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While AlphaFold2 can predict accurate protein structures from the primary
sequence, challenges remain for proteins that undergo conformational

changes or for which few homologous sequences are known. Here we
introduce AlphaLink, amodified version of the AlphaFold2 algorithm
thatincorporates experimental distance restraint information into its
network architecture. By employing sparse experimental contacts as
anchor points, AlphaLinkimproves on the performance of AlphaFold2in

predicting challenging targets. We confirm this experimentally by using the
noncanonical amino acid photo-leucine to obtain information on residue-
residue contacts inside cells by crosslinking mass spectrometry. The
program can predict distinct conformations of proteins on the basis of the
distancerestraints provided, demonstrating the value of experimental data
indriving protein structure prediction. The noise-tolerant framework for
integrating data in protein structure prediction presented here opens a path

to accurate characterization of protein structures from in-cell data.

AlphaFold2 has shown unprecedented performance in CASP14, the
Critical Assessment of protein Structure Prediction'™, predict-
ing two-thirds of the CASP targets with an approximately 1A
root-mean-square deviation (r.m.s.d.) from the native backbone path*.
This success, together with the reliable metrics provided by Alpha-
Fold2 regarding the predicted accuracy of its models, is a tremendous
achievement whose impact on life sciences is still unfolding.
AlphaFold2 predicts static models based on static input
data. AlphaFold2 was trained on two information sources, the
protein structures in the Protein Data Bank (PDB) and multiple
sequence alignments (MSAs). This approach is challenged by targets
that have insufficient evolutionary information, generating less
confident or erroneous predictions®. For some classes of proteins, such
asviral proteins, proteins from understudied organisms, antibodies’

and synthetic proteins, but also clinically relevant mutations®, evolu-
tionary information may be misleading. Moreover, the x-ray structures
underlying the model poorly reflect structural flexibility, multiple
conformations and dynamic interactions. Structural restraints
observed on proteins in solution, ideally in the cell, could help
resolve these problems. Adding such restraints to the AlphaFold2
framework may then steer the prediction towards structural states
occurringinsitu under specific conditions.

Crosslinking mass spectrometry (MS) is capable of providing
distance restraints that canbe used in protein structure prediction’”.
In particular, photo amino acids (photo-AA) are readily incorporated
by both prokaryotic and eukaryotic cells'°'?, which opens up the
possibility of probing the in situ conformation of proteins. Unlike
most soluble crosslinkers, where data can be polluted by rare protein
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MSATransformer. ¢, The pair representation is updated with information from
the MSAs that have been biased with the crosslinks.

states, photochemistry accurately represents in-solution ensem-
bles"!". Furthermore, photo-AA crosslinks yield comparably tight
distancerestraints that align well with co-evolutionary contacts, which
are the basis of most protein structure prediction methods, includ-
ing AlphaFold2. They are in theory capable of ‘zero length’ crosslink-
ing from the side chain to any heavy atom via a reactive carbene'® or
alkyl diazo® intermediate. Photo-leucine (photo-L) was used in
mapping conformations and binders in purified systems™" but has
not been used so far for in situ structure analyses. In general, the
incorporation of amino acid analogs into the proteome is advanta-
geous for crosslinking studies, because they allow the introduction of
genetically encoded chemical entities that can react chemo-selectively
atknown locationsin proteins'®.

In this Article, we introduce AlphalLink, a structure prediction
method thatintegrates experimental data from photo-AA crosslinking
directly into the AlphaFold2 architecture. AlphaLink uses deep learn-
ing to merge co-evolutionary relationships and crosslinking data in
distance space, exploiting the complementary nature of the data. We
demonstrate that AlphaLink can leverage noisy experimental contacts
to improve predictions of challenging targets on both simulated and
real experimental data, steering predictions towards the in situ con-
formation of proteins. To test AlphaLink, we perform a large-scale
crosslinking MS study with photo-L, identifying 615 in situ residue—
residue contactsin Escherichia colimembrane fractions, unlocking the
power of photo-AA in mapping proximal residues directly in cells. We
show that even sparse crosslinking MS data can anchor predictions to
particular conformational states, opening up the possibility of probing
dynamics by hybrid experimental/deep learning approaches. We fur-
ther extend AlphaLink to arbitrary distance restraints by introducing a
second representation that encodes distance restraints as distograms>.

Results

AlphalLink: integrating crosslinks into AlphaFold2 via
OpenFold

Crosslinking MS data have been used to guide candidate selection for
AlphaFold-multimerin protein-proteininteractionstudies and validate
models™®, To fully leverage the potential of crosslinking MS datain
proteinstructure prediction, we develop AlphaLink, aframeworkincor-
porating crosslinks directly into OpenFold". OpenFold is a trainable
reproduction of AlphaFold2. The creators of OpenFold verified that
the implementation produces identical results. OpenFold primarily
exploits co-evolutionary relationships. The main difficulty in merging
multiple information sources is to find a suitable representation that
facilitates integration and at the same time avoids information loss.
OpenFold operates both in distance space (Evoformer) and in 3D space
(Structure Module). Photo-AA crosslinking MS data provide distance
restraints that naturally fit into the distance space of OpenFold, since
theyyield similar distances to co-evolutionary contacts by directly link-
ingamino acids via diazirine chemistry. Co-evolutionary relationships
and photo-AA crosslinks provide complementary and corroborat-
ing information. The sparsity of crosslinks can be compensated with
co-evolutionary information. Accurate crosslinking data can act as
an anchor in these cases. AlphaLink exploits this relationship by
merging crosslinking MS and co-evolutionary data via the Evoformer,
injecting crosslinks into the pair representation (z), yielding a
consistent and unified constraint set (Fig.1).

