. 

Despite the disadvantages, the current method has the potential to contribute significantly to the best-

available estimate of bathymetry in many poorly-surveyed, remote areas of globe and to monitoring 

already-mapped areas that undergo frequent change. 

The spatiotemporal analysis indicates that the spaceborne data-fusion method would be viable over 

much of the globe throughout the year. Only 17% of the nearshore and coral zone ground track segments 

intersect the available VIIRS Kd(490) data, but the spatial and temporal distribution of the segments 

classified according to the corresponding Jerlov water type reveals distinct global, regional, and local areas 

of relatively clear water. Even in areas that are generally turbid throughout much of the year (such as the 

North Slope of Alaska and large portions of Russia’s northern coast), there are windows (spatially and 

temporally) of J1 and J2 segments where the current spaceborne approach could produce meaningful 

results. It is important to interpret collectively the patterns of classified ground track segments and not the 

exact locations or lengths of individual segments, however, because fine-scale variation in the analysis of 

the distribution of classified segments is sensitive to a number of factors, including the resolution and 

availability of VIIRS Kd(490) data, the scale and accuracy of the vector datasets used to define the 

nearshore and coral zones, and the starting date and ground track for defining the monthly ground tracks. 

Other factors affecting the characterization of nearshore water clarity are the underlying definition of the 

nearshore zone and environmental factors such as predominant wave conditions, cloud cover, and marine 

vegetation. Despite the simplified nearshore definition and conditions assumed in this study, the results 
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provide a first-order depiction of where and when the proposed spaceborne bathymetric mapping approach 

will and will not be viable. 

Beyond indicating the spatiotemporal viability of spaceborne bathymetric data fusion, the 

nearshore water-clarity analysis presented in this study can aid planning and operations for conventional 

nearshore mapping missions that depend on water clarity, including airborne lidar bathymetry (ALB) 

surveys. Just as with a spaceborne approach, a fundamental factor in predicting ALB data coverage (and 

maximum survey depth) is a priori information about the spatiotemporal variability of nearshore turbidity 

(Saylam et al., 2017). If no such data are available, knowing when and where to survey can be challenging 

and costly, particularly in remote areas and areas with highly variable water clarity. As an alternative to 

relying on a single source of Kd, such as VIIRS, to predict the viability of ALB and spaceborne lidar 

bathymetry (SLB), our method could be extended to include other spaceborne Kd sources, such as SeaWIFS 

(Mueller, 2000), MODIS (Knight and Voth, 2012; Shi et al., 2018), MERIS (Alikas et al., 2015), 

LANDSAT 8 (Lee et al., 2016), Sentinnel-3A, and GOCI (Huang and Yao, 2017). Local nearshore water-

clarity is generally far more spatially and temporally variable than is detectable by any of these sensors, but 

they all could contribute, to varying degrees, to understanding broad-scale variability useful for survey 

planning and reconnaissance. Although beyond the scope of our current method, global databases of in situ 

water-clarity measurements, including Secchi depths and turbidity-sensor data, could complement satellite-

derived data (Lee et al., 2018). Once operational, ALB and SLB sensors themselves could become sources 

of Kd data, as Kd can be approximated from the observed attenuation of the lidar signal throughout the 

water column (Montes et al., 2011). 

Conclusion 

This study investigated the feasibility of a purely spaceborne bathymetric mapping approach, based 

on synergistic fusion of active and passive satellite data, as well as a global spatiotemporal analysis to 

identify where and when such an approach could be utilized. The significance of this approach is that it 

provides a new method of filling the global nearshore data void that does not rely on existing reference 

depths. Furthermore, the fact that the approach relies entirely on satellite-based data is important, as it 

enables areas to be captured at specified revisit cycles, eliminates the need for personnel on site, and enables 

bathymetric mapping in even the most remote or difficult-to-access regions of the globe. Areas identified 

in this work as particularly promising for spaceborne bathymetric mapping and that intersect planned 

ICESat-2 tracklines during opportune time windows will be used to: 1) conduct higher spatial and temporal 

resolution water clarity analysis and 2) submit requests to NASA for early access to ICESat-2 ATLAS 

georeferenced photon return data products, such that the spaceborne, data-fusion approach to bathymetric 

mapping can be tested operationally in diverse regions. Future research plans also include developing 
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algorithms to fuse multiple sources of multispectral time-series imagery, including Landsat and Sentinel-2 

data, and reference bathymetry, ranging from high-resolution IHO special-order hydrographic surveys to 

high-uncertainty crowdsourced soundings.  
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STATE-SPACE MODELING FOR EMPIRICAL MULTISPECTRAL SATELLITE DERIVED 
BATHYMETRY 

Abstract 

This research introduces a state-space framework for multitemporal empirical satellite derived 

bathymetry (SDB) that addresses limitations inherent in conventional methods, which rely on single images 

and are therefore prone to significant errors or missing data resulting from environmental noise, such as 

clouds and sediment plumes. State-space modeling offers a method to statistically model time series of 

relative SDB (rSDB) as calculated by a particular rSDB measure (e.g., band ratio) using data from one or 

more sensors. Having the ability to leverage bathymetric information contained in multispectral images 

over space and time has the potential to significantly expand the scope of SDB by providing gap-free models 

of rSDB, with corresponding per-pixel uncertainties, for an arbitrary date. The state space framework is 

demonstrated using the Stumpf band-ratio algorithm with Landsat 8 OLI and Sentinel-2 MSI time series 

covering the north and northwest shores of Nantucket, MA, USA. First, rSDB models were created for each 

time series individually and, to show its potential as a data-fusion mechanism, a fused time series. The best 

rSDB model was then used to generate SDB, the residuals of which served as a proxy indicator of the 

viability of the state space approach. The SDB was generated for a date representing the acquisition period 

of a reference bathymetric data set acquired with a Leica AHAB Chiroptera II topobathymetric lidar system. 

To evaluate the state space modeling of rSDB and not the SDB transformations associated with a given 

limited number of reference data points (as in the typical application of multispectral SDB), the rSDB model 

was linearly transformed to SDB using parameters derived from a regression incorporating all rSDB values 

and the corresponding reference depths. Spatially adaptive coefficients derived using geographic weighted 

regression were used to account for apparent invalid homogeneity assumptions regarding water quality 

and/or bottom type. The state space framework generated consistent sensor-specific and data-fused daily 

rSDB models that accounted for missing and noisy multispectral data. The example SDB generated from 

the Landsat 8 rSDB model for 10/20/2016 agreed with the reference bathymetry to within an RMSE of 0.29 

m, which reveals the state space framework as a viable previously unexplored approach to multitemporal 

empirical SDB. 

Introduction 

Multispectral satellite derived bathymetry (SDB) has proliferated since its inception in the late 

1960s. Numerous approaches have been developed, including empirical methods relying on the Beer 

Lambert law (Jupp, 1988; Lyzenga et al., 2006; Stumpf et al., 2003), analytical/semi-analytical methods 

relying on spectral mixing or lookup tables (Philpot, 1989), and more recently, a growing number of 

machine-learning methods using supervised classification and artificial neural networks (Ceyhun and 
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Yalçın, 2010; Salah, 2016). Most of these approaches, however, are limited in that they rely on a single 

multispectral image from a single sensor. Relying on a single image, whether using empirical, analytical, 

or machine learning techniques, can result in significant errors or missing data if ephemeral water-column, 

surface, and atmospheric conditions, such as sediment plumes or clouds, obscure or occlude the bathymetry 

signal. In addition to obstructive environmental conditions, single-image approaches suffer from the 

inability to incorporate statistical uncertainty analyses that are possible with multiple measurements. 

