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Protein structure prediction with in-cell 
photo-crosslinking mass spectrometry and 
deep learning

Kolja Stahl    1,7, Andrea Graziadei    2,7, Therese Dau    2,6, Oliver Brock    1,3    
& Juri Rappsilber    2,4,5 

While AlphaFold2 can predict accurate protein structures from the primary 
sequence, challenges remain for proteins that undergo conformational 
changes or for which few homologous sequences are known. Here we 
introduce AlphaLink, a modified version of the AlphaFold2 algorithm 
that incorporates experimental distance restraint information into its 
network architecture. By employing sparse experimental contacts as 
anchor points, AlphaLink improves on the performance of AlphaFold2 in 
predicting challenging targets. We confirm this experimentally by using the 
noncanonical amino acid photo-leucine to obtain information on residue–
residue contacts inside cells by crosslinking mass spectrometry. The 
program can predict distinct conformations of proteins on the basis of the 
distance restraints provided, demonstrating the value of experimental data 
in driving protein structure prediction. The noise-tolerant framework for 
integrating data in protein structure prediction presented here opens a path 
to accurate characterization of protein structures from in-cell data.

AlphaFold2 has shown unprecedented performance in CASP14, the  
Critical Assessment of protein Structure Prediction1–3, predict-
ing two-thirds of the CASP targets with an approximately 1 Å 
root-mean-square deviation (r.m.s.d.) from the native backbone path4. 
This success, together with the reliable metrics provided by Alpha-
Fold2 regarding the predicted accuracy of its models, is a tremendous 
achievement whose impact on life sciences is still unfolding.

AlphaFold2 predicts static models based on static input  
data. AlphaFold2 was trained on two information sources, the  
protein structures in the Protein Data Bank (PDB) and multiple 
sequence alignments (MSAs). This approach is challenged by targets  
that have insufficient evolutionary information, generating less  
confident or erroneous predictions3. For some classes of proteins, such 
as viral proteins, proteins from understudied organisms, antibodies5 

and synthetic proteins, but also clinically relevant mutations6, evolu-
tionary information may be misleading. Moreover, the x-ray structures 
underlying the model poorly reflect structural flexibility, multiple  
conformations and dynamic interactions. Structural restraints 
observed on proteins in solution, ideally in the cell, could help  
resolve these problems. Adding such restraints to the AlphaFold2 
framework may then steer the prediction towards structural states 
occurring in situ under specific conditions.

Crosslinking mass spectrometry (MS) is capable of providing 
distance restraints that can be used in protein structure prediction7–9. 
In particular, photo amino acids (photo-AA) are readily incorporated 
by both prokaryotic and eukaryotic cells10–12, which opens up the  
possibility of probing the in situ conformation of proteins. Unlike  
most soluble crosslinkers, where data can be polluted by rare protein 
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Results
AlphaLink: integrating crosslinks into AlphaFold2 via 
OpenFold
Crosslinking MS data have been used to guide candidate selection for 
AlphaFold-multimer in protein–protein interaction studies and validate 
models17,18. To fully leverage the potential of crosslinking MS data in 
protein structure prediction, we develop AlphaLink, a framework incor-
porating crosslinks directly into OpenFold19. OpenFold is a trainable 
reproduction of AlphaFold2. The creators of OpenFold verified that 
the implementation produces identical results. OpenFold primarily 
exploits co-evolutionary relationships. The main difficulty in merging 
multiple information sources is to find a suitable representation that 
facilitates integration and at the same time avoids information loss. 
OpenFold operates both in distance space (Evoformer) and in 3D space 
(Structure Module). Photo-AA crosslinking MS data provide distance 
restraints that naturally fit into the distance space of OpenFold, since 
they yield similar distances to co-evolutionary contacts by directly link-
ing amino acids via diazirine chemistry. Co-evolutionary relationships 
and photo-AA crosslinks provide complementary and corroborat-
ing information. The sparsity of crosslinks can be compensated with 
co-evolutionary information. Accurate crosslinking data can act as  
an anchor in these cases. AlphaLink exploits this relationship by  
merging crosslinking MS and co-evolutionary data via the Evoformer,  
injecting crosslinks into the pair representation (z), yielding a  
consistent and unified constraint set (Fig. 1).

We introduce two representations to encode crosslinking informa-
tion. The experimental data are represented as either soft labels or dis-
tance distributions (distograms). In the case of soft labels, each contact 
is weighted by the link-level false discovery rate (FDR) of the dataset 
(1-FDR) or, if present, the per-restraint FDR to indicate confidence in 

states, photochemistry accurately represents in-solution ensem-
bles13,14. Furthermore, photo-AA crosslinks yield comparably tight 
distance restraints that align well with co-evolutionary contacts, which 
are the basis of most protein structure prediction methods, includ-
ing AlphaFold2. They are in theory capable of ‘zero length’ crosslink-
ing from the side chain to any heavy atom via a reactive carbene10 or  
alkyl diazo15 intermediate. Photo-leucine (photo-L) was used in  
mapping conformations and binders in purified systems11,12 but has  
not been used so far for in situ structure analyses. In general, the  
incorporation of amino acid analogs into the proteome is advanta-
geous for crosslinking studies, because they allow the introduction of 
genetically encoded chemical entities that can react chemo-selectively 
at known locations in proteins16.

In this Article, we introduce AlphaLink, a structure prediction 
method that integrates experimental data from photo-AA crosslinking 
directly into the AlphaFold2 architecture. AlphaLink uses deep learn-
ing to merge co-evolutionary relationships and crosslinking data in 
distance space, exploiting the complementary nature of the data. We 
demonstrate that AlphaLink can leverage noisy experimental contacts 
to improve predictions of challenging targets on both simulated and 
real experimental data, steering predictions towards the in situ con-
formation of proteins. To test AlphaLink, we perform a large-scale 
crosslinking MS study with photo-L, identifying 615 in situ residue–
residue contacts in Escherichia coli membrane fractions, unlocking the 
power of photo-AA in mapping proximal residues directly in cells. We 
show that even sparse crosslinking MS data can anchor predictions to 
particular conformational states, opening up the possibility of probing 
dynamics by hybrid experimental/deep learning approaches. We fur-
ther extend AlphaLink to arbitrary distance restraints by introducing a 
second representation that encodes distance restraints as distograms3.
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crosslink assignment. Distograms allow us to generalize to arbitrary 
distance restraints. A particular crosslinker (or distance restraint 
in general) is represented by a distance distribution. Contact-like 
restraints can be represented by uniformly distributed distograms for 
the given cutoff. We model uncertainty directly in the representation 
by adjusting the probability mass according to the FDR. The distogram 
is designed to match the distogram that is predicted by the Evoformer  
from the pair representation that consists of 64 bins. We use the same 
binning for the first 64 bins and extend the distogram further to  
128 bins, spanning from 2.3125 Å to 42 Å.