Weintroduce two representations to encode crosslinking informa-
tion. The experimental dataare represented as either soft labels or dis-
tance distributions (distograms). In the case of soft labels, each contact
is weighted by the link-level false discovery rate (FDR) of the dataset
(1-FDR) or, if present, the per-restraint FDR to indicate confidence in
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crosslink assignment. Distograms allow us to generalize to arbitrary
distance restraints. A particular crosslinker (or distance restraint
in general) is represented by a distance distribution. Contact-like
restraints can berepresented by uniformly distributed distograms for
the given cutoff. We model uncertainty directly in the representation
by adjusting the probability mass according to the FDR. The distogram
isdesigned to match the distogram that is predicted by the Evoformer
fromthe pair representation that consists of 64 bins. We use the same
binning for the first 64 bins and extend the distogram further to
128 bins, spanning from 2.3125 Ato 42 A.

We embed the restraints and add them to the pair represen-
tation of OpenFold, which is later mapped into 3D space (Fig. 1a).
Theembeddingis similartotherecyclingembeddingin AlphaFold2.The
Evoformer jointly updates the MSA and the pair representation. The
MSA transformer (Fig. 1b) retrieves co-evolutionary information
and updates the MSA representation. The retrieval is biased with
the pair representation that includes the experimental crosslinking
information supplied by the user. The outer product mean (Fig. 1c)
in turn updates the pair representation. This coupling maximizes
synergy between MSA and experimental information and allows
the network to perform noise rejection, that is, the rejection of
misassigned experimental or co-evolutionary relationships or of
contacts that do not support other strands of information leading
to aconsensus model.

We initialized OpenFold with the original weights of Alpha-
Fold2 and fine-tuned the network with the newly added crosslinking
bias. We followed the refinement training regime outlined in the
AlphaFold2 paper, except that we subsampled the number of effec-
tive sequences (N.) to simulate challenging targets. In light of
the limited availability of experimental crosslink data for training,
we simulated photo-crosslinking MS data (Methods) that included
simulated experimental noise in the form of false residue-residue
contacts at the given FDR.

Integrating photo-AA crosslinks enables noise-tolerant
prediction of challenging targets

We tested AlphaLink on 49 challenging CAMEO targets (N ¢ < 25, no
MSA subsampling, Supplementary Data 1) (Fig. 2a). AlphaLink out-
performs AlphaFold2, substantially improving the performance on
targets with more than 20 crosslinks. Integrating simulated photo-L
dataimprovesthe TMscore onaverage by 19.2 +16.3% (95% confidence
interval) (Fig. 2a). Encoding the crosslinks as distograms instead
performs virtually the same (Extended Data Fig. 1a).

We further curated a second benchmark dataset consisting of
60 CASP14 targets and 45 CAMEO targets (Supplementary Data 1). To
simulate challenging targets and to control for the MSA influence, we
subsampled the MSAs to N, =10 and ignored structural templates.
Here AlphaLinkimproves the TM score on average by 15.2% (Extended
Data Fig. 1b). For particularly challenging targets (N =28), where
AlphaFold2 fails to predict the correct fold (TM score <0.5), the TM
score improves on average by 50.6% (Fig. 2b). AlphaLink predicts
the correct fold (TM score >0.5) of 14 of these. We tested the noise
rejection capabilities of AlphaLink on 60 CASP14 targets by adding
false links to simulate multiple noise levels. The performanceis roughly
constant with10%,20% or 50% false links (Fig. 2c) and still outperforms
AlphaFold2, demonstrating AlphaLinks’ robustness to different noise
levels. Overall, the method achieves a crosslink satisfaction (<10 A
Ca-Ca) on average of 85 +£1.2% (95% confidence interval) after three
recycling iterations, and 88.3 +1.2% (95% confidence interval) of the
simulated crosslinks with <10 A Ca-Ca in the crystal structure are
satisfied.

The sparse crosslink data act as anchor points that serve to
pull the entire prediction towards the right solution (Fig. 2d). For
CASP target T1064 (N.;=10), four crosslinking restraints are sufficient
to both drive the prediction to the native state (TM score improves

from 0.28 to 0.86) and to decrease the predicted aligned error across
the whole protein, including areas not covered by the crosslinking
data. The crosslinking information has a wide-ranging impact due to
its combination with the co-evolutionary and structural information
embeddedinthe pair representation, whichis used asabiastoretrieve
contacts consistent with experimental data. Effectively, thisimproves
the efficiency of using co-evolutionary information in AlphaFold2.
Extended Data Fig. 1c shows the effect of using different distograms to
encode arestraint between residues 11 and 103 in T1064. The Evofor-
mer predicts anarrower distogram when using the expected distance
distribution of photo-AA crosslinks as a prior, when compared with
the uniform prior of an upper bound distance restraint. This repre-
sentation slightly improves the prediction (TMscore 0.68t0 0.7). The
performance as a function of the number of crosslinks per residue is
shownin Extended Data Fig.1d. The performance generally increases
with an increase in the number of crosslinks per residue. The main
advantage of the distogram representation is enabling the user
to inject distance restraints from different crosslinkers or even
different experimental approachesinto AlphaLink.

