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Massive Open Online Course (MOOC) systems have recently received significant recognition and are increasingly attract-
ing the attention of education providers and educational researchers. MOOCs are neither precisely defined nor sufficiently
researched in terms of their properties and usage. The large number of students enrolled in these courses can lead to insuf-
ficient feedback given to the students. A stream of student posts to courses’ forums makes the problem even more difficult.
Students’–MOOCs’ interactions can be exploited using text mining techniques to enhance learning and personalise the learn-
ers’ experience. In this paper, the open issues in MOOCs are outlined. Text mining and streaming text mining techniques
which can contribute to the success of these systems are reviewed and some open issues in MOOC systems are addressed.
Finally, our vision of an intelligent personalised MOOC feedback management system that we term iMOOC is outlined.
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1. Introduction
Evolution in computer hardware and software increases
the amount of generated and stored data. This unbridled
growth of data creates the need to reveal patterns in our
business and scientific aspects. Statistical and machine
learning techniques have been used to learn and discover
hidden patterns in data sets. As a result, the data mining
field emerged and flourished.

Data mining is defined as an automatic or semiau-
tomatic analysis of substantial quantities of data stored
in databases, text, or images to discover valid, useful,
and understandable patterns. This in turn allows nontriv-
ial prediction on unseen data (Liu, 2007; Witten & Frank,
2005). Most common tasks of data mining are classifi-
cation, clustering, association rule mining, and sequential
pattern mining (Liu, 2007).

Traditional data mining uses structured data found in
relational databases, spreadsheets, or structured text files.
However, due to the staggering volume of text documents
and web pages, researchers started to apply traditional data
mining techniques to web documents and text documents.
As a result, the web and text mining fields emerged. Unlike
traditional data mining, text mining and web mining deal
with heterogeneous, unstructured, or semi-structured data
(Liu, 2007).

The advent of web forums, blogs, and social network
sites, such as Facebook, MySpace, and Cyworld, allow
users to interact with these sites and to send comments or
feedback. As a large volume of users interact with these
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systems which generate massive volumes of continuous
streaming data, researchers focus on stream mining and
social network analysis and mining. In stream data massive
volumes of continuous structured and unstructured data
arrive at high speed and require real-time analysis (Aggar-
wal, 2011; Gaber, Zaslavsky, & Krishnaswamy, 2005).
Data stream processing has its own challenges such as a
limited amount of memory and the fact that data points are
accessed in the order they arrive, that is, random access
to the data points is not allowed (O’Callaghan, Mishra,
Meyerson, Guha, & Motwani, 2002).

A significant number of e-learning systems do exist on
the Internet. These systems benefited from findings and
techniques of data mining and text mining, which led to
the emergence of the educational data mining (EDM) field.
EDM aims to provide better experiences to learners when
they interact with these systems. The advent of e-learning
2.0 systems created new challenges for EDM. Social learn-
ing is adopted using social software such as blogs, forums,
and wikis. These systems allow learners to engage in the
teaching process; moreover, it allows learners to partici-
pate in peer grading which adds more challenges to the
credibility of these systems.

In order to compete globally higher education institu-
tions must improve their services to attract and maintain
students. E-learning solutions are key parts in increasing
and maintaining student interest, interactivity, and moti-
vation. E-learning solutions aim to make learning more
efficient. These systems strive to personalise learners’

c© 2014 The Author(s). Published by Taylor & Francis.
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interactions with e-learning systems which in turn moti-
vate students and support institutions to achieve efficiency.
To personalise learners’ interactions, learners’ behaviours
are analysed to deeply understand learners and enhance the
learning processes which are the main objectives of EDM.

The volume of learners enrolled in educational systems
has dramatically increased from hundreds to thousands or
even millions (Coursera for example). Each class has its
own forums. Learners send massive volumes of comments,
questions, or answers on a daily basis. E-learning systems
that are scalable and open are called Massive Open Online
Course (MOOCs) which allow a large number of learn-
ers to interact with these systems (Kop, Fournier, & Mak,
2011). This creates massive volumes of text stream where
streaming data clustering can contribute to enhancing
learners–educator/system interaction. Also, topic detec-
tion in streaming data can give a summary of what is going
on in these systems. These techniques are the main compo-
nents of our proposed system to manage MOOC systems.
More details of our proposed system are given in Section 6.

E-learning systems that are scalable and open are called
MOOCs which allow a large number of learners to interact
with these systems (Kop et al., 2011). This creates massive
volumes of text stream where streaming data clustering can
contribute to enhancing learners–educator/system interac-
tion. Also topic detection in streaming data can give a
summary of what is going on in these systems. These tech-
niques are the main components of our proposed system
to manage MOOC systems. More details of our proposed
system are given in Section 6.

MOOCs are new phenomena in e-learning, which
started in 2008. Currently, two types of MOOCs can be dis-
tinguished: cMOOCs and xMOOCs. The former represents
the early style of MOOCs which is based on connec-
tivisim and networking, while the latter, that is, xMOOCs,
belongs to the behaviouristic learning approaches. The lat-
ter has been adopted by prestigious institutions such as
MIT and Stanford. MOOCs share many features with tra-
ditional e-learning systems, however, they have their own
characteristics which are that they are free, open access,
and set no upper limit to the number of enrolled learners
(Daniel, 2012). The large volume of learners participat-
ing in MOOCs generates a massive volume of stream
text that cannot be handled by a small group of aca-
demics. Therefore, a need arises to develop new or to
tailor existing stream techniques to manage stream data
in MOOCs.

