1,368 research outputs found

    Genome-wide Protein-chemical Interaction Prediction

    Get PDF
    The analysis of protein-chemical reactions on a large scale is critical to understanding the complex interrelated mechanisms that govern biological life at the cellular level. Chemical proteomics is a new research area aimed at genome-wide screening of such chemical-protein interactions. Traditional approaches to such screening involve in vivo or in vitro experimentation, which while becoming faster with the application of high-throughput screening technologies, remains costly and time-consuming compared to in silico methods. Early in silico methods are dependant on knowing 3D protein structures (docking) or knowing binding information for many chemicals (ligand-based approaches). Typical machine learning approaches follow a global classification approach where a single predictive model is trained for an entire data set, but such an approach is unlikely to generalize well to the protein-chemical interaction space considering its diversity and heterogeneous distribution. In response to the global approach, work on local models has recently emerged to improve generalization across the interaction space by training a series of independant models localized to each predict a single interaction. This work examines current approaches to genome-wide protein-chemical interaction prediction and explores new computational methods based on modifications to the boosting framework for ensemble learning. The methods are described and compared to several competing classification methods. Genome-wide chemical-protein interaction data sets are acquired from publicly available resources, and a series of experimental studies are performed in order to compare the the performance of each method under a variety of conditions

    Computational Strategies for Proteogenomics Analyses

    Full text link
    Proteogenomics is an area of proteomics concerning the detection of novel peptides and peptide variants nominated by genomics and transcriptomics experiments. While the term primarily refers to studies utilizing a customized protein database derived from select sequencing experiments, proteogenomics methods can also be applied in the quest for identifying previously unobserved, or missing, proteins in a reference protein database. The identification of novel peptides is difficult and results can be dominated by false positives if conventional computational and statistical approaches for shotgun proteomics are directly applied without consideration of the challenges involved in proteogenomics analyses. In this dissertation, I systematically distill the sources of false positives in peptide identification and present potential remedies, including computational strategies that are necessary to make these approaches feasible for large datasets. In the first part, I analyze high scoring decoys, which are false identifications with high assigned confidences, using multiple peptide identification strategies to understand how they are generated and develop strategies for reducing false positives. I also demonstrate that modified peptides can cause violations in the target-decoy assumptions, which is a cornerstone for error rate estimation in shotgun proteomics, leading to potential underestimation in the number of false positives. Second, I address computational bottlenecks in proteogenomics workflows through the development of two database search engines: EGADS and MSFragger. EGADS aims to address issues relating to the large sequence space involved in proteogenomics studies by using graphical processing units to accelerate both in-silico digestion and similarity scoring. MSFragger implements a novel fragment ion index and searching algorithm that vastly speeds up spectra similarity calculations. For the identification of modified peptides using the open search strategy, MSFragger is over 150X faster than conventional database search tools. Finally, I will discuss refinements to the open search strategy for detecting modified peptides and tools for improved collation and annotation. Using the speed afforded by MSFragger, I perform open searching on several large-scale proteomics experiments, identifying modified peptides on an unprecedented scale and demonstrating its utility in diverse proteomics applications. The ability to rapidly and comprehensively identify modified peptides allows for the reduction of false positives in proteogenomics. It also has implications in discovery proteomics by allowing for the detection of both common and rare (including novel) biological modifications that are often not considered in large scale proteomics experiments. The ability to account for all chemically modified peptides may also improve protein abundance estimates in quantitative proteomics.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138581/1/andykong_1.pd

    Augmenting Structure/Function Relationship Analysis with Deep Learning for the Classification of Psychoactive Drug Activity at Class A G Protein-Coupled Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) initiate intracellular signaling pathways via interaction with external stimuli. [1-5] Despite sharing similar structure and cellular mechanism, GPCRs participate in a uniquely broad range of physiological functions. [6] Due to the size and functional diversity of the GPCR family, these receptors are a major focus for pharmacological applications. [1,7] Current state-of-the-art pharmacology and toxicology research strategies rely on computational methods to efficiently design highly selective, low toxicity compounds. [9], [10] GPCR-targeting therapeutics are associated with low selectivity resulting in increased risk of adverse effects and toxicity. Psychoactive drugs that are active at Class A GPCRs used in the treatment of schizophrenia and other psychiatric disorders display promiscuous binding behavior linked to chronic toxicity and high-risk adverse effects. [16-18] We hypothesized that using a combination of physiochemical feature engineering with a feedforward neural network, predictive models can be trained for these specific GPCR subgroups that are more efficient and accurate than current state-of-the-art methods.. We combined normal mode analysis with deep learning to create a novel framework for the prediction of Class A GPCR/psychoactive drug interaction activities. Our deep learning classifier results in high classification accuracy (5-HT F1-score = 0.78; DRD F1-score = 0.93) and achieves a 45% reduction in model training time when structure-based feature selection is applied via guidance from an anisotropic network model (ANM). Additionally, we demonstrate the interpretability and application potential of our framework via evaluation of highly clinically relevant Class A GPCR/psychoactive drug interactions guided by our ANM results and deep learning predictions. Our model offers an increased range of applicability as compared to other methods due to accessible data compatibility requirements and low model complexity. While this model can be applied to a multitude of clinical applications, we have presented strong evidence for the impact of machine learning in the development of novel psychiatric therapeutics with improved safety and tolerability

