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ABSTRACT 

 

 

Shows, Hannah Willow. Ph.D., Biomedical Sciences Ph.D. Program, Wright State 

University, 2021. Augmenting structure/function relationship analysis with deep learning 

for the classification of psychoactive drug activity at Class A G protein-coupled 

receptors. 

 

 

G protein-coupled receptors (GPCRs) initiate intracellular signaling pathways via 

interaction with external stimuli. [1-5] Despite sharing similar structure and cellular 

mechanism, GPCRs participate in a uniquely broad range of physiological functions. [6] 

Due to the size and functional diversity of the GPCR family, these receptors are a major 

focus for pharmacological applications. [1,7] Current state-of-the-art pharmacology and 

toxicology research strategies rely on computational methods to efficiently design highly 

selective, low toxicity compounds. [9], [10] GPCR-targeting therapeutics are associated 

with low selectivity resulting in increased risk of adverse effects and toxicity. 

Psychoactive drugs that are active at Class A GPCRs used in the treatment of 

schizophrenia and other psychiatric disorders display promiscuous binding behavior 

linked to chronic toxicity and high-risk adverse effects. [16-18] 

We hypothesized that using a combination of physiochemical feature engineering 

with a feedforward neural network, predictive models can be trained for these specific 

GPCR subgroups that are more efficient and accurate than current state-of-the-art 

methods.. We combined normal mode analysis with deep learning to create a novel 

framework for the prediction of Class A GPCR/psychoactive drug interaction activities. 
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Our deep learning classifier results in high classification accuracy (5-HT F1-score = 0.78; 

DRD F1-score = 0.93) and achieves a 45% reduction in model training time when 

structure-based feature selection is applied via guidance from an anisotropic network 

model (ANM). Additionally, we demonstrate the interpretability and application potential 

of our framework via evaluation of highly clinically relevant Class A 

GPCR/psychoactive drug interactions guided by our ANM results and deep learning 

predictions. Our model offers an increased range of applicability as compared to other 

methods due to accessible data compatibility requirements and low model complexity. 

While this model can be applied to a multitude of clinical applications, we have presented 

strong evidence for the impact of machine learning in the development of novel 

psychiatric therapeutics with improved safety and tolerability. 
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1. Introduction 

1.1 Significance and Impact 

G protein-coupled receptors (GPCRs) are a family of proteins that interact with 

extracellular ligands to transduce intracellular signals via binding to a partner 

heterotrimeric G protein. [1]–[5]  There are approximately 800 known GPCRs in the 

human genome with a diverse range of functions, including roles in neurological, 

homeostatic, and endocrine pathways. [2], [6] As a result, the GPCR family is a major 

research focus for clinical and pharmacological applications. [1], [7] Over 30% of FDA-

approved compounds target GPCRs. [8]  In recent years, structure-based drug design 

(SBDD) methods have gained popularity due to their increased time- and cost-associated 

efficiency and ability to produce target-specific, low toxicity compounds. [9], [10]  

Numerous drugs produced by SBDD are currently available in market; of note, multiple 

HIV-1 and anti-cancer agents were designed with the aid of computational tools. [11], 

[12] SBDD methods include machine learning (e.g., regression, clustering, and deep 

learning) and molecular modeling (e.g., ligand docking) 

SBDD tools are ideal for the study of GPCR-targeting ligands. A high proportion of 

drugs targeting GPCRs are at the upper limit of Lipinski’s rule of five in terms of 

molecular weight and lipophilicity, which correlates to lower selectivity and increased 

risk of toxicity. [13]–[15] In particular, psychoactive drugs that target Class A GPCRs 

such as serotonin and dopamine receptors (e.g., antidepressants, antipsychotics, and 
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mood stabilizer agents) display high rates of chronic toxicity and cross-reactivity as a 

result of low selectivity. [16]–[18]  Existing methods for predicting drug-target activities 

require a high volume of training data and time. We hypothesize that using a combination 

of physiochemical feature engineering with a feedforward neural network, predictive 

models can be trained for these specific GPCR subgroups that are more efficient and 

accurate than current state-of-the-art methods. 
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1.2 Specific Aims 

Specific Aim 1. To test the performance of current machine learning algorithms 

for the classification of protein binding behavior and determine the extent to which 

these architectures can be applied to the classification of Class A GPCR-drug 

interactions. 

Objective: 1a. We will establish a baseline performance for modern classification 

methods of protein-ligand binding behavior via replicating current models from the 

recent literature [19]–[22] and optimizing their hyperparameters for the best performance 

against standard benchmark protein interaction datasets. [23]–[27] 1b. Optimized models 

will be tested for accuracy against the binary activity classification of an interaction 

dataset between Class A GPCRs and their respective drug binding partners to establish an 

additional baseline for the application potential of machine learning models to Class A 

GPCR binding behavior. 

Specific Aim 2. To assess the degree with which model performance of a Class 

A GPCR subgroup classifier can be maintained as we reduce time complexity via 

structure-based feature selection. 

Objective: Current predictive models often use fully comprehensive structure and/or 

sequence data in their feature sets risking the inclusion of irrelevant features. Irrelevant 

additional features may decrease model accuracy and increase computation time. [28] We 

hypothesize that by rationally decreasing our feature set by focusing on regions of the 



4 

 

structural landscape with the highest variation within a dataset, we will be able to reduce 

data noise and model time performance. A combination of anisotropic network model 

analysis and machine learning classifiers will be used to predict the subgroup of Class A 

GPCR protein structures. We hypothesize that reducing our feature space will decrease 

average training time of a model without a consequential decrease in classification 

accuracy. If accuracy is maintained, the resulting decreased computation time of our 

model will therefore be better suited to examine our data in finer detail and increase our 

ability to extract a higher degree of learning from our model. 

Specific Aim 3. To implement a novel deep neural network classifier for the 

binary prediction of drug binding activity for a dataset of (a) serotonin and (b) 

dopamine Class A GPCRs. 

Objective: We will develop a deep learning model for the binary activity 

(active/inactive) classification of Class A GPCR-small molecule interactions. This 

network will be separately trained and optimized for two subgroups of the Class A 

GPCRs respectively, the (3a) serotonin (5-HT) and (3b) dopamine (DRD) receptors. 

These interactions are clinically relevant to the development of numerous psychoactive 

compounds; of note, antipsychotic and antidepressant drugs. [8], [17], [27], [29], [30]  

Overall Impact: We hypothesize that by implementing modern state-of-the-art 

strategies to optimize parameters for these models, we will be able to improve upon 

current drug-target interaction prediction accuracy while establishing a novel baseline 

performance for a specific clinical application. As a result, an efficacious predictive tool 

for the binding behavior of these receptor subtypes has considerable impact potential 
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from a translational perspective, as well as providing a technical innovation for the use of 

deep learning in computational biochemistry.
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2. Literature Review 

2.1 G protein-coupled receptors.  

The G protein-coupled receptor (GPCR) superfamily of proteins interact with 

extracellular ligands to influence intracellular G protein-mediated signaling behavior. 

GPCRs are membrane-embedded proteins structurally characterized by their alpha helix 

barrel structure. (Figure 1) [2], [31]  

When activated by a ligand, the receptor binds to a partner heterotrimeric G protein 

and promotes exchange of GTP for GDP, leading to a wide range of downstream 

signaling effects. [1] The interaction between the GPCR and partner G protein relies on a 

substantial conformational change of the GPCR resulting from interactions with the 

Figure 1. Schematic of a ligand-bound Class A GPCR embedded in the plasma membrane. Three-

dimensional structure of the human D2-receptor, (green) a GPCR belonging to the A17 subfamily, bound 

to bromocriptine (purple) in the extracellular orthosteric binding site while embedded in the plasma 

membrane. Adapted from PDB 6VMS and modeled in UCSF Chimera. 
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extracellular ligand. Generally, the inactive GPCR conformation stabilizes interactions 

with a GDP-bound G protein while active conformations promote exchange of GTP for 

GDP from the G protein alpha subunit. Consequently, the GTP-bound alpha subunit 

dissociates from the beta and gamma subunits (which also later dissociate) and the 

dissociated subunits separately mediate downstream signaling activities. [32] This cycle 

is represented in Figure 2.  

Agonists, or activating ligands, stabilize the active conformation while inverse 

agonists stabilize the inactive conformation. Antagonists do not affect the equilibrium of 

the receptor but instead compete with agonists for the orthosteric binding site. However, 

GPCRs are not simple on/off switches. There is a preexisting equilibrium between 

inactive and active conformations, and the equilibrium can be shifted when agonists 

promote GTP exchange activity above the basal level to favor an active conformation or 

when inverse agonists lower activity below the basal level and thus favor an inactive 

Figure 2. GPCR activation cycle. Cycle demonstrating the exchange of GDP for GTP with a partner G protein upon ligand binding 

to a GPCR. 



8 

 

conformation. [5] Partial agonists may affect the activity equilibrium of the receptor at a 

partial efficacy compared to a full or inverse agonist. 

GPCRs are the largest family of membrane proteins and mediate a diverse range of 

biological processes. GPCR activity is mediated by light, hormones, neurotransmitters, 

odors, pheromones, and many other peptides and small ligands. [1] While GPCRs share 

similar structure, they are grouped into Classes A-F (Figure 3) based on their ligand 

binding behavior, with Class A (rhodopsin- and rhodopsin-like receptors) containing 85% 

of all GPCRs. As a result, Class A is further divided into subgroups A1-A19. [3], [4], 

[33] Approximately one-third of all FDA-approved drugs target GPCRs, predominately 

focused on Class A receptors. [34]–[36] The global sales volume for GPCR-targeting 

drugs was approximately 180 billion USD in 2018. [34] 

GPCRs possess seven transmembrane-spanning helices, as well as a varying number 

of extracellular loops (ECL) and intracellular loops (ICL) which interact with 

extracellular ligands and a G protein, respectively. (Figure 4) GPCR ECL contain 

conserved cysteine residues that form structurally-important disulfide bonds. These ECL 

Figure 3. Classification of the GPCR superfamily. Classes A-F grouping of the GPCR superfamily. Of note, Class A17 contains the 

majority of serotonin and dopamine receptors along with the adrenergic, trace amine, and histamine H2 receptors. 
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are also typically glycosylated. The ECL2 region is often involved in the binding 

mechanism within Class A, as well as key transmembrane domain residues (often, a 

highly conserved tryptophan residue referred to as the toggle switch at position W6.48) 

and residues within ICL2 and ICL3. [1], [5]  

GPCRs are closely involved in behavior and mood regulation via binding ligands 

such as serotonin, dopamine, GABA, histamine, glutamate, opioids and cannabinoids. 

[27], [37]–[41] As a result, they are often studied in the context of behavioral medicine, 

psychiatry, and substance use disorders. The relationship of certain GPCRs with 

therapeutic and recreational use of psychoactive compounds has been well characterized. 

[39], [42]–[46]

Figure 4. GPCR binding sites for extracellular ligands and intracellular G proteins. Two-

dimensional representation of a GPCR (green) bound to an extracellular ligand (purple) and an 

intracellular heterotrimeric G protein (blue). 
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2.2 Psychiatric disorder epidemiology and pharmacology.  

Therapeutics that target small molecule neurotransmitter (e.g., serotonin, dopamine, 

norepinephrine) receptors and transporters are often used in the treatment of disorders 

such as major depressive disorder, bipolar disorder, and schizophrenia. Major depressive 

disorder (MDD) is characterized by depressed mood, loss of pleasure, weight fluctuation, 

insomnia or hypersomnia, psychomotor agitation or retardation, fatigue, low self-esteem, 

and general executive dysfunction. [47] More than 262 million people have MDD, 

making the disorder the leading cause of disability worldwide. [48] The risk of suicide 

within MDD-affected individuals is approximately 20 times higher than that of the 

general population. Additionally, approximately 17% of individuals with MDD have a 

co-morbid substance use disorder. [49], [50] The literature predominately attributes the 

pathophysiology of MDD to hypoactivity of monoamine neurotransmitters such as 

serotonin, although numerous other pathways have been implicated (e.g., cytokine 

function and the cortico-limbic system). [27], [51], [52] 

Selective serotonin reuptake inhibitors (SSRIs) are used to treat depressive 

symptoms in MDD and other behavioral health disorders via increasing the extracellular 

concentration of serotonin in the synaptic cleft by limiting its reuptake into the 

presynaptic cell. [53] While SSRIs are designed to target serotonin transporters, they also 

often have affinity for norepinephrine and dopamine transporters as well as GPCRs such 

as the serotonin, opiate, histamine, acetylcholine, and norepinephrine receptors. [42], 
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[45], [53] While newer generations of antidepressant medication exhibit increased 

selectivity, the SSRI class of drugs exhibit side effects such as sexual dysfunction, 

increased risk of bone fractures, suicide risk, akathisia, weight gain, QT prolongation and 

interactions with anticoagulants that result in a risk of increased GI bleeding. [42], [54]–

[59] Examples of common SSRI drugs include citalopram, escitalopram, fluoxetine, 

fluvoxamine, paroxetine, and sertraline. 

Bipolar disorders are characterized by recurrent, cyclic episodes of elevated mood 

and depression which cause characteristic cognitive, physical, and behavioral symptoms. 

[60] Hallmark symptoms of bipolar disorder include alternating states of mania and 

depression, impaired executive function, and psychosis. [61]–[63] Over 30% of 

individuals with bipolar also struggle with a substance use disorder and are twice as 

likely to experience physical or sexual abuse compared to neurotypical individuals. [64], 

[65] Greater than 6% of bipolar individuals die via suicide, highlighting the necessity for 

effective symptom management. [66], [67] Lifelong psychiatric treatment is often 

necessary for bipolar patients; however, large meta-analysis studies assessing adherence 

to medication regimen found that only 54% of bipolar patients were fully adherent to 

maintenance drugs. [41], [68], [69] Bipolar disorder is often treated with antipsychotic or 

benzodiazepine medications with known side effects such as narcolepsy or insomnia, 

weight gain or loss, tremors, akathisia, parkinsonism, and dystonia. [16], [17], [43], [69] 

Schizophrenia and schizoaffective disorders are characterized by hallucinations, 

delusions, and disordered thinking that impairs daily functioning. [40] Many of the 

cognitive defects present in bipolar disorder are also symptoms of schizophrenia, as well 

as overlapping psychotic symptoms (although these symptoms are typically more 
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prominent in schizophrenia). [70], [71] Approximately 50% of schizophrenic individuals 

have mental and/or behavioral health comorbidities; of note, the rate of substance use 

disorders is twice as high in the schizophrenic population as compared to the general 

population. [44], [72] An estimated 5% of people with schizophrenia die via suicide. [66] 

Schizophrenic patients are often prescribed similar medications to those being treated for 

bipolar disorder and experience comparable prescription noncompliance rates as bipolar 

patients. [40] 

There are 114 known specific loci in the human genome that contribute to the risk of 

both schizophrenia and bipolar disorder, compared to only four known regions that 

differentiate the biology of the two disorders. [73] While the molecular basis of these 

diseases is not fully understood, the two disorders both demonstrate defects with 

dopamine signaling pathways. Antipsychotic medications are a subclass of neuroleptic 

psychoactive compounds used to treat a range of psychiatric disorders primarily known 

for their efficacy in the treatment of schizophrenia and bipolar disorder. Antipsychotics 

are grouped into the typical and atypical classes based on chemical similarity. Typical 

antipsychotics, also known as first-generation antipsychotics, include the 

butyrophenones, diphenylbutylpiperidines, phenothiazines and thioxanthenes. Atypical 

antipsychotics, or second-generation antipsychotics, include the benzamides, 

benzisoxazoles, phenylpiperazines, and tricyclics. Antipsychotic medications often 

function as dopamine receptor antagonists (in particular, DRD2) and serotonin receptor 

antagonists (in particular, 5-HT2A and 5-HT2C) but do not have a selective mechanism. 

[16], [74], [75] In addition to binding a wide range of dopamine and serotonin receptors, 

antipsychotics also can interact with multiple other GPCRs including the cholinergic and 
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histaminergic receptors. [17], [30], [76], [77] The number of target receptors a drug 

interacts with is directly correlated with its adverse effects. [78], [79] Side effects are 

often reported as a factor in poor prescription adherence in both bipolar and 

schizophrenia patients due to negative impact on quality of life. [17], [53], [68] 

Antipsychotics have documented side effects including sexual dysfunction, metabolic 

syndrome, extreme weight fluctuation, gynecomastia, movement disorders, renal toxicity 

and shrinkage of brain tissue volume leading to permanent disability. [16]–[18], [80]  

Collectively, this clinical and biochemical evidence demonstrates a need for a 

thorough investigation into the pharmacodynamics of GPCR interactions with 

psychoactive drugs, allowing for the development of future candidates that are capable of 

highly selective and efficacious receptor antagonism.
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2.3 Pharmacodynamics and SBDD.  

The pharmacodynamics of a drug-target interaction include the study of how a drug 

affects an organism on a molecular and physiological level. Studying the chemical 

interactions that result in receptor binding on a molecular level often help explain the 

dose response, toxicology, and physiologic changes that result from a drug interaction on 

the organismal level. [81] As a result, structural biochemistry analysis of protein-ligand 

interactions yields useful information for studying the behavior of therapeutic 

compounds. [7], [82], [83] SBDD has gained popularity over the last thirty years due to 

resulting production of selective, lower toxicity compounds associated with decreased 

time- and financial- cost. Several FDA-approved drugs were produced by SBDD 

methods, including successful HIV-1 inhibitors and chemotherapy agents developed 

using computational tools. [11], [84] SBDD methodology may include computational 

techniques such as machine learning (e.g., regression, clustering, and deep learning 

techniques) and molecular modeling (e.g., ligand docking, molecular dynamics 

trajectories).
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2.4 Computational tools. 

