
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GBRMPA eLibrary

https://core.ac.uk/display/287923412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

The Great Barrier Reef Marine Park Authority acknowledges the continuing sea country management and 

custodianship of the Great Barrier Reef by Aboriginal and Torres Strait Islander Traditional Owners whose 

rich cultures, heritage values, enduring connections and shared efforts protect the Reef for future 

generations. 

© Commonwealth of Australia (Australian Institute of Marine Science) 2020 
Published by the Great Barrier Reef Marine Park Authority  
 
ISBN 9780648721406 
 
 
This document is licensed for use under a Creative Commons Attribution-NonCommercial 4.0 International 
licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logos of the Great 
Barrier Reef Marine Park Authority and the Queensland Government, any other material protected by a 
trademark, content supplied by third parties and any photographs. For licence conditions see: 
https://creativecommons.org/licenses/by-nc/4.0/ 

 
 
A catalogue record for this publication is available from the National Library of Australia 
 

This publication should be cited as:  

Gonzalez-Rivero, M., Roelfsema, C., Lopez-Marcano, S., Castro-Sanguino,C., Bridge, T., and Babcock, R. 
2020, Supplementary Report to the Final Report of the Coral Reef Expert Group: S6. Novel technologies 
in coral reef monitoring, Great Barrier Reef Marine Park Authority, Townsville.   

Front cover image: Underwater reefscape view of Lodestone Reef, Townsville region © Commonwealth 
of Australia (GBRMPA), photographer: Joanna Hurford. 
 
 
DISCLAIMER 
 
While reasonable effort has been made to ensure that the contents of this publication are factually 
correct, the Commonwealth of Australia, represented by the Great Barrier Reef Marine Park Authority, 
does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for 
any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the 
contents of this publication. The views and opinions in this publication are those of the authors and do not 
necessarily reflect those of the Australian Government or the Minister for the Environment. 

 

 

 

 
Great Barrier Reef Marine Park Authority  
280 Flinders Street Townsville | PO Box 1379 Townsville QLD 4810 
Phone:   (07) 4750 0700  
Fax: 07 4772 6093 
Email:     info@gbrmpa.gov.au  
www.gbrmpa.gov.au   

  

https://creativecommons.org/licenses/by-nc/4.0/
mailto:info@gbrmpa.gov.au
http://www.gbrmpa.gov.au/


 
 

 

CONTENTS 

TABLES ................................................................................................................................. I 

FIGURES .............................................................................................................................. II 

GLOSSARY OF TECHNICAL TERMS ..................................................................................III 

1.0 EXECUTIVE SUMMARY ............................................................................................. V 

2.0 INTRODUCTION ......................................................................................................... 1 

3.0 SCOPE AND APPROACH .......................................................................................... 2 

3.1 OVERVIEW ................................................................................................................. 2 

3.2 CANDIDATE PARAMETERS TO MONITOR ........................................................................ 6 

3.3 SPATIAL SCALES ........................................................................................................ 7 

4.0 SUMMARY OF TECHNOLOGIES APPLICABLE TO CORAL REEF MONITORING .. 8 

4.1 PASSIVE SENSORS ..................................................................................................... 8 

4.1.1 Definitions ......................................................................................................... 8 

4.1.2 Applications ....................................................................................................... 8 

4.1.3 Recent developments ........................................................................................ 9 

5.0 ACTIVE SENSORS ..................................................................................................... 9 

5.1 DEFINITIONS .............................................................................................................. 9 

5.2 APPLICATIONS ..........................................................................................................10 

6.0 PLATFORMS .............................................................................................................10 

6.1 DEFINITION ...............................................................................................................10 

6.2 APPLICATIONS ..........................................................................................................11 

6.3 RECENT DEVELOPMENTS ...........................................................................................13 

7.0 PROCESSING TOOLS ...............................................................................................14 

7.1 BENTHIC INFORMATION EXTRACTION ..........................................................................14 

7.2 Tri-dimensional Reconstructions: .........................................................................16 

8.0 RECOMMENDATIONS...............................................................................................18 

8.1 MOVING FORWARD IN THE IMPLEMENTATION OF TECHNOLOGIES TO FIT OBJECTIVES WITHIN 

THE RIMREP FRAMEWORK ......................................................................................................21 

9.0 SUPPLEMENTARY MATERIAL .................................................................................23 



 
 

9.1 SM1. CAPABILITY MATRICES ......................................................................................23 

10.0 REFERENCES ........................................................................................................26 

 



 

i 
 

Tables 

Table 1: Dimensions affecting the suitability of technological solutions for coral reef monitoring. 

This table list examples of different conditions or scenarios on which coral reef monitoring often 

require different approaches, and therefore technological solutions ........................................... 2 

Table 2: Classification scheme used to evaluate the capability of technological solutions to 

contribute to coral reef monitoring for each candidate parameter and desired scale .................. 5 

Table 3: Summary parameters pre-selected by the RIMReP Coral Expert Group as candidate 

attributes to monitor. The list of parameters has been classified by groups (e.g. Hard Corals, 

Algae), ecological categories (e.g. Taxonomic and Functional) and type (e.g. Abundance, Size 

Structure) ................................................................................................................................... 6 

Table 4: Classification of Spatial scales used in this review to evaluate the capabilities of 

technological advances for coral reef monitoring ........................................................................ 7 

Table 5: Summary characteristics of technological platforms evaluated in this review for their 

potential implementation in coral reef monitoring ......................................................................10 

Table 6: Summary of pros and cons of implementing each platform in coral reef monitoring as 

well as their ideal scenario where they are recommended to be used .......................................12 

Table 7: Summary recommendations of technological tools which currently are operationally 

available and capable to aid coral reefs monitoring within three main spatial scale categories: a) 

in-depth (site within a reef), b) intermediate (reef scale) and c) broad-scale (whole Great Barrier 

Reef). ........................................................................................................................................19 

Table 8: Summary recommendations of technological tools which have the potential to be 

available and operationally mature in a near-future (2-5 years) for their implementation in coral 

reefs monitoring. .......................................................................................................................20 

Table 9: Capability metrics for implementing technologies, aggregated in terms of platforms, 

processing tools and sensors, at small spatial scales, here referred as the in-depth scale ........23 

Table 10: Capability metrics for implementing technologies, aggregated in terms of platforms, 

processing tools and sensors, at reef spatial scales, here referred as the intermediate scale.. .24 

Table 11: Capability metrics for implementing technologies, aggregated in terms of platforms, 

processing tools and sensors, at regional spatial scales, here referred as the broad-scale .......25 

  



ii 
 

Figures 

Figure 1: Conceptual diagram of integrated  technologies, including variety of platforms and 

sensor types, that could be combined and implemented for the RIMReP (adapted from 

Goodman, Purkis & Phinn 2013) ................................................................................................ vi 

Figure 2: Classification of spatial scales used in this review to evaluate the capabilities of 

technological advances for coral reef monitoring (derived from (adapted from Phinn, Roelfsema 

& Mumby 2012) .......................................................................................................................... 7 

Figure 3: Schematic diagram showing the different spatial scales on which technological 

advances can be implemented and their proposed integration to enable a wider and more 

detailed understanding of the state and trends of coral reefs in the Great Barrier Reef under the 

RIMReP framework ...................................................................................................................18 

 

 

 

 

 

  



iii 
 

Glossary of technical terms  

Artificial intelligence (AI) is a broad concept, in computer science, of machines being able to 

carry out tasks in a way that we would consider “smart”. In AI, intelligence is demonstrated by 

machines, in contrast to the natural intelligence (NI) displayed by humans and other animals. In 

computer science AI research is defined as the study of "intelligent agents": any device that 

perceives its environment and takes actions that maximize its chance of successfully achieving 

its goals. Colloquially, the term "artificial intelligence" is applied when a machine mimics 

"cognitive" functions that humans associate with other human minds, such as "learning" and 

"problem solving”. 

Automated image annotation is an application of machine learning defined as a process by 

which a computer system automatically assigns metadata in the form of labels or keywords to a 

digital image. The main idea of automated image annotation techniques in coral reefs is to 

automatically learn to identify corals and other organisms from a large number of images to 

develop concept models than can automatically label elements in new images to quantify their 

abundance.  

Autonomous Underwater Vehicle (AUV) is a robot that travels underwater without requiring 

input from an operator. AUVs constitute part of a larger group of undersea systems known as 

unmanned underwater vehicles, a classification that includes non-autonomous remotely 

operated underwater vehicles (ROVs). 

Deep learning is part of a broader family of machine learning methods based on learning data 

representations, as opposed to task-specific algorithms. Deep learning models are loosely 

related to information processing and communication patterns in a biological nervous system, 

such as neural coding that attempts to define a relationship between various stimuli and 

associated neuronal responses in the brain. In coral reefs, deep learning architectures such as 

deep neural network has specific applications to pattern recognitions from images, as an 

automated image annotation system that has proven to be far superior than other approaches. 

Machine learning is a field of computer science that gives computer systems the ability to 

"learn" (i.e. progressively improve performance on a specific task) with data, without being 

explicitly programmed. Therefore, machine learning is a current application of AI based around 

the idea that we should really just be able to give machines access to data and let them learn 

for themselves. 