We embed the restraints and add them to the pair represen
tation of OpenFold, which is later mapped into 3D space (Fig. 1a).  
The embedding is similar to the recycling embedding in AlphaFold2. The  
Evoformer jointly updates the MSA and the pair representation. The 
MSA transformer (Fig. 1b) retrieves co-evolutionary information  
and updates the MSA representation. The retrieval is biased with  
the pair representation that includes the experimental crosslinking 
information supplied by the user. The outer product mean (Fig. 1c) 
in turn updates the pair representation. This coupling maximizes 
synergy between MSA and experimental information and allows  
the network to perform noise rejection, that is, the rejection of  
misassigned experimental or co-evolutionary relationships or of  
contacts that do not support other strands of information leading  
to a consensus model.

We initialized OpenFold with the original weights of Alpha-
Fold2 and fine-tuned the network with the newly added crosslinking  
bias. We followed the refinement training regime outlined in the 
AlphaFold2 paper, except that we subsampled the number of effec-
tive sequences (Neff) to simulate challenging targets. In light of  
the limited availability of experimental crosslink data for training, 
we simulated photo-crosslinking MS data (Methods) that included 
simulated experimental noise in the form of false residue–residue 
contacts at the given FDR.

Integrating photo-AA crosslinks enables noise-tolerant 
prediction of challenging targets
We tested AlphaLink on 49 challenging CAMEO targets (Neff ≤ 25, no 
MSA subsampling, Supplementary Data 1) (Fig. 2a). AlphaLink out
performs AlphaFold2, substantially improving the performance on 
targets with more than 20 crosslinks. Integrating simulated photo-L 
data improves the TM score on average by 19.2 ± 16.3% (95% confidence 
interval) (Fig. 2a). Encoding the crosslinks as distograms instead  
performs virtually the same (Extended Data Fig. 1a).

We further curated a second benchmark dataset consisting of  
60 CASP14 targets and 45 CAMEO targets (Supplementary Data 1). To 
simulate challenging targets and to control for the MSA influence, we 
subsampled the MSAs to Neff = 10 and ignored structural templates. 
Here AlphaLink improves the TM score on average by 15.2% (Extended 
Data Fig. 1b). For particularly challenging targets (N = 28), where  
AlphaFold2 fails to predict the correct fold (TM score ≤0.5), the TM 
score improves on average by 50.6% (Fig. 2b). AlphaLink predicts  
the correct fold (TM score >0.5) of 14 of these. We tested the noise  
rejection capabilities of AlphaLink on 60 CASP14 targets by adding 
false links to simulate multiple noise levels. The performance is roughly 
constant with 10%, 20% or 50% false links (Fig. 2c) and still outperforms 
AlphaFold2, demonstrating AlphaLinks’ robustness to different noise 
levels. Overall, the method achieves a crosslink satisfaction (<10 Å 
Cα–Cα) on average of 85 ± 1.2% (95% confidence interval) after three 
recycling iterations, and 88.3 ± 1.2% (95% confidence interval) of the 
simulated crosslinks with <10 Å Cα–Cα in the crystal structure are 
satisfied.

The sparse crosslink data act as anchor points that serve to  
pull the entire prediction towards the right solution (Fig. 2d). For 
CASP target T1064 (Neff = 10), four crosslinking restraints are sufficient  
to both drive the prediction to the native state (TM score improves 

from 0.28 to 0.86) and to decrease the predicted aligned error across 
the whole protein, including areas not covered by the crosslinking 
data. The crosslinking information has a wide-ranging impact due to 
its combination with the co-evolutionary and structural information 
embedded in the pair representation, which is used as a bias to retrieve 
contacts consistent with experimental data. Effectively, this improves 
the efficiency of using co-evolutionary information in AlphaFold2. 
Extended Data Fig. 1c shows the effect of using different distograms to 
encode a restraint between residues 11 and 103 in T1064. The Evofor-
mer predicts a narrower distogram when using the expected distance 
distribution of photo-AA crosslinks as a prior, when compared with 
the uniform prior of an upper bound distance restraint. This repre-
sentation slightly improves the prediction (TM score 0.68 to 0.7). The 
performance as a function of the number of crosslinks per residue is  
shown in Extended Data Fig. 1d. The performance generally increases 
with an increase in the number of crosslinks per residue. The main 
advantage of the distogram representation is enabling the user  
to inject distance restraints from different crosslinkers or even  
different experimental approaches into AlphaLink.

We test the performance of AlphaLink at different Neff levels  
to investigate the effect of crosslinks on targets with varying  
difficulty (Fig. 2e). The performance of both AlphaFold2 and  
AlphaLink deteriorates in absence of sufficiently large MSAs  
(Fig. 2e). Crosslinks can compensate for smaller MSA sizes. In fact, 
photo-AA crosslinks alone without any MSA information allow us to 
predict the correct fold (TM score >0.5) of 43/105 benchmark targets, 
compared with 13/105 for AF2 without MSA information. The mean 
improvement in TM score increases to 75 ± 13.5% (95% confidence  
interval) over all targets (Fig. 2f). The benefit of crosslinks slowly  
disappears with a Neff > 50. This is at least partly due to the fact that  
most crosslinks are already satisfied when predicting with full MSAs 
(Fig. 2e). Rather than finding any solution that fits the crosslinks, our 
network appropriately weighs crosslinking MS information against 
the MSAs and uses it to guide the prediction to a more accurate solu-
tion. Note that as MSA size increases, the network will rely more on 
MSA information than on crosslinks—hence, we implement settings 
with different MSA subsamplings in the AlphaLink software package.

In summary, AlphaLink enables users to use sparse distance 
restraints to bias AlphaFold2 predictions, robustly handling noise, 
directly at the inference stage, due to their synergistic implementation 
in the network design.

Photo-L as an in situ structural probe
To generate a large-scale experimental photo-AA dataset required for 
testing such an application, we derived in situ structural restraints on 
the E. coli membrane fraction by crosslinking MS of cells grown on 
photo-L-containing medium. We optimized the growth protocol to 
maximize incorporation while maintaining a low level of cytotoxicity 
(750 μM photo-L in the medium, Extended Data Fig. 2a), ultraviolet 
(UV) illuminated the cells for crosslinking and then enriched the cell 
membrane of the crosslinked cells. The proteins were digested, and 
the resulting peptides subjected to two-dimensional fractionation, 
combining strong cation exchange and size exclusion chromatog-
raphy (Extended Data Fig. 2b). Mass spectrometric analysis then led 
to the identification of 615 residue pairs involving 112 proteins at 5% 
link-level FDR (Fig. 3a, Extended Data Fig. 2c and Supplementary Data 
2 and 3). Several crosslinks are detected among β-barrel proteins  
and proteins in the intermembrane space, including porins and  
known membrane complexes (Fig. 3a and Extended Data Fig. 2a). When 
visualized on known protein structures, the experimental crosslinks 
provide a median distance of 11.1 ± 8.1 Å Cα–Cα (mean ± standard  
deviation) (Fig. 3b), indicating the contact-like nature of these 
crosslinks in line with their implementation in AlphaLink. This is further  
supported by the fact that we exclude crosslinks within the same  
tryptic peptide, and between consecutive peptides in our analysis.

