1,136 research outputs found

    DC-Voltage-Ratio Control Strategy for Multilevel Cascaded Converters Fed With a Single DC Source

    Get PDF
    Recently, a multilevel cascaded converter fed with a single DC source has been presented. An analysis of the steady-state working limits of this type of converter is presented in this paper. Limits of the maximum output voltage and the minimum and maximum loading conditions for stable operation of the converter are addressed. In this paper, a way to achieve any DC voltage ratio (inside the stable operation area of the converter) between the H-bridges of the single-DC-source cascaded H-bridge converter is presented. The proposed DC-voltage-ratio control is based on a time-domain modulation strategy that avoids the use of inappropriate states to achieve the DC-voltage-ratio control. The proposed technique is a feedforward-modulation technique which takes into account the actual DC voltage of each H-bridge of the converter, leading to output waveforms with low distortion. In this way, the dc voltage of the floating H-bridge can be controlled while the output voltage has low distortion independently of the desired DC voltage ratio. Experimental results from a two-cell cascaded converter are presented in order to validate the proposed DC-voltage-ratio control strategy and the introduced concepts.Ministerio de Ciencia y Tecnología TEC2006-03863Junta de Andalucía EXC/2005/TIC-117

    The Age of Multilevel Converters Arrives

    Get PDF
    This work is devoted to review and analyze the most relevant characteristics of multilevel converters, to motivate possible solutions, and to show that we are in a decisive instant in which energy companies have to bet on these converters as a good solution compared with classic two-level converters. This article presents a brief overview of the actual applications of multilevel converters and provides an introduction of the modeling techniques and the most common modulation strategies. It also addresses the operational and technological issues

    Mitigation of Power Quality Problems Using Custom Power Devices: A Review

    Get PDF
    Electrical power quality (EPQ) in distribution systems is a critical issue for commercial, industrial and residential applications. The new concept of advanced power electronic based Custom Power Devices (CPDs) mainly distributed static synchronous compensator (D-STATCOM), dynamic voltage restorer (DVR) and unified power quality conditioner (UPQC) have been developed due to lacking the performance of traditional compensating devices to minimize power quality disturbances. This paper presents a comprehensive review on D-STATCOM, DVR and UPQC to solve the electrical power quality problems of the distribution networks. This is intended to present a broad overview of the various possible DSTATCOM, DVR and UPQC configurations for single-phase (two wire) and three-phase (three-wire and four-wire) networks and control strategies for the compensation of various power quality disturbances. Apart from this, comprehensive explanation, comparison, and discussion on D-STATCOM, DVR, and UPQC are presented. This paper is aimed to explore a broad prospective on the status of D-STATCOMs, DVRs, and UPQCs to researchers, engineers and the community dealing with the power quality enhancement. A classified list of some latest research publications on the topic is also appended for a quick reference

    Investigation of FACTS devices to improve power quality in distribution networks

    Get PDF
    Flexible AC transmission system (FACTS) technologies are power electronic solutions that improve power transmission through enhanced power transfer volume and stability, and resolve quality and reliability issues in distribution networks carrying sensitive equipment and non-linear loads. The use of FACTS in distribution systems is still in its infancy. Voltages and power ratings in distribution networks are at a level where realistic FACTS devices can be deployed. Efficient power converters and therefore loss minimisation are crucial prerequisites for deployment of FACTS devices. This thesis investigates high power semiconductor device losses in detail. Analytical closed form equations are developed for conduction loss in power devices as a function of device ratings and operating conditions. These formulae have been shown to predict losses very accurately, in line with manufacturer data. The developed formulae enable circuit designers to quickly estimate circuit losses and determine the sensitivity of those losses to device voltage and current ratings, and thus select the optimal semiconductor device for a specific application. It is shown that in the case of majority carrier devices (such as power MOSFETs), the conduction power loss (at rated current) increases linearly in relation to the varying rated current (at constant blocking voltage), but is a square root of the variable blocking voltage when rated current is fixed. For minority carrier devices (such as a pin diode or IGBT), a similar relationship is observed for varying current, however where the blocking voltage is altered, power losses are derived as a square root with an offset (from the origin). Finally, this thesis conducts a power loss-oriented evaluation of cascade type multilevel converters suited to reactive power compensation in 11kV and 33kV systems. The cascade cell converter is constructed from a series arrangement of cell modules. Two prospective structures of cascade type converters were compared as a case study: the traditional type which uses equal-sized cells in its chain, and a second with a ternary relationship between its dc-link voltages. Modelling (at 81 and 27 levels) was carried out under steady state conditions, with simplified models based on the switching function and using standard circuit simulators. A detailed survey of non punch through (NPT) and punch through (PT) IGBTs was completed for the purpose of designing the two cascaded converters. Results show that conduction losses are dominant in both types of converters in NPT and PT IGBTs for 11kV and 33kV systems. The equal-sized converter is only likely to be useful in one case (27-levels in the 33kV system). The ternary-sequence converter produces lower losses in all other cases, and this is especially noticeable for the 81-level converter operating in an 11kV network

    Two-dimensional modulation technique with dc voltage control for single-phase two-cell cascaded converters

    Get PDF
    In this paper, a simple feed-forward modulation technique for single-phase two-cell multilevel cascaded converters is presented. All the possible switching states of the power converter are taken into account applying a two dimensional control region. The proposed technique uses the actual values of the DC-Link capacitor voltages to obtain output phase voltages and currents with low harmonic distortion with any dc voltage in the H-bridges of the cascaded converter. The possible switching sequences of the converter are studied and, depending on the actual dc voltage values, their desired values are achieved. Simulation results are shown in order validate the proposed technique working as a synchronous rectifier