    Peptide fingerprinting and predictive modelling of fermented milk : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North Campus, New Zealand

    Get PDF
    Fermented milk products are valued by consumers and the food industry for their nutritional properties, pleasant taste, and texture. Consumer demands and expectations for such products are constantly changing. Understanding how consumers perceive the sensory characteristics of food and the relationship these characteristics have with the chemical components of food can provide insight that can enable food researchers and manufacturers to develop food products that are tailored to provide enhanced sensory qualities. Establishing techniques that allow for in-silico prediction or correlation of sensory qualities can enable a more rapid approach that would aim to enable researchers to meet the demands of consumers. This research firstly explored mass spectrometric techniques for the rapid fingerprinting of milk and fermented milk products, using Matrix-Assisted Laser Desorption Ionisation - Time-of-Flight Mass Spectrometry (MALDI-TOF MS) and Rapid Evaporative Ionisation Mass Spectrometry (REIMS), two technologies that require minimal sample preparation and can rapidly generate a fingerprint of a food’s chemical components. Peptide fingerprints obtained by MALDI-TOF MS and analysed by principal component analysis were effective at discriminating the two fermented milk and milk samples. Supervised discrimination of low molecular weight fingerprints obtained via REIMS and MALDI-TOF MS proved less effective but demonstrated some potential and could be used alongside other analyses in future studies. These techniques were explored with a view to establishing a technique that could provide rapid insights into a food’s chemical composition, and which could also effectively discriminate the chemical components of the product. Such techniques could be used for rapid screening of products and can provide insight into the chemical components that are driving the variation in different products, which may be reflective of the differences in sensory characteristics. Next, peptide fingerprinting and predictive modelling were investigated in milk fermented with various bacterial combinations, including probiotic cultures. Fingerprinting was performed on samples collected at each hour of fermentation. Predictive modelling techniques, using both regression and classification approaches, were trialled in order to predict the change in signal intensity throughout fermentation. This aimed to understand if peptides could be predicted throughout fermentation, with a view to enable the targeted prediction of desirable peptides, or other relevant components, which may impart favourable sensory qualities in the final product. Regression techniques were somewhat effective for predicting the signal intensity of individual m/z ions throughout fermentation. Most of the ions did not follow a linear relationship, and, as such, a multiple linear regression model was unable to model most of the ions. Using a generalised additive model, a non-linear approach, improved the performance in most cases and could predict the signal intensity of individual ions throughout fermentation. However, the model was unable to correctly predict all cases. Classification techniques were effective for predicting the general direction of the signal intensity between start and end fermentation times. Five classification techniques were trialled, with each model providing accurate predictions for the increase or decrease of signal intensity between early and late fermentation times. Lastly, consumer panellists were recruited to evaluate the change in important sensory characteristics throughout the fermentation of milk prepared using two different starter cultures. This aimed to understand if consumer responses to such products could be correlated with instrumental analysis, in order to predict the consumer responses from instrumental data. Consumers perceived significant differences in bitterness and flavour intensity between fermented milk samples at different fermentation time points. There were significant correlations between peptide fingerprints and the consumer rankings for the sensory attributes in each fermented milk product. XGBoost regression could predict consumer responses with reasonable accuracy. This thesis explored the fermentation of milk using specific bacteria and fermentation processes. To validate this work, further products could be explored, in addition to different processing parameters. Furthermore, a more in-depth analysis of the chemical components of the products could be investigated and analysed with additional sensory evaluation to further explore and confirm the findings