Clustering, as aforementioned, is one of the data min-
ing tasks. It is defined as the process of grouping data
instances based on a defined proximity function. Data
instances are also referred to as data objects or data points.
Different types of clustering algorithms can be used to
cluster data instances. We can classify these algorithms as
partitioning, overlapping, subspace, and hierarchical algo-
rithms (Liu, 2007). While clustering offline data instances
almost reached a stable state, clustering stream data is still

a challenging and prominent topic because streaming data
needs to deal with continuous events happening rapidly.
Time, memory, and large volume constraints contribute to
the challenge of clustering stream data (Liu, Cai, Yin, &
Fu, 2008).

In this research we give an overview of MOOCs and
the challenges their features present for learning and per-
sonalisation. Subsequently, we present a systematic review
of data mining algorithms which can be used to pro-
cess learners’ streaming forum posts, automate assessment
evaluations for massive volumes of learners, and pro-
vide online feedback to learners. Using preset content in
e-learning systems is another objective of this research.
We aim to utilise text/stream clustering, data mining, and
machine learning theories and techniques to achieve these
objectives.

The remaining of this paper is organised as follows.
Section 2 describes MOOCs and their features. Section 3
gives an overview of the text mining field, while Section 4
describes the state-of-the-art algorithms in text mining.
Topic detection is presented in Section 5. Section 6
presents our proposed system architecture for managing
MOOCs’ feedback, and, finally, Section 7 summarises the
paper and outlines directions for future work.

2. Massive Online Open Courses
MOOCs are new phenomena in the higher education field.
Despite attracting a great deal of attention in the last cou-
ple of years, there is very little research into the various
aspects of MOOCs and their usage. In this section, MOOCs
are described in detail and their features are outlined.
Moreover, potential areas for research in MOOCs and the
associated research challenges are discussed.

The development of MOOCs has its roots back to
2001–2002 when William and Flora Hewlett founded the
Carnegie Mellon University Open Learning Initiative and
the MIT Open Courseware project, which freely offered
course materials from these institutions online under Cre-
ative Commons licenses (Open Learning Initiative, 2013).
The term MOOC was coined by David Cormier and Bryan
Alexander at the University of Manitoba in 2008. In
2012, Edx which is a joint project between Harvard and
MIT was established to offer open courses online; Udac-
ity and Coursera also appeared in 2012. Currently, more
institutions started offering MOOCs.

MOOCs have similarities to an ordinary course, such
as a predefined timeline and a weekly breakdown of top-
ics. However, MOOCs have no fees, no prerequisites other
than Internet access, no predefined expectations for partic-
ipation, and generally no accreditation, that is, no credit or
certificate offered for completion.

MOOCs have become a hot topic in higher education.
E-learning and distance learning are well-known concepts
in the educational field. In addition, the use of technol-
ogy, such as radio and TV broadcasting, and the Internet,
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has been practised for some time. However, MOOCs are
different in many aspects. Two of the most important char-
acteristics are that MOOCs are free, that is, institutions
offer courses with no tuition fees, and that they are open,
that is, students can enrol with no prerequisite. The success
of MOOCs is due to its adoption by prestigious institutions,
offering opportunities to make education accessible and
affordable, and to the availability of the Internet, tablets,
and smart phones. As a result, we have the massiveness
feature of MOOCs.

Higher education has many challenges. Among these
challenges are access, cost, and quality. MOOCs addressed
and successfully resolved the access and cost challenges.
However, the third challenge, which is quality, is the major
controversial topic (Mazoue, 2013). Some higher educa-
tion researchers criticise the quality of MOOCs (Vardi,
2012). Their view is that MOOCs lack a sophisticated
learning architecture. In addition, they criticise the feed-
back and communication management in MOOCs. In cur-
rent MOOC settings, instructors will not be able to interact
with all students to answer their questions and comments.
On the other hand, MOOCs support peer-to-peer interac-
tion; however, this is not suitable for all types of courses
(Mazoue, 2013).

Educational researchers who support the new phe-
nomenon, see it as a solution for higher education chal-
lenges and a victory of democracy in education. They
believe that the findings and the results of EDM, intelligent
tutoring systems, and analytical learning researches will
contribute to the success of MOOCs and will enhance the
communication and feedback management. Table 1 sum-
marises the advantages and limitations of MOOCs based
on pro-/anti-MOOCs’ perspectives (Cooper & Sahami,
2013; Hyman, 2012; Kaczmarczyk, 2013; Mazoue, 2013;
Vardi, 2012).

Table 1. Advantages and limitation of MOOCs.

Advantages Limitations

More effective than a professor
monologuing to a large class

Inability of educators to
assess student learning

It offers quizzes for retrieval
practice which is an
established method to improve
learning

No accreditation

Open opportunities for millions
of people who cannot access
universities

Validation and plagiarism

Provides global access to
education and can be
scheduled to work with family
and personal commitments

Lack of in-depth
evaluation models to
evaluate projects and
assignments

Can be used as support materials
for face to face courses

Lack of effective
communication and
feedback

2.1. iMOOCs
As aforementioned, the MOOC concept is relatively new.
It does not have standard abbreviations for its termi-
nologies. Many researchers used some abbreviations to
describe MOOCs or to describe frameworks and systems
for managing MOOCs.