Object-based analysis is here particularly referred to Object-Based Image Analysis (OBIA), 

defined as a method for automated image annotation employing two main processes, 

segmentation and classification. Traditional image segmentation is on a per-pixel basis. 

However, OBIA groups pixels into homogeneous objects. These objects can have different 

shapes and scale. Objects also have statistics associated with them which can be used to 

classify objects. Statistics can include geometry, context and texture of image objects. The 

analyst defines statistics in the classification process to generate for example coral cover.  
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Remotely Operated Vehicle (ROV) is a tethered underwater mobile device. This meaning is 

different from remote control vehicles operating on land or in the air. ROVs are unoccupied, 

highly maneuverable, and operated by a crew aboard a vessel. 

Robot is a machine—especially one programmable by a computer— capable of carrying out a 

complex series of actions automatically. Robots can be guided by an external control device 

(e.g. ROV) or the control may be embedded within (e.g. AUV). 

Sensor is a device, module, or subsystem whose purpose is to detect events or changes in its 

environment and send the information to other electronics, frequently a computer processor. A 

sensor is always used with other electronics, whether as simple as a light or as complex as a 

computer. 

Remote sensing is the acquisition of information about an object or phenomenon without 

making physical contact with the object and thus in contrast to on-site observation. In current 

usage, the term "remote sensing" generally refers to the use of satellite or aircraft-based sensor 

technologies to detect and classify objects on Earth, including on the surface and in the 

atmosphere and oceans, based on propagated signals (e.g. sunlight reflection). 

Unmanned Aerial Vehicle, commonly known as a drone, is an aircraft without a human pilot 

aboard. UAVs are a component of an unmanned aircraft system (UAS) which include a UAV, a 

ground-based controller, and a system of communications between the two. The flight of UAVs 

may operate with various degrees of autonomy: either under remote control by a human 

operator or autonomously by onboard computers. 
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1.0 Executive Summary 

This report summarises a review of current technological advances applicable to coral reef 

monitoring, with a focus on the Great Barrier Reef Marine Park (the Marine Park). The potential 

of novel technologies to support coral reef monitoring within the Reef 2050 Integrated 

Monitoring and Reporting Program (RIMReP) framework was evaluated based on their 

performance, operational maturity and compatibility with traditional methods. Given the 

complexity of this evaluation, this exercise was systematically structured to address the 

capabilities of technologies in terms of spatial scales and ecological indicators, using a ranking 

system to classify expert recommendations. 

The main logistical limitations for translating knowledge from coral reef monitoring into 

management and policy making are: i) time required to complete analyses, reporting and 

making data and information available and ii) spatio-temporal representation. Reporting time 

can be disproportionally larger than the timeframe within which the advice is expected. Spatial 

and temporal coverage of monitoring programs can be limited in very large jurisdictions, such as 

the Marine Park. The integration of traditional monitoring techniques and novel technological 

solutions can offer solutions to decrease reporting times and increase spatio-temporal 

representation of monitoring. 

Overall, we recommend a staged implementation of current technological advances for coral 

reef monitoring. A suite of technological tools is currently available that could support coral reef 

monitoring, some of which are already being implemented in monitoring and assessments. 

Other technologies are evolving rapidly, and their maturation and readiness for implementation 

in coral reef monitoring will be demand-driven. Given the fast pace of technology development, 

this report provides recommendations at two temporal scales: immediate and near-future (2-5 

years) implementation. 

Underwater and above-water vehicles or platforms are now operationally mature and sufficiently 

reliable to support observations of key ecological attributes at reef-wide scales (Fig 1). 

Autonomous platforms, such as underwater robots (AUV, ROV), are also available and would 

be offering access to habitats that pose risks to divers but represent keys gap in existing 

monitoring programs, such as deep reefs and coastal habitats inhabited by saltwater crocodiles.  

Analyses methods such as artificial intelligence and pattern recognition from images have 

evolved rapidly, to the point that measurements of key ecological attributes (e.g. composition 

and abundance of benthos, structural complexity) can now be collected with high precision and 

several hundred times faster than manual expert analyses. As the development of sensors (e.g. 

underwater hyperspectral sensors) and software (e.g. complex machine learning algorithms) will 

advance over the next 2-5 years, the capabilities of automated image annotation and 3D habitat 

reconstructions to contribute to coral reef monitoring are also growing rapidly. 

Remote sensing is reaching a maturity to be implemented for monitoring of shallow coral reef 

systems. Accessibility of satellite-based sensors with higher temporal repetition (daily instead of 

weekly) and coverage (e.g. the Great Barrier Reef) is now allowing to evaluate the status and 

trends of reef systems at intermediate and broad scales (e.g. area and cover of dominant 

habitats and substrate types, extent of coral bleaching). In the medium-term, access to easy-to-
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operate drones, high-quality sensors (increased in radiometric quality and high resolution) and a 

development of advanced processing techniques (online processing of large data sets, object-

based analysis or machine learning routines) will enable the extraction of a higher level of detail 

at reef scales.  

A key recommendation from this review is that technology can at present not replace traditional 

ecological monitoring methods, because solutions offered by technology do not cover the entire 

spectrum of capabilities traditional methods can reliably achieve. Rather, technological 

advances offer solutions to maximise the spatial and temporal coverage of current monitoring, 

and increase the speed of data analysis. For example, autonomous vehicles now offer the 

possibility of surveying reefs over scales of kilometres across multiple depths gradients, and in 

habitats that pose a risk to divers. However, assessments of fish communities as well as 

patterns of mortality and disease in corals, for example, cannot currently be measured 

accurately using any of the available technologies. The implementation of technological 

solutions should, therefore, integrate traditional and next-generation approaches. Importantly, 

such integration can only be achieved if data standardisation and compatibility among methods 

is assured. 

 

Figure 1. Conceptual diagram of integrated technologies, including variety of platforms and sensor 

types, that could be combined and implemented for the RIMReP (adapted from Goodman, Purkis & 

Phinn 2013)  
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2.0 Introduction 

Under the increasing pressure from more intense and recurrent anthropogenic disturbance, 

global ecosystems are degrading rapidly (Pandolfi et al. 2003; Ellis 2011). Based on these 

accelerated patterns of change, it is commonly agreed that a sound ecological knowledge on 

the patterns of change and plausible management scenarios is required to undertake informed 

decisions to avoid or mitigate the functional collapse of these ecosystems (Lindenmayer & 

Likens 2010; Hughes et al. 2013a; Hughes et al. 2013b). While it is well established that 

hypothesis-driven and adaptive management should lead to substantial increases in the 

efficiency of monitoring in conservation (Nichols & Williams 2006), that paucity and scarcity of 

ecological monitoring data can inhibit active conservation (Caughlan & Oakley 2001; 

Lindenmayer & Likens 2010). 

On coral reefs, the availability of monitoring data can strongly influence policy implementation 

and management actions (Ban et al. 2009; McCook et al. 2010; Mills et al. 2010). Although 

considerable effort is already in place to survey or monitor coral reefs in some regions, high 

costs and limited accessibility to survey sites combined with a vast spatial and temporal extent 

of most reef systems often results in patchy or spatially limited biophysical data (Udy et al. 2005; 

Phinn, Roelfsema & Stumpf 2010; Madin & Madin 2015). In addition, the information gathered 

by coral reef surveys often takes a considerable amount of time and resources to be extracted 

and synthesised in order to inform decision-making, contributing to an increasing paucity in 

management actions.  

In response to the escalating challenges facing the Great Barrier Reef (the Reef), a Reef 2050 

Long-Term Sustainability Plan (LTSP) was released in early 2015 (Commonwealth of Australia 

2015). The specification of targets, objectives and outcomes in this sustainability plan clearly 

elevate the importance of monitoring and calls for a Reef 2050 Integrated Monitoring and 

Reporting Program (RIMReP) to assess the Plan's overall effectiveness. The RIMReP is 

intended to integrate existing programs, fill critical information gaps and align reporting and 

modelling to provide the most comprehensive and up-to-date understanding of the Reef, its 

values, the processes that support it and the pressures that affect it (Addison et al. 2015). As 

such, advances in technology prominently feature as potential tools to be implemented within 

the RIMReP design in order to help fast-track, scale up and integrate assessments of coral reef 

condition. 

In the current decade, the fast evolution of technology in engineering (from robotics to sensor 

design), computer vision and storage and processing capacity has empowered modern society 

in many aspects from navigation systems and biomedical sciences to real-time data analytics in 

e-commerce. Many technological advances are becoming more applicable and available to 

marine sciences; for example, underwater robotics are now widely used and more accessible, 

artificial intelligence is proving very successful in data mining, and satellites are increasing 

sensor resolution and frequency of data capture across the oceans. 