We test the performance of AlphaLink at different N levels
to investigate the effect of crosslinks on targets with varying
difficulty (Fig. 2e). The performance of both AlphaFold2 and
AlphaLink deteriorates in absence of sufficiently large MSAs
(Fig. 2e). Crosslinks can compensate for smaller MSA sizes. In fact,
photo-AA crosslinks alone without any MSA information allow us to
predict the correct fold (TMscore >0.5) of 43/105 benchmark targets,
compared with 13/105 for AF2 without MSA information. The mean
improvement in TM score increases to 75 + 13.5% (95% confidence
interval) over all targets (Fig. 2f). The benefit of crosslinks slowly
disappears with a N> 50. This is at least partly due to the fact that
most crosslinks are already satisfied when predicting with full MSAs
(Fig. 2e). Rather than finding any solution that fits the crosslinks, our
network appropriately weighs crosslinking MS information against
the MSAs and uses it to guide the prediction to a more accurate solu-
tion. Note that as MSA size increases, the network will rely more on
MSA information than on crosslinks—hence, we implement settings
with different MSA subsamplings in the AlphaLink software package.

In summary, AlphaLink enables users to use sparse distance
restraints to bias AlphaFold2 predictions, robustly handling noise,
directly at the inference stage, due to their synergisticimplementation
inthe network design.

Photo-L as aninsitu structural probe

Togeneratealarge-scale experimental photo-AA dataset required for
testing such an application, we derived in situ structural restraints on
the E. colimembrane fraction by crosslinking MS of cells grown on
photo-L-containing medium. We optimized the growth protocol to
maximize incorporation while maintaining a low level of cytotoxicity
(750 uM photo-L in the medium, Extended Data Fig. 2a), ultraviolet
(UV) illuminated the cells for crosslinking and then enriched the cell
membrane of the crosslinked cells. The proteins were digested, and
the resulting peptides subjected to two-dimensional fractionation,
combining strong cation exchange and size exclusion chromatog-
raphy (Extended Data Fig. 2b). Mass spectrometric analysis then led
to the identification of 615 residue pairs involving 112 proteins at 5%
link-level FDR (Fig. 3a, Extended Data Fig. 2c and Supplementary Data
2 and 3). Several crosslinks are detected among 3-barrel proteins
and proteins in the intermembrane space, including porins and
known membrane complexes (Fig. 3a and Extended Data Fig. 2a). When
visualized on known protein structures, the experimental crosslinks
provide a median distance of 11.1+ 8.1 A Ca—Ca (mean + standard
deviation) (Fig. 3b), indicating the contact-like nature of these
crosslinksinline with theirimplementationin AlphaLink. Thisis further
supported by the fact that we exclude crosslinks within the same
tryptic peptide, and between consecutive peptides in our analysis.
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Fig.2| AlphaLink performance comparison against AlphaFold2. a, TM score
comparison on49 CAMEO targets with N < 25. Error bars represent the 95%
confidence intervals (N =10). Points show the mean. TM score improves on
average by 19.2%. b, Performance on 60 CASP14 and 45 CAMEO targets broken
down by TMscore (N, =10). AlphaLink improves on average by 15.2%. Number of
targetsin each range binin brackets below. ¢, Performance on 60 CASP14 targets
(N.=10) with different noise levels (FDR 0%, 5%,10%, 20% and 50%). AlphaLink
improves in the median for all noise levels. Performance shows robust noise
rejection. Dotted line shows median performance of AlphaFold2. d, Predicted
aligned error of AlphaFold2 (left) and AlphaLink (right) on T1064 with N =10
(top) and predicted structures (bottom). Light regions signify high uncertainty.
Sparse restraints decrease uncertainty across the whole protein. Satisfied cross-
links <10 A Ca-Ca highlighted in blue, borderline crosslinks (10-15 A Ca-Ca)

inyellow, and violated crosslinks >15 A Ca-Ca in red. Possible crosslinking

sites (leucines) are shown as spheres. Regions with violated crosslinks in the
AlphaFold2 prediction (left) increase in certainty (darker regions). TM score
improves from 0.28 to 0.86. e, Performance on 60 CASP14 targets (N = 10) as
afunction of MSA size (N=100, 10 MSAs and 10 crosslink sets). Dots represent
the mean percentage of nonsatisfied crosslinks (>10 A Ca—Ca) in the AlphaFold2
prediction. Improvement on average for all but full MSA size. Crosslink violation
decreases and crosslink utility diminishes with increasing MSA size. Largest
utility for N < 25.f, Performance without MSAs on 60 CASP14 and 45 CAMEO
targets. AlphaLink predicts the correct fold (TM score >0.5) for 43/105 (13/105
for AlphaFold2). Error bars represent the 95% confidence interval (N =10). Points
show the mean. Inall box plots, the line shows the median and the whiskers
represent the 1.5x interquartile range.