As a result, some abbreviations such as iMOOC are
referred to as internal MOOC or interactive MOOC. Inter-
nal MOOCs are courses offered by institutions which are
open to all students within these institutions. However,
courses are not available for students outside these insti-
tutions. Politecnico di Milano and National University of
Singapore are examples of these institutions.

On the other hand, interactive MOOC aims to add more
interactivity to the MOOC to increase learners’ engage-
ment, as a result, overcoming high drop-out rates problem
in earlier MOOC settings. Interactivity is achieved by
adding real-world simulating objects, games, or other inter-
active objects. Interactive MOOCs are built around the
virtual pedagogical model. The premises underlying this
model are interaction, flexibility, individual centeredness,
and digital inclusion (Breslow et al., 2013; Weller, 2011).

Currently, we are not able to judge the correctness of
any perspective due to the lack of in-depth educational
research that is in favour of any of the aforementioned
perspectives. However, in this paper, we advocate that the
disadvantages of MOOCs can be addressed through data
mining research. Therefore, we use the term iMOOC to
stand for intelligent MOOC.

In particular, in this paper, we give an overview of
data mining techniques that can contribute to solving the
following questions:

• How can we reach the quality of individual tutoring
with massiveness feature of MOOCs?

• How can we enhance the communication manage-
ment between students and educators?

• How can we create a pedagogy that is structured and
rich in feedback loops?

One of the most common criticisms of all MOOCs
is the lack of direct student to professor communication.
When a professor teaches hundreds of thousands of stu-
dents, how does he communicate with them? When a
student takes a MOOC, how does he reach out to his
professor? We argue that communication and feedback in
MOOCs can be improved by using data mining algorithms.
In this paper, we give an overview of data mining algo-
rithms that can be used to enhance the communication in
the MOOCs between students and educators.

3. Text mining
As defined earlier, data mining aims to discover valid
and useful information which allows nontrivial prediction.
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Structured data can be easily mined, however, unstruc-
tured data mining such as text documents or stream text
needs more intensive work before mining algorithms can
be applied.

Many algorithms were introduced to mine text data
which are information extraction, text summarisation,
supervised learning, unsupervised learning, dimensional-
ity reduction, transfer learning, probabilistic techniques,
cross-lingual mining, and text stream mining (Liu, 2007).

In this section, we present methods that are related to
mining text in MOOCs; these are unsupervised learning
and streaming text mining.

Unsupervised learning methods do not require any
manual labelling of the training data which is labour-
intensive work. Manual labelling of the training data is
used in other algorithms such as supervised learning and
information extraction algorithms. The commonly used
methods in unsupervised learning algorithms are clustering
and topic modelling (Aggarwal, 2012).

Clustering is the process of grouping data instances
based on similarity (Liu, 2007). Clustering methods were
designed for quantitative and categorical data. However,
general clustering algorithms such as k-means were devel-
oped to work with text data as well. Native clustering
methods do not work effectively for text data since text data
is sparse and has high dimensionality. Hence, text cluster-
ing requires designing text-specific clustering algorithms.
On the other hand, topic modelling aims to overcome the
computational inefficiency feature of text clustering.

Feature selection is the first step in text mining. This
process is crucial to the quality of text mining methods.
Noisy features must be eliminated before starting the clus-
tering process. On the other hand, relevant features need
to be identified. Various feature selection approaches were
used in text mining such as frequency-based selection,
term-strength selection, term contribution, and entropy-
based ranking. Another method in text preprocessing is
feature transformation which aims to improve the quality
of document representation. These methods include latent
semantic indexing (LSI), non-matrix factorisation, and
probabilistic latent semantic analysis (PLSA) (Aggarwal &
Zhai, 2012).

4. Text-clustering algorithms
In this section, we provide an overview of the state-of-
the-art on text-clustering algorithms. Text documents are
clustered based on a similarity function. Different simi-
larity functions have been used in text clustering. A pop-
ular similarity function is cosine similarity. In addition,
heuristic functions such as term frequency (TF), inverse
document frequency, and document length normalisation
have been used to optimise similarity functions (Aggar-
wal & Zhai, 2012). Probabilistic models of text represent
text documents as probability distributions over words. In

Figure 1. Dendogram of text documents.

these models, similarity is obtained according to a theoretic
measure of information (Zhai, 2008).

4.1. Agglomerated hierarchical algorithms
Agglomerated hierarchical algorithms were used exten-
sively in clustering quantitative and categorical data, and
were later found to be also suitable for text data. Agglomer-
ated clustering algorithms start with individual documents
in the corpus as initial clusters, where each document
represents a cluster. Subsequently, similar documents are
merged in higher level clusters until all documents are
grouped in one big cluster. This process is illustrated as
a dendogram, such as the one in Figure 1.

According to Murtagh & Contreras (2012) hierarchical
algorithms fall into three categories which are linkage and
centroid, median, and minimum variance methods. Hier-
archical linkage-based methods can be categorised in one
of the following three similarity approaches (Murtagh &
Contreras, 2012):

• Two groups of clusters are merged if they have
the least interconnecting dissimilarity among all
other documents pairs which is called single-linkage
clustering. It is an extremely efficient method for
clustering text documents. However, it suffers from
the drawback of chaining, a phenomenon in which
incompatible documents are grouped in the same
cluster. As a result, it can generate poor-quality
clusters.