http://www.nature.com/naturebiotechnology
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Photo-L provides validation for the in situ conformation of  
multiprotein complexes such as the AcrAB-TolC multidrug efflux  
pump, ribosome and ATP synthase (Fig. 3a). The crosslinks are consist-
ent with previously characterized conformations of the bacterial outer 
membrane barrel assembly machinery (Bam). However, a link between 
the P2 and P3 domains highlights the flexibility of these modules  
(Fig. 3c), which are known to undergo large structural rearrangements 

in outer membrane protein folding and insertion. A total of 153 
crosslinks are detected for the highly abundant protein OmpA. OmpA is 
made up of a β-barrel connected via a 20-residue linker to a C-terminal 
domain. It is also known to oligomerize in vivo, and this interaction 
is thought to be mediated by the C-terminal domain. The crosslinks 
between the β-barrel, linker and C-terminal domain highlight the rela-
tive flexibility of these modules (Fig. 3c) and point to potential contacts 
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show the mean. In all box plots, the line shows the median and the whiskers 
represent the 1.5× interquartile range.
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made between multiple copies of the C-terminal domain. In several 
plug-containing β-barrel proteins, such as FhuA and BtuB, photo-L 
links the position of the central plug with the membrane barrel in a way  
that is consistent with previous structures (Fig. 3c), validating  
the arrangement of these two modules in the functional cycle of  
the proteins. These crosslinks highlight the potential of photo-L to 
provide in situ residue–residue contacts regardless of solvent acces-
sibility, providing insight into function for critical domain contacts.

Structure prediction with in situ photo-L data
To test AlphaLink on experimental data, we predicted the proteins 
in the crosslinking MS dataset of the E. coli membrane fraction. We 
focused our evaluation on the 31 targets with high-resolution structures  
that had a median of five crosslinks (Fig. 4). Each target was predicted 
with ten randomly subsampled MSAs at Neff = 10, yielding 310 predic-
tions (Supplementary Data 4). We subsampled the MSAs to counter 
overfitting, because the targets were probably part of the AlphaFold2 
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training set. Even with Neff = 10, 65% of the AlphaFold2 predictions 
exceed a TM score of 0.8. AlphaLink improves performance measured 
by TM score on average by 5.2 ± 1.9% (95% confidence interval) across 
all proteins relative to AlphaFold2.

On targets where AlphaFold2 does not provide accurate models 
(TM score <0.8), AlphaLink with experimental data improves the TM 
score on average by 15.9 ± 4.6% (95% confidence interval). The improve-
ment increases to 47.8 ± 24.8% (95% confidence interval) for AlphaFold2 
predictions below a TM score of 0.5. We predict the correct fold (TM 
score >0.5) for ten additional proteins. This shows that simulated 
crosslinking MS data successfully model the features of experimental 
photo-AA restraints. For the 204 AlphaFold2 predictions with a TM 
score of 0.8 or higher, the performance is unaffected. At high TM scores, 
side-chain conformations begin to play a role, and crosslinking MS data 
do not have the resolution necessary to improve side-chain predictions.

To better judge the utility of the crosslinks for a given target, we 
include the percentage of nonsatisfied crosslinks in the baseline Alpha-
Fold2 prediction (Fig. 4a) and also consider the mean distance of the 
nonsatisfied crosslinks in the AlphaFold2 prediction (Fig. 4b). We set 
the cutoff for violated crosslinking restraints to 10 Å Cα–Cα in the crys-
tal structure. Many targets are not completely covered by the crystal 
structure. Therefore, we can analyze only a subset of the crosslinks. 
Crosslinks that are already satisfied in the AlphaFold2 predictions do 
not contribute novel information. On average, there are 0.5 violated 
crosslinking restraints per prediction at a cutoff of 10 Å Cα–Cα. Indeed, 
the TM score improvement of AlphaLink generally increases wherever 

AlphaFold2 makes a prediction containing unsatisfied crosslinks. We 
further show that the predictions that improved the most have unsatis-
fied crosslinks with large distances in the baseline prediction (Fig. 4b). 
Here crosslinks add the most value, and for some predictions a single 
crosslink is enough to improve the quality considerably (TM score 0.39 
to 0.86 for target AtpB). Extended Data Fig. 2d shows two examples 
where adding crosslinks negatively impacts the prediction quality. 
In the case of OmpF there are multiple overlength crosslinks (high-
lighted in red in the native structure) that might stem from crosslinking  
different subunits, since OmpF is a homo-multimer. For the ATP  
synthase α subunit there is one overlength crosslink that is probably 
a false positive. Here, although the link is rejected in the end, it still 
induces a domain movement that leads to a worse prediction.

To investigate the correlation between predicted and true TM 
score for the predictions of the membrane fraction, we compute the 
fit on the predictions where the crystal structure covers at least 80% 
of the protein (Fig. 4c). The Pearson correlation coefficient is 0.75. We 
generally underestimate the true TM score. The correlation is in line 
with the baseline AlphaFold2 model (Extended Data Fig. 3), indicat-
ing that model confidence estimates of AlphaLink are comparable to 
AlphaFold2, allowing for users to reliably interpret predictions.

Extended Data Fig. 4 shows the predicted TM score (pTM) on  
a total of 96 targets, which include proteins where no structure is  
available. Each protein was predicted with one randomly subsampled  
MSA (Neff = 10). The pTM indicates possible improvements over  
AlphaFold2 on these structures as well.
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Fig. 4 | Structure prediction with in-cell photo-L crosslinking MS data of the 
E. coli membrane fraction. a, Comparison of TM score with annotated number 
of links (marker sizes) and percentage of nonsatisfied (>10 Å) crosslinks (color 
gradient) in the AlphaFold2 prediction. Performance improvement is bigger  
for targets with a higher percentage of nonsatisfied crosslinks in the base 
prediction (darker circles). Each target is predicted ten times with different  
MSA subsamples at Neff = 10. AlphaLink outperforms AlphaFold2 on average.  
b, Comparison of TM score with annotated mean distance of nonsatisfied 
crosslinks in the base AlphaFold2 prediction (color gradient). Prediction quality 
improves with stronger crosslink violations (darker circles). c, We show the 
calibration of the pTM. On predictions that are at least 80% covered by the  