Photo-L provides validation for the in situ conformation of
multiprotein complexes such as the AcrAB-TolC multidrug efflux
pump, ribosome and ATP synthase (Fig. 3a). The crosslinks are consist-
entwith previously characterized conformations of the bacterial outer
membrane barrel assembly machinery (Bam). However, alink between
the P2 and P3 domains highlights the flexibility of these modules
(Fig.3c), whichare known to undergo large structural rearrangements

in outer membrane protein folding and insertion. A total of 153
crosslinks are detected for the highly abundant protein OmpA. OmpAis
made up of af3-barrel connected viaa20-residue linker to a C-terminal
domain. It is also known to oligomerize in vivo, and this interaction
is thought to be mediated by the C-terminal domain. The crosslinks
between the B-barrel, linker and C-terminal domain highlight the rela-
tive flexibility of these modules (Fig. 3c) and point to potential contacts
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multimers (top) or mapping to only within-chain distances (bottom). ¢, Distance
restraint analysis of outer membrane proteins crosslinked with photo-L. The dot
represents the median, and the whiskers represent the 1.5x interquartile range.

made between multiple copies of the C-terminal domain. In several
plug-containing -barrel proteins, such as FhuA and BtuB, photo-L
links the position of the central plug with the membrane barrelin a way
that is consistent with previous structures (Fig. 3c), validating
the arrangement of these two modules in the functional cycle of
the proteins. These crosslinks highlight the potential of photo-L to
provide in situ residue-residue contacts regardless of solvent acces-
sibility, providing insight into function for critical domain contacts.

Structure prediction with insitu photo-L data

To test AlphaLink on experimental data, we predicted the proteins
in the crosslinking MS dataset of the E. coli membrane fraction. We
focused our evaluationonthe 31targets with high-resolution structures
that had amedian of five crosslinks (Fig. 4). Each target was predicted
with ten randomly subsampled MSAs at N =10, yielding 310 predic-
tions (Supplementary Data 4). We subsampled the MSAs to counter
overfitting, because the targets were probably part of the AlphaFold2
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Fig. 4 |Structure prediction with in-cell photo-L crosslinking MS data of the
E. colimembrane fraction. a, Comparison of TM score with annotated number
of links (marker sizes) and percentage of nonsatisfied (>10 A) crosslinks (color
gradient) in the AlphaFold2 prediction. Performance improvement is bigger
for targets with a higher percentage of nonsatisfied crosslinks in the base
prediction (darker circles). Each target is predicted ten times with different
MSA subsamples at N = 10. AlphaLink outperforms AlphaFold2 on average.
b, Comparison of TM score with annotated mean distance of nonsatisfied
crosslinks in the base AlphaFold2 prediction (color gradient). Prediction quality
improves with stronger crosslink violations (darker circles). ¢, We show the
calibration of the pTM. On predictions that are at least 80% covered by the

AlphalLink
TM score: 0.79

AlphaFold2
TM score: 0.4
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TM score: 0.79
crystal structure, the correlationis 0.75. The true TM score is generally
underestimated, meaning that the pTM score of AlphaLink is a conservative
estimate. The shaded area corresponds to the 95% confidence interval. Line
shows the linear fit. d, Prediction of the ATP synthase subunit AtpB by AlphaFold2
and AlphaLink usingin-cell photo-L crosslinks at N.=10. e, Prediction of the
outer membrane lipopolysaccharide assembly protein. f, Prediction of the
ferrienterobactin receptor. In all three cases, the in-cell crosslinking data
helps AlphaLink position different regions of the protein relative to each other,
yielding a performance improvement over AlphaFold2. The crystal structure of
the target protein is shownin gray, overlaid with the AlphaLink prediction.

training set. Even with N =10, 65% of the AlphaFold2 predictions
exceeda TMscore of 0.8. AlphaLinkimproves performance measured
by TM score on average by 5.2 +1.9% (95% confidence interval) across
all proteins relative to AlphaFold2.

On targets where AlphaFold2 does not provide accurate models
(TM score <0.8), AlphaLink with experimental data improves the TM
scoreonaverageby15.9 +4.6% (95% confidence interval). Theimprove-
mentincreasesto47.8 + 24.8% (95% confidence interval) for AlphaFold2
predictions below a TM score of 0.5. We predict the correct fold (TM
score >0.5) for ten additional proteins. This shows that simulated
crosslinking MS data successfully model the features of experimental
photo-AA restraints. For the 204 AlphaFold2 predictions witha TM
score of 0.8 or higher, the performance is unaffected. At high TMscores,
side-chain conformations begin to play arole, and crosslinking MS data
donothavetheresolution necessary toimprove side-chain predictions.