    Probing Local Atomic Environments to Model RNA Energetics and Structure

    Full text link
    Ribonucleic acids (RNA) are critical components of living systems. Understanding RNA structure and its interaction with other molecules is an essential step in understanding RNA-driven processes within the cell. Experimental techniques like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and chemical probing methods have provided insights into RNA structures on the atomic scale. To effectively exploit experimental data and characterize features of an RNA structure, quantitative descriptors of local atomic environments are required. Here, I investigated different ways to describe RNA local atomic environments. First, I investigated the solvent-accessible surface area (SASA) as a probe of RNA local atomic environment. SASA contains information on the level of exposure of an RNA atom to solvents and, in some cases, is highly correlated to reactivity profiles derived from chemical probing experiments. Using Bayesian/maximum entropy (BME), I was able to reweight RNA structure models based on the agreement between SASA and chemical reactivities. Next, I developed a numerical descriptor (the atomic fingerprint), that is capable of discriminating different atomic environments. Using atomic fingerprints as features enable the prediction of RNA structure and structure-related properties. Two detailed examples are discussed. Firstly, a classification model was developed to predict Mg2+^{2+} ion binding sites. Results indicate that the model could predict Mg2+^{2+} binding sites with reasonable accuracy, and it appears to outperform existing methods. Secondly, a set of models were developed to identify cavities in RNA that are likely to accommodate small-molecule ligands. The models were also used to identify bound-like conformations from an ensemble of RNA structures. The frameworks presented here provide paths to connect the local atomic environment to RNA structure, and I envision they will provide opportunities to develop novel RNA modeling tools.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163135/1/jingrux_1.pd

    An integrated network of Arabidopsis growth regulators and its use for gene prioritization

    Get PDF
    Elucidating the molecular mechanisms that govern plant growth has been an important topic in plant research, and current advances in large-scale data generation call for computational tools that efficiently combine these different data sources to generate novel hypotheses. In this work, we present a novel, integrated network that combines multiple large-scale data sources to characterize growth regulatory genes in Arabidopsis, one of the main plant model organisms. The contributions of this work are twofold: first, we characterized a set of carefully selected growth regulators with respect to their connectivity patterns in the integrated network, and, subsequently, we explored to which extent these connectivity patterns can be used to suggest new growth regulators. Using a large-scale comparative study, we designed new supervised machine learning methods to prioritize growth regulators. Our results show that these methods significantly improve current state-of-the-art prioritization techniques, and are able to suggest meaningful new growth regulators. In addition, the integrated network is made available to the scientific community, providing a rich data source that will be useful for many biological processes, not necessarily restricted to plant growth

    Computational Framework for Data-Independent Acquisition Proteomics.

    Full text link
    Mass spectrometry (MS) is one of the main techniques for high throughput discovery- and targeted-based proteomics experiments. The most popular method for MS data acquisition has been data dependent acquisition (DDA) strategy which primarily selects high abundance peptides for MS/MS sequencing. DDA incorporates stochastic data acquisitions to avoid repetitive sequencing of same peptide, resulting in relatively irreproducible results for low abundance peptides between experiments. Data independent acquisition (DIA), in which peptide fragment signals are systematically acquired, is emerging as a promising alternative to address the DDA's stochasticity. DIA results in more complex signals, posing computational challenges for complex sample and high-throughput analysis. As a result, targeted extraction which requires pre-existing spectral libraries has been the most commonly used approach for automated DIA data analysis. However, building spectral libraries requires additional amount of analysis time and sample materials which are the major barriers for most research groups. In my dissertation, I develop a computational tool called DIA-Umpire, which includes computational and signal processing algorithms to enable untargeted DIA identification and quantification analysis without any prior spectral library. In the first study, a signal feature detection algorithm is developed to extract and assemble peptide precursor and fragment signals into pseudo MS/MS spectra which can be analyzed by the existing DDA untargeted analysis tools. This novel step enables direct and untargeted (spectral library-free) DIA identification analysis and we show the performance using complex samples including human cell lysate and glycoproteomics datasets. In the second study, a hybrid approach is developed to further improve the DIA quantification sensitivity and reproducibility. The performance of DIA-Umpire quantification approach is demonstrated using an affinity-purification mass spectrometry experiment for protein-protein interaction analysis. Lastly, in the third study, I improve the DIA-Umpire pipeline for data obtained from the Orbitrap family of mass spectrometers. Using public datasets, I show that the improved version of DIA-Umpire is capable of highly sensitive, untargeted analysis of DIA data for the data generated using Orbitrap family of mass spectrometers. The dissertation work addresses the barriers of DIA analysis and should facilitate the adoption of DIA strategy for a broad range of discovery proteomics applications.PhDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120699/1/tsouc_1.pd

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Get PDF
    ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked tomultidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP) is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous systemconditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to randomsubsamples ofDragonmolecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively.Facultad de Ciencias Exacta
    • …
    corecore