Beyond environmental and uncertainty limitations, single-image approaches are limited in that they do not 

consider spectrally inferred bathymetric information from time periods between available images. 

Particularly in empirical approaches relying on reference depths that are not spatiotemporally coincident 

with the available imagery, ignoring intervening bathymetry change can introduce significant errors. This 

study offers a method to mitigate the challenges of single-image SDB by providing a means to generate 

daily gap-free models of rSDB for an arbitrary date, with corresponding per-pixel uncertainties, using state 

space modeling of multispectral time series. 

 Although most approaches assume a single image, a few studies have heeded Tanis et al.’s (1983) 

suggestion, “to consider developing algorithms which can exploit co-registered multi-date imagery.” 

Examples include using multiple Landsat images to assess potential morphological changes (Pe’eri et al., 

2016; van Hengel and Spitzer, 1991), using series of SPOT images to extract water-level variations to 

coarsely estimate the attenuation coefficient and, in turn, depth (Kao et al., 2009; Melsheimer and Liew, 

2001), and using Google Earth Engine resources to generate median composites (Traganos et al., 2018). 

While certain studies have begun addressing limitations of single-image SDB by incorporating analysis of 

images acquired over time, most have relied on only a handful of images and do not broadly leverage 

established frameworks capable of supporting multitemporal SDB, such as state space modeling of time 

series.  

State space analysis of time series, specifically linear Gaussian state space analysis, offers an 

opportunity to expand the scope of multitemporal SDB, which in turn has the potential to help obtain 

bathymetry in the nearshore zone, which is notoriously difficult to map (Forfinski-Sarkozi and Parrish, 

2019; Leon et al., 2013). (It is noteworthy that even in the current study’s area of interest (AOI), a popular 

recreational area in the vicinity of Nantucket Island, MA, the largest scale nautical chart contains an area 

labeled “Unsurveyed.”) State space models (SSMs), which are characteristically solved using Kalman 

filtering, span a variety of modeling approaches, but the unifying premise is that observed stochastic time 

series depend linearly on an unobserved state vector (Durbin and Koopman, 2012). In state space analyses, 

the model is comprised of a state equation, which relates one state to the next, and an observation equation, 

which relates the observations to the states. The nature of the state equation depends on the system being 
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modeled. For example, state equations governed by the laws of motion are ubiquitous in engineering fields 

concerned with navigation and target tracking (Allerton and Jia, 2005; Kam et al., 1997; T. Nicosevici et 

al., 2004), while animal movement studies often use variations of the random-walk ARIMA (autoregressive 

integrated moving average) equations (Nicosia et al., 2017). SSMs are established in many other disciplines, 

including oceanography (Tandeo et al., 2011; Wikle et al., 2013), epidemiology (LaDeau et al., 2011), 

econometrics (Harvey and Todd, 1983; Proietti, 2006), and acoustic bathymetric mapping (Saucan et al., 

2014), but they have received little attention in the SDB community. Wüst (2004) used state space 

predictions of sand waves as observed in multibeam echosounder time series to support channel 

maintenance decisions in the North Sea, and Singh et al. (2015) used state space modeling of Landsat 

TM/ETM+/OLI data to estimate volume in poorly-gauged reservoirs, but SSMs have not been applied 

directly to spectral SDB time series.  

In addition to state space modeling leveraging the information contained in a single time series to 

estimate an underlying state and provide a corresponding uncertainty, it also provides a data-fusion 

mechanism to combine time series from multiple sources. Data fusion is a broad term describing many 

approaches to combining many types of temporal and spatial data sets in many disciplines (Castanedo, 

2013; Khaleghi et al., 2013; Varma et al., 2003), but the unifying principle is that different datasets are 

combined in some manner to achieve a result that is more desirable than any of the individual datasets. In 

remote sensing, the term has traditionally been associated with fusing 2-D images for pan-sharpening or 

classification (Schmitt and Zhu, 2016), but it has evolved to encompass a widening range of techniques and 

data types, including decision-level fusion of lidar and hyperspectral data (Wozencraft and Park, 2013), 

machine-learning based techniques to fuse MODIS and VIIRS ocean color data (Bai et al., 2016), and state 

space modeling of NDVI (De Bernardis et al., 2016; Militino et al., 2017; Stepčenko and Čižovs, 2016), 

among others. State space approaches fuse data series by including observation equations and uncertainty 

characteristics for each series, assuming the separate series are representations of the same state. The use 

of state space models for data fusion is common in the coastal bathymetry community, with diverse 

Kalman-based approaches combining heterogeneous video data to derive depth estimates (Birrien et al., 

2013), ultra-short baseline (USBL) and multibeam sonar data for autonomous underwater vehicle (AUV) 

navigation (Barkby et al., 2009), and optical and radar data to model the surf-zone (Wilson et al., 2014), 

but using state space analysis to fuse multispectral time series is absent in empirical SDB research. 

 This research introduces a multitemporal SDB framework that incorporates state space modeling 

of multispectral times series to generate gap-free daily models of rSDB, which are then transformed to 

SDB. The framework is demonstrated using the Stumpf et al. (2003) band-ratio algorithm, but the 

framework is not fundamentally tied to a particular empirical SDB algorithm, because relative bathymetry 
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is modeled as a parameter separate from the derived bathymetry. Modeling rSDB, not SDB, offers the 

advantage of being able to generate rSDB for a particular date, which avoids SDB errors associated with 

using multispectral imagery and reference, or tuning, depths that are not temporally coincident. Modeling 

rSDB rather than SDB also provides a means to partially decouple the relative bathymetry parameter and 

imperfect measures of relative bathymetry, which characteristically have simplifying assumptions 

regarding the spatial homogeneity of water and bottom characteristics.  

This study applies the state space approach to multitemporal SDB by first modeling Landsat 8 and 

Sentinel-2 imagery time series spanning a 29-month period, both separately and fused, and then generating 

a statistically optimal estimate of relative bathymetry using the best model for 10/20/2016, a date 

representing the acquisition period for a reference topobathymetric lidar dataset. The parameters to linearly 

transform the modeled relative bathymetry to absolute bathymetry are then generated using global and local 

regression. Unlike with a typical application of SDB, in which only a relatively few reference depths may 

be available, the regressions were performed using the entire high-resolution reference dataset, resampled 

to match the resolution of the state space rSDB model. The entire dataset was used because the purpose of 

this study was to examine the performance of the state space modeling, rather than the linear transformation 

associated with a particular set of reference depths. Finally, implications of multitemporal state space data 

fusion for global SDB spatiotemporal databases are discussed, following an analysis of the spatiotemporal 

variation of the SDB results. 