• Instead of clustering documents based on the maxi-
mum similarity among document pairs, clusters are
obtained by computing the average similarity of
all possible combinations of document pairs of the
clusters, a method known as group-average linkage
clustering. The more documents in the clusters are,
the less efficient this method becomes; however, it
generates better quality clusters.

• Two groups of clusters are merged based on the
worst-case similarity between two pairs of docu-
ments. Although this method overrides the chain-
ing phenomenon which exists in a single-linkage
clustering method, it is computationally more expen-
sive than the aforementioned linkage methods; this
method is known as complete-linkage clustering.
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Figure 2. Agglomerated document clustering. (a) Single-linkage document clustering and (b) complete-linkage document clustering.

Figure 2 shows single-linkage clustering (a) and
complete-linkage clustering (b). In the single-link method,
the similarity between the upper two-point clusters is the
distance between points d4 and d6 (the solid line). This
similarity is greater1 than the single-link similarity of the
two left two-point clusters, which is calculated as the
distance between d4 and d3 (the dashed line).

On the other hand, the complete-link similarity of the
upper two-point clusters is the distance between points
d2 and d8 (the dashed line). This similarity is less than
the complete-link similarity of the left two-point clusters,
which is the distance between d3 and d4 (the solid line). In
both single-link and complete-link clustering algorithms,
we obtained two clusters; however, each cluster contains
different document sets.

4.2. Partitional clustering algorithms
Partitional clustering methods create flat (one level) parti-
tioning of the data points (text documents). These methods
find all desired clusters at once. K-means and k-medoid are
two of the most used algorithms with text data.

The former starts with a set of kernels documents not
necessarily from the original corpus; each of these docu-
ments is used to build the cluster by assigning documents in
the corpus to one of these kernels using closest similarity.
In the next iteration, the original kernel is replaced by the
centroid of the previously formed clusters. The algorithm
is terminated when convergence is achieved.

In the latter, the kernels are selected from the orig-
inal documents in the corpus and then the clusters are
built around these kernels. Each document then is assigned
to the closest kernel using average similarity of each
document to its closest kernel. Iteratively the algorithm
improves the kernels using randomised interchanges. An
objective function is used to determine whether the inter-
change process improves the cluster or not in each iter-
ation. Once a convergence is achieved the algorithm is
finished.

Performance-wise, k-means generally outperforms k-
medoids and generates better quality clusters, mainly
because k-means requires fewer iterations to converge.
Additionally, k-medoids works inefficiently with sparse

data (Aggarwal & Zhai, 2012). A variation of the k-means
algorithm, called “bisecting” k-means, was also used with
text documents. A comparative study (Steinbach, Karypis,
& Kumar, 2000) found that bisecting k-means outperforms
the original k-means algorithm and that it is as good as, or
better than agglomerated clustering algorithms for variant
evaluation measures.

Figure 3 illustrated aspects of partitional clustering
algorithms. In (a) clusters generated by the k-means
algorithm are displayed, while (b) shows how the cluster
centroid is changing after each iteration. μi has been des-
ignated as the cluster centroid. The initial centroid is μ0,
while after four iterations μ3 is the new cluster centroid.

4.3. Hybrid text clustering
Hierarchical clustering algorithms tend to be less effi-
cient because they are computationally expensive; how-
ever, they tend to generate robust clusters. In contrast,
partitioning algorithms are computationally efficient, but
are less effective in terms of the quality of the generated
clusters. Many attempts were introduced to improve both
efficiency and effectiveness of text-clustering algorithms.
It was proved that the initial selection of the seeds for the
k-means algorithm significantly contributes to the quality
of the generated clusters. As a result, many hybrid algo-
rithms (Cutting, Karger, Pedersen, & Tukey, 1992; Luo,
Li, & Chung, 2009) attempted to find good initial seeds for
the k-means algorithm. Others (Cutting et al., 1992) pro-
posed algorithms to refine cluster centroids, claiming that
this refinement will enhance the effectiveness of the gener-
ated clusters. In the following, we overview the algorithms
with the most significant improvements.

The clustering algorithm proposed in Cutting et al.
(1992) starts by finding good initial seeds for the k-means
algorithm. This is achieved by implementing two meth-
ods which are buckshot and fractionation as they called
in Cutting et al. (1992).

The former randomly selects
√

kn documents, where k
is the number of desired clusters and n is the number of
documents in the corpus. Next, an agglomerated algorithm
is used to cluster this subgroup into k clusters, where the
centroid of each cluster forms a seed for the k-means
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Figure 3. Partitional document clustering. (a) Clusters generated by k-means and (b) cluster-generating process.

algorithm. Multiple runs of this algorithm against the same
corpus will not generate the same partitions. However, in
practice, Cutting et al. (1992) found that multiple runs gave
qualitatively similar partitions.

The latter brakes the corpus into fixed size groups, each
with the size of n/m, where m > k. Next, an agglomer-
ated algorithm will produce z clusters for each group. As a
result, we will have z × m clusters. Each cluster is consid-
ered as an individual document by merging all documents
in that cluster. This process is repeated until k clusters are
obtained. These form the seeds for the k-means algorithm,
where every document is assigned to the nearest cluster and
the cluster centroid is modified after assigning the docu-
ment to the cluster. As a result, the new centroid replaces
the old one and is used as a seed in the next iteration.