To better judge the utility of the crosslinks for a given target, we
include the percentage of nonsatisfied crosslinksin the baseline Alpha-
Fold2 prediction (Fig. 4a) and also consider the mean distance of the
nonsatisfied crosslinks in the AlphaFold2 prediction (Fig. 4b). We set
the cutofffor violated crosslinking restraints to10 A Ca-Catin the crys-
tal structure. Many targets are not completely covered by the crystal
structure. Therefore, we can analyze only a subset of the crosslinks.
Crosslinks that are already satisfied in the AlphaFold2 predictions do
not contribute novel information. On average, there are 0.5 violated
crosslinking restraints per prediction ata cutoffof 10 A Ca—Co. Indeed,
the TMscoreimprovement of AlphaLink generally increases wherever

AlphaFold2 makes a prediction containing unsatisfied crosslinks. We
further show that the predictions thatimproved the most have unsatis-
fied crosslinks with large distancesin the baseline prediction (Fig. 4b).
Here crosslinks add the most value, and for some predictions asingle
crosslinkis enough toimprove the quality considerably (TM score 0.39
to 0.86 for target AtpB). Extended Data Fig. 2d shows two examples
where adding crosslinks negatively impacts the prediction quality.
In the case of OmpF there are multiple overlength crosslinks (high-
lightedinredin the native structure) that might stem from crosslinking
different subunits, since OmpF is a homo-multimer. For the ATP
synthase a subunit there is one overlength crosslink that is probably
a false positive. Here, although the link is rejected in the end, it still
induces adomain movement that leads to aworse prediction.

To investigate the correlation between predicted and true TM
score for the predictions of the membrane fraction, we compute the
fit on the predictions where the crystal structure covers at least 80%
ofthe protein (Fig. 4c). The Pearson correlation coefficient is 0.75. We
generally underestimate the true TM score. The correlation is in line
with the baseline AlphaFold2 model (Extended Data Fig. 3), indicat-
ing that model confidence estimates of AlphaLink are comparable to
AlphaFold2, allowing for users to reliably interpret predictions.

Extended Data Fig. 4 shows the predicted TM score (pTM) on
a total of 96 targets, which include proteins where no structure is
available. Each protein was predicted with one randomly subsampled
MSA (N4 =10). The pTM indicates possible improvements over
AlphaFold2 on these structures as well.
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Activation
Cdk2—anilino pyrimidase inhibitor (1hO1)
Cdk2—cyclin A—PHA-630529 (2 bpm)
AlphaFold2 prediction
C
<\
1hO1 2bpm

Fig. 5| Photo-AA data guiding prediction of specific conformational states.
a, Left: structures of the monomeric, inhibited conformation of Cdk2 (teal)**
and the cyclin A-activated conformation (salmon)® overlaid with the AlphaFold2
prediction of Cdk2 performed at N, = 10. Right: focus on the T-loop and PSTAIRE
helix involved in protein activation, with the two photo-AA restraint sets fed to
AlphaLink colored according to the corresponding protein state. b, Comparison
ofthe AlphaFold2 prediction with the two predictions of AlphaLink made with
restraint sets corresponding to the active or inactive conformation of Cdk2,
showing that the photo-AA data drive the prediction to either the active or

PSTAIRE
helix

AlphaFold2

2bpm

/ AlphaLink
combined restraints
N_z=10

N, =25

N =50

inhibited conformation. ¢, Middle: overlay of the AlphaLink prediction with

the crystal structure for the inhibited state. Right: overlay of the AlphaLink
prediction with the structure for the cyclin A-bound state, showing the entire
conformation of the loop is correctly predicted despite only sparse restraints
being present. d, Outcome of predicting with a combined set of restraints. At low
N, values, the crosslinks drive the prediction towards the cyclin E-bound state.
As the MSA information increases, the prediction is steered more towards the
inhibited state and closer to the AlphaFold2 prediction.

Probing conformational dynamics insitu

To probe whether experimental distance restraints canact as anchors
to drive predictions towards different energy minima in multistate
proteins, we simulate a proof-of-concept experiment on the human
cyclin-dependent protein kinase Cdk2, a drug target in cancer ther-
apy”. Activation of Cdk2inthe S phase proceeds via a conformational
changeinthe T-loop (residues 145-165) and the PSTAIRE helix (residues
45-55) triggered by binding of cyclin A”. There are several structures of
Cdk2 in various states of activation’?, If Cdk2 is predicted with-
out structural templates with AlphaFold2 (N =10), the T-loop is
predicted in an intermediate conformation between the apo,
auto-inhibited state and the cyclin A-bound conformation (Fig. 5a).
Presumably, the intermediate conformation of this loop in the Alpha-
Fold2 prediction is a consequence of co-evolutionary information

driving it towards both the open and the closed state. When run with
full MSA information, all AlphaFold2 predictions converge to the
cyclin A-bound state (Extended Data Fig. 5a), failing to predict the
inactive conformation.

We simulate two photo-crosslinking MS experiments in which
the protein wasacquiredineitheritsinhibited orinits cyclin A-bound
states, generating two sets of sparse restraints for the T-loop (Supple-
mentary Table1). Such experiments may be carried out on the purified
protein or in cells before protein purification. We then predict the
Cdk2 structure using AlphaLink with these restraints, showing that
the loop structure is driven towards the appropriate conformation
(Fig. 5b). The crosslinks act as anchor points positioning the whole
T-loop in the appropriate configuration for the cyclin A-bound state,
witha Car.m.s.d. of 1.24 A on residues 145-165 to PDB 2bpm (Fig. 5¢).