Given the rapidly increasing availability of a range of technology that could potentially facilitate 

and scale up coral reef monitoring, here we present the results from a desktop study aimed at 

reviewing the capabilities of modern technologies to support coral reef monitoring in the Great 



2 
 

Barrier Reef Marine Park (the Marine Park) under the RIMReP program. To achieve this aim, 

capability matrices were derived from expert opinions and peer-reviewed literature that evaluate 

existing technologies in terms of their performance, operational maturity, expected costs of 

deployment and capacity to guarantee data continuity from existing and long-term coral reef 

monitoring. Based on this assessment, this report provides an expert-based recommendation 

on the suite of technologies that can be implemented now and in the near future to monitor 

specific properties or indicators of the reef condition.  

3.0 Scope and Approach 

3.1 Overview 

A generic evaluation of suitable technologies for coral reef monitoring is a complex task 

because of the multiple dimensions on which to evaluate technological implementation (Table 

1). For example, different technologies may be better suited to specific environmental conditions 

(e.g. shallow clear water vs deep turbid, etc.). In addition, the type of parameters to monitor will 

require different resolutions in terms of spatial detail, spatial extent, temporal and taxonomical 

resolution or even chemical composition. Finally, providing a suite of available technological 

tools, specific combinations of sensors (e.g. hyperspectral), platforms (e.g. Satellites, 

Underwater Robots), logistics and infrastructure requirements may be differentially suited to 

each ecological parameter (Table 1). 

Table 1: Dimensions affecting the suitability of technological solutions for coral reef monitoring. 

This table lists examples of different conditions or scenarios on which coral reef monitoring often 

requires different approaches, and therefore technological solutions. 

Dimensions Details Examples 

Environmental 

condition 

where 

monitoring 

takes place 

Depth High water depths limit the use of diver-based technological solutions 

and will require using platforms such as underwater robotics.  

Similarly, data reliability from satellite and airborne technologies is 

limited to specific depth to still be able to differentiate specific 

features. 

Water clarity Data reliability from satellite and airborne technologies is limited to 

specific optical properties to still be able to differentiate specific 

features. 

Habitat type Mesophotic reefs (a.k.a. deep reefs) will have different environmental 

conditions than reefs flats of exposed reef fronts, and therefore 

technologies need to accommodate to such conditions.  

Candidate 

Parameters to 

monitor 

Spatial detail 

and Temporal 

Resolution 

Corals are only bleached for an approximate four-week period, and it 

could be limited to only a colony or to whole geomorphic zones. 

Taxonomical 

complexity 

Taxonomic definition can influence the capacity of observers to 

extract information from images in comparison to field and laboratory 

identification. Species, genera or functional groups will pose different 

challenges for technology to accurately identify organisms within 
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To address the complexity of evaluating technologies within a range of different scenarios, this 

review has been systematically structured to evaluate technologies within three main 

dimensions against each other, keeping logistical and infrastructure considerations in mind: 

1. Candidate monitoring parameters, that have been identified by the RIMReP Expert 

Group for coral reefs. Here, we used a synthesised version from this list on which to 

each taxonomical tier. Therefore, some technology may be better 

suited than others depending of the desired taxonomic definition. 

Desired 

spatial extent  

Coverage of the entire Reef will require remote sensing techniques, 

but detailed surveying underwater, and at depth, will require different 

tools.  

Data 

continuity 

Implementation of technological advances should guarantee 

compatibility and continuity of data with traditional methods, in order 

to maximise the long-term datasets where available. 

Technological 

tools available 

Diversity of 

tools and 

combinations 

to address 

specific 

objectives 

A diversity of tools is available from recent advances in technologies, 

ranging from autonomous vehicles to diver operated sensors and 

their applications will depend on the problem needing to be solved. 

Range of 

sensor 

resolutions 

Sensors can vary in the spatial resolution they can produce, and 

normally there is a trade-off between spatial resolution extent of area 

covered. 

Operational 

maturity and 

costs 

Science and technology are rapidly evolving fields. While some 

studies may indicate that certain technologies offer a promising 

avenue for coral reef monitoring, not all technologies have been fully 

implemented and will require maturing their operations to make their 

implementation in field surveys feasible. 

Logistics and 

infrastructure 

 

 

FTE required Amount of personnel required to implement each technology will be 

different in case-by-case scenarios. For example, Unmanned Aerial 

Vehicles may require a dedicated and qualified person to design and 

execute surveys, wereas diving operations will required a team of 

qualified personnel.  

Skills and 

knowledge 

required 

Unmanned Aerial Vehicles and Autonomous Underwater Vehicles will 

require technical personnel for their deployment, maintenance and 

troubleshooting.   

Transport Engineering technologies such as Unmanned Aerial Vehicles, 

Remotely Operated Vehicles and Autonomous Underwater Vehicles 

will require different vessel specifications to be deployed. UAVs can 

be deployed from land and boats, but they can only operate within a 

range from the receiver. AUVs may operate within a larger range 

from the vessel, but accurate geo-location may be more attainable 

using a tender boat in the vicinity. While ROVs can be deployed from 

tenders, certain specifications will be required to keep the above 

water equipment safe as the boat stability can affect underwater 

navigation of the unit.  
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evaluate the performance of technologies. Note that these parameters are relevant to 

monitoring of biological communities and attributes. Environmental monitoring 

parameters are not considered in this review. 

2. Desired spatial and temporal scales for coral reef assessment has been divided 

into three main categories: fine, intermediate and broad-scale. 

3. Available technologies have different outputs and applicability depending how they 

are combined. Here we aggregate technologies within different combinations of: 

a. Sensors, which refers to the devices which detect or measures a particular 

property (e.g. camera). 

b. Platforms, defined as the units which carry the sensors (e.g. divers, robots, 

satellites). 

c. Processing tools, which convert raw data into meaningful ecological 

information.  

To evaluate these three conditions/dimensions, a capability matrix was created to contrast 

monitoring parameters against the desired spatial and temporal scale and the available 

technologies based on assessment of the literature, existing remote sensing capability 

assessments, advice of expert collaborators, and expert knowledge of the report authors.  

The valuation of technologies in this review was challenged by defining the boundaries of the 

study and the level of detail on which to assess the technology capability. In regards of 

boundaries, we focussed on 1) the candidate monitoring parameters, considered in their broad 

definition and not in the individual detail (e.g. bleaching in general, not the different colours or 

stages); and 2) desired spatial and temporal scales were discretised in a spectrum from metres 

to thousands of kilometres, and days to years. However, for simplicity, this review does not 

consider local environmental conditions (e.g. depth, water clarity or sea surface roughness), 

which should be accounted for when determining how these technologies can be implemented. 

Similarly, within the range of technological tools available, this review is centred on those 

already in place and which have been proven to a certain extent. Potential ideas of how 

technology can evolve to support marine monitoring are excluded for the purpose of this review.  

Given that technological tools will have different outputs and applicability depending how they 

are combined, here we aggregate technologies within different combinations of sensors, 

platforms and processing tool onto a category defined as technological solutions, on which we 

evaluated their capability of implementation on coral reef monitoring.  

Within the aforementioned dimensions, the capability of a given technological solution was 

classified within a five tier classification system: Highly Recommended, Recommended, 

Potential, Uncertain and Not Feasible (Table 2). Classes were differentiated on the following 

criteria: 1) Evidence of good performance, in terms of accuracy or precision, repeatability and 

efficiency, 2) Operational Maturity, which defines whether an integration of technologies, at a 

given scale, has been implemented for the monitoring of given parameters, and 3) Capacity to 

guarantee data continuity where previous data is available.  
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Table 2. Classification scheme used to evaluate the capability of technological solutions to 

contribute to coral reef monitoring for each candidate parameter and desired scale. 

Capability 

classification 

Evidence of 

good 

performance 

Operationally 

mature 

Data 

continuity 

Description 

Highly 

Recommended 
Yes Yes Yes 

Evidenced in peer-reviewed 

literature and implemented as 

a monitoring tool  

Recommended Yes No Yes 

Evidenced in peer-reviewed 

literature but need evidence 

of implementation 

Potential Some No Yes 

Potential capability based on 

expert knowledge but 

requires research and 

development  

Uncertain Unknown No Unknown 
No evidence or information 

available  

Not Feasible No No No Not feasible at this stage 

 

The thinking process described in this report was based on the evaluation conducted to create 

the remote sensing toolkit capability matrix 

(http://ww2.sees.uq.edu.au/rsrc/rstoolkit/assets/pdfs/mapping-capabilities_marine.pdf). In the 

remote sensing toolkit exercise, the remote sensing technologies specifically were evaluated for 

a suit of variables that are required for terrestrial, atmospheric and marine environment 

(Roelfsema et al. 2017), and offer an user interface to help assess the suitable remote sensing 

approach for specific environmental conditions and parameters (www.rsrc.org.au/rstoolkit/). 

The remote sensing technologies evaluation included in this report is based on the evaluation 

conducted for the remote sensing toolkit, with additional updates from recent literature. In 

contrast, non-remote sensing-based technologies were newly assessed.  

http://ww2.sees.uq.edu.au/rsrc/rstoolkit/assets/pdfs/mapping-capabilities_marine.pdf
http://www.rsrc.org.au/rstoolkit/
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3.2 Candidate Parameters to monitor 

Table 3. Summary parameters pre-selected by the RIMReP Coral Expert Group as candidate 

attributes to monitor. The list of parameters has been classified by groups (e.g. Hard Corals, Algae), 

ecological categories (e.g. Taxonomic and Functional) and type (e.g. Abundance, Size Structure). 