2.4.1 Modeling and simulation 

In early stages of the integration of in silico techniques into biochemical research, 

simple statistics-based simulation models (such as Monte Carlo sampling) were used to 

represent atomic positions within a molecule over a time course. [85]–[89] These 

simulations evolved further into complex molecular dynamics trajectories capable of 

predicting and estimating the thermodynamics and kinetics of a molecule’s 

intermolecular interactions with binding partners or solvent, as well as its intramolecular 

interactions. [82], [83], [90] Advances in molecular modeling technology have been 

crucial for the development of modern structure determination techniques and ligand 

docking models have become a mainstay of pharmacological research. (Figure 5) [91], 

[92]  

 

Figure 5. Molecular modeling and dynamics simulations strategies for in silico structural analysis. A Simulated model of a 

protein structure (yellow) bound to multiple ligands (red) while solvated in NaCl solution. Generated using UCSF Chimera. B 

Cartoon representation of ligand docking in which a protein receptor model (green) is simulated in solvent (not shown) with a 

ligand (purple; not to scale) to generate a predicted bound structure. 
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While modeling and simulation-based techniques are powerful, they possess a 

complex feature space and as a result, are computationally expensive. [93], [94] Output 

quality is often sacrificed in the form of short timescales and oversimplified 

representations of the physiochemical parameters to minimize the feature space, allowing 

for calculations to be completed in a reasonable timeframe. [95]–[97] Within recent 

years, machine learning tools capable of handling “big data” problems have been applied 

to computational biochemistry research to address the large feature space and amount of 

output data produced when studying molecular interactions. [20], [22], [98]–[100]



17 

 

 

 

2.4.2 Machine learning 

Machine learning models are named for their ability to learn from data. Machine 

learning is defined with respect to a given task as an algorithm in which performance 

improves with experience. [101] Machine learning models are shown examples of data 

observations to learn from where our data is described by a collection of features. Each 

data observation is typically represented as a vector 𝒙 where each entry 𝑥𝑖 of the vector is 

a unique feature. (Figure 6) Common machine learning tasks include classification, 

regression, anomaly detection, and density estimation. [102] 

 

When machine learning models are given example data to learn from, we refer to 

this process as training and the data as the training dataset. The model is categorized as 

Figure 6. Feature extraction process from a protein structure. As an example, consider a protein structure as a single raw data 

observation. Descriptors are extracted from this observation, such as polarity and charge. These descriptor values can be stored as 

feature values in a given vector index 𝑥𝑖. This input vector of features 𝑥 can be mapped to an output value or vector of values 𝑦 

such as the binary output ‘1’ shown here, such as a classifier predicting a drug interaction being ‘active’ or ‘inactive’ for the given 

receptor, which can be coded as {1} or {0}. 
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supervised or unsupervised based on the presence of labels in our data. Unsupervised 

models observe examples of data in the form of a random vector 𝒙 and attempt to 

estimate the probability distribution 𝑝(𝒙). Supervised models observe examples of data 

in the form of a random vector 𝒙 and an associated vector 𝒚 (label or output data) and 

learn to predict 𝒚 from 𝒙 by estimating 𝑝(𝒚 | 𝒙). Unsupervised models train on an 

unlabeled dataset containing many features and identify useful structural patterns in the 

data based on these features. Supervised models train on labeled datasets where the 

relationship between the input and output can be estimated. [102]
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2.4.3 Performance Metrics 

We evaluate performance measures of our model on a test set of data. Our test 

dataset contains example data that the model has not previously seen. Performance is 

typically assessed via measures of accuracy, precision, and error. One must choose the 

most appropriately informative performance measure for a given specific task (e.g., 

measuring the performance of a classifier versus a regression model). Common measures 

of accuracy and error for a classifier model, such as the models presented in this research, 

include mean absolute error (MAE), mean squared error (MSE), classification accuracy, 

confusion matrices, F1 score, and other measures of precision and recall such as the 

receiver operating characteristics (ROC), area under curve (AUC), and area under 

precision-recall curve (PRAUC). [103]–[105] 

MAE refers to the average difference between the true and predicted values for a 

dataset. MAE is a good measure of the magnitude of difference between predicted and 

true output but does not indicate the direction of the error (e.g., overpredicting one class 

over the others). [105] MAE is represented by: 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑗 − 𝑦̂𝑗|

𝑛

𝑗=1

          (1) 

MSE is very similar to MAE, mathematically differing only by taking the average of 

the squared difference between the predicted and true values for a dataset. [106] In 
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practice, this allows the gradient to be computed more easily. By taking the square of the 

difference there is a much greater penalty for larger errors. [105] MSE is defined as: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑗 − 𝑦̂𝑗)

2
𝑛

𝑗=1

          (2) 

Classification accuracy is a much simpler measure of accuracy; however, it is not as 

descriptive when there is an uneven distribution of samples between classes. 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
          (3) 

A confusion matrix describes the complete performance of a given classifier with the 

counts of true positives, false positives, true negatives, and false negatives. These counts 

form the basis for other performance measures such as precision, recall, F1-scoring and 

AUC/ROC curves. [104], [105] When testing a model with 𝑛 samples, the confusion 

matrix resembles: 

n = TN + FP + 

FN+ TP 

Predicted No Predicted Yes 

No Total number of 

true negatives (TN) 

Total number of 

false positives (FP) 

Yes Total number of 

false negatives (FN) 

Total number of 

true positives (TP) 

 

Precision and recall are the foundation of many other metrics, defined as: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
          (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
          (5) 

Precision represents the fraction of relevant instances to all retrieved instances, while 

recall represents the fraction of retrieved instances to all relevant instances. Precision 

measures the ability of a model to return only relevant instances while recall (also 

referred to as sensitivity) measures the ability of a model to identify all relevant 

instances. In some cases, we may optimize precision or recall at the expense of the other 

or we may attempt to find an optimal balance between the two metrics. The F1 score 

[105] is the harmonic mean of precision and recall defined by: 

𝐹1 = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
          (6) 

Harmonic mean is used in place of an arithmetic mean because the harmonic mean 

strongly penalizes extreme values (e.g., with precision = 1 and recall = 0, the arithmetic 

mean is equal to 0.5 but the F1 score is 0). The F1 score ranges from 0 to 1 with higher 

performing models having greater F1 scores. 

The ROC curve is a probability curve plotted with the true positive rate against the 

false positive rate, providing information about the model performance for binary 

classification at various decision threshold settings. The AUC measures the area under 

the ROC curve ranging from 0 to 1. When AUC is close to 0, the model is reciprocating 

the result (i.e., predicting classes as the opposite values). When AUC is close to 1, the 
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model has very good measure of separability and accuracy. When AUC is 0.5, the model 

has no class separation capacity at all. [107]  

The precision-recall curve is a probability curve plotting the recall against the 

precision for various decision threshold settings. The PRAUC refers to the area under the 

precision-recall curve. As a result of recall increasing, precision decreases. PRAUC 

metrics can be useful in determining the optimal threshold for precision/recall balance. 

[108] 

When building a binary classification model, it is important to consider multiple 

accuracy metrics to determine the decision threshold. The F1-score is an important metric 

in most binary classification problems; in particular, models where the positive class is 

more important. When data is relatively balanced between classes, the ROC AUC metric 

is an appropriate measure of model accuracy. However, when data is heavily imbalanced, 

the PRAUC is more appropriate. [105], [109], [110] 

Threshold is one of the many important hyperparameters that must be tuned for a 

machine learning model. Hyperparameters refer to parameters whose values are 

determined prior to the learning process (e.g., threshold, learning rate, maximum number 

of features) in contrast to parameters determined via training (e.g., node weights). Each 

specific machine learning algorithm requires unique hyperparameters to be tuned to 

improve the speed and quality of the learning process. Performance measures for training 

and test error values guide the hyperparameter tuning process. [102] 

Random search and grid search are simple and commonly used search optimization 

algorithms. In random search, the search space (or volume to be searched where each 
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dimension represents a hyperparameter and each observation represents one possible set 

of hyperparameters) is a bounded domain of possible hyperparameter values and 

combinations are randomly sampled in that domain. Grid search, in contrast, evaluates 

every single possible combination in the domain. 

Training error refers to any measure of error (i.e., proportion of incorrectly predicted 

values) for the training set. The test error, or generalization error, refers to the expected 

value of the error on a previously unseen dataset. When optimizing the performance of a 

machine learning model, we want to both minimize our training error and the gap 

between the training and test errors. When the training error is too large, it results in 

underfitting of the data. When the magnitude of difference between the training and test 

error is too large, overfitting occurs. [102] 

In supervised machine learning models, the error should be minimized while 

learning from training data. The loss function (i.e., error function) quantifies the 

associated error for a single training example. The cost function, sometimes used 

synonymously with the loss function, describes the average loss over the entire training 

set. Optimization strategies such as gradient descent aim to minimize this cost function. 

In addition to the importance of optimizing a model, regularization of the model should 

also be considered. Regularization refers to any modification that is made to an algorithm 

with the intended purpose of reducing the test error but not the training error. If the 

training data contains too much noise, there is a risk of overfitting the data and the model 

will not generalize well to future dataset testing. [102] Often, the regularizer is in the 

form of a penalty added to the loss function. Regularization effectively discourages 

overly flexible models and the resulting risk of overfitting. To successfully achieve this 
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goal, a regularizer should reduce model variance without increasing bias (i.e., our model 

should be generalizable to previously unseen data in a test dataset without overly 

increasing error due to false assumptions). [111] The variance of an estimator 𝜃 is 

equivalent to the square of the standard error of 𝜃 where: 

𝑆𝐸(𝜇̂𝑚) =  
𝜎

√𝑚
          (7) 

while the bias of an estimator 𝜃 is defined as 𝑏𝑖𝑎𝑠(𝜃𝑚) =  𝔼(𝜃𝑚) − 𝜃, where the 

expectation 𝔼(𝜃𝑚) is over samples from a random variable and 𝜃 is the true value of 𝜃. 

[105] 

Common examples of regularization include applying an L1 or L2 vector norm 

penalty to the network optimization such as the use of Ridge regression in linear models 

or penalizing a neural network loss function for large weights. The L1 norm, also known 

as the Lasso, aims to shrink the estimated coefficients of the loss function. For an 

example linear regression: 

𝑌 ≈  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝𝑥𝑝          (8) 

fitted using the residual sum of squares (RSS) loss function: 

𝑅𝑆𝑆 =  ∑(𝑦𝑖 − 𝛽0 − ∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

          (9) 

we are able to shrink our coefficients by minimizing the RSS using a tuning 

parameter λ such that: 
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∑(𝑦𝑖 − 𝛽0 − ∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

+ 𝜆 ∑|𝛽𝑗| = 𝑅𝑆𝑆 +  𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑝

𝑗=1

𝑛

𝑖=1

          (10) 

The L2 norm (also referred to as Ridge regression) also shrinks the coefficients of 

the model using λ, however we penalize all coefficients (𝛽𝑗
2) rather than only the high 

coefficients (|βj|) as in the L1 norm: 

∑(𝑦𝑖 − 𝛽0 − ∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

+ 𝜆 ∑𝛽𝑗
2 = 𝑅𝑆𝑆 +  𝜆 ∑𝛽𝑗

2

𝑝

𝑗=1

𝑝

𝑗=1

𝑛

𝑖=1

          (11) 

In the case of the L2 norm, the least important coefficients will be shrunk closely to 

zero, but never equal to exactly zero. Thus, our final model will still include all 

predictors. However, the L1 norm penalizes some coefficients to exactly zero at large 

enough λ, effectively removing these predictors from the model. The tuning parameter λ 

must be carefully selected to balance bias and variance. [105], [111]
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2.4.4 Hyperparameter tuning 

To best select the value of λ and other algorithm hyperparameters, there must be a 

validation dataset containing observations not included in the training dataset. When 

optimizing hyperparameters on the training data, there is a risk of overfitting and 

subsequent poor generalization of the model to unseen data. To circumvent this issue, the 

training dataset is split into two subsets—one to learn the parameters and another 

validation set to estimate the test error after training to update the hyperparameters. After 

hyperparameter optimization is complete, the error on the test set can be determined. 

In addition to hyperparameter tuning and regularization, it is also important to 

consider the effect of our feature space on model capacity (i.e., underfitting and 

overfitting the model). When there are not enough features, underfitting results. When we 

have more features than observations, overfitting is risked. The difficulty of identifying 

the optimal number of features while balancing the consequences of each extreme is 

often referred to as the curse of dimensionality. As the dimension of our data increases, 

the data becomes “sparser” and more difficult to analyze. [112] Additionally, the risk of 

introducing noise (misleading or irrelevant data) also increases. The amount of training 

data necessary must also increase to mitigate these issues, substantially increasing the 

calculation time complexity. The number of training data needed increases exponentially 

in response to the number of features added—this becomes increasingly computationally 

complex and loses real-world value.
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2.4.5 Feature selection methods 

As a solution, dimensionality reduction is needed. Other benefits of reducing the 

dimension of our data (e.g., feature selection and feature engineering strategies) include 

decreasing the time-complexity and required memory storage to train the algorithm. 

Feature selection involves the identification of relevant features to be selected for model 

training. Feature engineering refers generally to the process of extracting useful features 

from raw data. [28], [112] 

Commonly used feature selection strategies include those based upon variance 

threshold, univariate feature selection (e.g., Pearson correlation, ANOVA testing, or Chi-

square algorithms in which the best k features, or a top percentile of features, are selected 

based off the information provided by these statistical measures), principal component 

analysis (PCA), linear discriminant analysis (LDA), multi-dimensional scaling (MDS), 

locally linear embedding (LLE), and t-distributed stochastic neighbor embedding (t-

SNE). PCA and LDA are both based on linear transformations of data, where PCA 

focuses on features with maximum variance and LDA aims to maximize class 

separability. In contrast, MDS, LLE, and t-SNE are examples of non-linear manifold 

strategies that are capable of projecting complex data shapes into lower dimensional 

space while best preserving shape and Euclidean distance of data points. The 

mathematical basis and strategy for these dimensionality reduction techniques varies 

highly depending on the original data format and algorithm choice. [113], [114] 
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For non-structure-based feature selection methods in the machine learning models 

used for this project, the primary techniques presented for feature selection are recursive 

feature elimination (RFE) and partial least squares (PLS; including orthogonal partial 

least squares; O-PLS). RFE refers to a wrapper style algorithm in which features are 

ranked and selected by importance, where importance is determined by machine learning 

algorithm at the core of the model. [115], [116] This machine learning algorithm, such as 

logistic regression or random forest, is “wrapped” by RFE and features are ranked by a 

measure of feature importance (e.g., the coefficients of logistic regression or impurity-

based node probability in random forest). The least important features are removed from 

the model, the model is re-fit, and this process is repeated until the user-specific number 

of features remains. 

PLS aims to extract features from both the input matrix 𝑿 and output matrix 𝒀 such 

that the covariance between all extracted factors is maximized. PLS is advantageous over 

PCA in its ability to address multi-colinearity (i.e., two or more data features are 

correlated with one another). [117]–[121] In comparison to PCA, which only considers 

the matrix of input variables without the context of the output data matrix, PLS considers 

the relationship between the input and output. The goal of PLS is to find a linear 

decomposition of 𝑿 and 𝒀 such that: 

𝑿 = 𝑻𝑷𝑇 + 𝑬          (12) 

𝒀 = 𝑼𝑸𝑇 + 𝑭          (13) 

where 𝑻 represents the 𝑿-factors, 𝑼 represents the 𝒀-factors, 𝑷 represents the 𝑿-

loadings (i.e., the linear coefficients that link terms to the factors), 𝑸 represents the 𝒀-
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loadings, 𝑬 represents the 𝑿-residuals, and 𝑭 represents the 𝒀-residuals. In factor analysis 

techniques such as PCA and PLS, loadings refer to the correlation coefficients between 

the variable and factor. Factor loading shows the variance explained by a variable on its 

given factor. The residuals, or error terms, are used to evaluate the accuracy of the factor 

analysis. The linear decomposition of 𝑿 and 𝒀 is computed to maximize the covariance 

between 𝑻 and 𝑼; by extracting the factors that successively achieve this task, the best 

explanation of the 𝑿-space, 𝒀-space, and the greatest correlation between 𝑿 and 𝒀 are 

also maximized.  

Each extracted 𝑋-score is a linear combination of 𝑿; i.e., the 1st 𝑿-score t of 𝑿 is 

equal to 𝑿𝑤, where 𝑤 is the eigenvector corresponding to the 1st eigenvalue of 𝑿𝑻𝒀𝒀𝑻𝑿. 

The same is true for the 1st 𝑌-score 𝑢 = 𝒀𝑐 where 𝑐 is the eigenvector corresponding to 

the 1st eigenvalue of 𝒀𝑻𝑿𝑿𝑻𝒀. After factors are extracted for each ith iteration, 𝑋 and 𝑌 

are deflated to equal 𝑿𝑖 = 𝑿 − 𝑡𝑡T𝑿 and 𝒀𝑖 = 𝒀 −  𝑢𝑢T𝒀. This process is repeated until 

all possible latent factors 𝑡 and 𝑢 are extracted, i.e., when 𝑋 is reduced to a null matrix. 

[117], [118], [122], [123] 

O-PLS is a method based on the PLS algorithm that uses orthogonal signal 

correction to maximize the explained covariance for the 1st latent factors while the future 

factors describe variance in the predictors that is orthogonal to the response variables, 

i.e., uncorrelated to the response. O-PLS functionally differs from PLS in that the O-PLS 

algorithm filters out noise in the data by separately modeling variations of the 𝑿-factor 

features that are correlated and uncorrelated to the 𝒀-factor features, respectively. This 
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key difference ultimately reduces model complexity, lowers the number of extracted 

factors, and allows for analysis of the source of orthogonal variation. [121], [124] 

The O-PLS linear decomposition is mathematically similar to PLS, but differs in the 

inclusion of the orthogonal 𝑿-factors and 𝑿-loadings via a 𝑻𝑜𝑟𝑡ℎ𝑷𝑜𝑟𝑡ℎ
𝑇  term such that: 

𝑿 = 𝑻𝑷𝑇 + 𝑻𝑜𝑟𝑡ℎ𝑷𝑜𝑟𝑡ℎ
𝑇 + 𝑬          (14) 

𝒀 = 𝑼𝑪𝑇 + 𝑭          (15) 

It is of note that while neural networks can be improved upon by preprocessing with 

a feature selection algorithm when appropriate, this is not always necessary as neural 

networks are capable as functioning as feature selection algorithms in themselves. Neural 

networks may identify salient features via backpropagation, updating the weights of the 

neural network. The mechanism of backpropagation and structure of neural networks is 

further described in further introductory Neural Network sections. [99], [102]
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2.4.6 Machine learning algorithms 

Many commonly used machine learning algorithms are implemented in the research 

plan proposed as predictive classifiers including regression, decision trees, AdaBoost, 

support vector machines (SVMs), and neural networks. [102], [125]–[132]  

2.4.6.1 Regression 

. Linear regression is a common supervised machine learning algorithm with a 

constant slope and a continuous output variable. Linear regression models are often 

presented in the slope-intercept form: 

𝑦 = 𝑚𝑥 + 𝑏          (16) 

where 𝑦 is the output variable determined by a variable (or feature) 𝑥 multiplied by 

our slope coefficient 𝑚 (otherwise referred to as the weight associated with each feature) 

and 𝑏 is the y-intercept (otherwise referred to as the bias) that offsets our prediction. The 

goal of the algorithm is to predict the correct values for 𝑚 and 𝑏 to approximate the line 

of best fit. (Figure 7) [102], [105] 
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To optimize the weights of the model, a cost function is used. This process is 

generally applicable to any machine learning algorithm, but linear regression will be used 

as an example. Consider the MSE cost function applied to a linear regression model: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑗 − 𝑦̂𝑗)

2
𝑛

𝑗=1

          (17) 

where 𝑦𝑖 = 𝑚𝑥𝑖 + 𝑏 for each 𝑖𝑡ℎ true value of 𝑥 and 𝑦̂𝑖 = 𝑚𝑥𝑖 + 𝑏 is the 𝑖𝑡ℎ 

prediction for each value of 𝑦𝑖. MSE measures the average squared difference between 

the actual and predicted output values for each input value. The MSE cost changes with 

the current set of weight and should be minimized to improve the accuracy of the model. 