Methodology 

Summarized in Figure 28, the methodology consists of three main components. First, the 

preprocessing steps generate 30-m resolution, co-registered relative satellite derived bathymetry (rSDB) 

and reference topobathymetric lidar data. Second, per-pixel daily state space models are generated from the 

co-registered Landsat 8 and Sentinel-2 rSDB time series. Third, the best state space modeled rSDB for a 

date representing the acquisition period of the reference bathymetry lidar data is linearly transformed to 

absolute bathymetry using locally adaptive parameters generated using geographically weighed regression. 
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Figure 28: Methodology Overview - The purpose of preprocessing is to generate co-registered rSDB time 
series and reference bathymetry. The 5-m resolution bathymetry data and the 10-m resolution Sentinel-2 
data were resampled to match the resolution and grid-cell alignment of the 30-m resolution Landsat 8 data. 
State space models of the co-registered 30-m L8 and S2 rSDB are then generated using local linear 
modeling of single and data-fused timeseries. Finally, the state space rSDB data are linearly transformed to 
real-world bathymetry using transformation parameters derived from geographically weighted regression 
(GWR). 
 

Study Site 

The study site is the vicinity along the northern shore and western end of Nantucket, MA, USA, 

including Nantucket and Madaket Harbors (Figure 29-a). The geomorphology of the area is characterized 

by glacial landforms stemming from the advance and retreat of the Launrentide ice sheet during the 

Wisconsinian glaciation period (Giese et al., 2015; Oldale, 2001). With surficial sediments consisting 

generally of unconsolidated, sorted outwash sands, fine clays, and gravels associated with glacial moraines, 

the island’s shoreline is greatly influenced by sediment transport, with the northern shore typically 

dominated by deposition. Situated off the coast of Cape Cod, with exposure to the open ocean, the area 

often experiences significant weather events, including hurricanes, tropical storms, and nor-easters, which 

have significant impacts on sediment transport and, in turn, bathymetry. Although areas with dynamic 

bathymetry are subject to significant challenges in conventional SDB methods, if the available reference 

depths and the multispectral image are not temporally coincident, a state space framework for SDB 

inherently mitigates these challenges by applying Kalman filtering to rSDB timeseries. Numerous sandbars 
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and alongshore troughs can be observed in the Landsat 8 RGB composite of the AOI shown in Figure 29-

b. The AOI, particularly Nantucket and Madaket Harbors, also includes eelgrass beds (Zostera marina). 

Data Sets 

This study used multispectral time series from the Operational Land Imager (OLI) and 

MultiSpectral Instrument (MSI) sensors onboard the Landsat 8 and Sentinel-2 satellites, respectively. The 

Landsat 8 time series included 63 Tier 1 images spanning the 1473-day period from 01/25/15 to 02/05/19. 

The Sentinel-2 time series included 119 images spanning the 1276-day period from 08/09/15 to 02/04/19. 

This study also used a high-resolution topobathymetric lidar data set acquired with a Leica/AHAB 

Chiroptera II lidar system during the period from 10/5/16 to 10/31/16. 

Landsat 8 OLI 

The multispectral Operational Land Imager (OLI) sensor onboard the Landsat 8 satellite is a 9-

band, 30-m spatial resolution visible and near-infrared (VNIR) radiometer with a push-broom configuration 

and 12-bit radiometric resolution (USGS, 2016). Landsat 8 has a sun-synchronous, near-polar orbit with a 

repeat cycle of 16 days and an equatorial crossing time of approximately 10:00 AM local time. This study 

used the blue (438 nm) and green (561 nm) bands from 63 Tier 1 scenes covering Worldwide Reference 

System 2 row/path ID 011/031, spanning the period from 01/25/15 to 02/05/19. The Level 1 Landsat 8 OLI 

data were downloaded from the Google Cloud Platform using the Google Cloud Storage API. 
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Figure 29: Study Site – (a) The study site is the vicinity along the northern and western shores of Nantucket, 
MA, USA. The Area of Interest (AOI) is covered by Worldwide Reference System 2 row/path ID 011/031 
and Sentinel-2 tiles 19TCF and 19TDF. (b) Dominated by deposition of glacial sediments stemming from 
the Wisconsinian Glaciation Period, the study site is characterized by shifting shoals, alongshore troughs, 
and sand bars, which are clearly visible in the Landsat 8 RDB composite. The study area also contains eel 
grass beds, particularly in Madaket and Nantucket Harbors. 
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Sentinel-2 MSI 

The MultiSpectral Instrument (MSI) sensor onboard the two satellites comprising the Sentinel-2 

mission (Sentinel-2A and Sentinel-2B) is a push-broom sensor with a wide swath width of 290 km (ESA, 

2015). MSI acquires data in 13 bands ranging from the visible and near-infrared (VNIR) wavelengths to 

the shortwave infrared (SWIR) wavelengths. The blue (blueS2A = 492 nm, blueS2B = 492 nm) and green 

(greenS2A = 560 nm, greenS2B = 559 nm) bands used in this study have 10-m spatial resolution, with 12-bit 

radiometric resolution. Sharing the same sun-synchronous orbit, but offset by 180°, Sentinel-2A and 

Sentinel-2B have an equatorial crossing of 10:30 AM local time and a collective repeat cycle of 5 days (10 

days individually). The Level 1 Sentinel-2 data for 119 granules covering Sentinel-2 tiles 19TCF and 

19TDF, from the period spanning 08/09/15 to 02/04/19, were acquired from the Google Cloud Platform 

using the Google Cloud Storage API. 

Leica Chiroptera II 

The reference topobathymetric lidar dataset was acquired with a Leica/AHAB Chiroptera II lidar 

system over the period from 10/5/16 to 10/31/16 (NOAA NGS, 2017). The 515-nm wavelength Chiroptera 

II topobathymetric lidar was flown at 120 knots at an AGL altitude of 400 m, with a scanner pulse rate of 

35 kHz and a scan frequency of 2358 Hz. The nominal pulse density (NPD) was 1.34 ppsm. Horizontal 

control was achieved with kinematic GPS relying on two base stations adjusted to NAD83(2011) Epoch 

2010.00, UTM zone 19 N. Vertical control, relative to the NAD83(2011) GRS ellipsoid was verified with 

a series of ground check points. Horizontal and vertical RMSE accuracies (scaled to 95% confidence) were 

reported to be 32.3 and 29.0 cm, respectively. The data were downloaded as a collection of 5-m resolution 

500 x 500 m digital elevation models (DEMs) from NOAA’s Digital Coast (NOAA, 2016b).  

Pre-Processing 

The purposes of preprocessing were to (1) apply atmosphere and sun-glint corrections to the 

Landsat 8 and Sentinel-2 data and (2) generate co-registered rSDB time series and reference bathymetry. 

The 5-m resolution bathymetry data and the 10-m resolution Sentinel-2 data were resampled to match the 

resolution and grid-cell alignment of the 30-m resolution Landsat 8 data. 

Multispectral Imagery 

The first step in preprocessing the Landsat 8 and Sentinel-2 data was using Acolite (version 

20190326.0) to apply atmospheric and sun-glint corrections. Unlike with single-image SDB, radiometric 

corrections are crucial when comparing reflectances from different images taken at different times. Unlike 

land-based or open-ocean atmospheric correction (AC) tools, which can result in large errors when applied 
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to coastal environments, Acolite is designed to work in relatively turbid coastal waters (Vanhellemont, 

2019), where suspended particles invalidate assumptions regarding little or no signal in the NIR. Acolite 

was also configured to clip the Landsat 8 and Sentinel-2 data to the AOI, to merge the Sentinel-2 19TCF 

and 19TDF SAFE product tiles, and to output the blue and green bands of the water-surface reflectance 

(L2W) data product, which were the two spectral bands used to generate rSDB. The second step in 

preprocessing the multispectral data was generating rSDB from the blue and green L2W bands for each 

image in the Landsat 8 and Sentinel-2 time series. Although the state space approach to SDB does not 

depend on a single, particular SDB algorithm, it is demonstrated using the well-known Stumpf et al. (2003) 

band-ratio method. 

