2,731 research outputs found

    Matching Natural Language Sentences with Hierarchical Sentence Factorization

    Full text link
    Semantic matching of natural language sentences or identifying the relationship between two sentences is a core research problem underlying many natural language tasks. Depending on whether training data is available, prior research has proposed both unsupervised distance-based schemes and supervised deep learning schemes for sentence matching. However, previous approaches either omit or fail to fully utilize the ordered, hierarchical, and flexible structures of language objects, as well as the interactions between them. In this paper, we propose Hierarchical Sentence Factorization---a technique to factorize a sentence into a hierarchical representation, with the components at each different scale reordered into a "predicate-argument" form. The proposed sentence factorization technique leads to the invention of: 1) a new unsupervised distance metric which calculates the semantic distance between a pair of text snippets by solving a penalized optimal transport problem while preserving the logical relationship of words in the reordered sentences, and 2) new multi-scale deep learning models for supervised semantic training, based on factorized sentence hierarchies. We apply our techniques to text-pair similarity estimation and text-pair relationship classification tasks, based on multiple datasets such as STSbenchmark, the Microsoft Research paraphrase identification (MSRP) dataset, the SICK dataset, etc. Extensive experiments show that the proposed hierarchical sentence factorization can be used to significantly improve the performance of existing unsupervised distance-based metrics as well as multiple supervised deep learning models based on the convolutional neural network (CNN) and long short-term memory (LSTM).Comment: Accepted by WWW 2018, 10 page

    Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy

    Full text link
    Non-negative matrix factorization (NMF) has proved effective in many clustering and classification tasks. The classic ways to measure the errors between the original and the reconstructed matrix are l2l_2 distance or Kullback-Leibler (KL) divergence. However, nonlinear cases are not properly handled when we use these error measures. As a consequence, alternative measures based on nonlinear kernels, such as correntropy, are proposed. However, the current correntropy-based NMF only targets on the low-level features without considering the intrinsic geometrical distribution of data. In this paper, we propose a new NMF algorithm that preserves local invariance by adding graph regularization into the process of max-correntropy-based matrix factorization. Meanwhile, each feature can learn corresponding kernel from the data. The experiment results of Caltech101 and Caltech256 show the benefits of such combination against other NMF algorithms for the unsupervised image clustering

    Latent Semantic Indexing (LSI) Based Distributed System and Search On Encrypted Data

    Get PDF
    Latent semantic indexing (LSI) was initially introduced to overcome the issues of synonymy and polysemy of the traditional vector space model (VSM). LSI, however, has challenges of its own, mainly scalability. Despite being introduced in 1990, there are few attempts that provide an efficient solution for LSI, most of the literature is focuses on LSI’s applications rather than improving the original algorithm. In this work we analyze the first framework to provide scalable implementation of LSI and report its performance on the distributed environment of RAAD. The possibility of adopting LSI in the field of searching over encrypted data is also investigated. The importance of that field is stemmed from the need for cloud computing as an effective computing paradigm that provides an affordable access to high computational power. Encryption is usually applied to prevent unauthorized access to the data (the host is assumed to be curious), however this limits accessibility to the data given that search over encryption is yet to catch with the latest techniques adopted by the Information Retrieval (IR) community. In this work we propose a system that uses LSI for indexing and free-query text for retrieving. The results show that the available LSI framework does scale on large datasets, however it had some limitations with respect to factors like dictionary size and memory limit. When replicating the exact settings of the baseline on RAAD, it performed relatively slower. This could be resulted by the fact that RAAD uses a distributed file system or because of network latency. The results also show that the proposed system for applying LSI on encrypted data retrieved documents in the same order as the baseline (unencrypted data)
    • …
    corecore