[102], [103] 

Gradient descent is used to calculate the gradient of the cost function. The error 

associated with the weight is minimized via using the derivative of the cost function to 

compute the gradient (i.e., the slope of the cost function) and error is subsequently 

adjusted to move in the opposite direction of the gradient. The gradient can be split into 

the partial derivatives of the function of 𝑥 and the function of 𝑚 and 𝑏: 

Figure 7. Linear regression model. An example of a linear regression 

line of best fit estimating the relationship between an input variable x and 

output variable y for a random dataset. 
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(𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏))
2

= 𝐴(𝐵(𝑚, 𝑏))          (18) 

𝐴(𝑥) =  𝑥2          (19) 

𝑑𝑓

𝑑𝑥
=  𝐴′(𝑥) = 2𝑥          (20) 

and 

𝐵(𝑚, 𝑏) = 𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏) = 𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏          (21) 

𝑑𝑥

𝑑𝑚
= 𝐵′(𝑚) = 0 − 𝑥𝑖 − 0 =  −𝑥𝑖           (22) 

𝑑𝑥

𝑑𝑏
= 𝐵′(𝑏) = 0 − 0 − 1 = −1          (23) 

Combining these parts via the Chain rule yields: 

𝑑𝑓

𝑑𝑏
=

𝑑𝑓

𝑑𝑥

𝑑𝑥

𝑑𝑏
          (24) 

𝑑𝑓

𝑑𝑚
= 𝐴′(𝐵(𝑚, 𝑓))𝐵′(𝑚) = 2(𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏)) ⋅ −𝑥𝑖           (25) 

𝑑𝑓

𝑑𝑏
= 𝐴′(𝐵(𝑚, 𝑓))𝐵′(𝑏) = 2(𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏)) ⋅ −1          (26) 

Thus the gradient of the cost function is computed as: 

𝑓′(𝑚, 𝑏) = [

𝑑𝑓

𝑑𝑚
𝑑𝑓

𝑑𝑏

] = [

1

𝑁
∑−𝑥𝑖 ⋅ 2(𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏))

1

𝑁
∑−1 ⋅ 2(𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏))

]          (27) 
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= [

1

𝑁
∑−2𝑥𝑖(𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏))

1

𝑁
∑−2(𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏))

]          (28) 

The model is trained via iterating through the dataset multiple times to improve the 

prediction via updating the weight and bias values in the direction indicated by the 

gradient of the cost function. [133], [134] 

Training is considered complete based on an acceptable error threshold, the cost 

function converging (i.e., the algorithm ceases to further reduce cost with further 

iterations), or a set number of iterations. In addition to hyperparameters such as number 

of iterations, we also must choose a learning rate. The learning rate refers to the step size 

used in gradient descent. A greater value will learn faster but risks a suboptimal final 

prediction, while a smaller learning rate takes longer to converge. A learning rate that is 

too small risks the cost function never converging. [102], [105] 

Lastly, the trained model is evaluated on a test set of data to evaluate its 

generalization error and predictive ability via measures of accuracy. This general process 

of tuning hyperparameters, training the model to update weights and reduce loss, and 

testing the model on a previously unseen dataset can be generally applied to other 

machine learning algorithms with different structures as well. [102] 

In a multivariate regression (i.e., multiple input variables or features), the model 

resembles: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛 + 𝑏          (29) 
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Each input feature 𝑥𝑛 has an associated weight that must be optimized in the 

learning process. As the number of features increases (i.e., our input dimensionality 

increases), the computational cost of calculating the gradient also increases. In addition to 

dimensionality reduction strategies, rescaling the data also aids in reducing time 

complexity. Common rescaling techniques include normalization (i.e., rescaling values to 

a range of [0,1]) and standardization (i.e., rescaling values to have a mean of 0 and 

standard deviation of 1). [105] 

Linear regression models are only appropriate when the output variable is 

continuous. In contrast, logistic regression models are used when the output variable is 

categorical. Logistic regression models have the form: 

log(𝜂) =  
1

1 + 𝑒𝑥𝑝 (−η)
          (30) 

Logistic regression models output values between 0 and 1. (Figure 8) 

 

Figure 8. Logistic regression model. A logistic regression model has a 

characteristic sigmoidal ‘S’ shape predicting output y values between 0 

and 1 from an input value x. 
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The logistic regression model finds a decision boundary, or threshold, to determine 

what class prediction each value will belong to. For example, in a binary classification 

with outputs [0,1], a threshold value of 0.5 corresponds to output values below 0.5 

belonging to the ‘0’ class and otherwise belonging to the ‘1’ class. Linear and logistic 

regression models have many real-world similarities in that while they are both widely 

used for appropriate applications, they are often not appropriate for handling more 

complex data sets with higher dimensionality. [105]
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2.4.6.2 Decision tree-based models.  

Random forest is a supervised learning model that has gained popularity for its 

applicability and interpretability. Random forest can be used for prediction of both 

continuous and categorical output variables. In random forest models, the “forest” 

ensemble of decision trees built are trained via bagging to increase overall prediction 

accuracy. (Figure 9) [125], [126]  

 

Decision trees are a decision analysis tool that uses a branched flowchart model of 

decisions and their possible outcomes with associated probabilities. [105], [135], [136] 

The structure of a decision tree results in straightforward measurability and 

interpretability for the relative feature importance of each feature on the prediction. In a 

decision tree, each node represents the possible values of each attribute, each branch 

Figure 9. Decision tree and random forest models. A Schematic example of a simple decision tree. Starting from Row 1, 

there is one decision to be made with three possible outcomes. Outcomes #1 and #3 each have two resulting potential 

outcomes, while outcome #2 has three potential outcomes. B Schematic example of a simple random forest model in which 

the final prediction is generated via bagging of multiple decision trees. 
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represents the outcome of the decision, and each leaf node represents a class label (i.e., 

the final decision output after considering all features). A node that has no children is 

referred to as a leaf. Feature importance can be calculated via analyzing the extent to 

which each tree node for a given feature reduces impurity (the probability of incorrectly 

classifying a randomly chosen observation given the class distribution of the dataset) 

across all trees. Feature importances are scaled so the total sum of all importance is equal 

to 1. [102], [105] Many other variations of decision tree classifiers similar to random 

forest exist in the literature. These similar algorithms include the scikit-learn meta 

estimators that fit a number of decision trees on various subsets of the original data and 

improves predictive accuracy via aggregating or averaging individual predictions to form 

a final prediction, such as the bagged trees classifier and extra trees classifier. [115] 

Random forest models are advantageous compared to simple decision trees despite 

the increased computational cost because the algorithm randomly selects a subset of data 

and features to build several decision trees and averages the results, increasing overall 

prediction accuracy. Additionally, random forest is less prone to overfitting than simple 

decision tree models. [105], [123] 

Random forests are controlled by hyperparameters such as number of estimators (the 

number of trees used), maximum number of features used, the minimum number of 

leaves required to split a node, and out-of-bag (oob) sampling in cross-validation. [137] 

In contrast to the bagging method used in random forest, adaptive boosting 

(AdaBoost) combines the output of other ‘weak learner’ algorithms (often, but not 

always, decision trees) into a weighted sum that represents the final output of the boosted 
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classifier. [127], [128] The AdaBoost classifier selects only the features known to 

improve the predictive accuracy of the model. Boost classifiers can be represented via: 

𝐹𝑇(𝑥) = ∑𝑓𝑡(𝑥)

𝑇

𝑡=1

          (31) 

where 𝑓𝑡 is a weak learner that takes an input 𝑥 and returns a class label. The boosted 

classifier is trained so that the sum training error 𝐸𝑡 is minimized:  

𝐸𝑡 = ∑𝐸[𝐹𝑡−1(𝑥𝑖) + 𝛼𝑡ℎ(𝑥𝑖)

𝑖

          (31) 

Here 𝐹𝑡−1(𝑥) represents the boosted classifier up until the previous training iteration, 

𝐸[𝐹] is some error function, and 𝛼𝑡ℎ(𝑥𝑖) is a weak learner 𝑓𝑡(𝑥) that is being added to 

the final boosted classifier wherein at each iteration 𝑡, each  𝑓𝑡(𝑥) is assigned a 

coefficient 𝛼𝑡 and produces an output hypothesis ℎ(𝑥𝑖). (Figure 10) Training iterations 

are informed by weights {𝑤𝑖,𝑡} equal to 𝐸(𝐹𝑡−1(𝑥𝑖)). [102] 
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Figure 10. AdaBoost model. A data set of blue ‘+’ symbols and red ‘-‘ symbols is classified by a cartoon representation of 

the AdaBoost algorithm. In each iteration, a “weak” learner attempts to separate the data. These “weak learners” are 

combined into a final weighted classifier to produce the strongest separation result. 
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2.4.6.3 Support vector machines.  

SVMs are supervised learning models that are often applied to classification 

problems. SVMs aim to find a hyperplane or set of hyperplanes that best separate the data 

points into their respective classes. In geometry, a hyperplane refers to a subspace whose 

dimension is one less than that of its surrounding space (e.g., in a three-dimensional 

space, two-dimensional hyperplanes exist). The optimal hyperplane is known as the 

maximum-margin hyperplane, defined as the hyperplane that has the largest distance to 

the nearest data point of each class. (Figure 11)  

 

Figure 11. Support vector machine. A dataset is separated by a hyperplane. In a SVM, the maximum-

margin hyperplane is used to maximize the distance between each class and the hyperplane, chosen based 

on the minimum test error possible. As an example, the hyperplane for 3-dimensional data is 2-

dimensional. 
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The maximum-margin hyperplane is chosen as it typically results in the lowest test 

error for the classifier. Given a training dataset {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} where each 𝑥𝑖 

represents a vector of data features for a given 𝑖𝑡ℎ observation and 𝑦𝑖 represents the 

corresponding discrete class label for said observation (e.g., 0 and 1 for a binary 

classification problem). A given hyperplane containing the set of points 𝒙 can be written 

in the form: 

𝒘𝑇𝒙 − 𝑏 = 0          (32) 

where 𝒘 is the normal vector to the hyperplane and 𝑏 is the bias term. For a binary 

classification example, if the data are linearly separable, two hyperplanes are selected that 

separate the two classes of data such that the distance between said planes (i.e., the 

margin) is maximized. The maximum-margin hyperplane lies at the halfway point of the 

margin. The SVM is optimized via minimization of ‖𝒘‖. In cases where the data are not 

linearly separable, techniques such as the hinge loss function can penalize for data points 

𝑥𝑖 on the incorrect side of the margin where the function equals: 

max (0,1 − 𝑦𝑖(𝒘
𝑇𝒙𝑖 − 𝑏))          (33) 

such that the function equals 0 when 𝑥𝑖 is correctly classified while for incorrectly 

classified observations, the function’s value is proportional to the distance from the 

margin. [129], [130] 

Non-linear classifiers can also be constructed via application of the kernel trick, 

including common examples such as polynomial kernels: 

𝑘(𝑥𝑖 ⃗⃗⃗⃗ , 𝑥𝑗⃗⃗  ⃗) =  (𝑥𝑖 ⃗⃗⃗⃗ ⋅ 𝑥𝑗⃗⃗  ⃗)
𝑑
          (34) 
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and the radial basis function [105], [130]: 

𝑘(𝑥𝑖 ⃗⃗⃗⃗ , 𝑥𝑗⃗⃗  ⃗) = exp (−𝛾‖𝑥𝑖 ⃗⃗⃗⃗ − 𝑥𝑗⃗⃗  ⃗‖
2
) for 𝛾 > 0          (35)
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2.4.7 Neural Networks 

In 1958, Rosenblatt created the single-layer perceptron. [131] A perceptron, 

essentially a single node (also called a neuron) activated by the Heaviside step function, 

takes the form: 

𝑓(𝑥) = {
1 if 𝒘 ⋅ 𝒙 + 𝑏 > 0,

0 otherwise
          (36) 

where the input 𝒙 is mapped to an output value 𝑓(𝑥) and 𝒘 is a vector of real-valued 

weights and 𝑏 is the bias. While the single-layer perceptron is the simplest feedforward 

neural network, modern networks typically contain multiple functions. Feedforward 

neural networks, also known as multilayer perceptrons, are the simplest modern form of a 

neural network and the foundation upon which other neural networks with increasing 

complexity are created. The term ‘feedforward’ refers to the way that information flows 

or transfers through the model via the initial input 𝒙 via a series of intermediate functions 

to produce the output 𝑓(𝑥). The function is referred to as a ‘network’ because the input 

undergoes a series of transformations via a chain of connected functions typically 

represented as a graph of nodes. (Figure 12) The term ‘neural network’ comes from the 

idea that neural networks are loosely modeled off of the structure of biological neurons, 

but this is considered to be a misnomer as the similarities are limited. [99], [102], [105], 

[138], [139] 
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Each ‘neuron’ in the neural network is represented as a node in the network. The 

overall length of the chain of nodes gives the depth of the network. Generally, neural 

networks with more than two layers are referred to as deep neural networks. For example, 

we may have three neurons representing the functions 𝑓(1),  𝑓(2), and 𝑓(3) connected via 

a network to form 𝑓(𝑥) =  𝑓(3) (𝑓(2) (𝑓(1)(𝒙))). The network is structured into layers 

containing nodes that act in parallel where each node represents a vector-to-scalar 

function. The dimensionality of each layer is called the width of the network. The layers 

between the input layer and output layer are referred to as hidden layers, named in 

reference to the ‘black box’ nature of neural networks. As data is passed through each 

layer and the neural network begins to approximate the form of 𝑓(𝑥), the output for each 

layer is not shown; rather, it is simply fed into the next layer until the final output layer. 

The nodes in each layer are connected and each connection is assigned a weight 

representing its relative importance to the model. The neurons within the hidden layers 

typically have multiple input and output connections. If every neuron in a layer connected 

Figure 12. Neural network structure. A cartoon schematic showing the generalized structure of 

a deep neural network containing an input layer, three hidden layers, and one output layer. Data 

from the single input node is transformed by an activation function at each node in the following 

layer. Each connection is weighted, and these weights are adjusted as the network learns. 
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to each neuron in the following layer, the layers are fully-connected. In contrast, when a 

group of neurons in one layer are all condensed and connected into the same neuron in 

the following layer, it is called pooling. Recurrent networks, in contrast to feedforward 

networks, allow connections between neurons in the same layer or previous layers. [99], 

[102], [105], [138], [139] 

The hyperparameters for a feedforward neural network include learning rate, depth, 

width, and batch size. More complex neural network structures, such as recurrent and 

convolutional neural networks, have their own additional unique set of hyperparameters. 

[140] 

In a feedforward network with hidden layers, activation functions are used to 

compute the hidden layer values. In a neuron model consisting of an input 𝒙 with bias 𝑏 

and a weight of 𝒘 summarized together as 𝑧 and an activation function 𝜑 that performs a 

non-linear transformation of 𝑧. The resulting output of the neuron model can be described 

as: 

𝑦 =  𝜑(𝑧) =  𝜑(𝒘𝑇𝒙 + 𝑏)          (37) 

Many activation functions exist. Commonly found activation functions are 

summarized in Table 1. [102] 

Table 1. Common activation functions for neural networks, their first derivatives, and ranges. 
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The computation of gradients and updating of weights in neural networks is 

performed via an algorithm called backpropagation. Backpropagation calculates the 

gradient of the cost function associated with a given set of weights corresponding to each 

connection of the network. Backpropagation involves computing the gradient of the loss 

function via the chain rule one layer at a time, passing through the network backwards 

starting from the last layer to prevent unnecessarily repetitive calculations within the 

Chain rule. This method is much more efficient than a direct computation of the gradient 

with respect to each individual weight. Via this process, weights are iteratively updated 

with each epoch of training such that the weights of the least important neurons are 

decreased and the weights of the more important neurons are increased proportionately. 

[102], [141]–[143] 

There are many specialized types of neural networks, including the convolutional 

neural network (CNN). CNN have been previously applied to biomedical problems with 

success due to their ability to analyze three-dimensional molecular structure data. [19], 

[21], [98], [139] CNN utilize convolutional and pooling layers with local connectivity 

between neurons (i.e., neurons are only connected to the nearby neurons in the next layer 

rather than fully connected). All of the connections between a group of locally connected 

neurons, called local receptive fields, use a set of weights denoted as a kernel. A kernel 

will be shared with all of the other neurons that connect to their local receptive fields and 

the results are stored in a matrix called the activation map. This process is described as 

weight sharing. Weight sharing and the local connectivity property allow a CNN to 

handle data with high dimensions. [99], [102], [144]–[147] Pooling layers aim to reduce 

the input dimension and aid in improving the generalization of the network. The pooling 
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layer scans the entire input in the same manner as a kernel in a convolutional layer. The 

most common type of pooling is max pooling, where the maximum value within each 

specified sub-window is extracted across the activation map. For example, a pooling 

layer with a stride of two and window size of two will half the size of the input 

dimension. [148]–[151] Figure 13 represents the overall structure of a CNN.