4.4. Frequent term-based text clustering
One of the main challenges for text clustering is the large
dimensionality of the document vector space. Frequent
term-based clustering (FTC) methods cluster documents
based on a subset of frequent terms, instead of the whole
terms in the collection. The frequent item set is obtained
from association rule mining. There are many algorithms
for this purpose; more details can be found in Agrawal &
Srikant (1994), Han, Pei, & Yin (2000), and Zaki (2000).

FTC algorithms consider each selected subset of fre-
quent term sets as cluster descriptions, while the docu-
ments covering the subsets of frequent terms represent the
cluster itself.

Two types of algorithms for text clustering based on
frequent terms can be distinguished (Beil, Ester, & Xu,
2002): FTC and hierarchical frequent term-based cluster-
ing (HFTC).

The former is a bottom-up flat clustering algorithm
which starts with an empty set of clusters. In every iter-
ation, it selects one of the cluster descriptions (one set
of frequent term sets) that have a minimum overlap with
other clusters. The selected set will be removed from the

database and the documents covering it are also removed
from the document collection. The algorithm ends when all
documents in the collection are clustered. This approach
generates clusters with no overlap.

The latter algorithm exploits the monotonicity property
of the frequent item set where all k − 1 subsets of frequent
k-terms are also frequent. It starts with one big cluster
containing all documents. In the next iteration, it clus-
ters the documents based on frequent 1-term sets. Then,
it uses 2-terms sets and continues until no more frequent
k-terms exist. The clusters generated by this algorithm are
overlapped.

4.5. Graph-based text clustering
Using the graph model for clustering dates as far back as
1959 (Augustson & Minker, 1970). In graph-based models,
the maximum complete subgraph of a graph is defined as a
cluster.

In Dhillon (2001), a method to cluster text documents
and words also known as co-clustering was introduced
based on a bipartite graph structure. Documents and words
represent vertices, while E is the set of edges between
documents and words. In this structure there are no edges
between words, nor between documents; only document to
word edges exist. Edges are positively weighted, where the
weights represent the word frequency in a document. To
cluster documents, a cut function is defined for partition
vertex set V: cut(v1, v2) = ∑

i∈v1,j ∈v2
Mij .

Finding the minimum cut for set V is an nondeterminis-
tic polynomial (NP) complete problem. However, heuristic
methods such as spectral graph bipartitioning can be used
to solve this problem. As a result, V is partitioned into
two nearly equally sized subsets V∗

1 and V∗
2 and this will

give the document clusters. Word clustering is obtained by
assigning words to the greatest edge weight connected doc-
ument and simultaneously performs the k-means algorithm
to obtain the bipartition.
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Another graph-based approach was introduced in
Aslam, Pelekhov, & Rus (2006), where they represented
the documents in the corpus using a similarity graph G.
The cosine similarity between documents is calculated and
a set of weights E is obtained for the document set D.
For each edge between documents di, dj ∈ D the weight
eij ∈ E represents the similarity value.

Unlike the work in Dhillon (2001) where edges exist
between words and documents only, in Aslam et al. (2006)
edges exist between documents only. A similarity ratio σ

is set which represents the minimum threshold, that is, all
edges under σ are ignored. Given the Gσ subgraph the
highest similarity edge is set as the centre of the cluster
(star as called in their work). All connected vertices (satel-
lites) to this star form a cluster. The similarity between a
star and its satellites is guaranteed, however, similarities
between satellites are not guaranteed. Although similarity
between satellites has not been proven mathematically, the
authors claimed that experimental results show similarities
among the satellites.

The Neighbours-based clustering algorithm is also a
graph-based algorithm proposed in Luo et al. (2009)
to select well-separated initial seeds for the k-means
algorithm based on pairwise similarity value, link func-
tion value, and number of neighbours of documents in
the corpus. It uses a new similarity function for assigning
documents to the nearest centroid. Finally, a heuristic func-
tion selects the candidate cluster to be split for bisecting
k-means.

The first step in this algorithm is to find similarities
between pairs of documents (di, dj ), for all document pairs
in the corpus using cosine similarity. If the similarity value
is above the given θ specified by the user, then the pairs
of the documents (di, dj ) are considered neighbours. The
similarity information is represented using n × n matrix M,
where n is the number of documents in the corpus. Each
value in this matrix is represented using binary representa-
tion where 1 in M [i, j ] means that documents di and dj are
neighbours and 0 otherwise. The number of neighbours for
document di denoted by N (di) is

∑n
j =1 M [i, j ].

The second function is the link function of document
pairs (di, dj ) which is the number of common neigh-
bours between di and dj . They calculate the value of the
link function by multiplying the ith row by the j th col
which is denoted by link(di, dj ) = ∑n

m=1 M [i, m]· M [m, j ].
The value of this function is proportionally related to the
probability of di and dj belonging to the same cluster.

Next, the algorithm finds candidate seeds for the k-
means algorithm by selecting (k + p) documents as candi-
date seeds set Sc, where k is the number of desired seeds
and p any extra number of documents specified by the
user. The set of candidate seeds is selected from the first
minimum (k + p)N (di) value documents. After that the
algorithm finds similarity and link values for all document
pairs combinations in Sc. Based on these values, it calcu-
lates the rankcos and ranklink for every pair of documents.

The sum of the rankcos and ranklink gives the ranktotal
value.