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://doi.org/10.2210/pdb2bpm/pdb

Article

https://doi.org/10.1038/s41587-023-01704-z

The same is true for the inactive state of the loop. In this case
however, lack of leucine and lysine residues around T160 in the
structure leads to a lack of sufficient restraints to capture the fully
closed loop conformation, leading to a slightly higher Ca r.m.s.d.
to the target structure (3.19 A to 1h01), while still outperforming
the AlphaFold2 prediction (Ca r.m.s.d. 6.29 A to 1h01). This higher
r.m.s.d. is also consistent with the fact that the T-loop is not rigid in
its inhibited, dephosphorylated state, as highlighted by multiple
crystal structures and molecular dynamics simulations®. AlphaLink
successfully folds the short helix within the T-loop (residues
147-153) in the inactive state, and unfolds them into an extended
conformation when given restraints for the cyclin A-bound state.
It also correctly predicts the position and rotation of the PSTAIRE
helix, despite having only two restraints in this region in the inactive
conformation dataset, and three in the active dataset. In the case
of a mixture of restraints, the prediction converges on the cyclin-A
bound state at N.;=10 (Fig. 5d). This conformer is not produced
by AlphaFold2. Increasing the MSA steers the prediction towards
amiddle ground that is more similar to the AlphaFold2 prediction.
We interpret this as the algorithm performing noise rejection on a
subset of crosslinks in the mixture and using the rest as anchor points
todrive aprediction towards a particular solution.

To further show the influence of the MSA, we predict the con-
formation of the fold-switching protein KaiB (Extended Data Fig. 5b)
with photo-L crosslinks simulated for the ground state, the fold-
switched state or a mixture added on top of random sets of simu-
lated photo-L crosslinks. At low N, AlphaLink predicts both con-
formers accurately when given unique sets of crosslinks, but as
MSA evidence gets larger, the prediction converges to one state for
both sets. This result reproduces the outcome of running AlphaFold
on KaiB with different, clustered subsamples of the MSA®. Predic-
tions with mixed crosslinks lead to different outcomes at different
N values, as observed in the case of Cdk2, pointing to the fact that
crosslinkingis weighted against the MSA depending on the information
content and size of both strands of information. In multiple simulated
crosslinking datasets for the protein selecase (Extended Data Fig. 5b),
even without MSAs, most predictions end up in the conformation
observed in the monomeric state of the protein state, although
some predictions corresponding to the bound state are observed
when given unique crosslinks in the absence of MSA information.

These results demonstrate that AlphaLink can be used to
obtain high-quality predictions of particular conformations of
proteins given sets of restraints obtained under different conditions,
enabling direct monitoring of conformational states in solution
andinsitu.

Discussion

We presented AlphalLink, a method for integrating crosslinking
MS restraints derived from photo-AA-labeled cells into AlphaFold2,
via OpenFold. Merging photo-crosslinking MS and MSA information
in a deep learning framework allows us to leverage their respective
strengths and compensate for their weaknesses. Our approach uses
the experimental datatobias theretrieval of evolutionary relationships
by the Evoformer updating the pair representation. The iterative nature
ofthe AlphaLink architecture leads to noise rejection and robustness
to experimental error. Ourimplementation of experimental restraints
also translates to other methods with similar architectures, such as
OmegaFold*, which replace MSAs with protein language models
(Extended Data Fig. 6).

The results in this study were achieved by refining the Alpha-
Fold2 model parameters with simulated photo-AA data, as we were
not able to fully retrain the OpenFold network to derive model
parameters due to computational resource limitations. Nevertheless,
the results demonstrate an improvement in prediction quality for
challenging targets as a result of incorporating photo-AA restraints.

The prediction times increase 1.4x compared with AlphaFold2
(Extended DataFig. 7).

The information sources have different characteristics that
match well. Crosslinking MS provides concrete distance informa-
tionthat can corroborate or refute amino acid associations picked up
by co-evolution”””?%, As such, crosslinking MS information has
already been used to independently validate models from Alpha-
Fold2 (refs.'”%). Moreover, genetic code engineering allows the use of
amino acid analogs to substitute for encoded amino acids in protein
translation. Thus, leucine positions in the proteome can be replaced
to varying extents by photo-L. This amino acid has been linked with
the evolutionary development of tertiary folds®’ and is usually
found in the hydrophobic cores of proteins. Leucine crosslinking
may therefore provide critical information that can guide fold
prediction effectively.

In AlphalLink, crosslinks canactasanchorsinthe predictionitself,
since the sparsity of crosslinks is compensated with co-evolutionary
information that fills in and extrapolates the missing information.
This also enables the software to use co-evolutionary information to
perform noise rejection on experimental data. AlphaLink provides a
framework for training AlphaFold2-style predictors with a number
of data sources providing contacts and/or distance restraints,
such as mutagenesis, nuclear magnetic resonance restraints, fluores-
cence resonance energy transfer and crosslinking MS performed
with different crosslinkers. As a test, we fine-tuned the network with
simulated sulfo-SDA crosslinks® and could successfully predict our
test set (Extended DataFig. 8).

We validate AlphaLink against CASP14/CAMEO targets that were
not partof AlphaLink or AlphaFold2 training using synthetic data, and
E. colimembrane proteins using in-cell photo-L crosslinking MS data.
The crosslinking MS dataenabled the systematic testing of predictions
of 31 proteins against crystal structures with experimental information.
While the gains observed on these targets are more modest than with
the CASP14 and CAMEO set, these proteins have known structures that
were part of the training set of AlphaFold2. This makes theminherently
easier for AlphaFold2 to predict, as a result of data leakage. We show
that AlphaLink accurately estimates model confidence with various
metrics (predicted IDDT-CA score (pLDDT), predicted TM-score (pTM)
and predicted aligned error (PAE)), providing the user with valuable
information on what conclusions may be drawn from a particular
structure prediction, ina manner comparable to AlphaFold2 (Extended
Data Figs. 3, 4 and 9). This is a considerable improvement over the
performance of crosslinks in CASP13, where crosslinks were included
as information in the data-assisted category and led to a decrease in
prediction quality*°.