Figure 13. Convolutional neural network architecture. A cartoon schematic showing the generalized structure of a 

convolutional neural network containing pooling layers. Convolutional layers extract high-level features such as edges in an input 

image or gradient. Added convolutional layers contribute to a higher level of feature extraction. Pooling layers reduce the spatial 

size of the convolved features to decrease the associated computational cost necessary via extracting only the dominant features. 
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2.5 Bioinformatics methods.  

2.5.1 Molecular dynamics simulation 

Molecular dynamics simulation and molecular modeling technology have been key 

techniques used in the advancement of biochemical research; in particular, SBDD. 

Ligand docking is a core modeling protocol valued for its significant time- and cost-

efficient advantage over traditional biochemical protocols. While computational 

advancements have improved the time complexity and accuracy of simulation techniques, 

high dimensionality and throughput capacity are still concerns when using modeling 

alone in bioinformatic studies. [94] Recent molecular dynamics studies have shown 

success at elucidating the structural details of specific molecular interactions, while large 

scale studies have been increasingly dependent on machine learning methods. [35], [92], 

[96], [152], [153] 

Within recent years, machine learning tools capable of handling “big data” problems 

have been applied to computational biochemistry research to address the large feature 

space and amount of output data produced when studying molecular interactions. [19]–

[22], [98], [100], [138], [154], [155] Augmenting biomedical research with machine 

learning has become increasingly common over the last thirty years as high throughput 

techniques advance and produce large amounts of data. Machine learning is often applied 

to the fields of systems biology, genomics, proteomics, pharmacology/toxicology, and 

structural biochemistry. [138] The field of computational toxicology often uses 
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quantitative structure-activity relationship (QSAR) modeling to predict the activity of a 

compound against a set of biological targets. [156] QSAR programs often use regression 

models to predict the biological activity of a chemical against protein receptors trained on 

experimental assay data. Many QSAR models use ToxCast data as training sets and focus 

on respiratory, skin, hepatic, renal, or neural toxicity. [157]–[161] Within the realm of 

structural biochemistry, machine learning programs have proven useful for protein 

structure prediction and classification as well as interpretation of molecular dynamics 

output data. [98], [155], [162]



51 

 

 

 

2.5.2 Machine learning models for bioinformatics 

Machine learning programs for molecular applications use chemical descriptors as 

features to describe the data and aid in the identification of a pattern within the data. 

[163] These descriptors may be macromolecule specific (e.g., amino acid descriptors for 

proteins) or generalized physical chemistry descriptors such as electron density, 

nucleophilicity, charge, or topological indices. Molecular topology describes the 

geometry and structure of a chemical given the atomic positions and chemical bonding 

behavior of a given molecule. Topological indices are very useful features in machine 

learning applications where the goal is to predict biological activity based on the 

chemical structure of a molecule. [164], [165] 

Many algorithms have been trained specifically for structural analysis of protein 

structure and function, including the recent SSnet [22], DeepScreen [20], DeepAtom 

[19], and DeepConv [21] methods described in Specific Aim 1. Despite the established 

progress of augmenting protein biochemistry research with machine learning, current 

models often produce suboptimal accuracies for reliable clinical translation and few 

examples of transfer learning to a specific clinical application exist. [139] GPCR-focused 

models primarily include QSAR analysis, class prediction, and evolutionary biology 

studies but the field predominately still relies on computationally-expensive molecular 

dynamics methodology. [29], [84], [166]–[168] Within the previous two years, a limited 

number of GPCR-ligand interaction studies utilizing machine learning have been 
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published, demonstrating the potential success for a similar model to be developed 

specifically against a given GPCR subtype. [169], [170] 

Classification and behavior prediction of protein receptors may use feature 

descriptors based on sequence, structure, or both. Tens of thousands of protein chemical 

descriptors exist, and a complete comparison of all available feature groups and strategies 

is beyond the scope of this work. [163], [171]–[177] Protein sequence descriptors may 

include polarity, charge, and size of amino acids. In contrast, protein structural features 

take into account the three-dimensional shape of a protein and the intramolecular 

interactions between amino acids as well as the protein interactions with solvent. [164], 

[178] Protein structural features may offer more useful information than sequence alone 

as structure is an important determinant of function. [179]–[181]
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2.5.3 Anisotropic Network Model 

Atomic interaction data from normal mode analysis models such as the Gaussian 

Network Model (GNM) and the Anisotropic Network Model (ANM) provide detailed 

structural information that is directly related to the molecular dynamics and function of a 

protein comparable to molecular dynamics simulation at a fraction of the computational 

cost. [182]–[191] These elastic network modeling tools are specifically tuned to examine 

proteins via the relationship of force constants versus the interparticle distance between 

the residue alpha carbons (𝐶𝛼). In these models, the protein is represented as an elastic 

mass-and-spring network where each network node is a residue’s 𝐶𝛼 and each 𝐶𝛼 − 𝐶𝛼 

interaction is represented as a spring, based on the concept that the atomic fluctuations in 

a biomolecule are subject to harmonic potential much like masses connected to springs, 

pendulums, or acoustics. The harmonic potential between all interacting 𝐶𝛼 nodes 

describes the internal motions of the “spring” connecting each 𝐶𝛼 − 𝐶𝛼 pair. The ANM is 

an augmentation of the GNM as the GNM does not account for directionality of 

fluctuation while the ANM uses three-dimensional atomic coordinates to account for 

directionality when describing the compression and expansion of the spring. [184], [186] 

In the GNM, there is no directional preference or three-dimensional character of motion 

accounted for, therefore, the molecule is views as a collection of 𝑁 nodes (i.e., one for 

each residue). The resulting ensemble has 𝑁 − 1 independent modes, where a “normal 

mode” or harmonic refers to the pattern of motion in an oscillating system in which all 
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system components move sinusoidally at the same frequency. In the three-dimensional 

system of an ANM, 3𝑁 − 6 modes are obtained. It has been demonstrated in the 

literature that atomic fluctuations are generally anisotropic, or capable of changing 

properties in different directions (e.g., properties such as absorbance, conductivity, and 

polarizability are anisotropic in nature). These directional motions are directly related to 

the biological functions of proteins. Cumulatively, this evidence supports the notion that 

the meticulously detailed nature of the information provided by the ANM balanced with 

the relatively simple time complexity of calculations provided by the lack of necessity to 

differentiate between the chemical differences of specific amino acids makes feature 

generation and feature engineering via the ANM an advantageous approach for protein 

structure classification models. [184], [185], [192] 

The ANM is useful in describing the atomic fluctuations and molecular dynamics of 

proteins to better describe their three-dimensional structural and functional 

characteristics. This information can be used to guide molecular dynamics simulations as 

well as provide a rich source of features to be used in training machine learning models. 

[185] Normal mode analysis methods like the ANM are advantageous over full scale 

molecular dynamics simulation because they are capable of representing large scale 

atomic behavior at a fraction of the computational cost with robust results. [164], [193], 

[194] Using features provided by ANM analysis has shown promise as a comparable 

method for describing protein structure in machine learning models to the well-

established RMSD and TM-scoring strategies. [192] In general, the ANM is more 

accurate for globular proteins than non-globular, proteins with high-resolution structures, 

buried residues as compared to surface residues, and polar residues as compared to 
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hydrophobic residues. [185] The ANM has shown success in the analysis of the structural 

characteristics of many proteins including hemoglobin [195], amylase [184], HIV-1 

reverse transcriptase [182], [196], DNA polymerase [197], CoV spike protein [198], and 

numerous GPCRs [199], [200].
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2.5.4 Protein structural comparison methods 

Protein structure can be described independently or in comparison to other protein 

structures. By comparing individual structures to all others in a dataset, it is possible to 

quantify structural variation and identify the most unique regions of the structural 

landscape. [192] Variation can be determined via measures such as root-mean-square 

deviation of atomic positions (RMSD), TM-score, and variance threshold-based feature 

importance ranking of chemical descriptors like those obtained from normal mode 

analysis. [192], [201] 

RMSD is a measure of the distance between pairwise atomic coordinates between 

two superimposed protein structures. RMSD is defined by: 

𝑅𝑀𝑆𝐷 =  √
1

𝑛
∑ 𝑑𝑖

2

𝑛

𝑖=1

          (38) 

where the averaging is performed over the 𝑛 pairs of aligned atoms and 𝑑𝑖 is the 

distance between the two atoms in each 𝑖𝑡ℎ pair, presented in Å units. [201] 

RMSD is calculated between the alpha carbon (𝐶𝛼) of paired equivalent atoms for 

any subset (or all) residues between two proteins. 

The key disadvantage when using RMSD is the magnitude by which it is swayed by 

the amplitude of error. Two structures that are highly similar or identical with each other 
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with the exception of a single region of difference (such as a disordered loop or terminus) 

will have a very large RMSD and cannot accurately be superimposed. A pair of proteins 

that only differ in one region will have a similar global backbone RMSD to that of a 

protein pair with multiple small-scale differences throughout the entire structure. As s a 

result, RMSD scores are strongly affected by both flexible and poorly defined regions. 

[201] 

RMSD scoring requires unambiguous establishment of atom pair correspondence 

which is problematic when considering residues that possess internal symmetry or 

multiple equivalent side chain rotamers. Typically, assignment of atom pair 

correspondence is established trivially via sequence alignment. However, for Arg, Asp, 

Glu, Leu, Phe, Tyr, and Val residues this is not possible because some atoms are 

topologically equivalent due to sidechain internal symmetry. For example, the 𝐶𝛿1 and  

𝐶𝛿2 atoms within a Phe residue are topologically equivalent and can thus be mapped into 

𝐶𝛿1 and  𝐶𝛿2 atoms of the corresponding Phe residue in a paired structure in two different 

possible combinations. As a result, enumeration for the optimal rotamer of these residues 

is necessary when calculating RMSD. Finding the optimal rotamers can change pocket 

RMSD by up to 0.5 Å but this additional step increases the algorithm time complexity. 

[201] 

Additionally, RMSD scoring is heavily dependent on protein length and size. TM-

score measurements address this issue by normalizing the distances between 

corresponding atom pairs via applying a distance scale. In the TM-score calculation, a 
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target protein 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 and an aligned protein 𝐿𝑎𝑙𝑖𝑔𝑛𝑒𝑑 are assigned a score based off the 

normalized distance between the atoms such that: 

𝑇𝑀𝑠𝑐𝑜𝑟𝑒 = max 

[
 
 
 
 

1

𝐿𝑡𝑎𝑟𝑔𝑒𝑡
∑

1

1 + (
𝐷𝑖

𝐷0(𝐿𝑡𝑎𝑟𝑔𝑒𝑡)
)

2

𝐿𝑎𝑙𝑖𝑔𝑛𝑒𝑑

𝑖=1

]
 
 
 
 

          (39) 

RMSD and TM-scoring are the most common measures of structural similarity used 

when constructing protein structural alignments. In contrast to sequence-based alignment 

methods, three-dimensional structural alignments focus solely on the relative shape and 

positional similarity of protein structures based on atomic coordinates, irrelevant of the 

two-dimensional protein sequence. Closely aligned protein models indicate potential 

functional relationships that may not be apparent from sequence comparison alone. 

Structural alignment algorithms often agree with sequence alignments; however, many 

protein families have high structural and topological similarity despite low sequence 

overlap as protein structure is more robust to evolutionary changes as compared to 

sequence. [201], [202] As an example, the ubiquitous TIM barrel motif is found in over 

70 different protein families despite sequence variations. While sequence-based 

techniques do not detect this similar motif accurately, structural alignments find 

meaningful patterns allowing for recognition of the ubiquitous TIM barrel. [180], [192] 

In comparison to the use of traditional multiple structural alignment metrics like 

RMSD and TM-scoring, there is also evidence for success in the literature for using 

machine learning-based feature selection of structural features. The literature 

demonstrates the utility of GNM and ANM output features as determinants of 
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“informative residue positions.” Following the generation of a multiple structure 

alignment and feature generation of GNM and ANM fluctuations and residue depths, 

features are aligned after discarding gap positions in the alignment. The data was fit using 

a logistic regression model with Lasso regularization and the absolute value of the feature 

coefficients at each position was used to determine feature importance. This method 

resulted in an AUC-score of 0.98 ± 0.03 for a cyclin-dependent kinase classification 

model. [192] This method serves as strong evidence for the applicability of physical 

chemistry modeling and structural analysis to machine learning feature engineering.
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3. Methodology 

3.1 Literature search and model selection 

A literature search was conducted for journal articles in the NCBI PubMed database 

within the previous five years containing any or all of the following terms: “neural 

network”, “deep learning”, “machine learning”, “prediction” + “protein binding”, 

“receptor”, “ligand binding”, “drug binding”, “protein-ligand interaction”, “drug-target 

interaction”. Results were filtered based on classifier output to obtain published 

architectures where the output predicts interaction activity between a protein and a ligand 

binding partner (i.e., as compared to prediction of binding site location, free energy, et 

cetera). Out of 293 total results, four papers were selected for comparison based on 

superior performance metrics. The selected papers describe architectures referred to as 

DeepConv, SSNet, DeepScreen, and DeepAtom, respectively. [19]–[22] While each 

model is reported to have high accuracies, weaknesses in their general applicability as 

indicated by strict data input requirements, large dataset necessity, and inconsistent 

results against varying test datasets still demonstrate a gap in the literature for 

improvement. Table 2 summarizes the architecture, requirements, strengths, and 

weaknesses of each model.  
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Table 2. Comparison of Selected Protein-Ligand Interaction Deep Learning Models. DeepConv, SSNet, DeepScreen, and DeepAtom 

models are summarized for its implementation strategy, performance and model strengths, and model weaknesses. 
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3.2 Data collection and cleaning 

Benchmark test data for Specific Aim One were adapted from the Database of 

Useful Decoys – Enhanced (DUD-E). [25] Each selected model requires different input 

formats, including ChEMBL entries, sequence data, apoprotein structure, and protein-

ligand complex data. The original complete DUD-E dataset was filtered for interactions 

that contain all of these available data, resulting in 438 interactions spanning 11 protein 

receptors. This dataset was relatively class balanced with approximately 56% of data 

observations belonging to the positive class. In addition to the benchmark test set, a small 

test set of Subgroup A17 (serotonin and dopamine) receptors was generated containing 

37 interactions spanning 4 protein receptors.  

To correct a strong class imbalance in the Subgroup A17 data (70.2% of data 

observations belonging to the positive class), the negative class was oversampled using 

SMOTE (see 3.3) resulting in an equally balanced dataset. [203] The newly generated 

dataset with added synthetic datapoints contains 52 observations split between 26 

positive and 26 negative interactions. 

Specific Aim Two and Specific Aim Three datasets were adapted from the Protein 

Databank (PDB) [204], G Protein-Coupled Receptor Database (GPCRdb) [205][206], 

Psychoactive Drug Screening Program (PDSP) [26], and DrugBank [207] to obtain 

thorough, experimentally validated interaction data for Subgroup A17 positive and 

negative interaction behavior wherein ‘positive interactions’ refer to a drug-target pair 
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associated with a measured Kd / Ki < 10,000nM and ‘negative interactions’ refer to a 

drug-target pair associated with a measured Kd / Ki ≥ 10,000nM per previously published 

protocols in the literature. 

For Specific Aim Two, a small dataset of Group A GPCR protein structures was 

collected to test the effect of structure-based feature selection methods on accuracy and 

time complexity of classification methods. Initially, 35 PDB structures of Group A 

proteins were collected based on exclusion criteria selecting for high resolution, high 

percent sequence coverage, active conformation apostructures. These 35 structures 

spanned ten different Group A subgroups, six of which contained less than two structures 

per subgroup. Proteins belonging to these smaller groups were removed to ensure quality 

classification input. The remaining subset of proteins included 29 proteins spanning six 

subgroups (A4, A12, A13, A15, A16, A18). Each protein is associated with a data tensor 

containing structural data from the PDB file including .xyz coordinate data, secondary 

structure information, and bond angles. This structural data was used to generate an 

anisotropic network model for each protein with a cutoff of 15A for alpha carbon 

interactions calculating 20 normal modes per protein structure (see 3.4). 

Eigendecomposition was computed using MATLAB. [208] 

Alpha carbon fluctuations from each ANM model respectively were aligned using a 

multiple sequence alignment from the Caretta algorithm. [192] In total, 298 residues were 

aligned and following the removal of any positions with gaps, 174 positions 

corresponding to 174 total features remained comprising the fully comprehensive feature 

set. The dataset was imbalanced with a majority of the sample belonging to subgroup 

A18 therefore SMOTE was applied to the dataset. The final dataset contained 78 
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observations. Additionally, a limited feature set for these observations was subsetted 

based on the 25 residue positions with the largest magnitude variance values (15% of the 

original feature set) to test the hypothesis that structure-based feature selection methods 

are capable of reducing model training time without sacrificing model accuracy. 

To determine the potential for learning pharmacodynamic behavior patterns from 

structural GPCR data, two datasets were generated containing pairs of either serotonin (5-

HT) or dopamine (DRD) receptors respectively and corresponding ligands labeled for 

each receptor as an interacting pair (also referred to as a ‘positive’ or ‘active’ interaction 

or coded with an output of ‘1’) or a non-interacting pair (also referred to as a ‘negative’ 

or ‘inactive’ interaction or coded with an output of ‘0’). Data was obtained from the 

GPCRdb, PDSP databases, and the DrugBank for GPCR structure, interaction data and 

psychoactive drug activities. [26], [205]–[207] 

5-HT receptor data was joined from the three online databases using SQL to 

generate a single united dataset. Each database contains experimental values for the 5-

HT1a, 5-HT1b, 5-HT2a, 5-HT2b, and 5-HT2c receptor isoform drug-target interactions. 

Additionally, PDSP and DrugBank contain additional experimental values for confirmed 

non-interacting ligands to obtain validated negative interaction examples. SQL join 

functions were used to filter each database for serotonin assay results, simultaneously 

removing irrelevant proteins and redundant data entries. A number of drug-target pair 

assay results were found to be duplicates with contradictory reported results, which is to 

be expected with differing conditions and assay kits within experimental research.  
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To address this dilemma objectively, the decision to include a drug-target pair was 

based on the agreement of results in reference to the 10,000nM decision boundary to 

discern between positive/negative interactions to reflect the boundary given in previously 

published models. [19-22] If each duplicate assay entry lies on the same side of the 

boundary, results are combined into a single observation based on the resulting binary 

output encoding. On the contrary, if duplicate assay results span a range included, but not 

bound by, 10,000nM, these results are contradictory and all results for the given drug-

target pair are thrown out (e.g., if a given 5-HT receptor has three listed assay results with 

one result under 10,000nM and two results above 10,000nM, these results are 

contradictory; however, if one result equals 10,000nM and two results are above 10,000, 

these results are considered to be in agreement and will be combined into a single data 

observation encoded as ‘0’). In addition to addressing duplicate results, data was also 

cleaned for duplicate ligand entries under varying chemical names, null values, and 

incomplete entries. Although the 10,000nM boundary does not appropriately represent 

the biochemical significance of binding strength (e.g., the difference between a 

dissociation constant of 1nM and 900nM leads to a substantially different biochemical 

effect), it was not possible to accurately and objectively predict a continuous output 

variable of dissociation constants due to duplicate and contradictory results in the 

literature for certain binding interactions as described above. Clinically relevant examples 

of GPCR binding interactions run the gamut of binding affinities and multiple arguments 

could be made for various threshold boundaries to be of pharmacological importance. 