4.6. Other clustering methods
The winnowing-based text-clustering algorithm was intro-
duced by Schleimer (2003) to find a similar text across
documents to detect copy or plagiarism in research and
student papers. The algorithm divides the document into
k-gram substrings where the k value is specified by the
user. Each k-substring is called hash. Some subsets of
these hashes will be selected to represent the document
fingerprint. When two or more documents share one or
more fingerprints, they are considered similar. Based on
that, authors in Parapar & Barreiro (2008) proposed a
text-clustering algorithm. Experimental results show that
winnowing-based text clustering outperforms k-mean and
TF representations.

Table 2 shows a summary of the overviewed text-
clustering algorithms. The table contains a brief descrip-
tion of every clustering algorithm mentioned in the review,
the category of these algorithms, and their limitations and
computational complexities.

5. Topic modelling
One of text clustering challenges is the large volume of
words (terms) in documents. Many methods emerged to
reduce the large volume of the documents by represent-
ing documents using a small subset of their words. These
words represent the abstract or theme of the document.
They can be obtained using statistical modelling of a field
known as topic modelling in machine learning and natural
language processing (NLP) (Blei, 2012; Landauer, Mcna-
mara, Dennis, & Kintsch, 2007). Statistical modelling for
topic detection and tracking includes but is not limited to
LSI and latent Dirichlet allocation (LDA).

5.1. Probabilistic latent semantic analysis
The vector space model used to represent documents
and words is a high-dimensional sparsely space. Latent
semantic analysis (LSA), also called LSI, is an automatic
indexing method. It projects documents and words into a
lower dimensional space. The projected terms represent
the semantic concepts in the documents which hopefully
overcome synonyms and polysemy problems where dif-
ferent terms have the same meaning or a term may have
different meaning according to the context. This projec-
tion allows conceptual level document analysis. LSA has
its root in information retrieval for indexing informa-
tion retrieval system. To project the sparsely dimensional
documents–words matrix, LSA uses singular value decom-
position (SVD) to project documents and words into k-
latent semantic spaces. Similarity between documents is
measured using latent semantic space and so are the word
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Table 2. Text-clustering algorithms summary.

Algorithm Category Description Limitation and computational efficiency

Single linkage Hierarchical Merge data points based on the least
interconnect dissimilarity

Chaining phenomenon, computationally
efficient. Time complexity O(N log N ).
Space complexity O(N )

Group-average
linkage

Hierarchical Merges data points based on the average
similarity of all possible combinations of
documents

Overcome chaining phenomenon.
Computationally expensive O(N 3).
Space O(N 2)

Complete
linkage

Hierarchical Merges data points based on the worst
similarity

Overcome chaining phenomenon.
Computationally expensive O(N 2).
Space O(N )

k-means Partitioning Starts by a set of kernels documents not
necessarily from the original corpus and
build the clusters around these documents
using closest similarity. The centroid of the
cluster is used in the next iteration.
Bisecting k-means is a variation of k-means

Computationally efficient O(N log N ).
Requires few iterations to converge.
Outperforms k-medoids

k-medoids Partitioning Starts by a set of kernels documents from the
original corpus and build the clusters
around these documents using average
similarity. The quality of the clusters is
improved using objective function

Robust clusters generated

Bipartite graph Graph based Documents and words are represented as
bipartite graph. Cut function is used to
cluster documents

NP complete problem. Heuristic function
is used for optimal solution

Buckshot and
fractionation

Hybrid k-means-based clustering method. With
improvement in the kernels set selection
using buckshot and fractionation

Multiple runs of this algorithm generates
different clusters

FTC and HFTC Frequent item Reduce the dimensionality of documents by
representing document using its frequent
terms set. FTC is bottom-up clustering.
HFTC is top-down clustering

FTC generates clusters without
overlapping. HFTC generates
overlapped clusters. Both FTC and
HFTC outperform k-means and
k-medoids

Star-satellites Graph based Data points are represented as similarity
graph. A cosine similarity function is used.
A star is the centre of the cluster.
Documents that are above user-defined
threshold similarity are satellites

Similarity between satellites is not
guaranteed. Theorem exists in this
method failed to prove satellites
similarities.Time complexity
O(N log2 N )

Windowing-
based

Partitioning It divides the document into k-gram
sub-strings. Then, a subset of these sub
strings represents the document fingerprints.
Documents share two or more fingerprints
are considered similar and clustered

Outperforms k-means and FTC

similarities. More details about LSA can be found in
Aggarwal (2012).

In practice, documents are added to the collection
(corpus) rapidly. As a result, the document–term matrix
needs updating, which in turn leads to a re-calculation of
the latent semantic space to reflect the added documents.
Repeating the whole process is computationally inefficient.
Instead, two methods have been used which are fold-in and
semantic space updating. The former computes the projec-
tion of the new documents using the existing LSI, which
is computationally efficient. The latter overcomes the out-
dated models by adding new documents to the collection
over time; however, indexing is not guaranteed to provide
the best rank approximation.

Probabilistic LSA was introduced by Hofmann (1999);
this approach aims to statistically model co-occurrence

information by applying a probabilistic framework to dis-
cover the latent semantic structure. The latent variables
(topics) are associated with observed documents. For for-
mal description, see Hofmann (1999).

5.2. Latent Dirichlet allocation (LDA)
LDA is a generative probabilistic modelling method. In
practice, documents contain multiple topics and words dis-
tributed over many topics. LDA aims to capture all topics
in the documents. It considers a topic as a distribution
over words. These topics are assumed to be generated
in advance. For each document, LDA is used to draw
some topics that cover this document. Then, a topic is
assigned to each word in the document and a word is
selected from the topic words distribution. In practice,
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topics, document topics distribution, and document words
distribution over topic are unknown or hidden. Only docu-
ments are observed. As a result, the computational problem
for topic modelling is to infer all hidden structures given
the observed document.