Group Category Parameter 

type 

Parameter detail 

Hard and 

Soft Corals 

Taxonomic and 

Functional 

Abundance Total  

Genus 

Functional groups 

Juveniles  

Population and 

community structure 

Size Structure Functional groups or genus 

Agents of Health and 

Disease 

Bleaching  Incidence and Severity 

Disease Incidence 

Partial mortality Proportion of mortality within a 

colony (Hard corals) 

Algae Taxonomic and 

Functional 

Abundance Total 

Genus 

Growth Forms 

Agents of Health and 

Disease 

 

Disease 

(CLOD) 

Incidence 

Fish Taxonomic and 

Functional 

 

Abundance Total 

Species 

Population and 

community structure 

Size Structure Species 

Other 

Benthos 

Taxonomic and 

Functional 

Abundance Crown-of-thorn starfish 

Drupella spp 

Population and 

community structure 

Size Structure Crown-of-thorns starfish 

Ecosystem Attributes Structure Structural Complexity 

Processes Growth Rate Corals and Soft Corals 

 

  



7 
 

3.3 Spatial Scales 

The spatial characteristics of parameters to be monitored significantly influences whether and 

how they are monitored. Spatial scales are determined by two components: 

- Areal extent to be represented for the monitoring (e.g. a zone on a reef vs all the reefs 

on the Reef); and  

- Spatial detail to be monitored (e.g. dominant benthic cover type vs per cent of coral 

present).  

In this review, we defined three distinct monitoring scales (Table 4 and Figure 2) that coincide 

with monitoring requirements laid out by Udy et al (2005), which included focussing monitoring 

on processes, resilience, condition and overall status. These scales were chosen to allow the 

technology assessment in that context. 

Table 4. Classification of Spatial scales used in this review to evaluate the capabilities of 

technological advances for coral reef monitoring.  

Scale Spatial extent Spatial detail Examples 

In-depth Path of Coral - 

Geomorphic Zone 

0.1-10s m Community composition. 

Juvenile abundance and 

diversity. 

Agents of mortality and health 

(Disease, predation). 

Intermediate Geomorphic zone to 

full extent of one 

reef 

10-1000s m Reef wide trends in composition 

and abundance. 

 

Broad One reef to 1000s of 

reef. 

1000-10000’s of m Habitat mapping  

 

 

Figure 1. Classification of spatial scales used in this review to evaluate the capabilities of 

technological advances for coral reef monitoring (derived from (addapted from Phinn, Roelfsema 

& Mumby 2012).  
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4.0 Summary of technologies applicable to coral reef monitoring  

4.1 Passive sensors 

4.1.1 Definitions 

Passive sensors measure a signal (e.g. light reflected from earth surface) without actively 

sending out signals. For example, imagery/photos rely on a light source that could be strobe or 

the reflected sunlight or emitted thermal energy regardless of whether they are collected by 

diver or satellite. These sensors are usually unable to be penetrate through turbid water, smoke, 

clouds or at night. The amount of light reflected, absorbed or transmitted by a feature is highly 

dependent, for instance, on the incoming light, for instance pigments, canopy structure and 

biomass. 

Each pixel in an image contains information on the light reflected at specific sensitive wave 

length for a feature on the ground, which is often represented by a spectral reflectance 

signature. This signature is a record of how much sunlight interacted with the feature and was 

reflected back to the sensor in an aircraft or satellite.  

Multispectral or hyperspectral signatures vary depending on the type of sensor. A 

multispectral sensor records less than 10 wave length bands to record reflected light and 

produces simple spectral signatures. A hyperspectral system can measure over 1000 wave 

length bands light and produce highly detailed signatures. The advantage of hyperspectral 

systems is that they produce more detailed spectral signatures, which enables more detailed 

and accurate mapping of water column and benthic attributes. Multi and hyperspectral sensors 

are commonly found on air or space-borne sensors for far-range imaging from hundreds of 

meters (e.g. airborne drone) to thousands of kilometers (e.g. satellites). 

RGB sensors, on the other hand, use a model that interprets monochrome values between 

pixels to recreate a red, green and blue color composite, and do not measure individual 

reflectance for each sensitive band in each pixel. As a result, spectral characteristics of features 

(e.g. absorption of light by chlorophyll pigments) cannot be determined from RGB imagery. 

However, spectral characteristics of features can be measured from multi or hyperspectral 

sensors. RGB sensors are commonly found in standard cameras used above and underwater 

for so-called close range photography ranging from several centimeters (e.g. diver) to hundreds 

of meters (e.g. airborne drone). 

4.1.2 Applications 

Multi and hyperspectral sensors are commonly used for mapping physical and biological 

attributes in coral reef environments at intermediate to broad scales (Mumby et al. 2004; Hedley 

et al. 2016). Multispectral, high spatial resolution sensors (pixels < 5 m) are commonly used to 

map benthic properties of individual reefs (Andréfouët et al. 2003; Phinn, Roelfsema & Mumby 

2012) or larger reef systems (Rowlands et al. 2012; Roelfsema et al. 2013). Multispectral 

moderate spatial resolution sensors are commonly used to map geomorphic properties at large 

spatial extent (Andréfouët 2004; Andréfouët et al. 2006). Hyperspectral high spatial resolution 
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sensors (pixels < 5 m) are commonly captured from airborne platforms, in contrast to 

multispectral high spatial resolution sensors. Due to their extended hyperspectral range and 

small pixel size, they have improved capability to differentiate benthic features (Dekker et al. 

2011; Leiper et al. 2014). However, their capacity to delineate coral species is often limited 

(Hochberg & Atkinson 2000). Only a few studies have mapped benthic composition using 

hyperspectral high spatial resolution imagery, but they suggest the technique can be 

implemented across large reef systems such as Ningaloo Reef (Kobryn et al. 2013).  

Close range hyperspectral benthic data has commonly been collected using underwater 

spectrometry (Dekker et al. 2010), and just recently underwater imaging spectrometry was 

successfully implemented underwater to differentiate coral species (Chennu et al. 2017) and to 

map small areas underwater (Caras, Hedley & Karnieli 2017).  

RGB sensors are commonly used on sensors for snorkeling or diving photo surveys (Roelfsema 

& Phinn 2010; González-Rivero et al. 2016), underwater AUV (Roelfsema et al. 2015) and also 

UAV-based surveys (Casella et al. 2017). Due to their high pixel resolution, RGB sensors are 

able to differentiate a variety of bottom features (Beijbom et al. 2015) and with the increase in 

data storage capability, kilometers of photos can be collected in the field (González-Rivero et al. 

2014b). RGB sensors are also used increasingly for determining rugosity based on structure 

from motion photogrammetry (Figueira et al. 2015b; Leon et al. 2015a). 

4.1.3 Recent developments 

In remote sensing, the main development in regards to passive sensors is the increased 

radiometric quality, such as that of Landsat 8 OLI vs Landsat 7 ETM, and Worldview 3 vs 

Quickbird sensors. Due to the increased capability to launch very small platforms in space, the 

number of satellites launched and decommissioned is increasing, and as a result satellite 

sensors can be updated and improved more rapidly. In addition, there has been an increasing 

demand for very small sensors that can be deployed on drones above and underwater, planes 

and satellites to provide greater spectral, spatial and/or temporal resolution at the scale at which 

these different sensors are deployed. 

 

5.0 Active sensors 

5.1 Definitions 

Active sensors transmit a signal that, when reflected off an object, provides information about 

the environment, such as water depth or mangrove canopy composition. Depending on their 

radiometric characteristics, active sensors can penetrate clouds and are unaffected by water 

clarity and could be used at night. 

Acoustic sensors are commonly used to measure distance from sensor to the seafloor. 

Acoustic sensors include both single-beam, which measure depth at a single point on the 

seafloor, and multi-beam which can send out beams in a fanned arc to create a 3D image of the 

seafloor. 



10 
 

5.2 Applications  

In addition to mapping the topography of the seafloor, acoustic sensors can also be used to 

quantify seabed hardness and therefore to delineate between hard and soft sediments (Walker, 

Riegl & Dodge 2008). In archeological underwater studies, laser imaging, using airborne or 

underwater sensors, can provide very high resolution (<1mm) 3D mapping of large areas 

(Roman, Inglis & Rutter 2010; Doneus et al. 2013). While their applications in archeology could 

be translated to coral reef ecology, the feasibilities and operationalisation of these technologies 

are yet to be evaluated.  

 

6.0 Platforms 

6.1 Definition 

Platforms on which sensors are located can vary in type and usage and can be classified into 

several groups: snorkeler or diver operated, snorkeler or diver with propulsion operated, 

Underwater Tethered Drone (ROV), Underwater Autonomous Vehicle (AUV), Unmanned 

Airborne Vehicles (UAV), aircraft, and satellites (Table 5). Advantages and limitations for each 

of these platforms are primarily influenced by the application and environmental conditions on 

which to deploy them (Table 6).  