The scale of binding affinities of drugs is often much lower than the binding affinities of 

native ligands and could arguably deserve different threshold values. We should also 
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ideally consider factors such as transient binders, allosteric binders, and receptor 

mutations.  

Because of our limitations with the number of variables to account for, training data 

required, maintenance of data quality, and factors involved in binding threshold 

determination, we chose to opt for a binary classification and use the same decision 

boundary as other models. Using the same decision threshold is also valuable when 

comparing model accuracies. Other ways that this could be handled other than the added 

complexity described above include a multiclass model where we have more decision 

boundaries to more specifically categorize binding interaction strength. The final clean 5-

HT dataset contains 36,208 interactions with approximately 57% negative and 43% 

positive interactions. 

Each protein is associated with a data tensor containing structural data from the PDB 

file including .xyz coordinate data, secondary structure information, and bond angles. 

This structural information was used to generate ANM for each 5-HT model as 

previously described for Specific Aim Two dataset creation methodology.  

In total, 342 residues were aligned and following the removal of any positions with 

gaps, 282 positions corresponding to 282 total features remained comprising the fully 

comprehensive feature set. SMOTE was applied to the positive class to fix imbalance as 

this adjustment improved overall model accuracy. Additionally, ligand binding partners 

associated with a SMILES identifier for chemical structure were described by features 

extracted by the RDKit feature engineering program for a total of 201 features describing 

physiochemical, quantum, and topological descriptors of each molecule. ([209], 
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Appendix A) The final 5-HT dataset contained 42,656 observations consisting of two-

dimensional vectors encoding 483 features describing protein and ligand structure. 

Additionally, a limited feature set for these observations was subsetted based on the 42 

residue positions with the largest magnitude variance values (15% of the original feature 

set) based on evidence supporting the hypothesis from Specific Aim Two. 

DRD data was collected, joined, and cleaned using an identical protocol to that of 

the 5-HT dataset. As a result, a dataset containing drug-target interactions classified by a 

binary positive/negative output value was generated for the DRD1, DRD2, DRD3, and 

DRD4 isoforms. DRD5 was excluded due to the lack of a high-resolution solved 

structure. Structural feature tensors were generated from PDB files as input for the ANM, 

and feature engineering from ANM results was conducted as previously described for the 

5-HT isoforms. In total, 369 residues were aligned and following the removal of any 

positions with gaps, 302 positions corresponding to 302 total features remained 

comprising the fully comprehensive feature set. Synthetic Minority Oversampling 

Technique was applied to the positive class to fix imbalance as this adjustment improved 

overall model accuracy (see 3.3) . Ligand binding partners were described by 201 RDkit 

features as previously described. The final DRD dataset contained 2,063 observations 

consisting of two-dimensional vectors encoding 503 features describing protein and 

ligand structure. Additionally, a limited feature set for these observations was subsetted 

based on the 75 residue positions with the largest magnitude variance values (15% of the 

original feature set) based on evidence supporting the hypothesis from Specific Aim 

Two. All programing methodology is further detailed in Appendix B.



68 

 

 

 

3.3 Synthetic datapoint generation 

For all datasets, Synthetic Minority Oversampling Technique (SMOTE) was used to 

generate synthetic datapoints oversampling the minority class to achieve a more balanced 

dataset. [203] Briefly, SMOTE selects random datapoints from the underrepresented class 

and determines the n-nearest neighbors of a given datapoint. New data points are 

generated by selecting a random point on the vector that connects the original datapoint 

and a selected ni neighbor. This process is repeated until the dataset is equally distributed. 

SMOTE was implemented using the imbalanced-learn module. SMOTE is a well-

established, robust method with approximately two decades of published success in the 

literature. [210]
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3.4 Anisotropic network model 

ANMs can predict anisotropic motions of atoms via computation on the force 

constant matrix (𝑯) containing data describing the orientation of each interaction with 

respect to the global coordinates where: 

𝑯 = [
𝐻𝑖𝑖 𝐻𝑖𝑗

𝐻𝑗𝑖 𝐻𝑗𝑗
]          (40) 

where 𝑖 and 𝑗 are nodes in the model representing two 𝐶𝛼 in the protein and each 

element 𝐻𝑖𝑗 in the matrix represents the anisotropic information regarding the orientation 

of nodes 𝑖 and 𝑗. [184], [185] The Hessian matrix 𝑯 describing the force constant of the 

system is equivalent of the second partial derivative of the harmonic potential 𝑉𝑖,𝑗 defined 

as: 

𝑉𝑖,𝑗 = 
𝛾

2
(𝑠𝑖,𝑗 − 𝑠𝑖,𝑗

𝑜 )
2
          (41) 

where 𝛾 represents the unknown spring constant, 𝑠𝑖,𝑗 is the instantaneous distance 

between 𝑖 and 𝑗, and 𝑠𝑖,𝑗
𝑜  is the equilibrium distance between 𝑖 and 𝑗. Therefore: 

𝜕2𝑉𝑖,𝑗

𝜕𝑥𝑖
2 =

𝜕2𝑉𝑖,𝑗

𝜕𝑥𝑗
2 =

𝛾

𝑠𝑖,𝑗
2 (𝑥𝑗 − 𝑥𝑖)

2
          (42) 

𝜕2𝑉𝑖,𝑗

𝜕𝑥𝑖𝜕𝑦𝑖
=

−𝛾

𝑠𝑖,𝑗
2 (𝑥𝑗 − 𝑥𝑖)(𝑦𝑗 − 𝑦𝑖)          (43) 
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where the instantaneous positions of atoms 𝑖 and 𝑗 are defined by their respective 

coordinates (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗). As a result, 𝑯 can be expanded as: 

𝑯 = 

[
 
 
 
 
 
 
 
𝜕2𝑉𝑖,𝑗

𝜕𝑥𝑖𝜕𝑥𝑗

𝜕2𝑉𝑖,𝑗

𝜕𝑥𝑖𝜕𝑦𝑗

𝜕2𝑉𝑖,𝑗

𝜕𝑥𝑖𝜕𝑧𝑗

𝜕2𝑉𝑖,𝑗

𝜕𝑦𝑖𝜕𝑥𝑗

𝜕2𝑉𝑖,𝑗

𝜕𝑦𝑖𝜕𝑦𝑗

𝜕2𝑉𝑖,𝑗

𝜕𝑦𝑖𝜕𝑧𝑗

𝜕2𝑉𝑖,𝑗

𝜕𝑧𝑖𝜕𝑥𝑗

𝜕2𝑉𝑖,𝑗

𝜕𝑧𝑖𝜕𝑦𝑗

𝜕2𝑉𝑖,𝑗

𝜕𝑧𝑖𝜕𝑧𝑗 ]
 
 
 
 
 
 
 

          (44) 

= 
−𝛾

𝑠𝑖,𝑗
2 [

(𝑥𝑗 − 𝑥𝑖)(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖)(𝑦𝑗 − 𝑦𝑖) (𝑥𝑗 − 𝑥𝑖)(𝑧𝑗 − 𝑧𝑖)

(𝑦𝑗 − 𝑦𝑖)(𝑥𝑗 − 𝑥𝑖) (𝑦𝑗 − 𝑦𝑖)(𝑦𝑗 − 𝑦𝑖) (𝑦𝑗 − 𝑦𝑖)(𝑧𝑗 − 𝑧𝑖)

(𝑧𝑗 − 𝑧𝑖)(𝑥𝑗 − 𝑥𝑖) (𝑧𝑗 − 𝑧𝑖)(𝑦𝑗 − 𝑦𝑖) (𝑧𝑗 − 𝑧𝑖)(𝑧𝑗 − 𝑧𝑖)

]          (45) 

= 
−𝛾

𝑠𝑖,𝑗
2 [

𝑥𝑗 − 𝑥𝑖

𝑦𝑗 − 𝑦𝑖

𝑧𝑗 − 𝑧𝑖

] [𝑦𝑗 − 𝑦𝑖 𝑦𝑗 − 𝑦𝑖 𝑧𝑗 − 𝑧𝑖]          (46) 

While the matrix 𝑯 is not invertible, a pseudoinverse can be obtained via 𝑯 =

𝑼Λ𝑼𝑇 to obtain the eigenvectors and nonzero eigenvalues. The eigenvalues describe the 

vibrational direction and amplitude in the different modes. The mean square fluctuations 

of specific residues can be obtained by summing the fluctuations in each individual 

mode, i.e., 

〈𝚫𝑹𝒊
𝟐〉 =  〈Δ𝑋𝑖

2〉 + 〈Δ𝑌𝑖
2〉 + 〈Δ𝑍𝑖

2〉 =  
𝑘𝐵𝑇

𝛾
[𝐻̃3𝑖−2,3𝑖−2

−1 + 𝐻̃3𝑖−1,3𝑖−1
−1 + 𝐻̃3𝑖,3𝑖

−1 ]          (47) 

Additionally, the cross correlation between different residues can be calculated via: 

〈Δ𝑅𝑖 ⋅ Δ𝑅𝑗〉 =  〈Δ𝑋𝑖 ⋅ Δ𝑋𝑗〉 + 〈Δ𝑌𝑖 ⋅ Δ𝑌𝑗〉 + 〈Δ𝑍𝑖 ⋅ Δ𝑍𝑗〉

=  
𝑘𝐵𝑇

𝛾
[𝐻̃3𝑖−2,3𝑗−2

−1 + 𝐻̃3𝑖−1,3𝑗−1
−1 + 𝐻̃3𝑖,3𝑗

−1 ]          (48) 
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Anisotropic network models were generated for each protein with a cutoff of 15Å 

for alpha carbon interactions calculating 20 normal modes per protein structure. 

Eigendecomposition was computed to determine the mean square fluctuations of alpha 

carbons, elastic potential energy and B-factors using the DSSP module in MATLAB as 

previously published. [211] Fluctuation data was used to generate machine learning 

features while fluctuations, elastic potential energy, and B-factors were all factored into 

molecular modeling and simulation analysis. All model visualization, movie trajectories, 

and image rendering were completed in Jmol. [212] All programing methodology is 

further detailed in Appendix B.
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3.5 Structural analysis using molecular modeling and simulation 

All protein and ligand structural data was obtained from the PDB. [204]  Receptors 

lacking solved structure data were omitted from all datasets and analyses. All structural 

analysis was completed in the UCSF Chimera 1.11.2 program. [213] Atomic contacts and 

hydrogen bonding prediction were completed post-structure steepest descent 

minimization and solvation in a TIP4P-Ew model. Solvation models are crucial to 

calculation accuracy as solvation energies and intermolecular interactions between 

solvents and solvated molecules will affect all other interaction calculations. [82]The 

TIP4P-Ew model is a re-parameterization of the TIP4P model using Ewald techniques. 

The TIP4P water solvation model is a rigid planar four-site interaction potential for water 

consisting of a Lennard-Jones site for the oxygen atom and three charge sides with a 

‘mock’ atom maintaining molecule geometry and force distribution. [214] The TIP4P 

model is summarized in Table 3. 

Table 3. TIP4P Model Parameters. The TIP4P model is described above in terms of bond angles and radii, 

dielectric constant, and charge. TIP4P contains a Lennard-Jones site for the oxygen atom where ε describes 

the well depth and σ is the value of r at which the Lennard-Jones potential equals zero. 
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When adjusted for the Ewald sum technique to better simulate electrostatic 

interactions within a system via the introduction of charge “clouds”, the model is adjusted 

to values as described in Table 4. A visualization of the TIP4P-Ew model is given in 

Figure 14. 

 

Following structure minimization and solvation, atomic contacts and hydrogen 

bonds are predicted based on the theoretical calculation of the overlap between two given 

atoms for all atomic pairs in a given protein receptor where overlap is defined as: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑖𝑗 = 𝑟𝑉𝐷𝑊𝑖 + 𝑟𝑉𝐷𝑊𝑗 − 𝑑𝑖𝑗 − 𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒𝑖𝑗          (49) 

where allowance refers to a correction for potentially hydrogen-bonded pairs in 

which an allowance > 0 reflects the observation that atoms sharing a hydrogen bond can 

Table 4. TIP4P-Ew Model Parameters. The TIP4P-Ew model is described above in terms of bond angles 

and radii, dielectric constant, and charge. TIP4P-Ew contains a Lennard-Jones site for the oxygen atom 

where ε describes the well depth and σ is the value of r at which the Lennard-Jones potential equals zero. In 

contrast to TIP4P, the TIP4P-Ew is reparameterized to include the Ewald sum technique, improving the 

simulation of long range electrostatic interactions. 

Figure 14. Representation of the molecular model of water used in the TIP4P-EW solvation model. A 

‘mock atom’ is placed in between the hydrogen atoms to maintain model geometry where rOH and rOM are 

the bond lengths between the oxygen and hydrogen and mock atoms, respectively and HOH* refers to the 

bond angle of the molecule. 
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have a shorter atomic distance than would be predicted from their van der Waals radii. 

Allowances are only taken into account for pairs containing a hydrogen donor and an 

acceptor. Atomic contacts are determined via a cutoff value of -0.4 Å and an allowance 

value of 0.1 Å. Pairs that are >3 bonds apart are ignored. Using a similar protocol 

combined with previously published methodology [215], hydrogen bonding pairs are 

predicted. All models are visualized and images generated using the built-in rendering 

tools of Chimera 1.11.2. All programing methodology is further detailed in Appendix B.
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3.6 Logistic regression model parameters 

Logistic regression models were built using the scikit-learn class within the 

linear_model module. (Appendix B, [115]) Table 5 describes the chosen hyperparameter 

values. Omitted parameters were set to the default values. The SAGA solver is a variant 

of the Stochastic Average Gradient (SAG) method which optimizes the sum of a finite 

number of smooth convex functions. SAG converges much faster than other stochastic 

gradient methods as its iterative cost is independent of the number of function terms in 

the calculated sum. While it is faster than other solvers, it can be impractical for large n 

due to its memory cost. The SAGA variant differs in that it also supports non-smooth 

regularization options, making it a more ideal choice for sparse and/or very large 

datasets. The scikit-learn documentation recommends the SAGA solver as the best choice 

in most cases despite limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) 

being the default option. [115]

Table 5. Logistic Regression Model Hyperparameters. Optimized hyperparameters for all logistic 

regression models. Omitted hyperparameters were not adjusted from default values. 
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3.7 Decision tree-based model parameters 

Decision-tree based classifiers including random forest, extra trees, and bagging 

decision tree models were constructed using the scikit-learn ensemble module. 

(Appendix B, [115]) The extra trees classifier compares to a random forest classifier in 

that they each build multiple decision trees in which nodes are split using random subsets 

of features. The two algorithms contrast in that extra trees classifiers do not bootstrap 

observations and nodes are split randomly rather than on best splits. Bagging trees differs 

from random forest in that all features are taken into account when splitting a node rather 

than randomly selecting a subset of features. Optimized hyperparameters for each method 

are summarized in Table 6. Omitted parameters were set to default values.

Table 6. Decision Tree-Based Model Hyperparameters. Optimized hyperparameters for all decision tree-

based models, including random forest, extra trees, and bagging trees classifiers. Omitted hyperparameters 

were not adjusted from default values. 
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3.8 Support vector machine model parameters 

Support vector classifiers were built using the scikit-learn ensemble module. 

(Appendix B, [115]) Table 7 describes the optimized hyperparameter set used. A 

polynomial kernel was selected over the more common radial basis function (RBF) due 

to its increased computation speed without sacrificing performance (data not shown).

Table 7. Support Vector Machine Model Hyperparameters. Optimized hyperparameters for all SVM 

models. Omitted hyperparameters were not adjusted from default values. 
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3.9 AdaBoost model parameters 

AdaBoost classifiers were built using the scikit-learn ensemble module. (Appendix 

B, [115]) Default parameters were found to result in the optimized model and can be 

found in the sklearn documentation.
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3.10 Performance metrics and cross validation methods 

All model performance is measured by a combination of precision, recall, confusion 

matrices, F1-scoring, and ROC AUC scores as described in Chapter One. 

Each test set performance is measured by a 10-fold cross-validated F1 score 

implemented via the scikit-learn metrics module. (Appendix B, [115]) In K-Fold Cross 

Validation, data is randomly shuffled and split into k numbers of folds (i.e., groupings of 

data). One fold is separated into the test dataset, while the other k-1 folds are grouped 

together into the training data. The model is fitted and evaluated via a chosen 

performance metric score. The process repeats iteratively with each fold as the test data 

and the final k scores are averaged to form a more robust model validation score. F1-

scoring was chosen as the performance metric due to the binary nature of the models as 

well as the consequence of positive class errors. [216]
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3.11 Deep neural network model parameters and architecture 

Models were replicated using publicly available code from GitHub repositories 

provided by authors. All models were replicated and tested in either a GPU-enabled 

Python 3 environment using JupyterLab or within the SageMaker service from Amazon 

Web Services (AWS). 

A deep feedforward neural network was built within the PyTorch framework. [217] 

Despite experimentation with more complex architectures, it was found that a 

feedforward architecture was sufficient to achieve high accuracy and ideal over other 

methods due to its computational speed. The model architecture, summarized in Figure 

15, is composed of five linear layers with batch normalization following each layer and 

dropout layers following the first and last hidden layers. Batch normalization was 

implemented to increase model speed and stabilize each layer’s input via re-

standardization of the data whereas dropout layers were implemented to prevent 

overfitting. [139], [169] Placement of batch normalization and dropout was guided by 

previously published architectures. [21], [133], [169] Model implementation with the 

Exponential Linear Unit (ELU) activation function was found to result in better 

performance than other activation functions. ELU activation is more computationally 

expensive than the popular Rectified Linear Unit (ReLU) activation function, but in 

addition to avoiding the vanishing gradient problem, it also avoids the dead ReLU 
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problem. Loss is measured by the binary cross entropy criterion. Performance metrics 

include cross validated F1-score, precision, recall, and ROC AUC score.