In Blei, Ng, & Jordan (2003), a document collection
of scientific research journals from 1880 to 2002 was
used. These documents were not labelled and did not have
any metadata, that is, only the text of the documents was
observed. They assumed that 100 different topics exist in
these documents, and they used LDA to infer the word dis-
tribution over these topics and the distribution of topics in
all documents. They also studied how topics evolved over
time.

5.3. Hierarchical generative probabilistic model
The hierarchical generative probabilistic model based on
the bigram model was introduced in Wallach (2006).
Marginal and conditional word counts are obtained from a
corpus. The marginal count is the number of times a word
occurred in the corpus. The conditional count is the num-
ber of times a word wi immediately followed another word
wj . Unlike LDA where word positions are ignored, in this
model each word wk is predicted based on the word wk−1.

The bigram model based on the marginal and condi-
tional counts predicts wk given the observed wk−1. This
approach integrates bigram-based and topic-based mod-
els to achieve a better predictive accuracy over LDA or
hierarchical LDA.

In Tam & Schultz (2008), they extended the bigram
model introduced by Wallach (2006). They present a corre-
lated bigram LSA approach for an unsupervised language
model adaptation for automatic speech recognition. They
contributed to the bigram LSA by presenting a technique
for topics correlation modelling using Dirichlet-tree prior.
An algorithm for bigram LSA training via variational
Bayes approach and model bootstrapping is proposed,
which is scalable to large language model’s settings. More-
over, they formulate the fractional Kneser–Ney smoothing
to generalise the original Kneser–Ney smoothing which
supports only integral counts.

5.4. Discriminative probabilistic model
In a study presented in He, Chang, Lim, & Banerjee
(2010), the authors examined the time factor in documents.
Instead of representing documents as word vector space
only, documents are represented in words and time vec-
tor space. A temporal discriminative probabilistic model
was proposed for both offline and online topic detec-
tion and evaluated it for performance issues. In addition,
they investigated several types of topic detection models:
deterministic, discriminative and probabilistic mixture, and
mixed membership. Experimental results showed that a

simple deterministic mixture is more efficient and effective
than sophisticated models such as LDA.

The discriminative probabilistic model estimates pos-
terior (conditional) probability of a given topic given an
observed document. Adding a temporal element achieves
best performance/complexity trade-off. In the offline topic
detection model, they assume the existence of a set of
features that discriminates documents in the corpus. Stop
words and rare words are eliminated from these features.
The probability of a new document is obtained by com-
puting the conditional probability of the new document
for all sets of discriminative features. On the other hand,
online topic detection incrementally examines each incom-
ing document to assess whether it belongs to a new topic
or an existing topic. Some researchers refer to this process
as evolved topic detection instead of online topic detection
(Aggarwal, Han, Wang, & Yu, 2003).

5.5. Non-probabilistic topic detection
A non-probabilistic online topic detection technique was
introduced in Allan et al. (2005) to cluster news stream.
It detects events (topics) and assigns the incoming story
to one of the existing topics or creates a new topic if the
incoming story contains a new topic.

Each document is represented by the top 1000 weighted
words that occur in the story as a vector, using the vector
space model. Its similarity to every previous document is
calculated using the cosine similarity function. The docu-
ment is assigned to the nearest neighbour if the similarity
value is above a given threshold or a new topic is cre-
ated if the similarity is below that threshold. The authors
explored several techniques to enhance the quality of the
topic clusters, such as different weightings for words, dif-
ferent criteria for document selection and penalties. These,
however, did not lead to a significant increase in cluster
quality.

Finally, when they used the average-link clustering,
where every cluster is represented by its centroid, the
generated clusters were more robust and computationally
efficient.

Table 3 presents a summary of topic detection methods.

6. Intelligent MOOCs feedback management system
architecture

In this section, we introduce our proposed MOOCs feed-
back management system architecture (iMOOC), which is
depicted in Figure 4. We use the iMOOC abbreviation to
stand for intelligent MOOC. The system has three basic
modules: topic detection, clustering, and feedback.

Students register for one of the MOOCs and inter-
act with the system by viewing or downloading course
materials, reading posts of other students and receiving
feedback. Students can also send comments or feedback
to the system using the MOOCs’ forum utility. As each
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Table 3. Topic detection techniques summary.

Approach Category Description

LSA Vector space model Using SVD to project documents and words into lower
dimensional space. Fold-in and semantic space
updating are two methods to enhance computational
efficiency

PLSA Probabilistic Statistically model co-occurrences information using
aspect model. It applies probabilistic framework to
discover latent semantic structure

LDA Probabilistic Generative probabilistic modelling aims to capture
multiple topics exist in a document

Hierarchical generative model (Bigram) Probabilistic Extends LDA where word position and co-occurrence
are considered. Bigram model based on marginal and
conditional counts is used. Space complexity O(V2K),
V: vocabulary, K: topics

Discriminative model Probabilistic Time factor is considered. Documents are represented
by words and times vectors. The temporal
discriminative probabilistic model is used for online
and online documents

Experimental model Cluster-based Clustering documents based on the topics exist in these
documents. Experimentally many techniques were
implemented. Average link clustering outperforms
other used clustering techniques

Figure 4. MOOCs feedback management system architecture.

course has a large volume of students, large amounts of
streaming text data (exchanges) will be created.