Table 5. Summary characteristics of technological platforms evaluated in this review for their 

potential implementation in coral reef monitoring. 

Platforms Distance 

to 

seafloor 

Extent 

covered 

Limitation Strength 

Snorkeler or diver 

operated 

10s cm 10s-1000s 

m 

Snorkelling limited to max 3 m 

in depth. Occupational diving 

limited to about 40 m and 

constrained to about an hour of 

survey. 

Flexible. Adaptable to 

weather conditions 

within safety.   

Diver propulsion 

Vehicles (DPV) 

10s cm 1000s – 

5000s m 

Snorkelling limited to max 3 m 

in depth. Occupational diving 

limited to about 40 m and 

constrained to about an hour of 

survey. 

Large area coverage 

at close range. 

Remotely 

Operated Vehicle 

(ROV) 

10s cm 10s - 100s 

m, limited 

to distance 

from the 

vessel 

Tethered to the surface. 

Limited by the distance from 

vessel. High tech 

Can operate under for 

dangerous conditions 

for divers. 

Autonomous 

Underwater 

Vehicle (AUV) 

10s cm 10s - 100s 

km 

Battery power and object 

avoidance, high tech 

Safe and large area 

coverage 
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Unmanned 

Airborne Vehicles 

(UAV) 

100s cm 10s -100s 

km 

Battery power and regulations, 

and requires water column 

correction, high tech 

Cover large area in 

very high detail 

Air planes 100s m 100s-

1000s km 

Regulations, and water column 

correction, high tech 

Cover larger area in 

relative high detail 

Satellites 1000s 

km 

1000s – 

10000s 

km 

Level of detail and requires 

water column correction, and 

clouds, high tech 

Cover very larger area 

in moderate detail 

 

6.2 Applications 

Snorkelers and divers have functioned as ‘platforms’ for decades to gather information of the 

ecological communities at a high level of detail using various methods (English, Wilkinson & 

Baker 1997; Hill & Wilkinson 2004; Roelfsema, Phinn & Joyce 2004). Data collection and 

interpretation has traditionally relied on expertise of the diver collecting the data. However, the 

introduction of digital underwater photography has allowed image-based monitoring information 

to be collected by a snorkeler or diver without expert knowledge of the ecosystem, as the 

analysis of the imagery is carried out afterwards by experts or automated methods. 

Diver propulsion vehicle (DPV), provide the advantage of integrating additional sensors to the 

traditional diver-based platform, and also enable much greater spatial coverage (González-

Rivero et al. 2014b; González-Rivero et al. 2016). 

Underwater Tethered Drone or Remotely Operated Vehicle (ROV) can be used to survey 

virtually any habitat. Smaller ROVs are cheaper and can be deployed from smaller vessels, but 

are generally limited to shallower depths. ROVs allow real-time interpretation of the 

environment, making them ideal for site surveys and activities such as specimen collection from 

deep habitats inaccessible to divers. 
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Table 6. Summary of pros and cons of implementing each platform in coral reef monitoring as well 

as their ideal scenario where they are recommended to be used. 

Platform Pros Cons Ideal Usage 

Snorkeler 

/ Diver 

Diver-based surveys are the 

traditional method for surveying 

coral reefs. Therefore, divers have 

the advantage of having 

established SOPs, and with 

sufficient expertise can conduct 

surveys of fish and benthic 

communities with higher 

taxonomic resolution than any 

other platform. 

Divers are limited in both the 

spatial extent and habitats that 

they can survey. In terms of 

spatial coverage, divers can 

only cover a distance of a few 

hundred metres in any one 

survey. More importantly, 

divers are strongly limited to 

shallow habitats, leaving 'deep, 

dark and dangerous' habitats 

unsurveyed 

Surveys requiring 

expert knowledge 

or experimental 

research 

DPV Allows for diver-based 

observations while increasing the 

spatial coverage of surveys 

Ability to survey deep, dark, 

dangerous habitats still limited 

for a diver. DPVs generally 

collect digital imagery, so 

generally result in loss of 

taxonomic resolution 

Ecological surveys 

at intermediate 

scales with 

intermediate 

taxonomic 

resolution 

AUV Autonomous so can survey 

virtually any habitat or depth. 

Spatial coverage much greater 

than ROVs or diver-based 

methods. Geo-referencing allows 

for accurate, repeatable surveys 

across time and space 

Taxonomic resolution limited 

by image quality. Potential for 

mechanical problems. 

Currently need to be deployed 

from a vessel, although 

increased range and 

coordination with autonomous 

surface vehicles (ASVs) is 

improving rapidly. Currently 

available AUVs not designed 

to survey steep reef walls. 

Deployment and data post-

processing requires specific 

expertise 

Intermediate to 

broad-scale habitat 

surveys across a 

wide range of reef 

habitats. 

ROV Enables visual surveys of virtually 

any habitat. Can be fitted to collect 

specimens/samples. Generally 

smaller and lighter than AUVs, 

allowing deployment from smaller 

vessels 

Limited in spatial scale and 

taxonomic resolution possible. 

Requires expert pilot and 

mechanical expertise to fix 

problems. Need to be 

deployed from a relatively 

large vessel with appropriate 

power supply.   

Preliminary surveys 

of unexplored 

habitats, collection 

of specific taxa 

Airborne 

(UAV) 

Large spatial coverage, flexibility 

to mount different sensor payloads 

Limited to surveying very 

shallow waters, although 

methods for increasing depth 

range are improving. Most 

UAVs still have short flight 

times, limiting the amount that 

Surveying shallow 

habitats at low tide 

- potentially 

complementing 

AUVs for very 

shallow habitats 
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can be done by any one single 

UAV 

Satellite Very large spatial coverage. Ability 

to collect wide range of 

environmental data through time 

Low spatial resolution, 

potentially high cost for 

acquiring data from 

commercial entities 

Broad-scale 

environmental data 

 

Autonomous Underwater Vehicles (AUV) have been used to gather detailed information 

about seafloor composition in shallow waters (Roelfsema et al. 2015) and in deep waters 

(Armstrong et al. 2006; Bridge et al. 2011; Friedman et al. 2012) AUVs allow collection of visual 

images and associated environmental data over large spatial and temporal scales (up to 10-15 

km per day, depending on the vehicle), making them an ideal habitat mapping tool, particularly 

in conjunction with broad-scale environmental data such as multi-beam bathymetry. However, 

there is no capacity to see the data being collected in real time, so it is useful to have some prior 

knowledge of the study site (i.e. multi-beam bathymetry). 

Unmanned Airborne Vehicles (UAV) have been used on coral reef environments to map high 

level benthic detail (Casella et al. 2017). 

Planes have been used in combination with hyperspectral image sensors to map benthic 

composition (Kobryn et al. 2013; Leiper et al. 2014) or water depth for large areas (Hedley, 

Roelfsema & Phinn 2009). Airborne visual assessments such as the monitoring the mass 

bleaching events in 1998, 2016 and 2017 (Berkelmans & Oliver 1999; Hughes et al. 2017). 

Where in the most recent assessment RGB oblique imagery were acquired of the reefs for the 

purpose of visual analysis. 

Satellites are the ideal platform to capture imagery over large spatial scales on a regular basis, 

exemplified by the freely available multispectral moderate resolution satellites of the Landsat 

and Sentinel series (Hedley et al. 2016). These sensors have a revisit time of 5 days to 16 days, 

however current cube satellites such as the Planet Dove have a revisit time of 1 day, and are 

equipped with multispectral high spatial resolution sensors (Asner, Martin & Mascaro 2017). 

6.3 Recent developments 

Snorkeler or Diver: Closed circuit rebreathers (CCR) increase bottom time available to divers, 

and are therefore useful for deep dives requiring long decompression stops. Improved 

technology in both the CCR sensors and associated dive computers has dramatically increased 

the safety of rebreathers even for very deep diving, and CCRs are now commonly used for 

scientific research in many countries, including the United States and United Kingdom. Training 

programs are easily accessible and can even be tailored to scientific divers, making them more 

applicable to scientific research. 

Autonomous Underwater Vehicle (AUV): Smaller platforms can be deployed from smaller 

vessels, longer battery power, improved obstacle avoidance systems for surveying unknown 

terrain, user friendly and commercial off the shelf.  
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Airborne platforms (UAV, aircraft): Ongoing improvement of not only technology but also in 

regards to permits, makes these platforms easier to use or to access for monitoring purpose. 

Airborne platforms allow the complex integration of a number of sensors to provide a very light 

level of detail of the reef and, because these platforms have been widely used for decades, their 

applications for long-term changes are becoming increasingly robust (Purkis 2018).  

Satellite: So-called cube satellites are the size of a microwave and are only a few kilograms in 

weight, making them cheap to build and launch and providing increased capability to launch 

very small platforms into space. Similar new approaches are improving launching capability, 

such as the recently-launched battery driven satellites and launch platforms that can return to 

earth. On-board processing and data storage capability is also increasing rapidly. Current 

developments in onboard processing are designed to correct imagery as it is taken, also offering 

thematic or continuous data products. As a result, on-board processing will make the turn-

around time faster to provide consistent products. However, the application for coral reef 

monitoring is still poorly understood. 