crystal structure, the correlation is 0.75. The true TM score is generally 
underestimated, meaning that the pTM score of AlphaLink is a conservative 
estimate. The shaded area corresponds to the 95% confidence interval. Line 
shows the linear fit. d, Prediction of the ATP synthase subunit AtpB by AlphaFold2 
and AlphaLink using in-cell photo-L crosslinks at Neff = 10. e, Prediction of the 
outer membrane lipopolysaccharide assembly protein. f, Prediction of the 
ferrienterobactin receptor. In all three cases, the in-cell crosslinking data  
helps AlphaLink position different regions of the protein relative to each other, 
yielding a performance improvement over AlphaFold2. The crystal structure of 
the target protein is shown in gray, overlaid with the AlphaLink prediction.
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Probing conformational dynamics in situ
To probe whether experimental distance restraints can act as anchors 
to drive predictions towards different energy minima in multistate 
proteins, we simulate a proof-of-concept experiment on the human 
cyclin-dependent protein kinase Cdk2, a drug target in cancer ther-
apy20. Activation of Cdk2 in the S phase proceeds via a conformational 
change in the T-loop (residues 145–165) and the PSTAIRE helix (residues 
45–55) triggered by binding of cyclin A21. There are several structures of  
Cdk2 in various states of activation22,23. If Cdk2 is predicted with-
out structural templates with AlphaFold2 (Neff = 10), the T-loop is  
predicted in an intermediate conformation between the apo, 
auto-inhibited state and the cyclin A-bound conformation (Fig. 5a). 
Presumably, the intermediate conformation of this loop in the Alpha-
Fold2 prediction is a consequence of co-evolutionary information 

driving it towards both the open and the closed state. When run with 
full MSA information, all AlphaFold2 predictions converge to the  
cyclin A-bound state (Extended Data Fig. 5a), failing to predict the  
inactive conformation.

We simulate two photo-crosslinking MS experiments in which 
the protein was acquired in either its inhibited or in its cyclin A-bound 
states, generating two sets of sparse restraints for the T-loop (Supple-
mentary Table 1). Such experiments may be carried out on the purified 
protein or in cells before protein purification. We then predict the  
Cdk2 structure using AlphaLink with these restraints, showing that 
the loop structure is driven towards the appropriate conformation 
(Fig. 5b). The crosslinks act as anchor points positioning the whole 
T-loop in the appropriate configuration for the cyclin A-bound state, 
with a Cα r.m.s.d. of 1.24 Å on residues 145–165 to PDB 2bpm (Fig. 5c).  

Cdk2—anilino pyrimidase inhibitor (1h01)

Cdk2—cyclin A—PHA-630529 (2 bpm)
AlphaFold2 prediction 

AlphaLink 1h01 restraints

1h01

1h01

2bpm 

2bpm

AlphaLink 2bpm restraints

AlphaLink
combined restraints 
Ne� = 10
Ne� = 25
Ne� = 50
Full MSA

AlphaLink 1h01 restraints
AlphaLink 2bpm restraints

AlphaFold2

a

c d

b

T-loop

PSTAIRE 
helix

Activation

Fig. 5 | Photo-AA data guiding prediction of specific conformational states. 
a, Left: structures of the monomeric, inhibited conformation of Cdk2 (teal)34 
and the cyclin A-activated conformation (salmon)35 overlaid with the AlphaFold2 
prediction of Cdk2 performed at Neff = 10. Right: focus on the T-loop and PSTAIRE 
helix involved in protein activation, with the two photo-AA restraint sets fed to 
AlphaLink colored according to the corresponding protein state. b, Comparison 
of the AlphaFold2 prediction with the two predictions of AlphaLink made with 
restraint sets corresponding to the active or inactive conformation of Cdk2, 
showing that the photo-AA data drive the prediction to either the active or 

inhibited conformation. c, Middle: overlay of the AlphaLink prediction with 
the crystal structure for the inhibited state. Right: overlay of the AlphaLink 
prediction with the structure for the cyclin A-bound state, showing the entire 
conformation of the loop is correctly predicted despite only sparse restraints 
being present. d, Outcome of predicting with a combined set of restraints. At low 
Neff values, the crosslinks drive the prediction towards the cyclin E-bound state. 
As the MSA information increases, the prediction is steered more towards the 
inhibited state and closer to the AlphaFold2 prediction.
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The same is true for the inactive state of the loop. In this case  
however, lack of leucine and lysine residues around T160 in the  
structure leads to a lack of sufficient restraints to capture the fully 
closed loop conformation, leading to a slightly higher Cα r.m.s.d. 
to the target structure (3.19 Å to 1h01), while still outperforming  
the AlphaFold2 prediction (Cα r.m.s.d. 6.29 Å to 1h01). This higher 
r.m.s.d. is also consistent with the fact that the T-loop is not rigid in 
its inhibited, dephosphorylated state, as highlighted by multiple 
crystal structures and molecular dynamics simulations24. AlphaLink 
successfully folds the short helix within the T-loop (residues 
147–153) in the inactive state, and unfolds them into an extended  
conformation when given restraints for the cyclin A-bound state. 
It also correctly predicts the position and rotation of the PSTAIRE 
helix, despite having only two restraints in this region in the inactive  
conformation dataset, and three in the active dataset. In the case  
of a mixture of restraints, the prediction converges on the cyclin-A  
bound state at Neff = 10 (Fig. 5d). This conformer is not produced  
by AlphaFold2. Increasing the MSA steers the prediction towards 
a middle ground that is more similar to the AlphaFold2 prediction. 
We interpret this as the algorithm performing noise rejection on a  
subset of crosslinks in the mixture and using the rest as anchor points 
to drive a prediction towards a particular solution.

To further show the influence of the MSA, we predict the con-
formation of the fold-switching protein KaiB (Extended Data Fig. 5b)  
with photo-L crosslinks simulated for the ground state, the fold- 
switched state or a mixture added on top of random sets of simu-
lated photo-L crosslinks. At low Neff, AlphaLink predicts both con-
formers accurately when given unique sets of crosslinks, but as  
MSA evidence gets larger, the prediction converges to one state for 
both sets. This result reproduces the outcome of running AlphaFold 
on KaiB with different, clustered subsamples of the MSA25. Predic-
tions with mixed crosslinks lead to different outcomes at different  
Neff values, as observed in the case of Cdk2, pointing to the fact that 
crosslinking is weighted against the MSA depending on the information 
content and size of both strands of information. In multiple simulated 
crosslinking datasets for the protein selecase (Extended Data Fig. 5b),  
even without MSAs, most predictions end up in the conformation 
observed in the monomeric state of the protein state, although  
some predictions corresponding to the bound state are observed  
when given unique crosslinks in the absence of MSA information.

These results demonstrate that AlphaLink can be used to  
obtain high-quality predictions of particular conformations of  
proteins given sets of restraints obtained under different conditions, 
enabling direct monitoring of conformational states in solution  
and in situ.

Discussion
We presented AlphaLink, a method for integrating crosslinking  
MS restraints derived from photo-AA-labeled cells into AlphaFold2, 
via OpenFold. Merging photo-crosslinking MS and MSA information 
in a deep learning framework allows us to leverage their respective 
strengths and compensate for their weaknesses. Our approach uses  
the experimental data to bias the retrieval of evolutionary relationships 
by the Evoformer updating the pair representation. The iterative nature 
of the AlphaLink architecture leads to noise rejection and robustness 
to experimental error. Our implementation of experimental restraints 
also translates to other methods with similar architectures, such as 
OmegaFold26, which replace MSAs with protein language models  
(Extended Data Fig. 6).