MOOC discussions are a fertile environment for gain-
ing insight into the cognitive process of the learners.
Analysis of forums’ information enables us to obtain infor-
mation about participants’ levels of content knowledge,
learning strategy, or social communication skills.

A variety of participant exchanges exist in MOOC
forums. These exchanges include, but are not limited
to, getting other participants’ help, scaffolding others
understanding, or constructing content knowledge between
learners. Effective exchanges require communication and
content knowledge utilisation and integration. As a result,
this leads to successful knowledge-building.
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Current MOOC settings do not provide participants
(educators and learners) with any kind of analysis of
forums’ contents. Content analysis aims to describe the
attribute of the message or post. An initial step in analysing
forums’ contents is to identify the topic and the role of
the participants. Obviously, this process cannot be per-
formed manually in MOOCs. A variety of techniques can
be used to identify the topic of forum posts, which includes
clustering, topic detection, or machine learning.

iMOOC processes streaming data using the topic detec-
tion module which is responsible for identifying topics in
these posts by communicating with the domain ontology.
The domain ontology is built based on the course being
offered; however, this domain ontology can be expanded
to include all existing MOOCs. As a result, students’ posts
will be grouped into topics (topic1, topic2, . . . , topicn);
these topics usually evolve over time, which can be seen as
a concept drift. Although this concept drift is not included
in the architecture, it is taken into account by the system.
After the identification of topics, this information is passed
to the clustering module.

The iMOOC clustering module groups the topics using
hierarchical clustering techniques into (cluster1, cluster2,
. . . , clusterm), where n and m need not have to be equal,
that is, the number of topics is not necessarily the same
as the number of clusters. The third module generates
suitable feedback for the students based on the domain
ontology, detected topic, and the cluster the post belongs
to. In this module, NLP and machine learning are incorpo-
rated to generate the feedback and enhance the quality and
credibility of the system.

The domain ontology is dynamically changed and
enhanced based on the identified topics and students feed-
back. For students feedback, we assumed that a reasonable
command of English exists. Typos will be automatically
corrected based on a dictionary module designed for this
system. As topics may evolve over time, a concept drift
module is embedded in the topic detection module. Also,
some topics may fall out of the scope of the course which
is detected using outlier clustering methods.

The aforementioned modules work according to the
following methodology. We start by building the MOOC
ontology; building an ontology is an expensive task in
terms of the time and effort involved. Hence, we aim to
automate this task by using course text books and text
notes as the MOOC domain knowledge. First, we build the
term–document matrix for the domain knowledge and then
use the most frequent terms as the ontology terms. Next, we
find the frequent bigram, trigram, and n-gram expressions
to form our MOOC concepts and entity names. The table
of contents is used to form the hierarchical representation
of the MOOC ontology.

In the topic detection module, we use the entity names
obtained in the process of building the domain ontology
to construct a deterministic finite automata (DFA). As a
result, we have the DFAs state table which is similar to

the table used by compilers. Then, the state table is used to
parse students’ posts (comments, questions, or feedback)
and label them. In the case of multiple labels for a post,
we consult the hierarchical ontology and get the closest
common parent to be the post’s label.

In the clustering module, students’ posts are clustered
based on their labels. A new post is compared to all exist-
ing posts in the given cluster to find its semantic similarity
to other posts. When a semantic text similarity is found we
send the stored feedback to the student. When no similar-
ity is found we send this post to the instructor to assign
feedback to it.

Some components of the proposed system have been
implemented. The system processes student posts and it
identifies content topics and their properties. Course con-
tents were represented using the ontology representation.
The system starts by acquiring all course concepts and
their relationships. Then for every concept a feedback
response is populated in the ontology. After identifying
topics and properties, the system sends back the feedback
to the student. Experimental results show promising results
(Shatnawi, Gaber, & Cocea, 2014).

With this approach, we aim to (a) enhance the learn-
ing experience of students using MOOCs by personalising
their interaction with the system; (b) provide students with
informative feedback by leveraging data mining and NLP
techniques; and (c) automate the course ontology building
process using data mining and NLP techniques.

7. Summary and future work
MOOCs are new phenomena in e-learning systems and
may change the shape of education in the coming few
years. Traditional learning management system platforms
are not suitable for MOOCs owing mainly to the mas-
sive volume of learners. In this paper, techniques that
can be used to manage MOOCs and contribute to their
success were outlined. Text mining, streaming text min-
ing, and topic detection were discussed, along with how
MOOCs can leverage these techniques to personalise stu-
dents’ interactions with MOOC systems. We proposed
iMOOC to manage MOOCs feedback by using data min-
ing, ontologies, and NLP techniques in order to provide
students with automated feedback based on their posts.

The system will be implemented in the future and
be validated using real big data obtained from MOOC
systems. The proposed system will be tested using real
student data obtained from a Coursera offered course in
‘Introduction to Databases’ with 11,098 students enrolled.
Instructors and students posted 21,085 contributions as
questions, notes, or peer-feedback (Coursera piazza report
for db course, 2013).

A variety of data mining techniques will be used, eval-
uated, and benchmarked. To personalise students’ inter-
actions with iMOOC, other information about students’
interaction and demographics will be incorporated with
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iMOOC to discover a better organisation and management
of MOOCs.

Note
1. A greater similarity corresponds to a shorter distance.
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