Reference Bathymetry 

Preprocessing the topobathymetric lidar dataset consisted of using the Python module xarray to 

merge the 500x500-m ERDAS image tiles into a single file and using the Python module Iris to resample, 

using bilinear sampling, the merged file to match the 30-m resolution of the Landsat 8 data.  

State Space Models 

The general premise of a state space model is that the signal of interest, i.e., the state, is not directly 

observable, but indirectly observable as a linearly transformed version of it, with noise. Using the notation 

of Shumway and Stoffer (2017), the general form of a state space model is defined by a state equation 

(Equation 12) and an observation equation (Equation 13), which relates the observations to the state. The 

variables in Equations 12 and 13 are explained in Table 9. 

𝑥௧ = Φ𝑥௧ିଵ + Υ𝑢௧ + 𝑤௧, (Eq. 12) 

𝑦௧ = 𝐴௧𝑥௧ + Γ𝑢௧ + 𝑣௧ (Eq. 13) 

The model assumed in this study is a local level, or random walk with noise, which is equivalent to an 

autoregressive (AR) model with a slope of 1. With no exogenous, or control, variables, the general state 

space equations in 1-D simplify to Equations 14 and 15, 

𝑥௧ାଵ = 𝑥௧ + 𝑤௧,   𝑤௧~𝑁(0, 𝑄) (Eq. 14) 

𝑦௧ = 𝑥௧ + 𝑣௧ , 𝑣௧~𝑁(0, 𝑅) (Eq. 15) 

where 𝑤௧ and 𝑣௧ are 0-mean normal vectors with covariance 𝑄 and 𝑅, respectively. Wüst (2004) modeled 

bathymetry and Singh et al. (2015) modeled water volume with an additional trend component, but heuristic 

exploration of the relative satellite derived bathymetry data in this study did not suggest a trend term was 

generally necessary.  
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Table 9: State Space Model Variables – The table lists the variables in the general state space models as 
represented by Equations 12 and 13. The dimensions 𝑝, 𝑞, and 𝑟 refer to the number of states, observations, 
and exogenous variables, respectively. 
 

Variable Description Dimension 
𝑥௧ State vector, time t 𝑝 × 1 

𝑥௧ିଵ State vector, time t-1 𝑝 × 1 
𝛷 State transition matrix 𝑝 × 𝑝 
𝛶 Control matrix 𝑝 × 𝑟 
𝑤௧ State noise 𝑝 × 1 
𝑦௧ Observed data vector 𝑞 × 1 
𝐴௧ observation matrix 𝑞 × 𝑝 
𝛤 Direct transmission matrix 𝑞 × 𝑟 
𝑢௧ Input, or control vector 𝑟 × 1 
𝑣௧ Observation noise 𝑝 × 1 

 

The state space model is solved using Kalman smoothing, which is the bi-directional (i.e., forward 

and backward) extension of Kalman filtering, which consists of a prediction (Equation 16) followed by a 

measurement update (Equation 17) relying on the Kalman gain (Equation 18).  

𝑥௧
௧ିଵ = Φ𝑥௧ିଵ

௧ିଵ + Υ𝑢௧ (Eq. 16) 

𝑥௧
௧ = 𝑥௧

௧ିଵ + 𝐾௧(𝑦௧ − 𝐴௧𝑥௧
௧ିଵ − Γ𝑢௧) (Eq. 17) 

𝐾௧ = 𝑃௧
௧ିଵ𝐴௧

ᇱ [𝐴௧𝑃௧
௧ିଵ𝐴௧

ᇱ + 𝑅]ିଵ, (Eq. 18) 

where 𝑃௧
௧ିଵ and 𝑃௧

௧, defined by Equation 19 and 20, respectively, are the error covariances associated with 

Equations 16 and 17, respectively. 

𝑃௧
௧ିଵ = Φ𝑃௧ିଵ

௧ିଵΦᇱ + 𝑄 (Eq. 19) 

𝑃௧
௧ = [𝐼 − 𝐾௧𝐴௧]𝑃௧

௧ିଵ (Eq. 20) 

Unlike with state space models based on known model parameters, such as those involving the laws of 

motion, state space solutions of AR models require that the model parameters be estimated as part of the 

solution, via maximum likelihood estimation (MLE).  

Landsat 8 and Sentinel-2 rSDB State Space Models 

This research explores two approaches to state space modeling of rSDB. In the first, Landsat 8 and 

Sentinel-2 time series of rSDB were modeled separately, while in the second, the two time series were 

combined, or data-fused, into a single model. The Python statistical package statsmodels (Seabold and 

Perktold, 2010) was used to implement the state space approaches, which are summarized in Figure 30. 
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Figure 30: State Space Modeling – State space modeling was applied to Landsat 8 and Sentinel-2 rSDB 
time series using two approaches. First, each time series was modeled separately using a state space model 
consisting of a single observation equation. Second, both time series were data-fused into a single model 
using a state space model consisting of two observation equations, i.e., an observation for each time series. 
The output of each state space model was a daily time series of rSDB spanning from 1/1/15 to 2/28/19. 
 

The Nelder-Mead (1965) optimization method was specified for the maximum likelihood 

estimation type. The input to both state space approaches was the respective time series of Landsat 8 and/or 

Sentinel-2 rSDB calculated during preprocessing. Whereas one observation equation was used in the single 

time series approach, two observation equations were used in the data-fusion approach. The output of both 

state space approaches was a daily time series of state space modeled rSDB, with corresponding 

uncertainties, for every cell in the AOI. The models were run using 2-core multiprocessing on an MSI 

Workstation laptop (model WE73) with 32 GB RAM, an Intel 8th Generation i7-8750H 6-core processor, 

and a solid-state drive.  

Transformation Parameters 

Unlike a typical application of satellite derived bathymetry, in which relatively few reference 

depths may be available, the transformation parameters needed to map the unitless rSDB values to real-

world depths were generated using a 1-to-1 correspondence of all rSDB values and reference depths. The 

entire reference dataset, rather than a subsample representative of sparse reference depths, was used because 
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the intent of this study was to assess the state space modeling of rSDB, not the linear transformation 

associated with a particular set of reference depths. Transformation parameters were initially derived via 

ordinary least squares (OLS), whereby the reference depths were regressed against the corresponding rSDB 

values. However, because the initial OLS results contained unrealistically large residuals attributed to 

invalid assumptions regarding the homogeneity of the water and/or bottom characteristics, local 

transformation parameters were derived using geographically weighted regression (GWR), instead. GWR 

is already established in the SDB literature, with Vinayarah et al. (2016) and Su et al. (Su et al., 2014) 

demonstrating the value of geographically adaptive coefficients to account for spatial nonuniformity in 

transformation parameters. The bandwith, 𝜃, was heuristically set to an adaptive value of 50 points. The 

Grass GIS module r.gwr was used to perform the GWR calculations. Once the transformation parameters 

were generated using GWR, SDB was generated by applying the transformation parameters to the rSDB 

state space model values. A point worth emphasizing is the that purpose of this application of SDB is not 

to infer bathymetry from multispectral imagery, although that is the net result. Rather, the purpose is to 

provide a mechanism to assess the correlation between the known absolute bathymetry and the modeled 

relative bathymetry as a measure of the ability of the state space approach to portray relative bathymetry 

via the rSDB parameter. 