The results in this study were achieved by refining the Alpha-
Fold2 model parameters with simulated photo-AA data, as we were  
not able to fully retrain the OpenFold network to derive model  
parameters due to computational resource limitations. Nevertheless,  
the results demonstrate an improvement in prediction quality for  
challenging targets as a result of incorporating photo-AA restraints.  

The prediction times increase 1.4× compared with AlphaFold2 
(Extended Data Fig. 7).

The information sources have different characteristics that 
match well. Crosslinking MS provides concrete distance informa-
tion that can corroborate or refute amino acid associations picked up  
by co-evolution7,27,28. As such, crosslinking MS information has  
already been used to independently validate models from Alpha-
Fold2 (refs. 17,18). Moreover, genetic code engineering allows the use of  
amino acid analogs to substitute for encoded amino acids in protein 
translation. Thus, leucine positions in the proteome can be replaced 
to varying extents by photo-L. This amino acid has been linked with  
the evolutionary development of tertiary folds29 and is usually  
found in the hydrophobic cores of proteins. Leucine crosslinking  
may therefore provide critical information that can guide fold  
prediction effectively.

In AlphaLink, crosslinks can act as anchors in the prediction itself, 
since the sparsity of crosslinks is compensated with co-evolutionary 
information that fills in and extrapolates the missing information. 
This also enables the software to use co-evolutionary information to 
perform noise rejection on experimental data. AlphaLink provides a  
framework for training AlphaFold2-style predictors with a number  
of data sources providing contacts and/or distance restraints,  
such as mutagenesis, nuclear magnetic resonance restraints, fluores
cence resonance energy transfer and crosslinking MS performed  
with different crosslinkers. As a test, we fine-tuned the network with 
simulated sulfo-SDA crosslinks9 and could successfully predict our  
test set (Extended Data Fig. 8).

We validate AlphaLink against CASP14/CAMEO targets that were 
not part of AlphaLink or AlphaFold2 training using synthetic data, and 
E. coli membrane proteins using in-cell photo-L crosslinking MS data. 
The crosslinking MS data enabled the systematic testing of predictions 
of 31 proteins against crystal structures with experimental information. 
While the gains observed on these targets are more modest than with 
the CASP14 and CAMEO set, these proteins have known structures that 
were part of the training set of AlphaFold2. This makes them inherently 
easier for AlphaFold2 to predict, as a result of data leakage. We show 
that AlphaLink accurately estimates model confidence with various 
metrics (predicted lDDT-CA score (pLDDT), predicted TM-score (pTM) 
and predicted aligned error (PAE)), providing the user with valuable 
information on what conclusions may be drawn from a particular 
structure prediction, in a manner comparable to AlphaFold2 (Extended 
Data Figs. 3, 4 and 9). This is a considerable improvement over the 
performance of crosslinks in CASP13, where crosslinks were included 
as information in the data-assisted category and led to a decrease in 
prediction quality30.

Beyond improving predictions on challenging targets, simulated 
here by low Neff, AlphaLink opens up the investigation of multiple con-
formational states by a combination of protein structure prediction 
and experimental information. This enables the structural characteri-
zation of cellular processes in defined biological conditions and may 
eventually be used to design binders and inhibitors to target specific 
protein states. Unlike other methods that rely on manipulation of 
the MSA25,31,32, AlphaLink uses experimental information to drive the 
prediction of multiple conformational states. Because the algorithm 
weighs experimental evidence against evolutionary information, the 
nature and size of the MSA plays a role in driving the prediction. Thus, 
a high Neff can ‘overpower’ experimental evidence. In this regard, sub-
sampling the MSA is a way to tune down the weight of the MSA. In the 
analyses of KaiB and selecase, AlphaLink can be run with multiple 
MSA subsamplings or even combined with sequence clustering25 to 
characterize the full range of conformations for given combinations of 
experimental and MSA evidence. Intriguingly, for both KaiB and Cdk2, 
running AlphaLink with crosslinks from mixtures of conformers led to 
predictions coinciding with one state at a low Neff, then predictions in 
between and finally another state at high Neff. In the case of selecase, 
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sequence clustering did not produce the alternative conformation  
at all25, while AlphaLink could produce the alternative conformation 
in the absence of MSA information.

Taken together, our results show that AlphaLink successfully lever-
ages experimental restraints via deep learning to improve protein struc-
ture prediction. We present a workflow based on photo-AA crosslinking 
MS, which provides contact-like distance information, and obtain the 
first large-scale photo-AA crosslinking MS dataset inside cells. We then 
implement photo-AA-based protein structure prediction in AlphaLink. 
Our method leverages a list of generic contacts, represented as explicit 
distance restraints or as distograms, to guide the OpenFold pipeline 
towards structures consistent with the experimental data. The work-
flow outlined here thus provides a general framework for the hybrid 
experiment-assisted AI prediction of protein structure, investigating 
the structure–function relationship of proteins directly in situ without 
any genetic manipulation.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Crosslink simulation
We considered several representations for photo-crosslinking 
MS-derived contacts (Supplementary Table 2), and ultimately decided 
to train with 10 Å Cα–Cα contacts, since it agrees well with the mean 
distances observed in experimental data (Fig. 3b), closely resembles 
previous definitions of contact restraints36,37 and represents experi-
mentally observed distance distributions more accurately than simu-
lating crosslinks from leucine Cδ1 to the nearest nonhydrogen atom.

We simulate crosslinks by taking all residue pairs where one resi-
due is a leucine or lysine and the other residue has an atom that is within 
10 Å of the Cα atom of leucine/lysine. We consider only crosslinks that 
are not within the same or consecutive tryptic peptides. The links are 
randomly subsampled to 10% to match the expected coverage of the 
real data. We further add 5% of stochastic noise to match the expected 
FDR. During training, we always simulate at least one incorrect cross-
link. The FDR can therefore be much higher. The link-level FDR is simu-
lated by shuffling the crosslinks and counting the number of incorrect 
links observed so far. The minimum FDR is 5%. Crosslink statistics for 
the CASP14/CAMEO set can be found in Supplementary Tables 3–5.

Distogram sampling
We sample distograms on-the-fly during training to condition the net-
work. There are three different types of distogram: first, a uniformly 
distributed distogram that represents contact information; second, a 
distogram based on the expected distances for a specific distance bin; 
third, a distogram based on the expected distances for photo-L and 
photo-K crosslinks (10 Å). For all distograms the probabilities sum to 
1-FDR below the chosen bin and to FDR beyond the chosen bin.

Integration of crosslinks
We add a crosslink embedding layer to OpenFold by specifying an 
additional linear layer that maps the soft-label contact map, or in case 
of the distogram network, the distograms into the 128-dimensional 
z-space present in the AlphaFold2/OpenFold architecture. The projec-
tion is added to the pair representation (z). In addition, we learn a group 
embedding layer to indicate groups of possibly ambiguous crosslinks, 
which enables us to deal with restraints with positional ambiguity.  
The group embedding is also added to the pair representation.

