732 research outputs found

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher

    The Modified Direct Method: an Approach for Smoothing Planar and Surface Meshes

    Get PDF
    The Modified Direct Method (MDM) is an iterative mesh smoothing method for smoothing planar and surface meshes, which is developed from the non-iterative smoothing method originated by Balendran [1]. When smooth planar meshes, the performance of the MDM is effectively identical to that of Laplacian smoothing, for triangular and quadrilateral meshes; however, the MDM outperforms Laplacian smoothing for tri-quad meshes. When smooth surface meshes, for trian-gular, quadrilateral and quad-dominant mixed meshes, the mean quality(MQ) of all mesh elements always increases and the mean square error (MSE) decreases during smoothing; For tri-dominant mixed mesh, the quality of triangles always descends while that of quads ascends. Test examples show that the MDM is convergent for both planar and surface triangular, quadrilateral and tri-quad meshes.Comment: 18 page

    Discrete Geometric Structures in Homogenization and Inverse Homogenization with application to EIT

    Get PDF
    We introduce a new geometric approach for the homogenization and inverse homogenization of the divergence form elliptic operator with rough conductivity coefficients Ļƒ(x)\sigma(x) in dimension two. We show that conductivity coefficients are in one-to-one correspondence with divergence-free matrices and convex functions s(x)s(x) over the domain Ī©\Omega. Although homogenization is a non-linear and non-injective operator when applied directly to conductivity coefficients, homogenization becomes a linear interpolation operator over triangulations of Ī©\Omega when re-expressed using convex functions, and is a volume averaging operator when re-expressed with divergence-free matrices. Using optimal weighted Delaunay triangulations for linearly interpolating convex functions, we obtain an optimally robust homogenization algorithm for arbitrary rough coefficients. Next, we consider inverse homogenization and show how to decompose it into a linear ill-posed problem and a well-posed non-linear problem. We apply this new geometric approach to Electrical Impedance Tomography (EIT). It is known that the EIT problem admits at most one isotropic solution. If an isotropic solution exists, we show how to compute it from any conductivity having the same boundary Dirichlet-to-Neumann map. It is known that the EIT problem admits a unique (stable with respect to GG-convergence) solution in the space of divergence-free matrices. As such we suggest that the space of convex functions is the natural space in which to parameterize solutions of the EIT problem

    A Variational r-Adaption and Shape-Optimization Method for Finite-Deformation Elasticity

    Get PDF
    This paper is concerned with the formulation of a variational r-adaption method for finite-deformation elastostatic problems. The distinguishing characteristic of the method is that the variational principle simultaneously supplies the solution, the optimal mesh and, in problems of shape optimization, the equilibrium shapes of the system. This is accomplished by minimizing the energy functional with respect to the nodal field values as well as with respect to the triangulation of the domain of analysis. Energy minimization with respect to the referential nodal positions has the effect of equilibrating the energetic or configurational forces acting on the nodes. We derive general expressions for the configuration forces for isoparametric elements and nonlinear, possibly anisotropic, materials under general loading. We illustrate the versatility and convergence characteristics of the method by way of selected numerical tests and applications, including the problem of a semi-infinite crack in linear and nonlinear elastic bodies; and the optimization of the shape of elastic inclusions

    Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction

    Get PDF
    Given a tetrahedral mesh and objective functionals measuring the mesh quality which take into account the shape, size, and orientation of the mesh elements, our aim is to improve the mesh quality as much as possible. In this paper, we combine the moving mesh smoothing, based on the integration of an ordinary differential equation coming from a given functional, with the lazy flip technique, a reversible edge removal algorithm to modify the mesh connectivity. Moreover, we utilize radial basis function (RBF) surface reconstruction to improve tetrahedral meshes with curved boundary surfaces. Numerical tests show that the combination of these techniques into a mesh improvement framework achieves results which are comparable and even better than the previously reported ones.Comment: Revised and improved versio

    Mesh smoothing: An MMPDE approach

    Get PDF
    We study a mesh smoothing algorithm based on the moving mesh PDE (MMPDE) method. For the MMPDE itself, we employ a simple and efficient direct geometric discretization of the underlying meshing functional on simplicial meshes. The nodal mesh velocities can be expressed in a simple, analytical matrix form, which makes the implementation of the method relatively easy and simple. Numerical examples are provided
    • ā€¦
    corecore