Beyond improving predictions on challenging targets, simulated
here by low N, AlphaLink opens up the investigation of multiple con-
formational states by a combination of protein structure prediction
and experimental information. This enables the structural characteri-
zation of cellular processes in defined biological conditions and may
eventually be used to design binders and inhibitors to target specific
protein states. Unlike other methods that rely on manipulation of
the MSA®**2 AlphalLink uses experimental information to drive the
prediction of multiple conformational states. Because the algorithm
weighs experimental evidence against evolutionary information, the
nature and size of the MSA plays arolein driving the prediction. Thus,
ahigh N can ‘overpower’ experimental evidence. In this regard, sub-
sampling the MSA is a way to tune down the weight of the MSA. In the
analyses of KaiB and selecase, AlphaLink can be run with multiple
MSA subsamplings or even combined with sequence clustering” to
characterize the full range of conformations for given combinations of
experimental and MSA evidence. Intriguingly, for both KaiB and Cdk2,
running AlphaLink with crosslinks from mixtures of conformersled to
predictions coinciding with one state at alow N.g, then predictions in
between and finally another state at high N, In the case of selecase,
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sequence clustering did not produce the alternative conformation
at all”, while AlphaLink could produce the alternative conformation
in the absence of MSA information.

Takentogether, our results show that AlphaLink successfully lever-
ages experimental restraints viadeep learning toimprove protein struc-
ture prediction. We present aworkflow based on photo-AA crosslinking
MS, which provides contact-like distance information, and obtain the
firstlarge-scale photo-AA crosslinking MS dataset inside cells. We then
implement photo-AA-based proteinstructure predictionin AlphaLink.
Our method leverages alist of generic contacts, represented as explicit
distance restraints or as distograms, to guide the OpenFold pipeline
towards structures consistent with the experimental data. The work-
flow outlined here thus provides a general framework for the hybrid
experiment-assisted Al prediction of protein structure, investigating
the structure-functionrelationship of proteins directly in situ without
any genetic manipulation.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods
Crosslink simulation
We considered several representations for photo-crosslinking
MS-derived contacts (Supplementary Table 2), and ultimately decided
to train with 10 A Ca—Ca contacts, since it agrees well with the mean
distances observed in experimental data (Fig. 3b), closely resembles
previous definitions of contact restraints***” and represents experi-
mentally observed distance distributions more accurately than simu-
lating crosslinks from leucine C61to the nearest nonhydrogen atom.
We simulate crosslinks by taking all residue pairs where one resi-
dueisaleucine orlysine and the other residue has an atom that is within
10 A of the Ca atom of leucine/lysine. We consider only crosslinks that
are not within the same or consecutive tryptic peptides. The links are
randomly subsampled to 10% to match the expected coverage of the
real data. We further add 5% of stochastic noise to match the expected
FDR. During training, we always simulate at least one incorrect cross-
link. The FDR cantherefore be much higher. The link-level FDR is simu-
lated by shuffling the crosslinks and counting the number of incorrect
links observed so far. The minimum FDR is 5%. Crosslink statistics for
the CASP14/CAMEO set can be found in Supplementary Tables 3-5.

Distogram sampling

We sample distograms on-the-fly during training to condition the net-
work. There are three different types of distogram: first, a uniformly
distributed distogram that represents contact information; second, a
distogram based on the expected distances for a specific distance bin;
third, a distogram based on the expected distances for photo-L and
photo-K crosslinks (10 A). For all distograms the probabilities sum to
1-FDR below the chosen bin and to FDR beyond the chosen bin.

Integration of crosslinks

We add a crosslink embedding layer to OpenFold by specifying an
additional linear layer that maps the soft-label contact map, orin case
of the distogram network, the distograms into the 128-dimensional
z-space presentinthe AlphaFold2/OpenFold architecture. The projec-
tionisaddedto the pair representation (z).Inaddition, welearnagroup
embeddinglayer toindicate groups of possibly ambiguous crosslinks,
which enables us to deal with restraints with positional ambiguity.
The group embedding is also added to the pair representation.

MSA subsampling

For refining the network, we subsample the MSAs to a specific N
The N corresponds to the number of nonredundant sequences in a
MSA below a specific sequence identity. We set the sequence identity
to 80%. We subsample the MSAs in trainingin eachepochtoarandom
N.between1and 25, generating a uniform distribution of N, values
across all targets. In subsampling, the MSA is shuffled and sequences
are added until the desired N is reached.

Conformer experiment

For KaiB (Q79V61) and selecase (Q58610) we produced a total of
200 predictions that contained 100 simulated crosslinks (FDR 5%)
and aset of 4-7 crosslinks unique to each conformation. The mixture
crosslinking set is subsampled from both sets to ensure similar
coverage. The unique crosslinks for each conformation are added
ontop.