Figure 15. Architecture of feedforward, fully-connected deep neural network used for drug-target 

interaction prediction of Subgroup A17 receptors. A model with five hidden layers (each followed by 

batch normalization and a dropout layer following the first and fifth hidden layers (p=0.2 and p=0.7 

respectively) was found to result in the best performance. 
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4. Results and Discussion 

 

4.1 Specific Aim 1. To test the performance of current machine learning 

algorithms for the classification of protein binding behavior and determine the 

extent to which these architectures can be applied to the classification of Class A 

GPCR-drug interactions. 

4.1.1 Current state-of-the-art method performance against a DUD-E 

benchmark dataset 

To validate the replicability of the selected prior published protein-ligand interaction 

neural network classifiers (DeepConv [21], SSNet [22], DeepScreen [20], and DeepAtom 

[19]), trained models were built from publicly available code provided by the authors in 

each model’s respective framework as written. Each publication uses different 

performance metrics; however, for consistency in our analysis we chose to measure 

accuracy via the F1-score metric. While this makes direct comparison to published results 

less interpretable, generalized conclusions on model accuracy are still possible. Multiple, 

but not all, of the models selected the DUD-E database as a validation set but all models 

were tested on a generalized protein-ligand database containing a wide breadth of protein 

families and ligand classes, therefore the DUD-E database is a suitable test set for all four 

models. A 10-fold cross validated F1-score (± standard error) for each model is given in 

Figure 16.  
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DeepConv reports an AUC score of 0.852 [21] against a dataset constructed from a 

mixture of drug-target interaction databases (e.g., KinaseSAFARI, PubChem, DrugBank) 

while our model obtained a cross-validated F1-score of 0.764 ± 0.028. (Figure 16) It is of 

note that our DUD-E test set was considerably smaller than the test set from published 

results (438 interactions vs. >36,000 interactions) which potentially influenced results.  

DeepScreen reports an F1-score of 0.87 [20] against a large dataset of 

experimentally-validated protein-ligand interactions, and our replicated model results 

were in strong agreement with these published results. The replicated pre-trained model 

resulted in a cross-validated F1-score of 0.88±0.016 against the DUD-E test set. (Figure 

16) 

DeepAtom reports a Pearson correlation of 0.83 [19] against a dataset of PDBind 

protein-ligand complexes. When the DUD-E test set was applied to the replicated pre-

trained model, an F1-score of 0.805±0.0304 was obtained. (Figure 16) 

SSNet reports an AUC of 0.93 [22] against a dataset containing protein-ligand 

interaction data from DUD-E with Kd values greater than 10,000nM or smaller than 

100nM. When applied to our broader range of DUD-E test data, the model resulted in a 

cross-validated F1-score of 0.81±0.075. (Figure 16) 
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Figure 16. Protein-ligand interaction classifiers perform significantly worse than reported accuracy metrics on a test 

set containing Subgroup A17 GPCRs. Model performance of four previously published architectures against a benchmark 

test set adapted from the DUD-E interaction dataset and a test set consisting of drug-target interactions from the Class A 

Subgroup A17 of proteins including dopamine and serotonin receptors. Accuracy was measured by a 10-fold cross validated 

F1-score. Each replicated model performed significantly worse against the Subgroup A17 dataset than the DUD-E dataset. 
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4.1.2 Current state-of-the-art method performance against a GPCR 

Subgroup A17 test set 

Despite the potential concern associated with the DeepConv author’s dataset creation 

methodology, the accuracy of this model was still comparable to published metrics when 

tested against the experimentally validated DUD-E dataset. However, once applied to a 

specific protein family test set, model accuracy significantly dropped (p<0.05). This 

additional test set contained experimentally validated data for proteins within the GPCR 

Subgroup A17 (serotonin and dopamine receptors) and resulted in in an average cross-

validated F1-score of 0.685 ± 0.05, both a lower accuracy and higher standard error rate 

than that of the more general DUD-E dataset. (Figure 16) 

While accuracy did significantly drop for the Subgroup A17 test as compared to the 

DUD-E test set (p<0.05), the model against the Subgroup A17 data still obtained a cross-

validated F1-score of 0.71±0.028. (Figure 16) 

The DeepAtom framework performed well against the general DUD-E dataset but 

did not demonstrate any predictive ability against the Subgroup A17 dataset, as 

evidenced by the cross-validated F1-score of 0.462±0.043. This data suggests that the 

structural features extracted from the serotonin and dopamine receptor complexes via the 

DeepAtom algorithm are not useful for interaction prediction. (Figure 16) 



86 

 

SSNet performed significantly worse against the Subgroup A17 dataset than the 

general DUD-E test set (p<0.05) with a comparably large standard error (cross-validated 

F1-score of 0.62±0.088). (Figure 16)
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4.1.3 Discussion of current published models and potential applicability to 

Subgroup A17 proteins 

While we hypothesized that training on a broader, more general dataset of protein-

ligand interactions would result in a higher test accuracy for a specific protein group due 

to similar overarching physiochemical properties that determine protein binding behavior 

and a larger volume of available training data, this was not observed for any of the 

replicated classifiers. It is possible that while the available amount of data for generalized 

protein-ligand interactions is larger, the conformational dynamics governing ligand 

binding behavior is too different between groups with drastically different structure to 

simplify structure-function relationship for ligand binding across multiple protein 

families. This data suggests that the potential for transfer learning within protein-ligand 

binding is lower than expected. 

A strength of DeepConv, as stated by the authors, is the generable applicability of 

the model due to the model only requiring sequence data and no structural information. 

[21] However, this data suggests that despite not using three-dimensional structures, the 

applicability of this model is limited. It is also of note that while the DeepConv model 

does not require structure information, the input format requires available ChEMBL data. 

While this program feature was likely introduced to improve user experience, it does 

limit the data compatibility range of the model. 
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The Subgroup A17 dataset contained 52 observations and it is possible that the small 

dataset size influenced model accuracy. It is a noted limitation of this aim that finding 

data to satisfy the input requirements of all four models significantly reduced the 

availability of usable data. While it is possible to modify these models to allow different 

input structures or re-train the model using our datasets, the amount of work necessary to 

complete these tasks would be overambitious and beyond the scope of this project. 

The DeepScreen authors’ data collection strategy for both training and testing data is 

an additional factor that may address disparities between the published accuracy of 

DeepScreen and accuracy against other datasets. [20] For the datasets tested in this work, 

we chose to only include experimentally validated negative interactions. Additionally, 

test data were randomly generated from the full dataset using the train_test_split function 

from the scikit-learn model_selection module. [115] 

In contrast, the data used to train and test DeepScreen by the authors contained 

experimentally validated positives and randomly generated ‘scrambled’ negative data 

(i.e., positive interaction pairs were randomly shuffled to generate a new set of theoretical 

interaction pairs and any overlapping samples between the original and shuffled dataset 

are removed to generate a novel dataset containing new interactions which will be labeled 

as negatives). These interactions were not compared to published experimental data. As 

the dataset was pulled from a small subset of the publicly available protein-ligand 

interaction data, it is very likely that a large number of experimentally-validated positive 

interactions were not included in the data and therefore it is also possible that some of the 

scramble-generated ‘negative’ interactions have been experimentally validated as 

positive, or not yet tested to confirm either way. Moreover, the data chosen to be 
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scrambled by the researchers was hand-selected and chosen by protein family rather than 

a random distribution of all data. As a result, researcher bias may have been introduced 

into the dataset. It is possible that rather than predicting drug interaction probabilities, the 

program was identifying real vs. randomized data observations. 

Overall, the DeepScreen model outperformed other models against both test sets. 

However, a significant drawback to this model is the requirement of detailed structural 

information for each interaction. DeepScreen utilizes a three-dimensional apoprotein 

structure, a ligand structure, and a protein-ligand complex. While the authors were able to 

compile a large training dataset by including a broad range of proteins from multiple data 

sources and multiple protein families, this model has limited applicability as solved 

protein structures are rare and solved protein-ligand complex structures are even more 

rare. Additionally, the complexity and high dimensionality of this data results in 

extremely high model complexity and long training times. As a result, despite the strong 

evidence that DeepScreen displays for the use of structural information in protein-ligand 

interaction classification, the field of structure-oriented machine learning research still 

lacks real-world feasibility in terms of general applicability. 

The DeepAtom model demonstrates reasonable performance against a general 

protein-ligand interaction dataset but does not perform well against a test set of family-

specific interactions. [19] The DeepAtom model is arguably one of the most complex 

predictive models published for protein-ligand interaction prediction currently available. 

Three-dimensional protein-ligand complex structures are voxelized with channels 

containing encoded feature information describing atoms within each respective voxel. 

The voxelized structure undergoes a three-dimensional convolution to predict an 
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inhibition constant value. Despite the complexity of the model structure, only 24 features 

are used to describe the entire complex and the results of our analysis suggest that these 

24 features are not generally applicable to all protein-ligand interaction datasets. 

SSNet resulted in a comparable average F1-score for the DUD-E data set and the 

Subgroup A17 data set to the other three tested models. [22] The standard error for this 

model was considerably higher than other models and unusually high for a cross-

validated classifier performance, suggesting that a certain amount of randomness is 

contributing to the model prediction. In addition to the concern provided by this large 

standard error repeated across multiple experiments (data not shown), the model was only 

trained to handle extreme values for positive interactions. It is possible that the model 

does not predict well for positive interactions with Kd values above 100nM as the 

training data only classified interactions with dissociation constants below this threshold. 

As an example, the D2 receptor has a reported affinity for dopamine ranging between 

~400-700nM. [26] Under the classification threshold criteria for SSNet, dopamine would 

not be considered a positive ligand for D2. The lack of consistency and range of ligand 

input of the SSNet predictive ability raises concern about the model’s potential for 

applicability. 

Overall, while each tested model demonstrated strengths to guide the development of 

future models, each also raised concerns about classifier replicability and performance 

generalizability. Each model performed relatively well compared to other published 

classification models in the literature against the DUD-E adapted test set, but no models 

transferred well to the Subgroup A17 dataset. These results not only demonstrate a need 

for improved models to be developed, they also provide valuable information to guide 



91 

 

future directions. Firstly, the poor performance against Subgroup A17 data suggests that 

the hypothesis that general relationship patterns in protein-ligand binding can be 

universally applied to more specific protein groups is false. Although it would be ideal to 

be able to train on a larger, broader data set to maximize learning potential and 

intermolecular interactions are generally governed by the same physical and chemical 

principles, it appears that the biochemical conformational dynamics responsible for 

ligand binding are too complex and unique within protein classes and subgroups to be 

applied broadly. To determine feature importances for Subgroup A17, it would be 

possible to iteratively freeze all model weights with one feature left out to better 

characterize relationship between each feature and output accuracy.
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4.2 Specific Aim 2. To assess the degree with which model performance of 

a Class A GPCR subgroup classifier can be maintained as we reduce time 

complexity via structure-based feature selection. 

4.2.1 Multiple structural alignment of Class A GPCRs 

A dataset of 29 Class A GPCR protein structures from a range of subgroups was 

collected and aligned using the Needleman-Wunsch algorithm within the Caretta 

structural analysis program, based on the BLOSUM62 similarity matrix for the twenty 

standard amino acids. [192], [218] After gaps in the alignment are omitted, 174 residues 

are aligned. Only fully aligned residues are included in any comparative studies to avoid 

handling of missing values. A model visualization of the superimposed structures is given 

in Figure 17. 

In addition to the multiple-subgroup Class A dataset, two additional alignments were 

generated for the structural alignment of four serotonin receptors (Figure 18) and four 

dopamine receptors (full visualization not shown; binding site alignment shown in 

Figure 19). The alignment of serotonin receptors (5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C) 

reflected currently published data demonstrating that residues within the N-terminal loop 

and ECL3 regions are highly conserved between serotonin receptors. The alignment of 

dopamine receptors (DRD1, DRD2, DRD3, DRD4) reflected currently published data 

demonstrating that twelve out of thirteen key ligand-binding residues are highly 

conserved between dopamine receptors. [5] For additional comparative structural 
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analyses, all 37 Class A proteins (multiple-subgroup Class A dataset, serotonin receptors, 

and dopamine receptors) were aligned to determine structurally-unique regions for the 

serotonin and dopamine subgroup within the context of each other and the overall 

structural landscape of Class A GPCRs.

Figure 17.  Multiple structural alignment of Class A GPCR proteins. 29 proteins, each in different color, are randomly 

positioned in three dimensional space (left) and aligned into one overlapping structure (right). Alignment was created using the 

Needleman-Wunsch algorithm based on the BLOSUM62 similarity matrix. Following alignment and removal of gaps between 

all proteins, 174 aligned residues remained. 

Figure 18. Multiple structural alignment of serotonin receptors 5-HT1A (PDB 7E2X), 5-HT1B, (PDB 5V54) 5-

HT2A (PDB 6A94), and 5-HT2C (PDB 6DS0). Alignment was generated using the Needleman-Wunsch algorithm. High 

structural similarity reflects previously published data demonstrating binding site similarity between Class A GPCRs, 

reducing effectiveness of feature sets focused on binding site residues. 
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Figure 19. Multiple structural alignment of the D2 (PDB 6VMS)/D3 (PDB 6CMU)/D4 (PDB 5WIV) receptors 

focused on the binding site. Alignment was generated using the Needleman-Wunsch algorithm. High structural similarity 

reflects previously published data demonstrating binding site similarity between Class A GPCRs, reducing effectiveness of 

feature sets focused on binding site residues. 
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4.2.2 Anisotropic network model analysis of Class A GPCR proteins 

For all 29 proteins within the multiple-subgroup Class A dataset, all four serotonin 

receptor structures, and all four dopamine receptor structures included in our analysis, an 

anisotropic network model was created. As an example, the visualization of the 

theoretical first normal mode of 5-HT1A is shown in Figure 20. 

 In addition to atomic fluctuations and elastic potential energies (spring forces), it is 

also possible to calculate the B-factor (also referred to as the temperature factor) of each 

residue from the ANM. The B-factor quantitates the uncertainty of each atom under the 

assumption that uncertainty in atomic position increases with disorder in the protein 

structure. B-factors are directly correlated with the degree to which the electron density 

for a given atom is spread out. A high B-factor reflects a low empirical electron density 

for the atom and vice versa for low B-factors. While B-factors can also be used to 

describe model error from X-ray crystallography, within thermodynamics theory, the B-

factor represents the dynamic mobility of an atom. The B-factor is given by: 

𝐵𝑖 = 8𝜋2𝑈𝑖
2          (50) 

where 𝑈𝑖
2 is the mean square fluctuation for a given atom i and as U increases, the B-

factor increases proportionally.  B-factor can be useful when analyzing the contribution 

of a given residue to the overall conformational dynamics of a protein and 

conformational dynamics have been demonstrated to play an important role in ligand 

association and dissociation. [219], [220] 
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Within the ANM analysis for included Class A GPCR proteins, solvent-accessible 

regions demonstrated higher B-factors than membrane-embedded regions. 

Using structural data from previously calculated multiple structural alignments in 

combination with ANM fluctuations for the alpha carbon of each residue for each protein, 

it is possible to compare atomic fluctuation data at each aligned residue position between 

all Class A GPCR proteins included in this study. The variance at each aligned position 

was calculated and residue positions were enumerated by magnitude of variance. 

Figure 20. Visualization of 5-HT1A Anisotropic Network Model, normal mode 1 out of 20 normal modes generated. 

Arrow vectors indicate theoretical direction and magnitude of atomic fluctuations for the specific represented mode. Model 

color gradient represents B-factor where red corresponds to higher values and blue corresponds to lower values. 
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4.2.3 Comparative structural analyses of Class A GPCR binding behavior 

and discussion of potential evidence provided by ANM data 

Following minimization and solvation of apoprotein receptors, specific residues 

identified by previous published structural analysis or our ANM results were examined to 

determine what extent the ANM provided novel information. For protein-ligand complex 

structures, predicted intermolecular hydrogen bonding between receptor and ligand were 

calculated for all potential donor/atom pairs via atomic contact modeling. Figure 21 

shows the structure of rhodopsin with functionally-important residues identified by 

published studies in blue, ANM-identified regions of high structural deviation (i.e., 

regions in which theoretical atomic fluctuation patterns differ strongly from other Class A 

proteins) compared to other Class A GPCRs in red, and any overlapping residues 

previously identified that were also identified as structurally unique by ANM in green. 

Outside of a single residue, all residues highlighted by ANM were novel and not 

identified by our literature analysis of rhodopsin structure and conformational dynamics. 

ANM-identified residues of high structural deviation had a strong positive correlation 

with reported B-factors from the original published X-ray crystallography data. [221] 

This correlation provides additional evidence that the ANM-identified regions are likely 

to be influential in rhodopsin conformational dynamics. 
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 Figure 22 represents the binding site of 5-HT1A in complex with LSD, a potent 

serotonin receptor agonist often recreationally consumed for its hallucinogenic effects. 

[207] While none of the ANM-identified structurally unique residues of 5-HT1A are 

predicted to directly interact with LSD, predictive modeling of hydrogen bonding does 

suggest that two ANM identified residues within close proximity of TM6 form bonds 

with the toggle switch Trp residue (W6.48) key to the cascade of conformational changes 

throughout the entire GPCR that result from extracellular ligand binding. [5] Despite the 

lack of a direct role in ligand binding, this data still suggests that ANM-identified 

residues of importance are involved in 5-HT1A ligand binding conformational dynamics. 

 As a final representative case, Figure 23 displays the binding sites of the D2 

receptor (a) and the 5-HT2A receptor (b) in complex with haloperidol, a high affinity 

dopamine receptor antagonist (Ki ≈ 1.4nM for D2 receptor-haloperidol interaction [26]). 