Results 

Landsat 8 and Sentinel-2 Data Coverage 

Figure 31 summarizes the temporal distribution of available Landsat 8 and Sentinel-2 images from 

the period 1/1/15 to 2/28/19, with the blue and red rectangles corresponding to individual Landsat 8 and 

Sentinel-2 scenes, respectively. The intensity of the color of each image tile corresponds to the relative 

proportion of water pixels (normalized by the maximum number of water pixels), as classified by Acolite, 

and the number in each cell shows the day of acquisition. In general, each 30-m pixel covering the AOI has 

nominally 30-40 Landsat 8 values and 35-45 Sentinel-2 values. 
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Figure 31: Landsat 8 and Sentinel-2 Data Summary – Each blue and red square corresponds to an available 
Landsat 8 and Sentinel-2 scene, respectively, over the period 1/1/2015 – 2/28/2019. The intensity of the 
colors corresponds to the relative proportion of water pixels (normalized by the maximum number of water 
pixels), and number in each cell shows the day of acquisition.  
 

State Space Modeling 

Figure 32-a shows example state space model results for a single pixel, including the smoothed 

state and the corresponding 95% confidence interval (CI) for the single and data-fused approaches. Three 

characteristics of this example are noteworthy. First, the Sentinel-2 model has a relatively large 95% CI in 

the region labeled A, which corresponds to a period of few Sentinel-2 scenes (as depicted in Figure 31). 

Second, all three smoothed states show general agreement in the region labeled B. Third, the Sentinel-2 

smoothed model has relatively large values in the region labeled C, which coincides with a time period 

containing many more Sentinel-2 scenes than Landsat 8 scenes. Examination of the daily mean of all the 

state space rSDB models reveals these same three characteristics, as shown in Figures 32-b and 32-c, which 

show the mean state space rSDB and corresponding mean CI, respectively. The distinctive qualitative 

differences between the mean Landsat 8 and Sentinel-2 time series generally coincide with variations in the 

number of available scenes from each sensor. These differences are consistent with the expectation of drift 

in the absence of observations to constrain the models. The large CI observed at the beginning of the 

Landsat 8 and Sentinel-2 models correspond to smoothed states for which the Kalman filter had not yet 

converged. 

Figure 33-a shows the Landsat 8, Sentinel-2, and data-fused state space rSDB models for 

10/20/2016, the date representing the acquisition period of the reference topobathymetric lidar dataset, with 

Figure 33-b showing the corresponding histograms. Qualitatively, all three models are internally consistent 

representations of relative bathymetry containing recognizable bedforms and general bathymetric relief. 

However, the three models contain varying levels of noise, with the data-fused model noticeably noisier 

than the Landsat 8 and Sentinel-2 models. The data-fused model contains noise speckle (not discernable at 

the scale of the figure panel) over much of the AOI, along with patches of isolated artifacts (yellow circles). 
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Artifacts also exist in the Landsat 8 and Sentinel-2 models, although of a slightly different nature (white 

squares). In addition to noise speckle and isolated artifacts, the Sentinel-2 and data-fused models appear 

smoother in certain areas and do not resolve certain features that are observed in the Landsat 8 model (black 

squares). Quantitatively, the Sentinel-2 model, with a mean rSDB of 1.117, has a bias relative to the Landsat 

8 and data-fused models, which have mean rSDB values of 1.082 and 1.088, respectively. In addition to a 

larger mean rSDB, the Sentinel-2 model has a larger mean standard error than the Landsat 8 and data-fused 

models. As observed in the images in Figure 34-a and histograms in Figure 34-b, the spatial and statistical 

distributions of the data-fused standard errors, respectively, are more similar to the Landsat 8 model than 

the Sentinel-2 model, which is consistent with the expected behavior of the Kalman filter giving greater 

weight to the less-uncertain observations. Overall, the spatial distributions of the standard errors reflect the 

spread of the rSDB values for each cell, given the collective influence of cloud cover over the entire time 

series.  
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Figure 32: Example State Space Models – (a) The smoothed states and corresponding 95% confidence 
intervals (CIs) are shown for a single cell (northing=4,575,000, easting=392,850). The S2 model has a 
relatively large CI in region A and a relatively large smoothed state in region C. All three models show 
good agreement within region B. (b) The average smoothed states of all cells are shown with points 
representing available scenes. (c) The average standard errors (scaled to 95%) of all cells are shown with 
points representing Landsat 8 and Sentinel-2 observations. Note the different vertical scales for each 
subplot. 
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Figure 33: State Space Models from 10/20/16 – (a) The Landsat 8, Sentinel-2, and data-fused state space 
models from 10/20/2016 are displayed with the same colormap to aid comparison. Although the Landsat 8 
model contains artifacts (see white rectangle), it is less noisy (see yellow circles) and resolves more features 
(see black rectangle) than the Sentinel-2 and data-fused models. (b) The distribution of the Sentinel-2 model 
(mean = 1.117) contains a noticeable offset relative to the Landsat 8 (mean = 1.082) and data-fused (mean 
= 1.088) models.  
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Figure 34: Map and Histogram of Residuals – (a) The spatial distribution of the standard errors of the 
Landsat 8, Sentinel-2, and data-fused models from 10/20/2016 are displayed with the same colormap to aid 
comparison. (The northwest-southeast trending linear feature observed in the Sentinel-2 standard error 
model corresponds to a contrail observed in the source multispectral data.) (b) The statistical distribution 
of the data-fused standard errors is more similar to the Landsat 8 model than the Sentinel-2 model, which 
is consistent with the expected behavior of the Kalman filter giving greater weight to the less uncertain 
observations.  
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Satellite Derived Bathymetry  

The state space modeled SDB calculated from the transformation parameters generated using 

geographically weighted regression agreed with the reference bathymetry to within an RMSE of 0.29 m (µ 

= 0.01 m, σ = 0.29 m). Because the intent of this application of SDB was to evaluate the ability of state 

space modeling to portray relative bathymetry, it is important to not misinterpret the perhaps seemingly 

overoptimistic RMSE result. Although the reported RMSE is indeed an indicator of the agreement between 

the SDB and reference bathymetry, its main, intended value is as an indicator of the ability of the state 

space approach to model relative bathymetry via the rSDB parameter. 

Detailed in Figure 35-a, the nature of the SDB residuals varies considerably over the AOI. In the 

area labeled A, the GWR SDB residuals form a nominally normal distribution with µ = 0.00 m and σ = 0.10 

m (RMSE = 0.10 m). In the area labeled B, the GWR SDB residuals are more extreme and less normally 

distributed, with µ = 0.09 m and σ = 0.49 m (RMSE = 0.50 m). The spatial distribution of the GWR residuals 

in both areas reveals clear correlation with bottom characteristics, but noticeably more so in area B, where 

large along-shore variations coinciding with known eelgrass beds (DMCR, 2009) create a more leptokurtic 

distribution. To supplement interpreting the state space SDB results, the same areas were modeled using 

ordinary least squares, as shown in the rightmost images in Figure 35-b. Area A shows excellent agreement 

between the rSDB and reference bathymetry, with an R2 of 0.97, while area B shows poor agreement, with 

an R2 of 0.32. 