MSA subsampling
For refining the network, we subsample the MSAs to a specific Neff. 
The Neff corresponds to the number of nonredundant sequences in a 
MSA below a specific sequence identity. We set the sequence identity 
to 80%. We subsample the MSAs in training in each epoch to a random 
Neff between 1 and 25, generating a uniform distribution of Neff values 
across all targets. In subsampling, the MSA is shuffled and sequences 
are added until the desired Neff is reached.

Conformer experiment
For KaiB (Q79V61) and selecase (Q58610) we produced a total of  
200 predictions that contained 100 simulated crosslinks (FDR 5%) 
and a set of 4–7 crosslinks unique to each conformation. The mixture  
crosslinking set is subsampled from both sets to ensure similar  
coverage. The unique crosslinks for each conformation are added  
on top.

Fine-tuning of AlphaFold2
To avoid training OpenFold from scratch, we start with the AlphaFold2 
2.0 (https://github.com/deepmind/alphafold/releases/tag/v2.0.0) 
weights provided by Deepmind and refine the network on 13,000 
proteins from the trRosetta38 training set with simulated photo-AA 
crosslinking data. We use OpenFold v0.1.0 (based on GitHub from  
January 2022: commit 894905b9da941ed10e797c5ba15af75692cee1b4). 
To encourage the network to use the crosslinking data, we subsample 

the MSA to a Neff between 1 and 25 (uniformly). MSAs were generated 
with the reduced database setting. We train and test with model_5_ptm, 
which does not use any template information. Fine-tuning specifically 
on low Neff targets does not substantially change the performance of 
AlphaLink. We predicted the same structures without crosslinks in 
AlphaLink to verify that fine-tuning the network on low Neff targets is 
not the reason for our improvements (Extended Data Fig. 10).

We follow the refinement training regime outlined in the Alpha-
Fold2 paper, except that, due to memory constraints, we do not expand 
the MSA cluster size. Since our method is specifically targeting proteins 
with few MSAs, this is not a problem. We train for five epochs on five 
GPUs, which takes roughly 5 days.

Evaluation set up
For the baseline, we use OpenFold with the original AlphaFold2 weights 
provided by Deepmind. The creators of OpenFold verified that the 
implementation produces identical results. To assess AlphaLink and 
Openfold performance, we perform predictions with the model_5_ptm 
setting, which does not include templates and predicts the TM score 
as an auxiliary loss.

To ensure comparability, we make predictions deterministic. 
We disable masking out parts of the MSA input. Especially on targets 
with small MSAs, masking out parts of the input leads to big variances 
between runs, since it affects the Neff. Here reconstruction can increase 
the Neff. We use a fixed set of ten subsampled MSAs and a fixed set of ten 
subsampled crosslinks. Normally, MSAs will be subsampled on-the-fly 
to 128 sequences. The rest is aggregated with the ExtraMSAStack. We 
cap our MSA size at 128 for the subsampled MSAs to remove variance. 
Since we mostly evaluate on MSAs with Neff = 10, where the MSA size  
is far below 128, we seldom reach this limit in practice.

If not denoted otherwise, the results we will show use the soft-label 
representation, which is trained for the particular crosslinker type and 
performs slightly better.

Our main comparison metric is the template modeling score (TM 
score), which measures the similarity between two protein structures. 
The TM score is calibrated in a way that structures with a TM score above 
0.5 generally assume the same fold. A TM score of 1.0 signifies a perfect 
match. TM scores <0.2 correspond to random structures.

We use the same databases as Deepmind to recreate the CASP14 
settings: UniRef90: v2020_01, MGnify: v2018_12, Uniclust30: v2018_08, 
BFD: only version available, PDB: downloaded 14 May 2020, PDB70:  
13 May 2020. The MSAs are generated with the reduced database set-
ting. We evaluate the CASP14 targets on the full sequence, not split-
ting them into domains. We evaluate on 45 CAMEO targets that were 
released after AlphaFold2. We consider only CAMEO targets where 
AlphaFold2 does not exceed a TM score of 0.8. We used SMART with 
pFam annotation39 to divide the CAMEO targets into single/multid-
omain, ignoring low-complexity regions.

For predictions of conformational states of Cdk2, potential 
photo-L and photo-K crosslink sites were derived from structures 
of inhibited (1h01) (ref. 34) and cyclin-A bound states (2bpm) (ref. 35). 
Separate AlphaLink predictions were submitted with either dataset at 
Neff = 10. AlphaFold2 predictions were performed at Neff = 10 with the 
model_5_ptm setting. For Extended Data Fig. 5a, AlphaFold2 predic-
tions were carried out with full MSA size and default model settings 
(five random seeds per model, five models predicted).

Photo-L crosslinking of E. coli cells
For optimization of photo-L concentration in the medium, E. coli K12 
were grown in LB medium overnight at 37 °C. The cultures were diluted 
(1:100) into M9 minimal medium containing 0.2% glucose and varying 
concentrations of photo-L (0, 5, 25, 250, 500, 750, 1,000 and 2,000 µM 
photo-L) in 96-well plates in a Microplate reader Infinite M200 Tecan. 
Three colonies were used per condition. Cell growth was monitored 
via OD600.

http://www.nature.com/naturebiotechnology
https://www.uniprot.org/uniprot/Q79V61
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For crosslinking MS experiments, E. coli were grown with 0.75 mM 
photo-L for 22 h at 37 °C in 100 ml of M9 minimal medium. Thirty million  
cells were then pelleted for 15 min at 4,000g. The pellet was resus-
pended in fresh M9 minimal medium to a concentration of 1 million 
cells ml−1. UV crosslinking was then performed by exposing the cell 
suspension for 20 min on ice in a CL-1000L crosslinking device (UVP). 
Cells were then pelleted again, washed with PBS buffer and snap frozen.

Membrane enrichment
Cells were resuspended in 20 mM Tris, pH 7.4 and lysed by four freeze–
thaw cycles followed by sonication. Larger cell debris was removed 
through centrifugation at 2,000g for 20 min. The supernatant was 
then cleared centrifuged at 16,000g for 20 min at 4 °C. The pellet was 
washed with 20 mM Tris pH 7.6, 1 M NaCl.

Proteome digestion and peptide fractionation
The pellets were solubilized in PBS buffer and subsequently mixed with 
NuPage LDS sample buffer (Life Technologes) and run into a 4–12% 
Bis-Tris SDS–PAGE gel (Life Technologies). Gels were stained using 
Imperial Protein Stain (Thermo Scientific), and the whole proteome 
was cut out and prepared for in-gel digestion. Proteins were reduced 
with 10 mM dithiothreitol (Sigma Aldrich) for 30 min at 37 °C, followed 
by alkylation with 55 mM iodoacetamide (Sigma Aldrich) for 20 min at 
room temperature in the dark. Gel pieces were incubated with 13 ng μl−1 
trypsin (Pierce, Thermo Fisher Scientific) at 37 °C for 16 h in 10 mM 
ammonium bicarbonate, 10% acetonitrile (ACN). The samples were 
cleaned up using Sep-Pak C18 cartridges (Waters) before strong cation 
exchange chromatography.