In the bound conformational state, the toggle switch Trp residue is not close enough to 

the binding site for any hydrogen bonding with the ligand to be predicted. Within the 

Figure 21. Results from the rhodopsin ANM yield a different residue set than other structural analysis methods. Residues 

colored in red are regions of high structural deviation identified by ANM analysis. Blue residues are previously identified regions 

of functional importance. A single residue was identified by ANM analysis that had previously been identified as important by 

other structural methods. ANM-identified residues highly correlate with X-ray crystallography-obtained residues associated with 

high B-factor. 
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literature, the behavior of the toggle switch is inconsistent between different receptors 

within the Class A GPCRs. [222]  

While some receptors demonstrate a large conformational change in the W6.48 

residue upon ligand binding (formerly believed to be a universal mechanistic change in 

all Class A GPCR activation), others do not display any significant W6.48 movement. 

[223] Numerous other toggle switch-based and steric movement-based mechanisms have 

been identified for various Class A GPCRs. Dopamine receptors have been identified to 

undergo a W6.48-mediated conformational change upon ligand binding, while serotonin 

receptors have been demonstrated to undergo a combination of a Tyr toggle switch- and 

steric hindrance-based mechanism. [222] Moreover, it has been demonstrated that for the 

5-HT1B receptor, W6.48 is actually directly involved in ligand binding. [224] While 

ANM-identified residues within the D2-receptor are not predicted to form any hydrogen 

bonds with W6.48, two residues within the 5-HT2A receptor are predicted to bond with 

Figure 22. Serotonin receptor atomic fluctuation data identifies important residues outside of binding pocket as 

evidenced by analysis of the 5-HT1A/LSD complex. Residues identified as possessing high structural deviation via ANM 

analysis are colored in red. The LSD ligand molecule is represented in yellow and 5-HT1A residues that form bonds with 

LSD are represented in green. While none of the ANM-identified residues directly interact with LSD, structure analysis 

within the UCSF Chimera program predicted that hydrogen bonding does occur between two of these residues and a key Trp 

residue (W6.48; green, circled) for ligand bonding. 
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W6.48 (as demonstrated for 5-HT1A in Figure 22). These hydrogen bonds may 

potentially influence the conformational dynamics of ligand-mediated Class A GPCR 

activation via their structural influence on W6.48 toggle location and ligand binding 

potential.

Figure 23. Regions identified as important by ANM analysis highly influence haloperidol binding in psychoactive drug 

receptors.    A D2 receptor binding site in complex with haloperidol (yellow). In the bound conformational state, the toggle 

switch Trp residue (W6.48) is not close enough to the binding site for any hydrogen bonding with the ligand to be predicted. 

The D2 receptor/haloperidol complex (Ki ≈ 1.4 nM) is predicted to form ten intermolecular hydrogen bonds. Green residues 

have previously been identified to participate in ligand binding. Red residues have been identified as structurally unique as 

compared to other Class A GPCRs by ANM and are not predicted to form hydrogen bonds with the toggle switch. B 5-HT2A 

receptor binding site in complex with haloperidol (yellow). In the bound conformational state, the toggle switch Trp is within 

the binding site and predicted to be actively involved in ligand binding as previously demonstrated with other ligands. The 5-

HT2A receptor/haloperidol complex (Ki ≈ 47 nM) is predicted to form four intermolecular hydrogen bonds. Green residues 

have previously been identified to participate in ligand bonding. Red residues have been identified as structurally unique as 

compared to other Class A GPCRs by ANM, including two residues predicted to form hydrogen bonds with the toggle switch 

(Figure 19), pulling it into the binding site. 
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4.2.4 Influence of structure-based feature selection as determined by ANM 

on the accuracy and associated time-cost of Class A subgroup classifiers 

In addition to the utility of augmented structural modeling analysis with ANM, the 

literature has also previously demonstrated potential for improved machine learning 

feature engineering based on normal mode analysis methods including ANM. [192] To 

test this hypothesis, data generated from multiple structural alignment and ANM of Class 

A GPCRs was used to build a range of machine learning multiclassification models for 

subgroup prediction. Due to a strong class imbalance in our 29 protein dataset (majority 

of proteins belonging to Subgroup 18), SMOTE was applied to the dataset to oversample 

minority classes. (Figure 24) 

 

Figure 24. Synthetic data generation to correct class imbalance within the Class A GPCR dataset via SMOTE. Minority 

classes were oversampled to reach an equivalent n to the Subgroup A18 class.   
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 The resulting dataset was randomly split 70% into a training set and 30% into a 

test set for the building and testing of a range of machine learning models to predict an 

output class reflective of Class A Subgroup. While multiple models were evaluated, only 

the results for the top five highest performing models are shown: support vector machine, 

K-nearest neighbors, bagged trees, random forest, and extra trees. Each model was 

trained and tested on two separate feature sets—one containing the mean square 

fluctuation data for each aligned residue position in the dataset, and a reduced feature set 

only containing mean square fluctuations for the top 15% highest-variation residue 

positions. These feature sets were contrasted for 10-fold cross validated F1-score 

performance (Figure 25) and training time (Figure 26).  

Figure 25. Reducing feature set by 85% via structural-based variance threshold does not significantly reduce cross-

validated F1-score based-accuracy of classifiers including support vector machine, K-nearest neighbors, bagging trees, 

random forest and extra trees. (k=10) 
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 While we hypothesized that structure-based feature selection methods may 

potentially increase model classification accuracy from an overall reduction in noise and 

irrelevant data features introducing bias to the model, we did not see a significant 

improvement in model performance following variance threshold feature reduction. 

Model performance was not significantly affected by variance threshold structure-based 

feature selection in a positive or negative direction for any tested models. We also 

hypothesized that reducing the feature space via structure-based feature selection would 

reduce training time for classification models and our results did support this hypothesis. 

Average percent decrease in training time was significant for each model. Particularly for 

higher complexity models, egregiously long training times are a major limiting factor for 

Figure 26. Reducing feature set by 85% via structural-based variance threshold significantly reduces training time of 

classifiers including support vector machine, K-nearest neighbors, bagging trees, random forest and extra trees. 

(k=10) 
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the real world application and feasibility of machine learning prediction. Although this 

strategy did not improve model classification accuracy, a decrease in time-associated 

computational cost without sacrificing accuracy is in itself an improvement in model 

performance. 

 It is of interesting note that the random forest model on average had a relatively 

modest reduction in training time but a slight increase in F1-score. While the increase in 

accuracy was not significant for this experiment, it is potentially possible that a more in-

depth optimization of the random forest classifier may further increase this boost in 

performance and exploratory analysis of the factors underlying this improvement other 

than decreased training time may potentially result in useful guidance for future work. 

Moreover, further analysis of the relationship between predictive model architecture and 

efficacy of this feature selection strategy is warranted from a computer science 

perspective, but beyond the scope of the biomedical objectives of this research.
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4.3 Specific Aim 3. To implement a novel deep neural network classifier 

for the binary prediction of drug-binding activity for a dataset of (a) serotonin and 

(b) dopamine Class A GPCRs. 

4.3.1 Implementation of structure-based feature selection methods for deep 

neural network classifiers 

While data collected in Specific Aim 2 demonstrates the potential for structure-based 

feature selection methods, the overall typical training time for the tested models is 

relatively reasonable for most application scenarios as compared to the training time cost 

of a neural network, which can span from hours to days. Additionally, the classification 

task was comparatively simple to an interaction prediction between a drug-target 

interaction pair—particular when dealing with numerous ligands per the same target 

receptor, and vice versa, resulting in redundant data features between observations.  

We hypothesized that the application of structure-based feature selection methods to 

deep neural networks trained for the classification of Subgroup A17 drug-target 

interactions will reduce the number of unnecessary features and as a result, reduce 

training time as previously evidenced in simpler architectures. Following the construction 

of a deep neural network classifier as described in 3.13, models were trained for 500 

epochs on a dataset of 5-HT drug-target interactions containing data features describing 

both the receptor and ligand molecular structure. In addition to the fully comprehensive 

feature set containing feature information for all receptor residues, a receptor feature set 
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reduced by 85% via variance threshold selection (as previously described in section 4.2) 

was also used to train the classifier to compare the extent to which we can reduce the 

computational cost of the model via structure-based feature selection without sacrificing 

classification accuracy. For each training set, only the receptor features were reduced and 

the same ligand feature set was used. Reduction of features by 85% (features describing 

42 residues as compared to 282 residues) did not result in a significant reduction in 

classification accuracy as measured by 10-fold cross validated F1-score or ROC AUC 

score. (Figure 27) However, this feature reduction method did result in an 85% reduction 

in training time for the classifier. (Figure 28) 
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Figure 27. Deep neural network classifier prediction of serotonin receptor activity accuracy was not significantly 

reduced when the receptor feature set is reduced by 85% as determined by a 10-fold cross validated F1-score or ROC 

AUC score. 

Figure 28.  Training time for a deep neural network classifier of serotonin receptor activity was significantly reduced by 

45% when the receptor feature set is reduced by 85%. 



108 

 

 

 

 

4.3.2 Deep learning classification of 5-HT receptor drug-target activities 

Figure 29 shows the accuracy of a deep fully-connected feedforward neural network 

against a large dataset of serotonin receptor drug-target interactions following structure-

based feature selection methods to predict a binary output of active/inactive per 

interaction pair. Deep learning accuracy was contrasted to other commonly applied 

machine learning algorithms on the same dataset. Classification accuracy measured via 

10-fold cross validated F1-score and ROC AUC score was significantly improved (p < 

0.01) in the deep neural network (F1-score = 0.78, AUC = 0.77) as compared to other 

models. Random forest and support vector machine classifiers also performed well 

(approximately 10% lower accuracy than the deep learning model) while logistic 

regression and AdaBoost algorithms had little to no predictive ability for 5-HT receptor 

interaction behavior. (Figure 29) 
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Figure 29. Deep neural network classifier substantially outperformed other classifiers (F1 = 0.78, AUC = 0.768) 

for prediction of serotonin receptor binding behavior, including logistic regression, random forest, support vector 

machine, and Adaboost as measured by cross-validated F1-score and cross-validated ROC AUC. (k = 10) 
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4.3.3 Deep learning classification of DRD receptor drug-target activities 

The same network architecture was trained on dopamine receptor drug-target 

interactions following structure-based feature selection and demonstrated significant 

performance superiority (p < 0.01; F1-score = 0.93, AUC = 0.941) compared to other 

models, as well as outperforming model accuracy for serotonin receptor drug-target 

interaction prediction.(Figure 30)  An unexpected result of this experiment is that each 

model, with the exception of the support vector machine classifier, performed better on 

the dopamine receptor dataset than the serotonin receptor dataset.  

Although the dopamine receptor dataset is comprised of the same ANM-generated 

receptor features and RDKit-generated ligand features and used to build a classifier with 

the same architecture as the 5-HT dataset and model, average cross-validated F1-scoring 

was approximately fourteen percent higher for the DRD dataset even in spite of a 

significantly smaller sample size. In future studies, it is worth investigating the reasoning 

behind this discrepancy. We suggest that a possible explanation for these results lies in 

the structural similarity of dopamine receptors as compared to serotonin receptors, which 

are known to have more structural variation between isoforms. [225] Previous work from 

other groups and our findings suggest that training a classifier on a group of proteins too 
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dissimilar from one another increases the difficulty of the learning problem despite 

allowing for a larger amount of training data. [226]

Figure 30. Deep neural network classifier substantially outperformed other classifiers (F1 = 0.93, AUC = 0.941) for 

prediction of dopamine receptor binding behavior, including logistic regression, random forest, support vector machine, 

and Adaboost as measured by cross-validated F1-score and cross-validated ROC AUC. (k = 10) 
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4.3.4 Discussion of machine learning classifier performance for drug-target 

interaction activities of 5-HT and DRD receptors 

Deep neural network performance supported the hypotheses that deep learning 

strategies will outperform lower-complexity machine learning models due to the high 

dimensionality of the data and complexity of the research problem and that structure-

based feature selection methods will effectively improve the model performance of drug-

target interaction classifiers via significant reduction of model training time. While 

feature selection is a less necessary step prior to model training with neural networks as 

compared to other machine learning models, our data reflects what has previously been 

demonstrated the literature for the utility of feature selection in improving computational 

time and cost for neural network classifiers. [227] 

 One of the frequently stated benefits of machine learning within computational 

biochemistry studies is the improved efficiency and handling of big data as compared to 

molecular dynamics and quantum mechanics trajectories, which can take days to run 

simulations of a timescale ranging from fs to μs even using parallel computing. [83], [97], 

[138] However, if the required architecture is highly complex and requires a comparable 

level of available structural data, the resulting difference in computational cost between 

simulation trajectories and machine learning models may not be a substantial enough 

improvement in practice to argue that a meaningful technical innovation has occurred. To 

compete with state-of-the-art molecular dynamics and quantum mechanics simulation, we 
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present the argument that a machine learning algorithm for structural biochemistry 

applications must provide two benefits: a more efficient computational framework and a 

relatively comparable degree of application interpretability. While molecular dynamics 

and quantum mechanics methods are computationally expensive, the amount of detailed, 

interaction-specific structural insight provided is substantially more rich than what is 

currently available from machine learning strategies. 

As an example, consider recent published molecular dynamics studies of fentanyl 

binding to the μ-opioid GPCR, demonstrating theoretical binding association and 

dissociation of fentanyl to the μ-opioid receptor binding site with detailed conformational 

mechanism predictions and novel structural insight. [152] To run these simulations, 

parallel computing with multiple GPU nodes were necessary to run nanosecond-scale 

trajectories. Despite the intensive computational power required, molecular dynamics 

simulation can provide valuable insight into the structure-function relationship of a drug-

target interaction. 

Deep learning classifiers such as DeepAtom have similar time- and computational-

associated costs and require identical amounts of experimentally obtained structure data 

describing the drug-target complex and each binding partner independently, which can be 

scarce for the overwhelming majority of protein families. [19] Despite possessing the 

most complex pipeline of all four architectures included in Specific Aim One’s 

comparative experiment, their reported accuracy is not any higher than the other 

classifiers and it performed significantly worse against the GPCR Subgroup A17 dataset 

(p < 0.01) than the other classifiers. In reference to the applicability of the knowledge 

learned by the classifier beyond inhibition constant prediction, the authors provide no 
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examples and suggest future studies augmenting molecular dynamics simulation with 

their model. In contrast, DeepConv offers examples of model explainability via 

demonstrating binding site and class prediction via convolution results per residue. 

However, as demonstrated by our work presented in Specific Aim Two and published 

results from other groups, both the binding site recognition problem and the protein 

classification problem are easily solved by simpler architectures. [30], [199], [228] 

While the body of literature has clearly demonstrated the ability of deep learning 

classifiers and other machine learning models for studying drug-target interactions [19]–

[22], [84], it appears that rather than demonstrating performance, justifying utility of 

these models is the true gap in the literature. Whereas current available models seem to 

focus on applying the recent state-of-the-art advances in deep learning from a computer 

science perspective, we observe a relatively comparable performance and cost/benefit 

trade off of classifiers in a wide range of neural network architectures and both sequence 

and structure-based inputs. While it is of value to take inventory of which computational 

methods can or cannot be applied to biomedical applications, it is ideal to develop 

predictive frameworks with the most efficient and accessible architectures where 

possible. 

Perhaps a better objective is to prioritize improving general model applicability via 

improved feature engineering techniques and improved runtime for computational 

models. One of the biggest strengths of our proposed deep neural network model is the 

relative ease of implementation and flexibility of input data formatting requirements. 

Although numerous architecture types were tested in preliminary experiments (e.g., 

convolution on ANM data, recurrent backpropagation through time on sequence data; 
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data not shown), increasing model complexity only marginally improved accuracy while 

substantially increasing computational cost. As a result, we chose to proceed with a fully 

connected feedforward network.  

Additionally, the use of ANM for feature engineering in our pipeline finds balance 

between sequence- and structure- based methodologies. While sequence based methods 

limit performance and explainability, many structure based methods require high 

computational cost or a volume of available data that is often unrealistic in real-world 

scenarios (i.e., inactive apostructure and active bound structure for each individual drug-

target interaction). Normal mode analysis strategies such as ANM provides a compromise 

– extracting meaningful, three-dimensional characteristics of a receptor’s structure 

compressed into a one dimensional fingerprint and dynamic behavior without the 

necessity of complex simulation trajectory. Solved structures for the drug-target complex 

are not necessary and the receptor features can be generated separately from the ligand 

features, therefore only the receptor structure is necessary. Because the model allows for 

fluid range through multiple conformations, the current state or conformation of the 

experimental structure is not a key factor. While the ANM calculations add model 

complexity, it is comparatively simpler than many of the discussed alternatives and the 

predictive classifier is quick to train. 

In addition to model efficiency and broad application range due to easily-attainable 

input data requirements, a key factor in the general applicability of this model is the ease 

of implementation for a broad range of users. The model architecture is relatively easy to 

set up with minimal machine learning experience, allowing biochemistry and 

pharmacology researchers without extensive bioinformatics experience to utilize the tool.
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4.3.5 DRD drug-target interaction selectivity prediction for specific clinical 

applications 

Dopamine receptor selectivity majorly influences physiological effects and adverse 

reactions of dopamine signaling modulating drugs. As an example, behavioral effects and 

overdose risk from recreational stimulant compounds with differing DRD binding 

activity display different risk profiles. [229] Benzomethyl ecgonine, or cocaine, is a 

naturally occurring anesthetic often taken recreationally for its off-label physiological 

effects including euphoria, increased energy, and lowered inhibition. [230] At higher 

doses or chronic exposure, adverse effects include restlessness, aggression, hallucination, 

decreased cardiovascular performance, weight loss, and respiratory damage when 

administered nasally or inhaled. [39], [231] Unlike other stimulants such as 

amphetamines, the molecular structure of cocaine does not resemble dopamine and is not 

a known interacting partner for any GPCR including the dopamine receptors. [26], [206] 

A tool that capable of predicting specific activity at the dopamine receptor for 

dopamine reuptake inhibitor drugs is impactful to the clinical community. Although 

cocaine does not increase dopamine production, release, or serve as a dopamine receptor 

agonist, administration of cocaine still results in enhanced dopamine signaling activity 

via inhibiting the reuptake of dopamine into the nerve terminal via interaction with 

dopamine transporters, effectively increasing the concentration of cocaine in the synapse 

available to interact with dopamine receptors. [230] 

In contrast, certain ‘designer drug’ stimulants of the cathinone class such as 

methylenedioxypyrovalerone (MDPV) (also referred to as ‘bath salts’) act simultaneously 

as a dopamine reuptake inhibitor and a dopamine receptor agonist at the D3 receptor. 
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[229] As a result, dopamine signaling is upregulated through both increased dopamine 

concentrations in the synapse and agonism at the receptor, intensifying physiological 

effects and toxicity risk. MDPV is associated with a higher level of adverse effects than 

other stimulants including an increased anxiogenic effect, increased aggression, intense, 

prolonged panic attacks, chronic psychosis symptoms, and higher risk of overdose. [229], 

[231] 

Other designer drugs (i.e., a term typically referring to novel alterations of well 

known psychoactive compounds with enhanced pharmacological effects developed 

outside of the realm of medical and legal jurisdiction) in the stimulant category display a 

similar behavioral pattern of acting simultaneously as a dopamine reuptake inhibitor and 

a dopamine receptor agonist. [26], [229] Collecting experimental evidence for the 

relationship between the pharmacological activity profile of designer drugs and their 

toxicological effects is beyond the scope of this work; however, we hypothesize that one 

can reasonably infer that dopamine agonist activity in addition to dopamine reuptake 

inhibitor activity changes the adverse effect profile of a drug. 