Discussion 

Three main benefits of the presented state space, multitemporal approach to SDB are the ability to 

(1) handle missing and erroneous data and create gap-free models of rSDB for a particular day, (2) generate 

not only a statistically based estimate of rSDB, but also a corresponding uncertainty, and (3) fuse multiple 

data sources. 

 Figure 36 illustrates the ability of state space modeling of rSDB time series to generate gap-free 

models from missing and noisy data. Despite numerous cloud occlusions and associated shadow effects in 

the Landsat 8 scene from 10/26/16, the state space approach produces a gap-free model of relative 

bathymetry. In addition to handling missing data due to obstructions such as cloud cover, the state space 

approach to modeling multitemporal SDB can also account for ephemeral noise, or outliers. Although 

numerous clouds in the scene were masked by the Acolite preprocessing steps, the associated shadows 

remained, with relatively low rSDB values (Figure 36-c). The state space modeling recognized the 

anomalously low values of rSDB and assigned them a low weight, effectively treating the shadows as 

outliers. Even without reference depths to generate the transformation parameters required to transform the 

rSDB to absolute bathymetry, the gap-free rSDB models provide internally consistent representations of 
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relative bathymetry for dates for which no multispectral data may be available or dates with compromised 

multispectral data quality. 

 

 

Figure 35: Map and Histogram of Residuals – The nature of the state space SDB residuals varies 
considerably over the AOI. Histograms and the spatial distributions of the GWR residuals are shown for 
two areas, labeled A and B. To supplement interpreting the state space SDB results, the same areas are 
modeled using ordinary least squares. The state space SDB and reference data in area A have excellent 
agreement, with an GWR RMSE of 0.10 m and an OLS R2 of 0.97. The data in area B show considerably 
more variation, with a GWR RMSE of 0.50 m and an OLS R2 of 0.37 m. 
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Figure 36: State space rSDB outlier detection – (a) The observed Landsat 8 rSDB from 10/26/16 has 
numerous cloud occlusions with associated shadows of anomalously low values. The SSMs for a single 
point (400380 E, 4573560 N), indicated by the black circle, are shown in subpanel (c). (b) The occlusion-
free Landsat 8 state space model of rSDB from 10/26/16 illustrates the ability of state space modeling to 
account for outliers and missing data. (c) The Landsat 8 state space model for the position highlighted in 
subpanel (a) effectively filters out the shadow artifact by assigning a low weight, as calculated by the 
Kalman gain, to the erroneous observation. 



 
 

79 

 

 
The ability to generate models of rSDB with corresponding uncertainties is a major advantage to 

the presented state space approach to multitemporal SDB. In general, uncertainty has received little 

attention in the SDB literature, with traditional assessments relying almost exclusively on the global RMSE 

statistic, which conflates the uncertainties of the underlying rSDB and reference bathymetry; however, a 

growing number of studies have broadened the characterization of SDB uncertainty, with approaches based 

on Monte Carlo simulations (Pe’eri et al., 2014) and analytical error propagation based on component 

radiometric and reference depth uncertainties (Freire, 2017). The presented state space approach contributes 

to the SDB uncertainty literature by offering a technique to robustly estimate the uncertainty of the 

underlying rSDB, beyond relying solely on instrument radiometric uncertainties, which do not capture the 

radiometric artifacts caused by the environment and corrections for atmosphere and sun-glint. Additionally, 

the approach provides uncertainty estimates for relative bathymetry that are not influenced by the 

uncertainty of the reference bathymetry data set used to derive transformation parameters. 

In addition to providing the ability to generate gap-free models of rSDB with corresponding 

uncertainty estimates, the state space approach to multitemporal SDB provides the opportunity for fusing 

numerous multispectral datasets. This study was limited to Landsat 8 OLI and Sentinel-2 MSI data, but a 

number of other multispectral sensors have been used for SDB, as summarized by Forfinski-Sarkozi and 

Parrish (2019). The wide range of temporal and spatial resolutions of multispectral sensors may pose 

nontrivial multiscale and sensor-harmonization issues and may not be appropriate for every application, but 

the nature of state space modeling is such that more sensors can be readily incorporated into a model by 

providing an additional observation equation for each sensor, given that each observation equation reflects 

the same underlying state process.  

Limitations and Error Sources 

In addition to the advantages of generating gap-free rSDB models with corresponding uncertainty 

and providing a mechanism for fusing a diverse suite of multispectral sensors, the presented state space 

approach to multitemporal SDB has potential limitations and sources of error regarding data preprocessing, 

state space modeling, and assessment using GWR. 

Preprocessing has the potential to introduce both radiometric and geometric errors into the spectral 

ratio data used to form the rSDB state space models. One such artifact was an abrupt change in rSDB 

corresponding to along-track banding observed in the corresponding RGB composites. Particularly 

apparent in scenes affected by sun-glint, such radiometric banding, which has been observed in other studies 

and attributed to detector-edge inconsistencies (ESA, 2019; Vanhellemont and Ruddick, 2016), was 

observed in the Sentinel-2 time series. Although atmosphere corrections were applied using an algorithm 
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specifically designed for coastal applications, such corrections characteristically have numerous 

assumptions, including ozone concentrations and atmospheric pressure, which are oftentimes quite 

generalized. Differences in Landsat 8 and Sentinel-2 performance characteristics are also important 

radiometric considerations, as discussed in a growing number of studies examining the consistency and 

fusion of Landsat 8 and Sentinel-2 data products. The two sensors show generally good radiometric 

agreement, but techniques such as vicarious gains (Pahlevan et al., 2019) and multi-band regression 

modeling (Chastain et al., 2019) have been used to account for small but statistically significant biases in 

various bands. Such sensor harmonization was considered outside the scope of the current study’s objective 

of demonstrating the potential for state space modeling of SDB, although accounting for sensor biases 

would likely improve the performance of the data-fused models. Geometrically, resampling the Sentinel-2 

rSDB data and the Chiroptera II reference bathymetric DEM to match the 30-m resolution of the Landsat 8 

rSDB data was also a potential source of error during the preprocessing phase. A linear interpolator was 

chosen for simplicity, but other interpolation methods, such as cubic convolution or area-weighted 

interpolation could be considered in future implementations to minimize resampling errors. The 

approximately 38-m misalignment between Landsat 8 OLI and Sentinel-2 MSI documented in Storey et al. 

(2016) is also a potential source of error, as the Landsat 8 data available as of this study had not been 

processed with the latest Sentinel-2 global reference image (GRI) (USGS, n.d.). In addition to artifacts 

influenced by radiometric corrections and geometric adjustments, the presented approach is limited by 

relying solely on the blue and green bands. As reported by Caballero et al. (2019), incorporating red-edge 

bands can alleviate shoaling effects in shallow water. 