The peptides were resuspended in SCX loading buffer (10 mM 
KH2PO4 and 30% ACN) and separated on a polysulfoethyl A column 
(PolyLC, PolySulfoethyl A 100 × 2.1 mm2, 3 µm) using SCX elution buffer 
(10 mM KH2PO4, 30% ACN and 1 M KCl). Separation of peptides was 
accomplished using a nonlinear gradient with running buffer B (30% 
ACN, 1 M KCl and 10 mM KH2PO4, pH 3.0), as described40. Fractions of 
200 µl each were collected over the elution window (approximately  
18 column volumes). Collected fractions of interest from five runs  
were pooled, desalted using Stage-Tips and stored at −20 °C.

Crosslinked peptides in each SCX fraction (labeled fractions 16–22 
in the JPOST deposition) were subsequently enriched by size-exclusion 
chromatography using a Superdex Peptide 3.2/300 column (GE 
Healthcare). The mobile phase consisted of 30% (v/v) ACN and 0.1% 
trifluoroacetic acid, running at a flow rate of 10 μl min−1. The earliest 
five peptide-containing fractions (50 μl each, labeled SEC6–10) were 
collected and dried in a vacuum concentrator. Whenever amounts were 
insufficient for liquid chromatography (LC)–MS analysis, adjacent 
fractions were pooled.

LC–MS acquisition of photo-L crosslinked E. coli membranes
Acquisition of crosslinked peptide spectra was performed on a Fusion 
Lumos Tribrid Mass Spectrometer (Thermo Fisher Scientific) con-
nected to an Ultimate 3000 UHPLC system (Dionex) operating with 
XCalibur 4.4 and Tune 3.4. Chromatography was performed with 
mobile 0.1% (v/v) formic acid as mobile phase A, and 80% (v/v) ACN, 
0.1% (v/v) formic acid as mobile phase B. The samples were dissolved 
in 1.6% ACN (Honeywell Fluka), 0.1% formic acid (Honeywell Fluka) 
and separated on an Easy-Spray column (C-18, 50 cm, 75 µm internal 
diameter, 2 µm particle size, 100 Å pore size) running with 300 nl min−1 
flow rate using optimized gradients for each offline fraction (ranging 
from 2% B to 55% B over 62.5, 92.5 or 152.5 min, then to 55% in 2.5 min 
and to 95% in 2.5 min).

The MS data were acquired in data-dependent mode using the 
top-speed setting with a 3 s cycle time. For every cycle, the full-scan 
mass spectrum was recorded in the Orbitrap at a resolution of 120,000 
in the range of 400 to 1,450 m/z. Ions with a precursor charge state 
between +3 and +7 were isolated and fragmented with a decision tree 

strategy41. Higher-energy collisional dissociation energies optimized 
for mass and charge of a precursor species were applied41. The fragmen-
tation spectra were then recorded in the Orbitrap with a resolution of 
50,000. Dynamic exclusion was enabled with single repeat count and 
60 s exclusion duration.

Identification and statistical validation of crosslinked 
peptides
LC-MS raw data were searched against the E. coli K12 proteome (down-
load from UniProt February 2020) using MaxQuant 1.6.17 (ref. 42) (Sup-
plementary Data 3). The top 1,200 proteins by iBAQ were used as the 
database for the crosslink search. For the crosslink search, raw data 
were processed using MSconvert 3.0.22 (ref. 43) to recalibrate precursor 
masses and convert to mgf format. An open modification search with 
MSfragger 3.4 (ref. 44) was used to quantify modifications in the sample. 
The peak files were then searched with xiSEARCH 1.7.6.4 (ref. 45) with 
the following settings: MS1 tolerance: 3 ppm; MS2 tolerance: 5 ppm, 
allowing up to two missing monoisotopic peaks and three missed  
tryptic cleavages. Cysteine carbamidomethylation was defined as a 
fixed modification. Oxidation of methionine, deamidation of aspara-
gine and methylation of glutamic acid were defined as variable modi-
fications. –CH3SOH/–H2O/–NH3 were defined as losses. In the crosslink 
search, the photo-L crosslinker was defined as follows: the linkage mass  
was set to −16.0313 Da and the specificity set to leucine to any amino 
acid. Variable modifications on leucine to account for photo-L reac-
tions with water (1.97926 Da) or within a peptide (−16.0313) were  
also defined. Noncovalent gas-phase associations were included in 
the search46.

The spectral matches were filtered before FDR estimation to 
crosslinked peptide matches with a minimum of three fragments 
matched per peptide. Results were then filtered to 5% crosslink-level FDR 
in xiFDR 2.1.5.5 (ref. 45) with the boosting feature for error thresholding  
at lower levels enabled. The minimum peptide length was set to 6. 
Consecutive peptides were removed from the analysis. The resulting 
residue pairs are in Supplementary Data 2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Crosslinking MS data are deposited in ProteomeXChange JPOST47 
with accession code JPST001851. Models and corresponding MSA and 
simulated crosslinking data have been deposited on ModelArchive48 
with accession code ma-rap-alink. AlphaLink models based on 
experimental crosslinks have been deposited as integrative/hybrid 
models in PDB-Dev49 with accession codes PDBDEV_00000165 to 
PDBDEV_00000198 (group ID PDBDEV_G_1000001). Source data are 
provided with this paper.

Code availability
The code for AlphaLink is deposited at https://github.com/lhatsk/
AlphaLink.
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Extended Data Fig. 1 | Performance on benchmark data set and distogram 
effect. a- TM-score comparison (N = 10) 49 challenging CAMEO targets for the 
network trained with the soft-label representation and the network trained 
with the distogram representation. Each target was predicted with 10 randomly 
subsampled crosslink sets. Scatter points show the mean. The photo-L crosslinks 
were represented as a uniformly distributed distogram. The performance is on 
par. b- Performance on 60 CASP14 and 45 CAMEO (Neff = 10). AlphaLink improves 
the TM-score on average by 15.2%. The error bars represent the 95% confidence 
interval (N = 10). Points show the mean. Purple highlights multi-domain targets, 
green highlights single-domain targets. c- The effect two different distogram 
inputs (dashed) have on the distogram AlphaLink predicts (solid) between 
residues 11 and 103 for T0164. The solid black line designates the real distance. 
Blue shows the distogram without using crosslinks. The green distogram mimics 