7.0 Processing Tools 

7.1 Benthic Information extraction 

7.1.1 Definition 

Various approaches are available to turn images of the seafloor into valuable and ecologically 

relevant information. Two types of imagery sources are identified: 1) Field-based and close-

range photography captured through snorkelling, diver, AUV or ROV and covering up to several 

square meters and 2) Far-range imagery or remote sensing imagery (UAV, Plane, Satellite) 

covering an extent of several hundreds of meters to thousands of kilometres. Information 

extraction techniques used include pixels or object-based classifiers and neural networks. 

7.1.2 Application 

Close-range photography: Underwater photography has been widely used to rapidly capture 

information from coral reefs and measure relevant parameters (e.g. abundance and composition 

of benthos) by manually scoring a set of points on a photo (Kohler & Gill 2006). Although 

traditional photography and image analysis is still widely used, it is very time consuming and 

observer-dependent. The increasing capability of automated image recognition is now allowing 

analysis of thousands of images with high confidence (González-Rivero et al. 2014a; Beijbom et 

al. 2015; González-Rivero et al. 2016; Griffin et al. 2017). These automated approaches utilise a 

variety of techniques including deep learning, Support Vector Machine and Regression 

classifiers. 

Remote sensing applications: Before any information can be extracted from remote sensing 

imagery, raw images must be corrected for atmospheric and water column effects. Various 

correction approaches can be effective, but are mostly applied to small reef areas using 

physics-based approaches (Lesser & Mobley 2007; Dekker et al. 2011). To date, corrections 

have yet to be applied to remotely-sensed imagery of coral reefs over large spatial scales and 

across a range of water depth and clarity. Physics-based approaches have the added bonus 

that they can be used to extract reliable estimates of water depth from multispectral high spatial 
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resolution satellite imagery (Hamylton, Hedley & Beaman 2015), where previously this was 

largely restricted to hyperspectral applications (Stumpf, Holderied & Sinclair 2003; Hedley, 

Roelfsema & Phinn 2009). Fluid lensing is another approach that is revolutionising the 

applications of remote sensing data in long-term monitoring (Purkis 2018). Fluid lensing is an 

experimental technology that uses water-transmitting wavelengths to passively image 

underwater objects at high resolution by exploiting time-varying optical lensing events caused 

by surface waves (Chirayath & Earle 2016). Because of the increased spatial resolution imaging 

sensors, fluid lensing has the potential to deliver centimetre-resolution data at regional scales, 

unlocking the ability to resolve, for instance, individual coral colonies and perhaps even 

providing sufficient detail to identify these colonies (Chirayath & Earle 2016).  

Extraction of thematic, benthic or geomorphic information has been achieved based on 

individual pixels or on groups of pixels represented by objects (Hedley et al. 2016). Pixel-based 

approaches are used to derive benthic information from moderate (Capolsini et al. 2003) to high 

spatial resolution imagery (Andréfouët et al. 2003; Andréfouët 2008; Hamylton 2017). Recently, 

object-based classifiers have been used increasingly (Hedley et al. 2016) in coral reef 

environments in combination with multispectral high spatial resolution imagery (Saul & Purkis 

2015; Wahidin et al. 2015), or with hyperspectral high spatial resolution imagery (Zhang et al. 

2013). Processing capability has improved, allowing automated assessment of changes in 

benthic composition. Until recently, this level of ecological information has required manual 

digitisation of high spatial resolution RGB imagery (Scopélitis et al. 2011), or pixel-based 

approaches using moderate spatial resolution multispectral imagery (Knudby et al. 2010) and 

recently also from an object-based approach (Saul & Purkis 2015; Roelfsema et al. 2018). 

7.1.3 Recent developments 

Close-range photography: The application of machine learning and image recognition to 

identify organisms from benthic imagery can be challenging for a number of reasons, including:  

1) Phenotypic plasticity driven by environmental conditions leading to large variability in the form 

and appearance a single species; 2) Patchiness of clonal organisms (ill-defined edges), which 

presents a challenge of boundary detection in certain groups (e.g. algae); 3) taxonomic 

definition of labels, where functional groups can be composed of a large number of species and 

morphologies (e.g. algae in the Reef are known to comprise more than 600 species); 4) 

Different requirements of resolution and scale to detect patterns among taxonomic or functional 

groups (e.g. hard corals and algae). For these reasons, pre-defining the image attributes to feed 

machine learning algorithms has posed some barriers to the full applications of automated 

image annotations in benthic imagery (González-Rivero et al. 2016). However, deep learning 

shows promise as a more novel and organic framework for automated image annotation, where 

the visual attributes of images are defined by the machine as it learns from the dataset. For this 

reason, deep learning has proved the most effective method for automated image annotation 

(LeCun, Bengio & Hinton 2015), and has already been implemented in existing online image 

processing services (e.g. CoralNet www.coralnet.ucsd.edu and BenthoBox 

https://www.aims.gov.au/advanced-observation-technologies/image-analysis). Currently, deep 

learning has the capacity to estimate the abundance of broad functional groups of benthos (e.g. 

morphological and taxonomic definitions) and key species from benthic imagery with an 

estimation error below five per cent (Gonzalez-Rivero, unpublished). Further developments for 

http://www.coralnet.ucsd.edu/
https://www.aims.gov.au/advanced-observation-technologies/image-analysis
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integrating different learning models and sensor data is also providing promise for expanding 

the capabilities of automated image annotation in coral reef monitoring (Treibitz et al. 2015; 

Chennu et al. 2017; Szegedy et al. 2017; Zoph et al. 2017).  

Remote sensing: An ongoing challenge in the marine environment is that only a few 

techniques have been proven to produce benthic information over large spatial scales such as 

the Reef. This is mostly likely due to the dynamic water column over the submerged seafloor 

that changes in depth and composition through currents and tides (Dekker et al. 2011; Zoffoli, 

Frouin & Kampel 2014), the need for correcting for sea surface roughness (Kay, Hedley & 

Lavender 2009) and the lack of a complete and high-resolution coverage at the right time in the 

tidal cycle (Asner, Martin & Mascaro 2017). New approaches combining physical attributes (e.g. 

depth, reef slope, consolidation, significant wave height) and seamless mosaics of multispectral 

moderate resolution satellite imagery with object-based analysis and ecologically-driven rule-

sets have been used to create geomorphic and benthic maps of entire reefs (Roelfsema  et al. 

2018). This study demonstrated that there is now an ability to correct imagery for large reef 

extent and derive water depth (EOMAP 2016). Current increases in the quantity of imagery, 

accessibility of imagery and spectral and spatial resolution require higher levels of processing 

power. Open-source cloud processing is commonly applied in terrestrial environments (Wulder 

et al. 2012; Gorelick et al. 2017; Hird et al. 2017; Murray et al. 2017) and is now implemented 

for wetlands (Murray et al. 2012), so should also be available for marine habitat mapping. 

7.2 Tri-dimensional Reconstructions:  

7.2.1 Definition: 

Structurally complex habitats support a larger number of species than less complex habitats 

provide by (Tews et al. 2004). This relationship occurs because the three-dimensional (3D) 

complexity of a habitat increases the availability of refuges and barriers that fragment the living 

space, resulting in more heterogeneous assemblages of reef-associated organisms (Sebens 

1991). These multiple scales of structure lead to more complex coral reefs hosting a greater 

diversity, abundance and biomass of species (Jones & Syms 1998; Graham & Nash 2013). Due 

to the current and predicted decline in coral reef structural complexity and its consequences to 

the ecosystem functioning (Wild et al. 2011; Rogers, Blanchard & Mumby 2014; Alvarez-Filip et 

al. 2015; Bozec, Alvarez-Filip & Mumby 2015; Harborne et al. 2017), maintaining structurally 

complex reefs is considered a key management objective (Jones et al. 2004; Graham & Nash 

2013; Anthony et al. 2015). However, methods for accurately and rapidly quantifying the 

multiple attributes of reef structural complexity are not widely available, or are limited by 

methodological constraints (de Boer 1978; Rilov et al. 2007; Harborne et al. 2011).  

Advances in pattern recognition from images can go beyond classification by expanding into the 

reconstruction of 3D models of substrates (e.g. fine-scale bathymetrical representations). 

Photogrammetry has been a technique widely used in remote sensing imagery to recovery 

exact position of surface points, scaling and mosaicking images, and creating three-dimensional 

reconstructions from overlapping 2D images (Johnson‐Roberson et al. 2010). In principle, 

photogrammetric analyses are based on deriving the locations in 3D space of points in a 

sequence of images using triangulation of sequential or paired images. Widely used in 

topographic mapping, deriving the structure of objects and terrains using photogrammetry is 
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now being increasingly implemented in underwater surveys. Consequently, tri-dimensional 

reconstructions can quantify reef structural complexity in a non-invasive, fast and reliable way 

(Figueira et al. 2015a; Ferrari et al. 2016b; Pizarro et al. 2017). Furthermore, by creating 

repeatable models of the reef structure, photogrammetric analyses on images can also recreate 

scaled and georeferenced mosaics of images and compare 3D models over time. 