Beyond radiometric and geometric errors, state space modeling has limitations potentially 

introducing errors. As described by Auger-Méthé et al. (2016), even simple state space models present 

parameter- and state-estimation issues, including variance biases and the inability to differentiate process 

stochasticity from measurement error. Additional research is needed to verify if the modeled variances in 

the state space SDB framework realistically capture measurement and process uncertainties. The SDB 

framework also potentially introduces error through the simplification of applying the same type of model 

to every pixel in the entire AOI. A more flexible approach would allow for different model types in different 

pixels to account to variations in time series characteristics. For example, a local linear model may be ideal 

for a bathymetrically stable area, but a local linear model with an additional trend term may be more 

appropriate for an area undergoing shoaling. Adding even more levels of complexity, such as trigonometric 

components to characterize cyclic phenomena such as migrating sand waves, changing water-levels/tides, 

and seasonal fluctuations, would also be possible. However, adding model complexity comes with 

increased computational costs and the potential for issues resulting from overfitting.  
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Another limitation of the presented state space method is that it operates on strictly a pixel-by-pixel 

basis, ignoring potentially useful local information. Incorporating neighborhood operations, such as kernel-

based filtering, has the potential to reduce noisy estimates, such as the speckle observed in the Sentinel-2 

space model results. Yet another potential source of error is that the state space modeling does not currently 

explicitly account for changing water levels. The Landsat 8 and Sentinel-2 acquisition times span the 0.9-

m mean range (NOAA, n.d.) observed at the NOAA Nantucket water level gauge (station ID 8449130), 

centrally located in the AOI. In single-image SDB, the water-level is not considered an important parameter, 

because all pixels are typically assumed to reflect the same water level, with the vertical datum of the 

reference points dictating the vertical datum of the transformed SDB depths. However, in the presented 

state space multitemporal SDB approach, not all pixels in an “rSDB image,” i.e., daily rSDB state space 

model, necessarily reflect the same, or a single, water level. This study adopts the simplifying assumptions 

that, given the multispectral data are well distributed throughout the local mean tide range, the state space 

model generated for any particular pixel represents an average water level and that the vertical datum of 

the reference depths determines the datum of the transformed SDB depths. In study areas with larger tide 

ranges or scenarios where the observed imagery data are not distributed throughout the tide range, such a 

simplifying assumption may not be appropriate. Future research plans to more rigorously account for tides 

include using the state space modeling method of unobserved components to identify diurnal and 

semidiurnal components in the observed rSDB time series. 

In addition to the assumptions made during preprocessing and state space modeling, the simplifying 

assumption regarding the bandwidth in the GWR analysis is an important consideration when evaluating 

the transformed SDB and the associated residuals. If the bandwidth is too small, the local estimates will 

have large variance, and if the bandwidth is too large, the local estimates will have large bias. Despite the 

importance of the bandwidth, this study did not adopt a rigorous approach to setting the bandwidth, such as 

minimizing the Akaike Information Criterion (AIC) or the cross-validation (CV) score. The purpose of the 

GWR analysis was to nominally characterize the local performance of the state space modeling approach, 

not find the statistically optimal balance between local bias and variance, which can be difficult to 

accurately capture, given a number of theoretical and technical issues with GWR (Cho et al., 2010). Su et 

al. (2014) used a similar heuristic approach, whereby an adaptive bandwidth of 30 was used to derive local 

SDB coefficients. 

Computational Complexity 

The Landsat 8 and Sentinel-2 suites of daily SSMs spanning the 1264-day period from 9/1/15 to 

2/5/19 each took between 2.5 and 3 hrs to generate. With 64,588 30-m cells per daily model, the 

computation rate was 6-8 state space models per second. The suite of data-fused SSMs took 3.75 hrs to 



 
 

82 

 

generate, at a computation rate of 4 models per second. A number of factors influence the computational 

complexity and, in turn, the accessibility and operational feasibility of the proposed state space approach. 

One immediate factor is the length of time series used to generate the SSMs. For example, creating a suite 

of daily Landsat 8 models for only half of the original period approximately doubles the model-computation 

rate. At a broader level, the mode of state space modeling also effects computational complexity. Whereas 

the presented SDB approach performs Kalman smoothing, which uses data from before and after a 

particular time, an approach performing Kalman filtering would only use prior data. The Python package 

used to implement the SSM approach, statsmodels, is also a major factor. Although much of the core 

statsmodels state space functionality relies on Cython, which provides access to fast C-based static typing, 

statsmodels does not necessarily provide the most efficient platform for implementing multitemporal SDB. 

For example, because statsmodels was developed for macroeconomic applications using fixed datasets, 

incremental Kalman filtering was not available, although recent development addresses such options 

(Statsmodels, n.d.). Relying on incremental Kalman techniques to efficiently incorporate new observations 

would be a significant advantage in an operational setting.  

Implications for Global Bathymetric Databases 

A state space approach to multitemporal SDB has significant implications for global bathymetric 

databases. Particularly as recent advances in cloud storage and distributed computing facilitate analysis of 

‘Big Earth Data’ (Chi et al., 2016; Corbane et al., 2017), state space modeling offers a mechanism to derive 

bathymetry in the difficult-to-map nearshore zone on a global scale. A variety of government (EMODnet, 

2018), international (GEBCO, n.d.), and commercial endeavors (Corbley, 2018; Hartmann et al., 2017) 

already incorporate SDB in bathymetric databases, but these databases do not leverage the bathymetric 

information contained in, or the uncertainty analyses afforded by, entire time series of multispectral data. 

Extending the notion of data fusion beyond the multispectral data to include the corresponding 

reference bathymetry, the state space approach becomes even more flexible. In scenarios with limited 

temporal coverage of reference bathymetry, including the reference bathymetry in the state space model 

may not be advantageous, but doing so could be highly advantageous in scenarios with (near) repeating 

sources of bathymetry, such as that afforded by the ICESat-2 mission (Forfinski-Sarkozi and Parrish, 2019; 

Parrish et al., 2019). With repeat sources of bathymetry and the assumption that a change in rSDB implies 

a change in depth, estimates of bathymetry based on the current transformation parameters could be 

corrected based on new absolute depth measurements, analogous to how GNSS observations update 

estimates of positions made from inertial sensors in GNSS-aided inertial navigation. In turn, new 

transformation parameters could then be calculated. Granted, the corresponding update rates are vastly 

larger with GNSS-aided inertial navigation (200 Hz) than those for the SDB use case (7x10-7 Hz), but both 
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cases demonstrate the concept of updating a state space model incorporating relative measurements with 

absolute measurements. In addition to ICESat-2 bathymetry, crowd-sourced bathymetry (IHO, 2018b) 

offers a potential source of reference depths at update rates greater than those traditionally offered by 

conventional survey schedules. 