an upper bound contact restraint, while the purple distogram is the expected 
distance distribution for simulated photo-L and photo-K crosslinks on the 
training set. Predicted distogram based on the expected photoAA distance 
distribution (purple, solid) is more narrow compared to the prediction with 
the uniform distance distribution (green, solid). Using a distance distribution 
improves the prediction from TM-score of 0.68 to 0.7. We show the first 64 bins 
of the input distograms and sum up the probabilities for the rest. In the absence 
of this restraint, the prediction has a TM-score of 0.28 (Neff = 10). d- Performance 
of AlphaLink as a function of the number of crosslinks per residue (Neff = 10). 
2 bins (nc > 0.1) were omitted because they only contained 1 and 2 samples. 
Performance generally increases with more crosslinks per residue. The line shows 
the median and the whiskers represent the 1.5x interquartile range.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Photo amino acid crosslinking MS workflow and 
membrane outliers. a- E. coli K12 grown with increasing concentration of 
photo-L in M9 minimal media and structure of photo-L. Average cell density 
with standard error across 3 individual colonies is plotted. b- Workflow for 
two-dimensional fractionation of peptides from E. coli crosslinked with photo-L 
in cell. Error bars representing standard error. c- Nodes represent proteins 
detected with at least one crosslink, and edges indicate the presence of at least a 

crosslinked residue pair between proteins. Nodes are coloured according to the 
number of crosslinks detected in that protein. d- Two examples where crosslinks 
negatively impact the performance in AlphaLink. The crosslink sets contain 
overlength links (shown in red in the native structure) which cause movements 
in AlphaLink (for example, domain movement in ATP synthase - likely a false 
positive link). OmpF is homo-multimeric, the overlength links might stem from 
links between different subunits.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01704-z

0.0 0.2 0.4 0.6 0.8 1.0
pTM

0.0

0.2

0.4

0.6

0.8

1.0

TM
-s

co
re

pTM vs TM-score (pearsonr = 0.91)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PD
B 

co
ve

ra
ge

Extended Data Fig. 3 | AlphaFold2 pTM correlation. Calibration of the 
predicted TM-score (pTM) on N = 320 predictions of the E. coli membrane 
fraction dataset. On predictions that are at least 80% covered by the crystal 

structure, the correlation is 0.91. The true TM-score is generally underestimated, 
meaning that the pTM-score of AlphaFold2 is a conservative estimate. The 
shaded area corresponds to the 95% confidence interval. Line shows the linear fit.
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Extended Data Fig. 4 | pTM comparison on 96 proteins from the E. coli membrane fraction dataset. pTM comparison on N = 96 proteins from the E. coli membrane 
fraction dataset. Each points is one protein with one MSA subsample (Neff = 10). The higher pTM of AlphaLink indicates improved structures.
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Extended Data Fig. 5 | Predicting multiple conformations. a- Cdk2 predictions 
by AlphaFold2.2 with default settings (full MSA, 5 models predicted, 5 
random seeds per model), in gray, overlaid with the structure of the inhibited 
conformation of Cdk2 (blue, pdb 1h01). The T-loop is highlighted in orange in 
the AlphaFold2 predictions and in red in the inhibited conformation structure. 
All 25 AlphaFold2 predictions converge on the cyclin A-bound conformation 
of the T-loop and PSTAIRE helix of Cdk2. b- Each points is one prediction with a 
randomly sampled crosslink (FDR = 5%) set which includes additional links from 

the highlighted conformation. 100 samples per conformation. For Selecase, 
AlphaLink always predicts the free state with high accuracy if we use MSAs. 
Without MSAs, some predictions are driven towards the bound state. For KaiB, 
AlphaLink is able to predict the ground state with good precision without MSAs. 
Introducing co-evolutionary information leads to better clustering, although 
some of the ground state predictions now end up in the average state. This 
movement proceeds with more co-evolutionary information. With full MSAs, 
almost all predictions have moved to the fold-switched state.
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Extended Data Fig. 6 | AlphaLink vs OmegaFold. AlphaLink vs OmegaFold 
performance on 58 CASP14 targets with Neff = 10 (test set) with simulated photo-L 
crosslinks. AlphaLink improves the TM-score on average by 36.7% ± 76.6. 

AlphaLink improves 10 additional targets past a TM-score > 0.5. Shown here is the 
mean and 95% confidence interval (N = 10) for AlphaLink and the corresponding 
performance of OmegaFold.
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Extended Data Fig. 7 | AlphaLink vs AlphaFold2 timings. Tested on N = 60 
CASP14 targets with Neff = 10. We ran inference, including relaxation on 
pre-computed features with model_5_ptm. Timed on a node with a single 

Nvidia A100 80GB GPU and 2 Intel XEON Gold 5118 CPUs (2 × 24 cores) with 
2.3 GHz. Mean running time (s) for AlphaLink is 31.7 ± 7.4 s and 22.14 ± 5.16 s for 
AlphaFold2.
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Extended Data Fig. 8 | AlphaLink with soluble crosslinker on CASP14. 
a- AlphaLink vs AlphaFold2 performance on 59 CASP14 targets with Neff = 10 
(test set) with simulated SDA crosslinks. AlphaLink improves the TM-score on 
average by 16.4% ± 9.7. AlphaLink predicts 5 additional targets with a TM-score > 
0.5. Shown here is the mean and 95% confidence interval (N = 10) for AlphaLink 
and the corresponding performance of AlphaFold2. b- We compare the mean 

TM-score (N = 10) per target on 59 CASP14 targets for the network trained 
with the soft-label representation vs the network trained with the distogram 
representation. Each target was predicted with a single MSA subsample (Neff = 10)  
and 10 randomly subsampled crosslink sets. The sulfo-SDA crosslinks were 
represented as a uniformly distributed distogram. The soft-label representation 
outperforms the distogram representation on average by 5%.
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Extended Data Fig. 9 | AlphaLink and AlphaFold2 pLDDT correlation. a- We 
show the calibration of the predicted lDDT-Cα score (pLDDT) for AlphaLink on 
N = 220 predictions of the E. coli membrane fraction dataset. On predictions that 
are at least 80% covered by the crystal structure, the correlation is 0.82. The true 
lDDT-Cα score is generally underestimated, meaning that the pLDDT-score is a 

conservative estimate. b- We show the calibration of the predicted lDDT-Cα score 
(pLDDT) for AlphaFold2 on N = 220 predictions of the E. coli membrane fraction 
dataset. On predictions that are at least 80% covered by the crystal structure, the 
correlation is 0.95.The shaded area corresponds to the 95% confidence interval. 
Line shows the linear fit.
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Extended Data Fig. 10 | Refining on low Neff targets doesn’t change results 
substantially. a- Performance improvements we observed are due to adding 
crosslinking information, not additional fine-tuning of the AlphaFold2 weights 
on low Neff targets. There are few outliers on both sides. The performance is 
virtually identical for targets without MSAs (TM-score average: AlphaLink = 
0.322, AlphaFold2 = 0.308, Z-statistic = −0.072). b- Performance improvements 

we observed are due to adding crosslinking information, not additional fine-
tuning of the AlphaFold2 weights on low Neff targets. There are few outliers on 
both sides. The performance is virtually identical for Neff = 10 (TM-score average: 
AlphaLink = 0.701, AlphaFold2 = 0.702, Z-statistic = 0.033). Points show the mean 
(N = 10) over 10 MSA subsamples.
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