Within the dataset of psychoactive compounds obtained from the PDSP database, we 

identified dopamine receptor activity at the D3 receptor, but not the structurally similar 

D2 or D4 receptors, for designer drugs including MDPV, PPP, methedrone, and PVT. 

[26] The D2, D3, and D4 isoforms are sometimes grouped separately as their own 

subtype due to their similar structural and functional characteristics (“Type 2 DRD 

receptors”), while the D1 and D5 isoforms are considered a separate subtype for their 

respective similarities (“Type 1 DRD receptors”). [206], [232] One could hypothesize 

that our deep learning classifier is simply capable of identifying generalized relationships 
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between the drug structure and its activity against type 1 or type 2 DRD receptors, but 

due to their structural similarities, cannot differentiate between receptors within the same 

subtype. To test this hypothesis, we collected a subset of our original DRD receptor 

dataset for drugs that are selective to either the D2, D3, or D4 receptor (i.e., active at one 

of the three Type 2 isoforms and inactive at the other two) for a total of 39 observations. 

Interactions involving the Type 1 DRD receptors or nonselective drugs were omitted 

from the dataset. Our Type 2 DRD receptor dataset was used as additional test set for the 

pre-trained model on DRD receptor drug-target interactions. As done previously, 

predicted output of the model is a binary value corresponding to the activity of the given 

drug-target interaction pair. The performance metrics for this experiment are given in 

Figure 31. 

 

Model accuracy is comparable to that of the previous DRD receptor test set, 

disproving the hypothesis and providing evidence that the model is able to learn isoform-

specific structure-function relationships for ligand binding rather than generalizing 

patterns between isoforms with similar structure. 

Figure 31. Accuracy of the deep neural network classifier on a test set of selective DRD drug-target interactions. 

Precision = 1.0, recall = 0.7857, false positive rate = 0.0, false negative rate = 0.2143, classification accuracy = 0.9231. 
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To further test this hypothesis, we also chose to repeat this experiment with a dataset 

containing only D2-selective or D4-selective compounds but further reducing the dataset 

to remove D3-selective compounds resulting in a subset containing 20 observations. This 

experiment was motivated by the clinical significance of D2 versus D4 receptor 

selectivity in psychoactive drug behavior. Between 30-60% of patients taking D2 

agonists such as antipsychotics report sexual adverse effects including erectile and 

ejaculatory dysfunction, low libido, and priapism in men and low libido, orgasmic 

dysfunction, and disturbances to fertility in women. [42], [55], [233]–[235] 

In contrast, D4 agonists such as anti-parkinsonism and non-stimulant ADHD 

therapeutics have a documented potential to increase libido, induce erections in men, and 

improve vaginal lubrication and orgasm frequency in women. [236]–[238] While 

currently available sexual function drugs such as Viagra and Cialis are within the PDE 

inhibitor class, up to 40% of men with erectile dysfunction are non-responsive to PDE 

inhibitor treatment. [236] Potential sexual dysfunction therapeutics including D4 agonists 

have been documented in the literature as novel alternatives to PDE inhibition. [235], 

[236] 

 Figure 32 summarizes the performance metrics of the deep learning classifier 

when tested on ability to differentiate between D2-selective and D4-selective compounds. 

Again, we see a high classification accuracy with this test set. By testing our model on 

various combinations of receptors, we have demonstrated the model’s overall capacity for 

predicting dopamine receptor drug-target activity as well as dopamine receptor-targeting 

drug selectivity for highly clinically relevant applications. 
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Figure 32. Accuracy of the deep neural network classifier on a test set of drug-target interactions selective for the D2 or 

D4 receptor. Precision = 1.0, recall = 0.8, false positive rate = 0.0, false negative rate = 0.2, classification accuracy = 0.95. 
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5. Conclusion and Future Work 

In summary, we have demonstrated the utility of bioinformatic tools to analyze the 

relationship between structure and function for protein receptors, providing valuable 

insight into binding selectivity patterns. Specifically, we have demonstrated the efficacy 

of these strategies for the Class A GPCRs, and in further detail for the Subgroup A17 

GPCRs and the clinical impact of predictive tools for these drug-target interactions. 

Within the last ten to fifteen years, machine learning models have grown in popularity 

and promise for the classification of protein-ligand interactions, particularly within the 

specific investigation of drug-target interaction activity. Recent work has yielded 

numerous high-performing predictive models for drug-target interactions with some 

degree of transferrable knowledge to psychoactive GPCR interactions, but improvement 

is still necessary to improve the general applicability and feasibility of these models. 

Specific Aim One demonstrates the weaknesses of the current top performing models for 

protein-ligand interaction as well as raises a question about the value of input feature 

quality versus model complexity when modeling protein-ligand binding activity. We 

have presented a novel predictive pipeline combining computational tools from 

established biochemical modeling techniques, chemical physics simulation, and deep 

learning for an interdisciplinary framework focused on optimizing not only classification 

accuracy for predicting drug-target interaction activities, but also model efficiency and 

practicality. 
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We have added further evidence to the growing body of literature demonstrating the 

utility of normal mode analysis methods such as the anisotropic network model in 

structure-based drug design methodologies. By combining structural analysis with 

machine learning, we provide structure-function relationship insight that is both accurate 

and interpretable for GPCR drug-target interactions. While multiple published models 

have reported high accuracy scoring for protein-ligand interactions, it remains a challenge 

to extract meaningful information about the conformational dynamics underlying binding 

activity from machine learning models. While machine learning can provide fast and 

relatively accurate predictions on the likelihood of a binding interaction to occur, overall, 

molecular dynamics still remains the superior choice for model explainability. By 

integrating ANM into our machine learning pipeline as a feature engineering strategy, we 

sought to strike a balance between the computational efficiency of machine learning 

prediction and the level of structural detail in molecular model simulations. Results from 

Specific Aims Two and Three exhibit a range of visualizable structural examples for 

Class A GPCR interactions relevant to the pharmacology of schizophrenia and mood 

disorder therapeutics, dementia therapeutics, and substance use disorders. 

We hypothesized that a deep learning classifier would be necessary to accurately 

predict the activity of Subgroup A17 GPCR drug-target interactions due to the complex 

nature and high dimensionality of the data. This hypothesis was supported for serotonin 

receptor interactions but other machine learning models generally performed quite well 

for dopamine receptor interactions. Of note, the support vector machine performed 

substantially worse than any other models tested for dopamine receptor interaction 

activity classification. It is possible that the receptor structures are too similar to be 
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separated using a SVM kernel. In the future, further optimization and investigation is 

necessary to elucidate the patterns in learning skill demonstrated by different models and 

data sources in this work. 

A significant challenge in completing these experiments lies in the substantial lack 

of publicly available, reliable experimental data for drug-target interactions. While we 

chose to use oversampling methods to generate synthetic data for non-real interactions, 

there are predictive modeling methods available to predict three-dimensional structure for 

proteins based on sequence, homology, or a combination of both. The validity of these 

theoretical models is still strongly contested, therefore we chose to only include 

experimentally validated structures in our dataset. However, it may be possible to include 

these protein structure predictions in datasets to make predictions for receptors that do 

not have an experimentally obtained structure. In future directions, it would be of great 

benefit to determine the effect of training a drug-target interaction classifier with these 

predicted structures. If performance can be maintained, this experiment would 

simultaneously present evidence for the validity of computationally generated protein 

structures and widely increase the range of applicability for interaction classifiers. 

In conclusion, we hypothesized that Class A GPCR binding activities can be more 

efficiently predicted via combining feature engineering and selection based on 

physiochemical models and deep learning models with subgroup-specific training. In 

Aim One, we were unable to replicate model performance for pre-trained deep learning 

classifiers from the literature when tested on a dataset of Subgroup A17 receptor 

activities. This data provides supporting evidence for our hypothesis suggesting that 

models trained on a broad protein dataset may not generalize as well to specific protein 
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subgroups as compared to models trained on datasets containing same-subtype proteins 

as test data, despite a potentially smaller training set size. Aim Two data demonstrates 

that the use of feature selection guided by structure can significantly reduce the training 

time of machine learning models for protein receptor classification problems. Moreover, 

in Aim Three, we show that this feature selection strategy results in agile training of deep 

learning classifiers for drug-target interaction activity for two datasets of Class A17 

GPCR interactions corresponding to serotonin and dopamine receptors, respectively. The 

deep learning models generated maintained comparable-or-higher classification accuracy 

to previously published methods (F1-scores and AUC scores ≥ 0.78) with significantly 

reduced training time (45% reduction as compared to model architecture trained without 

feature selection). Cumulatively, this evidence supports the original hypothesis that our 

proposed framework is capable of maintaining accuracy while improving efficiency of 

deep learning classifiers for prediction of Subgroup A17 GPCR drug-target interaction 

activities. 

This work establishes a meaningful contribution to the field of bioinformatics within 

structure-based drug design. Our novel feature engineering and selection methodology 

based on the unique conformational behavior of a given structure allows for in-depth 

structural input features without leading to training time exceeding what is feasible for 

real-world application. Our deep learning architecture is capable of providing an 

improvement to model accuracy while simultaneously scaling down model complexity to 

increase the range of applicability and decrease learning curve difficulty for new users. 

Within the realm of psychoactive research, low selectivity of therapeutic compounds 

and unacceptably high rates of toxicity and adverse effects have been a high priority area 
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of pharmacology research following an overwhelmingly large body of literature 

suggesting an unacceptable level of risk associated with a range of psychiatric 

medications that has resulted in a sharp decrease in the number of GPCR-targeting 

psychoactive compounds receiving FDA approval over the last decade. [18], [75], [80], 

[239]–[241] Despite this project focusing specifically on GPCR interaction activity 

within the psychiatric lens, the gained perspective and valuable strategies developed here 

are highly translatable to any application of protein structure/function relationship 

analysis. This project serves as a strong foundation for future structure-based drug design 

and structural analyses across a broad range of clinical applications. 
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Appendix A. Receptor and Drug Features 

A.1 Receptor feature engineering from ANM output 

 Receptor features each correspond to a given residue in which residue numbering 

corresponds to the multiple structural alignment for the given dataset. Following 

calculation of atomic fluctuations as described in 3.4, each protein is encoded by a feature 

vector in which index corresponds to residue number and elements correspond to mean 

atomic fluctuations for the alpha carbon of the given residue position for use in machine 

learning classifiers. An example representation of input data format is given in Table 

A1.1. All ANM output can be found in a Bioinformatics Research Group Github 

Repository. 

 AlignedRes_1 AlignedRes_2 AlignedRes_3 … AlignedRes_n 

GPCR_1 Cα_fluct_1GPCR_1 Cα_fluct_2GPCR_1 Cα_fluct_3GPCR_1 … Cα_fluct_nGPCR_1 

GPCR_2 Cα_fluct_1GPCR_2 Cα_fluct_2GPCR_2 Cα_fluct_3GPCR_2 … Cα_fluct_nGPCR_2 

GPCR_3 Cα_fluct_1GPCR_3 Cα_fluct_2GPCR_3 Cα_fluct_3GPCR_3 … Cα_fluct_nGPCR_3 

… … … … … … 

GPCR_n Cα_fluct_1GPCR_n Cα_fluct_2GPCR_n Cα_fluct_3GPCR_n … Cα_fluct_nGPCR_n 

Table A1.1 Format of data features for protein receptors. Each protein corresponds to a data observation in which 

each feature describes the mean atomic fluctuations for each aligned residue as determined by an anisotropic network 

model. 
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A.2 Drug feature encoding 

Chemical features were generated from SMILES using the RDKit Chem.Features 

package in Python 3.6. [209] Features belong to the following molecular descriptor 

categories: 

Gasteiger/Marsili Partial Charges BalabanJ BertzCT 

Ipc HallKierAlpha Kappa1-Kappa3 

Phi Chi0,Chi1 Chi0n-Chi4n 

Chi0v Chi4v MolLogP 

MolMR MolWt ExactMolWt 

ExactMolWt HeavyAtomC

ount 

HeavyAtomMolWt 

NHOHCount NOCount NumHAcceptors 

NumHDonors NumHeteroato

ms 

NumRotatableBonds 

NumValenceElectrons NumAmideBo

nds 

Num{Aromatic,Saturated,

Aliphatic}Rings 

Num{Aromatic,Saturated,Aliphatic}{

Hetero,Carbo}Cycles 

RingCount FractionCSP3 

NumSpiroAtoms NumBridgehe

adAtoms 

TPSA 



157 

 

LabuteASA PEOE_VSA1 

– 

PEOE_VSA14 

SMR_VSA1-

SMR_VSA10 

SlogP_VSA1 – SlogP_VSA12 Estate_VSA1-

Estate_VSA11 

VSA_Estate1 – 

VSA_Estate10 

MQNs Topliss 

Fragments 

Autocorr2D 

BCUT2D Eccentricity SSSR 

Table A2.1 Molecular descriptors selected from the RDKit package to be used as features in machine learning 

prediction. Expanded list with notes for each descriptor calculation as well as code can be found in the RDKit 

documentation. [209] 
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Appendix B. Code Source and Examples 

B.1. Dataset generation and cleaning 

To obtain comprehensive datasets of GPCR interaction activities, all datasets (GPCRdb 

for receptor and receptor structure data [23], PDSP for psychoactive drug activities [26], 

and DrugBank [207] for ligand structure data) were imported into SQLite [242] for 

database management and combined using the relational algebra join functions in SQLite 

to obtain a database containing only activities for interactions between GPCRs and 

psychoactive drugs in which the GPCR has an experimentally solved structure and the 

ligand SMILES can be obtained. Protocol and code for using SQLite join functions can 

be found in the SQLite documentation. [242] 

Following the generation of the GPCR/psychoactive drug database, data cleaning was 

performed in OpenRefine to remove any duplicate observations or observations 

containing missing values, encode activities into a binary output, and remove interactions 

with multiple entries that are not in agreement as previously described in 3.2. OpenRefine 

source code can be obtained at openrefine.github.com.

openrefine.github.com
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B.2. Data loaders 

All data loaders use the Dataset and DataLoader module within PyTorch. [243]  

 

## train data 

class trainData(Dataset): 

 

def __init__(self, X_data, y_data): 

self.X_data = X_data 

self.y_data = y_data 

def __getitem__(self, index): 

return self.X_data[index], self.y_data[index] 

 

def __len__ (self): 

return len(self.X_data) 

train_data = trainData(torch.FloatTensor(X_train), 

torch.FloatTensor(y_train)) 

## test data 

class testData(Dataset): 

 

def __init__(self, X_data): 

self.X_data = X_data 

 

def __getitem__(self, index): 

return self.X_data[index] 

 

def __len__ (self): 

return len(self.X_data) 

 

test_data = testData(torch.FloatTensor(X_test)) 

train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE,␣ 

,!shuffle=True) 

test_loader = DataLoader(dataset=test_data, batch_size=1) 
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B.3. Deep learning classifier 

Deep neural network architecture was built using the torch.nn module within PyTorch. 

[243] 

 

class binaryClassification(nn.Module): 

def __init__(self): 

super(binaryClassification, self).__init__(). 

self.layer_1 = nn.Linear(numFeat, 1400) 

self.layer_2 = nn.Linear(1400, 1400) 

self.layer_3 = nn.Linear(1400, 700) 

self.layer_4 = nn.Linear(700,350) 

self.layer_out = nn.Linear(350, 1) 

 

self.relu = nn.ReLU() 

self.dropout = nn.Dropout(p=0.1) 

self.batchnorm1 = nn.BatchNorm1d(1400) 

self.batchnorm2 = nn.BatchNorm1d(1400) 

self.batchnorm3 = nn.BatchNorm1d(700) 

self.batchnorm4 = nn.BatchNorm1d(350) 

self.dropout2 = nn.Dropout(p=0.8) 

 

def forward(self, inputs): 

x = self.relu(self.layer_1(inputs)) 

x = self.batchnorm1(x) 

x = self.relu(self.layer_2(x)) 

x = self.dropout(x) 

x = self.batchnorm2(x) 

x = self.relu(self.layer_3(x)) 

x = self.batchnorm3(x) 

x = self.dropout2(x) 

x = self.relu(self.layer_4(x)) 

x = self.batchnorm4(x) 

x = self.dropout2(x) 

x = self.layer_out(x) 

return x 
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B.4. Other machine learning models 

 All machine learning classifiers other than the deep neural network classifier were 

built using scikit-learn. Protocols and code for each classifier can be found in the scikit-

learn documentation at scikit-learn.org.   [115] 

 

 All models were replicated from available GitHub repositories, referenced in each 

respective publication. [19]–[22]

scikit-learn.org
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B.5. Anisotropic network model 

 Anisotropic Network Models were built following the protocol created by the 

Computational and Systems Biology research group at the University of Pittsburgh. 

MATLAB [208] was used for all matrix manipulation and theoretical B-factor calculation 

based on all normal modes using the eig function. C code for ANM calculations was 

obtained from the ANM documentation from the Computational and Systems Biology 

research group at the University of Pittsburgh at 

http://anm.csb.pitt.edu/anmdocs/source.html. [184], [185], [244]

http://anm.csb.pitt.edu/anmdocs/source.html
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B.6. Protein structure modeling and analysis 

 All protein structure models, simulation including solvation and minimization, 

and intermolecular/intramolecular bond prediction were performed in UCSF ChimeraX. 

Protocol and code can be found through the UCSF Chimera documentation at 

https://www.cgl.ucsf.edu/chimerax/docs/user/index.html. [213] 

 

https://www.cgl.ucsf.edu/chimerax/docs/user/index.html
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