Conclusion 

This study has shown state space modeling of rSDB to be a viable approach to capturing 

bathymetric information from time series of multispectral imagery, with the potential to significantly extend 

the scope of existing SDB algorithms by generating daily models of rSDB, including per-pixel uncertainty 

estimates, that account for missing data and ephemeral environmental noise. Being able to model rSDB for 

an arbitrary date allows SDB to be calculated for precisely the date associated with available reference 

bathymetry and not simply the date of the, for example, closest-in-time multispectral image. Particularly in 

bathymetrically dynamic areas, using rSDB spatiotemporally coincident with reference depths is crucial to 

minimizing uncertainty in derived SDB values. In addition to generating sensor-specific models, the state 

space approach offers promise as a data-fusion method capable of incorporating time series from a diverse 

suite of multispectral sensors. The accuracy of the approach was assessed by examining the geographically 

weighted regression residual errors of rSDB transformed using a 1-to-1 correspondence of all rSDB values 

and reference bathymetry. Overall, the SDB generated from the Landsat 8 rSDB model for 10/20/2016 

agreed with the reference bathymetry to within an RMSE of 0.29 m. Examination of the spatial distribution 

of the residuals provided a mechanism for assessing the local performance of the approach, with the best 

results occurring in areas void of eelgrass. Future research opportunities include extending the data-fusion 

approach to include multiple sources of reference depths, including near-repeat ICESat-2 depths, and more-

sophisticated model components depicting trends, tides, and seasonality. State space analysis for 

multispectral rSDB time series also affords a previously unexplored opportunity to leverage recent advances 

in distributed computing and cloud storage to generate global spatiotemporal databases of SDB from time 

series of multispectral data. 
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CONCLUSION 

This dissertation presented two spaceborne approaches to reduce the global shortage of nearshore 

bathymetry known as “the white ribbon,” referring to the alongshore empty space observed on numerous 

nautical charts. Presented in two published studies, the first approach was a completely spaceborne 

active/passive data fusion technique potentially leveraging the 532-nm (green) wavelength photon-counting 

ATLAS sensor onboard the ICESat-2 satellite. Bathymetry detected in ICESat-2 ATLAS data would only 

be along narrow tracklines, but synergistically combining it with empirical multispectral SDB would allow 

depth estimation over regional and possibly global scales. Because ICESat-2 was launched just prior to the 

publication of the second study, ATLAS data were not available during the writing and peer-review of 

either study. Instead, the data analyzed in these publications were from MABEL, NASA’s high-altitude 

ICESat-2 simulator system designed to provide ATLAS-like data for algorithm development. The second 

approach to reducing the global shortage of nearshore bathymetry was applying state space modeling to 

multispectral times series to generate gap-free models of relative SDB (rSDB) with corresponding 

uncertainty estimates. Whether used to model a single time series or fuse time series from multiple sensors, 

state space modeling offers a previously unexplored mechanism for multitemporal SDB.  

Active/Passive Spaceborne Data Fusion 

 The first study (Forfinski-Sarkozi and Parrish, 2016) demonstrated the high-altitude photon-

counting lidar MABEL capable of detecting bathymetry in up to 8 meters water depth in Keweenaw Bay, 

Lake Superior. Although the assessed accuracy of the MABEL-derived bathymetry is beyond IHO 

specifications for navigational safety, the refraction- and datum-corrected data are valuable to a number of 

nearshore applications. With the aim of extending the analysis toward ICESat-2 ATLAS once important 

system parameters became available, the first study also presented a baseline version of the lidar equation 

to predict the number of photoelectron returns based on water depth. Despite that MABEL was not intended 

for radiometric analysis, the observed numbers of photoelectrons showed general (order-of-magnitude) 

agreement with the prediction model. In general, the MABEL analyses suggested the potential for 

spaceborne bathymetry.  

 The second study (Forfinski-Sarkozi and Parrish, 2019) fully developed the active/passive 

spaceborne data fusion approach by synergistically fusing MABEL-derived bathymetry with multispectral 

Landsat 8 OLI imagery to successfully derive bathymetry over a large portion of Keweenaw Bay, Lake 

Superior. Beyond demonstrating that high-altitude photon-counting lidar data can be used to tune empirical 

SDB algorithms to infer depths well beyond the extents of available lidar data, this study presented a 

spatiotemporal analysis assessing where and when the data fusion approach might be viable. Results 

depicting where anticipated nearshore ICESat-2 tracklines intersect monthly Jerlov optical water type 1 and 
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3 polygons, as generated from VIIRS Kd(490) data, indicate that the proposed active/passive data fusion 

approach would be viable over large portions of the globe over the course of year. Even in areas prone to 

high turbidity or cloud cover, the spaceborne active/passive data fusion approach has potential to generate 

bathymetry, given that ICESat-2’s near-repeat orbit will provide multiple opportunities to detect 

bathymetry. 

State Space Modeling for Empirical Multispectral Satellite Derived Bathymetry 

 The final study demonstrated that state space modeling is a viable approach to multitemporal SDB 

by generating internally consistent gap-free daily models of rSDB, including per-pixel uncertainties. State 

space models (SSMs) have been shown capable of modeling single multispectral time series and fusing 

multiple time series from various multispectral sensors, including accounting for missing data and 

ephemeral environmental noise, such as cloud cover and sediment plumes. Multitemporal SDB employing 

SSMs has significant implications for the active/passive spaceborne data fusion method presented in the 

first two studies. Being able to model rSDB for an arbitrary date allows SDB to be calculated for precisely 

the date associated with available reference bathymetry and not simply the date of the, for example, closest-

in-time multispectral image. Particularly in bathymetrically dynamic areas, using rSDB spatiotemporally 

coincident with reference depths is crucial to minimizing uncertainty in derived SDB values. SSMs, by 

extension, have significant implications for populating bathymetric databases and reducing the widespread 

shortage of nearshore bathymetry known as the “white ribbon.” 

Future Work 

 An accessible next step is to apply the active/passive data fusion method to the recently documented 

ICESat-2 ATLAS bathymetry (Parrish et al., 2019), incorporating rSDB generated with state space 

modeling. Beyond using the local linear state space model as presented, components depicting trends and 

seasonality could be included to more rigorously capture bathymetric dynamics. Times series from 

additional multispectral sensors could also be included to complement Sentinel-2 and Landsat 8 data. A 

longer-term research goal is to unify the presented data fusion and state space approaches into a broader 

bathymetric data fusion framework incorporating multiple sources of reference depths. As proposed in 

Figure 37, such a framework could include bathymetry with vastly different resolutions and uncertainties, 

ranging from high-resolution, low-uncertainty, well-documented hydrographic surveys satisfying rigorous 

IHO navigation specifications to low-resolution, high-uncertainty, sparsely documented crowd sourced 

trackline profiles. Extending the notion of data fusion to include the reference bathymetry in the underlying 

state equation(s), the state space approach becomes even more flexible. With the assumption that a change 

in rSDB implies a change in depth, estimates of bathymetry based on the current transformation parameters 
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and changes in rSDB could be corrected based on new reference bathymetry, and in turn, new 

transformation parameters could be calculated.  

 

 

Figure 37. Prototype Bathymetry Data Fusion Framework – Based on the assumption that a change in rSDB 

implies a change in depth (Z), the state space model underlying the bathymetric data fusion framework can 

incorporate data from various multispectral sensors and sources of reference depths to generate gap-free 

models of bathymetry with corresponding uncertainty.  
 

 State space modeling of bathymetry has significant implications for a variety of nearshore 

applications, such as navigation and modeling inundation, sea level rise, and sediment transport. 

Statistically modeling time series of noisy, incomplete multispectral imagery and bathymetry to generate, 

in turn, gap-free time series of bathymetry has the potential to reveal insight into processes at a variety of 

spatiotemporal scales. Even changes in relative bathymetry, alone, could reveal meaningful insight into 

bathymetric dynamics. For example, examining the migration of sand waves and alongshore troughs could 

help coastal managers understand the effect of sea-level rise and changing wave-energy regimes on beach-

nourishment practices. Especially with recent advances in cloud storage and distributed computing, a 

bathymetric data fusion framework incorporating state space modeling of multispectral imagery and 
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reference depths from diverse sources offers a previously unexplored mechanism to derive bathymetry and 

examine the associated dynamics on a global scale. 
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