    Five-Level Flying Capacitor Converter used as a Static Compensator for Current Unbalances in Three-Phase Distribution Systems

    Get PDF
    This thesis presents and evaluates a solution for unbalanced current loading in three-phase distribution systems. The proposed solution uses the flying capacitor multilevel converter as its main topology for an application known as Unbalanced Current Static Compensator. The fundamental theory, controller design and prototype construction will be presented along with the experimental results. The Unbalanced Current Static Compensator main objective is the balancing of the up-stream currents from the installation point to eliminate the negative- and zero-sequence currents originated by unbalanced single-phase loads. Three separate single-phase flying capacitor converters are controlled independently using a d-q rotating reference frame algorithm to allow easier compensation of reactive power. Simulations of the system were developed in MATLAB/SIMULINK™ in order to validate the design parameters; then, testing of the UCSC prototype was performed to confirm the control algorithm functionality. Finally, experimental result are presented and analyzed

    Nonlinear dynamic of the multicellular chopper

    Get PDF
    International audienceIn this paper, the dynamics of multicellular chopper are considered. The model is described by a continuous time three-dimensional autonomous system. Some basic dynamical properties such as Poincaré mapping, power spectrum and chaotic behaviors are studied. Analysis results show that this system has complex dynamics with some interesting characteristics

    Power Quality

    Get PDF
    Electrical power is becoming one of the most dominant factors in our society. Power generation, transmission, distribution and usage are undergoing signifi cant changes that will aff ect the electrical quality and performance needs of our 21st century industry. One major aspect of electrical power is its quality and stability – or so called Power Quality. The view on Power Quality did change over the past few years. It seems that Power Quality is becoming a more important term in the academic world dealing with electrical power, and it is becoming more visible in all areas of commerce and industry, because of the ever increasing industry automation using sensitive electrical equipment on one hand and due to the dramatic change of our global electrical infrastructure on the other. For the past century, grid stability was maintained with a limited amount of major generators that have a large amount of rotational inertia. And the rate of change of phase angle is slow. Unfortunately, this does not work anymore with renewable energy sources adding their share to the grid like wind turbines or PV modules. Although the basic idea to use renewable energies is great and will be our path into the next century, it comes with a curse for the power grid as power fl ow stability will suff er. It is not only the source side that is about to change. We have also seen signifi cant changes on the load side as well. Industry is using machines and electrical products such as AC drives or PLCs that are sensitive to the slightest change of power quality, and we at home use more and more electrical products with switching power supplies or starting to plug in our electric cars to charge batt eries. In addition, many of us have begun installing our own distributed generation systems on our rooft ops using the latest solar panels. So we did look for a way to address this severe impact on our distribution network. To match supply and demand, we are about to create a new, intelligent and self-healing electric power infrastructure. The Smart Grid. The basic idea is to maintain the necessary balance between generators and loads on a grid. In other words, to make sure we have a good grid balance at all times. But the key question that you should ask yourself is: Does it also improve Power Quality? Probably not! Further on, the way how Power Quality is measured is going to be changed. Traditionally, each country had its own Power Quality standards and defi ned its own power quality instrument requirements. But more and more international harmonization efforts can be seen. Such as IEC 61000-4-30, which is an excellent standard that ensures that all compliant power quality instruments, regardless of manufacturer, will produce of measurement instruments so that they can also be used in volume applications and even directly embedded into sensitive loads. But work still has to be done. We still use Power Quality standards that have been writt en decades ago and don’t match today’s technology any more, such as fl icker standards that use parameters that have been defi ned by the behavior of 60-watt incandescent light bulbs, which are becoming extinct. Almost all experts are in agreement - although we will see an improvement in metering and control of the power fl ow, Power Quality will suff er. This book will give an overview of how power quality might impact our lives today and tomorrow, introduce new ways to monitor power quality and inform us about interesting possibilities to mitigate power quality problems. Regardless of any enhancements of the power grid, “Power Quality is just compatibility” like my good old friend and teacher Alex McEachern used to say. Power Quality will always remain an economic compromise between supply and load. The power available on the grid must be suffi ciently clean for the loads to operate correctly, and the loads must be suffi ciently strong to tolerate normal disturbances on the grid

    A comparative study of capacitor voltage balancing techniques for flying capacitor multi-level power electronic converters

    Get PDF
    With the advent of multilevel converters for high power applications in industry, a need to develop simpler topologies and control techniques has arisen. The flying capacitor multilevel inverter (FCMLI) is one such topology which is gaining popularity in recent years with many advantages such as extra ride-through capabilities because of the capacitor storage, redundancy in switching states, low common mode voltage ratio, improved power quality, etc. In this thesis, different basic multilevel converter topologies and their advantages and applications are discussed. The thesis mainly focuses on single-phase five-level FCMLI topology. Different control techniques for capacitor voltage regulation like staircase modulation, and PWM techniques including phase disposition PWM (PDPWM), and natural balancing technique are implemented. The disadvantages of these methods are discussed. To overcome these, a new method called the split natural balancing technique which is based on the Unipolar PWM method is proposed in this thesis. In addition, a feedback control technique called amplitude modulation adjustment (AMA) method is devised to regulate the voltage across capacitors around the desired value irrespective of their initial values. Harmonic analysis of the output voltage for all the implemented methods is performed and compared --Abstract, page iii
    corecore