904 research outputs found

    A new ordering constraint solving method and its applications

    No full text
    We show that it is possible to transform any given LPO ordering constraint CC into a finite equivalent set of constraints SS for which a special kind of solutions can be obtained. This allows to compute the equalities that follow from ordering constraints, and to decide e.g.\ whether an {\em ordering constrained equation\/} is a tautology. Another application we develop here is a method to check ordered rewrite systems for (ground) confluence

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    Ordering constraints on trees

    Get PDF
    We survey recent results about ordering constraints on trees and discuss their applications. Our main interest lies in the family of recursive path orderings which enjoy the properties of being total, well-founded and compatible with the tree constructors. The paper includes some new results, in particular the undecidability of the theory of lexicographic path orderings in case of a non-unary signature

    A Focused Sequent Calculus Framework for Proof Search in Pure Type Systems

    Get PDF
    Basic proof-search tactics in logic and type theory can be seen as the root-first applications of rules in an appropriate sequent calculus, preferably without the redundancies generated by permutation of rules. This paper addresses the issues of defining such sequent calculi for Pure Type Systems (PTS, which were originally presented in natural deduction style) and then organizing their rules for effective proof-search. We introduce the idea of Pure Type Sequent Calculus with meta-variables (PTSCalpha), by enriching the syntax of a permutation-free sequent calculus for propositional logic due to Herbelin, which is strongly related to natural deduction and already well adapted to proof-search. The operational semantics is adapted from Herbelin's and is defined by a system of local rewrite rules as in cut-elimination, using explicit substitutions. We prove confluence for this system. Restricting our attention to PTSC, a type system for the ground terms of this system, we obtain the Subject Reduction property and show that each PTSC is logically equivalent to its corresponding PTS, and the former is strongly normalising iff the latter is. We show how to make the logical rules of PTSC into a syntax-directed system PS for proof-search, by incorporating the conversion rules as in syntax-directed presentations of the PTS rules for type-checking. Finally, we consider how to use the explicitly scoped meta-variables of PTSCalpha to represent partial proof-terms, and use them to analyse interactive proof construction. This sets up a framework PE in which we are able to study proof-search strategies, type inhabitant enumeration and (higher-order) unification

    The first-order theory of lexicographic path orderings is undecidable

    Get PDF
    We show, under some assumption on the signature, that the *This formula not viewable on a Text-Browser* fragment of the theory of any lexicographic path ordering is undecidable. This applies to partial and to total precedences. Our result implies in particular that the simplification rule of ordered completion is undecidable
    corecore