7.2.2 Applications: 

Compared to traditional approaches for high resolution bathymetrical surveys (e.g. laser 

bathymetry, such as LiDAR), more recently developed underwater photogrammetric techniques 

offer a simpler, faster, and more affordable alternative for high resolution topographic 

reconstruction (Westoby et al. 2012; Burns et al. 2015; Ferrari et al. 2016b). Furthermore, 

image-based reconstruction provides two elements associated with structural complexity: (1) the 

structural attributes per se, like LiDAR, but also (2) access to the spectral attributes of the 

imagery, which enables more detailed ecosystem observations, such as compositional structure 

and seasonal or phrenological changes (e.g. Dandois & Ellis 2013). Traditionally, techniques of 

underwater three-dimensional reconstructions have primarily been utilised for habitat 

classification, as well as archaeological surveys (Johnson-Roberson et al. 2010; Friedman et al. 

2012; McCarthy & Benjamin 2014), but photogrammetry from underwater footage has recently 

been used to address ecological questions (Agudo-Adriani et al. 2016; Bennecke et al. 2016; 

Burns et al. 2016). On coral reefs, applications of tri-dimensional reconstructions have 

increased rapidly over the past few years for applications including: 1) large-scale assessments 

of structural complexity (Friedman et al. 2012; Figueira et al. 2015a; Leon et al. 2015b; Ferrari 

et al. 2016a; Storlazzi et al. 2016; Young et al. 2017); 2) monitoring of demographic data such 

as growth, erosion, morphometry (Bythell, Pan & Lee 2001; Ferrari et al. 2017); 3) Habitat 

selection and distribution (González-Rivero et al. 2017); and 4) mapping (Ventura et al. 2016; 

Casella et al. 2017; Palma et al. 2017). 

7.2.3 Recent developments 

In recent years, underwater photogrammetry has been widely used to recreate the 3D structure 

of coral reefs at multiple scales, and their importance for understanding the trends and status of 

key ecological attributes is continuously increasing (Friedman, Pizarro & Williams 2010; Agudo-

Adriani et al. 2016; Bennecke et al. 2016; Ferrari et al. 2016a; González-Rivero et al. 2017). 

Such advances have been made possible because of the commercialisation and 

standardisation of software platforms that enable reliable, repeatable, cheap, and easy-to-use 

3D reconstructions that are adaptable to specific needs (Figueira et al. 2015a; Ferrari et al. 

2016a). Importantly, while the technological knowledge required to create 3D image mosaics is 

relatively low because of the commercial software available, their use for measuring and 

interpreting ecological metrics requires certain basic programming knowledge. 
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8.0 Recommendations 

Having outlined the current state of technologies and their applications and limitations, 

recommendations on the suitability of technologies for measuring each parameter at different 

spatial scales were formulated based on expert opinion (Supplementary Material, SM1). The 

contribution of technologies is summarised here based on the integration of platforms, 

processing tools and sensors to aid traditional monitoring by scaling and speeding up 

observations and analysis across different spatial scales (Figure 1): in-depth (100s of meters 

representing a section of the reef); intermediate (1000s of metres representing an entire reef); 

and broad-scale (1000s of kilometres representing the Marine Park). Given that technology is 

rapidly evolving, recommendations were sub-divided into technologies available for immediate 

(Table 7) and near-future (2-5 years; Table 8) deployment based on their operational maturity.  

 

Figure 2. Schematic diagram showing the different spatial scales on which technological 

advances can be implemented and their proposed integration to enable a wider and more detailed 

understanding of the state and trends of coral reefs in the Great Barrier Reef under the RIMReP 

framework. 

 

An important conclusion derived from this review is that current technological tools cannot be 

applied to the entire suit of candidate parameters (Table 2), but can enhance the capacity to 

assess a subset of parameters. Technological solutions can aid monitoring by increasing 

monitoring coverage and data analysis within a selection of parameters, and their integration 

with traditional expert observations is key to ensuring the success of the RIMReP objectives. 

The use of automated technologies to extract ecological information from reef surveys can be 

limited to a number of parameters. For example, measuring the abundance and composition of 

benthic communities is currently measured by existing long-term monitoring programs (e.g. the 

Australian Institufe of Marine Science monitoring programs) at high taxonomic resolution (e.g. 

species or genera for benthic and pelagic groups). Automated image analyses for close-range 

photography, on the other hand, can be limited to functional groups or key genera for benthic 
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groups and, currently, there is not a robust method in place to automatically estimate 

abundance of fish species. As such, we recommend parameters associated with fish 

communities, diseases, coral juveniles and other small organisms (e.g. Drupella spp) to be 

measured by expert divers or snorkelers (Table 7). However, the development, adaptation and 

testing of wide-spectrum imaging sensors (e.g. Hyper- or Multi- spectral) or integrating 

processing approaches (3D reconstructions and Automated Image annotation) suggests that 

the applications of automated analyses can soon be expanded to cover a wider range of 

parameters, in particular benthic composition and detection of juveniles. Therefore, it is 

important to consider the constant evolution of technologies as demand drives their 

development (Table 8).  

While technologies can be limited in the application to selection of monitoring parameters, 

another advantage of technologies emerges when evaluating their applications across “larger-

than-usual” coverage. Traditional methodological approaches in monitoring by divers/snorkelers 

are often limited to a few hundreds of meters within a reef, and typically within shallow/safe 

environments. Automated survey platforms (AUVs, UAVs, Satellites) can rapidly expand the 

spatial coverage of traditional monitoring by expanding the depth range and spatial extent 

surveyed. These platforms allow the integration of highly advanced sensors (actives and 

passive), which, combined with automated data processing (image analyses and 3D 

reconstructions), can generate detailed information on the status and trends of coral reefs at 

spatial not previously achievable (e.g. whole reef, Mesophotic reefs). At these scales, the 

amount of data generated quickly surpasses the capacity of expert manual labour to measure 

ecological parameters. However, automated image processing provides a reliable method for 

fast processing of detailed, ecologically-relevant information, beyond simple metrics such as 

coral cover (Table 7). Therefore, at these scales (intermediate and broad-scale), a full 

implementation of technologies can automate the entire process from data collection to 

reporting is plausible and advised, at the expense trying to cover a greater range of parameters 

(SM1, Tables 10 and 11). 

Table 7. Summary recommendations of technological tools which currently are operationally 

available and capable of aiding coral reefs monitoring within three main spatial scale categories: 

a) in-depth (site within a reef), b) intermediate (reef scale) and c) broad-scale (whole Reef). 

Technologies are aggregated in sensors, platforms and processing tools, and their integration is 

considered for each of the outputs or ecological parameters on which they can contribute to monitoring 

Technology In-Depth surveys Intermediate surveys Broad-scale surveys 

Sensors  RGB  RGB + Multispectral  Multispectral 

Platforms  Divers / Snorkelers  

 Digital Cameras 

 Autonomous vehicles 

(at Depth) 

 Underwater vehicles 

(DPV, AUV) 

 Airborne drones 

 Airborne drones 

 Satellites 

Processing 

Tools 

 Automated Image 

Annotation 

 3D reconstructions  

 Manual observations 

 Automated Image 

Annotation 

 3D reconstructions  

 Automated Image 

Annotation (object-based) 
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Outputs  Detailed community 

composition (fish and 

benthos)  

 Agents of Mortality 

and health  

 Demographic 

attributes  

 Functional 

community 

composition 

(benthos) 

 Structural complexity 

 Habitat mapping at 

various information 

scales 

Efficiency in data analyses, reporting and coverage are the most immediate and obvious 

advantages of the deployment of technologies for coral reef monitoring. However, the capacity 

to monitor previously unattained metrics in broad-scale monitoring programs is also highly 

valuable. One example of this is the use of 3D reconstructions, which are non-invasive and fast 

processing tools that use overlapping imagery (mainly RGB) to recreate the architectural 

structure of a coral reef. Measurements of key resilience attributes such as growth rate and 

rugosity can be easily quantified from 3D images and incorporated into monitoring programs to 

fill essential knowledge gaps. While these metrics can be measured without the use of novel 

technologies (e.g. chain-tape method for rugosity and buoyant weight for coral growth), their use 

is restricted to more academic exercises at a much restricted temporal and spatial scale 

because of the effort required to measure them in the field. 3D reconstructions offer the 

possibility of reliably and repeatable measuring of structural complexity and growth rates without 

significant additional effort in the field. Because 3D reconstructions are derived from imagery, 

they can be applied across all spatial scales (in-depth, intermediate and broad-scale) using a 

range of platforms (e.g. AUVs), adding a previously unattained dimension of ecological 

measurements in coral reef monitoring (Tables 7 and 8). A second example for advancing or 

extending the applications of ecological monitoring is the development of dynamic, region-wide 

habitat mapping derived from deployment of large-scale technologies. Currently, advances in 

data processing from remote sensing tools (e.g. Satellites, Droves, etc.) provide unique 

opportunities to extract habitat attributes of coral reef across large regions, such as the entire 

Marine Park (Table 7). As processing power and resolution continues to increase, recent 

advances suggest that high temporal resolution environmental data captured from satellites can 

add a dynamic dimension to habitat mapping, allowing attribution of the cause of ecological 

changes across hundreds to thousands of kilometres (e.g. bleaching impact, habitat loss). 

Table 8. Summary recommendations of technological tools which have the potential to be 

available and operationally mature in a near-future (2-5 years) for their implementation in coral 

reefs monitoring. Technologies are grouped within three main spatial scale categories: a) in-depth 

(site within a reef), b) intermediate (reef scale) and c) broad-scale (whole Reef). Technologies are 

aggregated in sensors, platforms and processing tools, and their integration is considered for 

each of the outputs or ecological parameters on which they can contribute to monitoring 

Technology In-depth surveys Intermediate surveys Broad-scale surveys 

Sensors  Multi/Hyper-spectral  Hyperspectral 

 Active Sensors 

 Multispectral (High 

temporal resolution) 

Platforms  Divers / Snorkelers 

 Stereo-photography 

 Underwater vehicles 

(AUV) 

 Airborne drones 

 Satellites 
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Processing 

Tools 

 Integrated automated 

image annotation aided 

by photogrammetry  

 Manual assessments 

 Integrated automated 

image annotation aided 

by photogrammetry  

 On-line and/or On-

board automated 

image classification  

Outputs  Detailed community 

composition  

 Agents of Mortality and 

health  

 Demographic attributes 

 Functional community 

composition (benthos) 

 Structural complexity  

 Dynamic Habitat 

Mapping 

 Large-extent change 

detection 

8.1 Moving forward in the implementation of technologies to fit objectives 

within the RIMReP framework  

Implementing technological tools within coral reef monitoring requires a careful examination of 

the objectives and applications of each tool, as well as the overall view of how they integrate 

within the broader objectives of the program. Based on the reviewed technologies and 

recommendations, a careful planning and design should be considered in order to guarantee a 

seamless implementation of technologies for RIMReP. A few examples to consider are:  

 The various scales (e.g. In-depth, Intermediate and Broad scales) can be multi-
beneficial to the needs of those planning, processing, analysing and reporting on the 
data collected. Therefore, integrating these technologies requires an understanding of 
what is required from the data collected at each scale as well as across scales, as well 
as how the data could contribute to other RIMReP objectives.  

 Integration within survey scales: Collecting fish parameters at intermediate scales will 
provide understanding of composition of fish communities, but explaining the observed 
patterns often also requires information at the same scale on the benthic composition 
and rugosity. Instead of gathering new datasets, RIMReP should ensure that data are 
aligned beneficially across monitoring objectives and components. 

 Integration among survey scales: Collecting benthic information (e.g. crown-of-thorns 
starfish) at broad scales can be mutually beneficial if the data provides information that 
can be used to validate benthic mapping at broad scales. This also applies to the 
opposite case; benthic maps can help plan surveys for crown-of-thorns starfish control 
programs. 

 Communication to support integration: Integration can only take place successfully if 
there is clear communication and open data sharing agreements between those involved 
in planning, collecting and analysing specific parameters. Practically, new RIMReP 
approaches could be integrated within and between scales, however integration could 
fail if there is no communication or data sharing agreement in place. In addition, there is 
a need for a centralised repository where data can be accessed in combination with 
metadata explaining the data sets and conditions of use. 

 Data management: A system needs to be set in place as part of RIMReP. We envisage 
a user interface where the data for the different monitoring parameters can be accessed 
by those who require it. Furthermore, as technology is incorporated, data volume is only 
expected to increase considerably. Therefore, data management should be carefully 
planned to accommodate much larger requirements for storage and accessibility. 

 Expertise: Technology is not a replacement for human labour but rather the means to 
scale up observations. Hence it is crucial that operators working with the new 
technologies are evolving their knowledge and expertise to the technological 
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developments and implementation, and that also those who analyse the data at different 
scales are aware of the strength and weakness of the data sets collected. The success 
of the combined integrated approaches depends not just on the technology but the 
associated human capacity to deploy and manage the technology.  
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9.0 Supplementary Material  

9.1 SM1. Capability Matrices 

Table 9. Capability metrics for implementing technologies, aggregated in terms of platforms, 

processing tools and sensors, at small spatial scales, here referred as the in-depth scale. Note that 

visual assessments by trained divers (i.e. unaided by technology) can be used for monitoring of all listed 

RIMReP candidate parameters. 

Color code Classification Scale  In-depth (site) 

  Highly Recommended  Spatial resolution < 1 mm 

  Recommended  

Platform Diver   Potential  

  Uncertain  

  Not Feasible 
Processing 

Automated Image 
Classification 

3D 
Reconstruction 

  

    Sensor RGB 
Hyper-
spectral 

RGB 

Category RIMReP Candidate Parameter 

Hard Corals Total Abundance       

Abundance and Composition by Genus       

Abundance and Composition by Functional Groups       

Abundance of Juveniles       

Size Structure        

Soft Corals Total Abundance       

Abundance and Composition by Genus       

Abundance and Composition by Functional Groups       

Abundance of Juveniles       

Size Structure        

Algae Total Abundance       

Abundance and Composition by Genus       

Abundance and Composition by Growth Form       

Other Benthos Abundance of crown-of-thorns starfish       

Abundance of Drupella spp       

Size Structure of crown-of-thorns starfish       

Agents of Health Partial mortality       

Abundance of Disease       

Severity of Coral Bleaching       

Fish Total Abundance       

Abundance and Composition by Genus       

Abundance and Composition by Functional Groups       

Abundance of Juveniles       

Size Structure        

Ecosystem  Structural Complexity       

Growth rates       
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Table 10. Capability metrics for implementing technologies, aggregated in terms of platforms, processing tools and sensors, at reef spatial scales, here 

referred as the intermediate scale 

Color code Classification Scale Broad (reef) 

  Highly Recommended  Spatial resolution 1 - 50 mm 

  Recommended  

Platform Diver Propulsion Vehicles Autonomous Underwater Vehicles   Potential  

  Uncertain  

  Not Feasible 
Processing 

Automated Image 
Classification 

3D 
Reconstruction 

Automated Image 
Classification 

3D Reconstruction 
  

    
Sensor RGB 

Hyper-
spectral 

RGB RGB 
Hyper-
spectral 

RGB 
Category RIMReP Candidate Parameter 

Hard Corals Total Abundance             

Abundance and Composition by Genus             

Abundance and Composition by Functional Groups             

Abundance of Juveniles             

Size Structure              

Soft Corals Total Abundance             

Abundance and Composition by Genus             

Abundance and Composition by Functional Groups             

Abundance of Juveniles             

Size Structure              

Algae Total Abundance             

Abundance and Composition by Genus             

Abundance and Composition by Growth Form             

Other 
Benthos 

Abundance of crown-of-thorns starfish             

Abundance of Drupella spp             

Size Structure of crown-of-thorns starfish             

Agents of 
Health 

Partial mortality             

Abundance of Disease             

Severity of Coral Bleaching             

Fish Total Abundance             

Abundance and Composition by Genus             

Abundance and Composition by Functional Groups             

Abundance of Juveniles             

Size Structure              

Ecosystem  Structural Complexity             

Growth rates             
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Table 11. Capability metrics for implementing technologies, aggregated in terms of platforms, processing tools and sensors, at regional spatial scales, 
here referred as the broad-scale 
Color code Classification Scale  Broad-scale (Reef) 

  Highly Recommended  Spatial resolution Very High (1-100 cm) High (1- 5 m) Medium (5-
50 m) 

Low (> 50m) 

  Recommended  Platform Drones (100 m- 1000s m) 
 

  Potential  Planes (1 km - 100s km) 
 

  Uncertain  
 

Satellites (1 km - 1000s km) 

  Not Feasible Processing Automated Image Classification 

    Sensor RGB Multi-
spectral 

Hyper-
spectral 

RGB Multi-
spectral 

Hyper-
spectral 

Multi-
spectral 

Hyper-
spectral 

Multi-
spectral 

Hyper-
spectral Category RIMReP Candidate Parameter 

Hard Corals Total Abundance                     

Abundance and Composition by Genus                     

Abundance and Composition by Functional 
Groups 

                    

Abundance of Juveniles                     

Size Structure                      

Soft Corals Total Abundance                     

Abundance and Composition by Genus                     

Abundance and Composition by Functional 
Groups 

                    

Abundance of Juveniles                     

Size Structure                      

Algae Total Abundance                     

Abundance and Composition by Genus                     

Abundance and Composition by Growth Form                     

Other 
Benthos 

Abundance of crown-of-thorns starfish                     

Abundance of Drupella spp                     

Size Structutre of crown-of-thorns starfish                     

Agents of 
Health 

Partial mortality                     

Abundance of Disease                     

Severity of Coral Bleaching                     

Fish Total Abundance                     

Abundance and Composition by Genus                     

Abundance and Composition by Functional 
Groups 

                    

Abundance of Juveniles                     

Size Structure                      

Ecosystem  Structural Complexity                     

Growth rates                     
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