Fine-tuning of AlphaFold2

Toavoid training OpenFold fromscratch, we start with the AlphaFold2
2.0 (https://github.com/deepmind/alphafold/releases/tag/v2.0.0)
weights provided by Deepmind and refine the network on 13,000
proteins from the trRosetta’ training set with simulated photo-AA
crosslinking data. We use OpenFold v0.1.0 (based on GitHub from
January2022:commit 894905b9da941ed10e797c5bal5af75692ceelb4).
To encourage the network to use the crosslinking data, we subsample

the MSA to a N between 1 and 25 (uniformly). MSAs were generated
withthe reduced database setting. We train and test with model_S_ptm,
which does not use any template information. Fine-tuning specifically
on low N targets does not substantially change the performance of
AlphaLink. We predicted the same structures without crosslinks in
AlphalLink to verify that fine-tuning the network on low N, targets is
not the reason for our improvements (Extended Data Fig. 10).

We follow the refinement training regime outlined in the Alpha-
Fold2 paper, except that, due to memory constraints, we do not expand
the MSA cluster size. Since our method is specifically targeting proteins
with few MSAs, this is not a problem. We train for five epochs on five
GPUs, which takes roughly 5 days.

Evaluationset up

For the baseline, we use OpenFold with the original AlphaFold2 weights
provided by Deepmind. The creators of OpenFold verified that the
implementation produces identical results. To assess AlphaLink and
Openfold performance, we perform predictions withthe model_5_ptm
setting, which does not include templates and predicts the TM score
asanauxiliary loss.

To ensure comparability, we make predictions deterministic.
We disable masking out parts of the MSA input. Especially on targets
with small MSAs, masking out parts of the input leads to big variances
betweenruns, sinceit affects the N . Here reconstruction canincrease
the N We use afixed set of ten subsampled MSAs and a fixed set of ten
subsampled crosslinks. Normally, MSAs will be subsampled on-the-fly
to128 sequences. Therest is aggregated with the ExtraMSAStack. We
cap our MSA size at 128 for the subsampled MSAs to remove variance.
Since we mostly evaluate on MSAs with N =10, where the MSA size
is far below 128, we seldom reach this limit in practice.

Ifnot denoted otherwise, the results we will show use the soft-label
representation, whichistrained for the particular crosslinker type and
performs slightly better.

Our main comparison metricis the template modeling score (TM
score), which measures the similarity between two protein structures.
The TMscoreis calibrated inaway that structures witha TM score above
0.5generally assume the same fold. ATM score of 1.0 signifies a perfect
match. TM scores <0.2 correspond to random structures.

We use the same databases as Deepmind to recreate the CASP14
settings: UniRef90:v2020_01, MGnify: v2018_12, Uniclust30:v2018_08,
BFD: only version available, PDB: downloaded 14 May 2020, PDB70:
13 May 2020. The MSAs are generated with the reduced database set-
ting. We evaluate the CASP14 targets on the full sequence, not split-
ting them into domains. We evaluate on 45 CAMEO targets that were
released after AlphaFold2. We consider only CAMEO targets where
AlphaFold2 does not exceed a TM score of 0.8. We used SMART with
pFam annotation® to divide the CAMEO targets into single/multid-
omain, ignoring low-complexity regions.

For predictions of conformational states of Cdk2, potential
photo-L and photo-K crosslink sites were derived from structures
of inhibited (1h01) (ref. **) and cyclin-A bound states (2bpm) (ref. *).
Separate AlphaLink predictions were submitted with either dataset at
N.+=10. AlphaFold2 predictions were performed at N ;=10 with the
model_5_ptm setting. For Extended Data Fig. 5a, AlphaFold2 predic-
tions were carried out with full MSA size and default model settings
(five random seeds per model, five models predicted).

Photo-L crosslinking of E. coli cells

For optimization of photo-L concentration in the medium, £. coli K12
were grownin LB medium overnight at 37 °C. The cultures were diluted
(1:100) into M9 minimal medium containing 0.2% glucose and varying
concentrations of photo-L (0, 5, 25,250,500, 750,1,000 and 2,000 pM
photo-L) in 96-well plates inaMicroplate reader Infinite M200 Tecan.
Three colonies were used per condition. Cell growth was monitored
via ODgo.
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For crosslinking MS experiments, E. coli were grown with 0.75 mM
photo-Lfor22 hat37°Cin100 mlof M9 minimal medium. Thirty million
cells were then pelleted for 15 min at 4,000g. The pellet was resus-
pended in fresh M9 minimal medium to a concentration of 1 million
cells ml™. UV crosslinking was then performed by exposing the cell
suspension for 20 minoniceina CL-1000L crosslinking device (UVP).
Cellswere then pelleted again, washed with PBS buffer and snap frozen.

Membrane enrichment

Cellswereresuspendedin20 mM Tris, pH 7.4 and lysed by four freeze—
thaw cycles followed by sonication. Larger cell debris was removed
through centrifugation at 2,000g for 20 min. The supernatant was
then cleared centrifuged at 16,000g for 20 min at 4 °C. The pellet was
washed with 20 mM Tris pH 7.6,1 M NaCl.

Proteome digestion and peptide fractionation

The pellets were solubilized in PBS buffer and subsequently mixed with
NuPage LDS sample buffer (Life Technologes) and run into a 4-12%
Bis-Tris SDS-PAGE gel (Life Technologies). Gels were stained using
Imperial Protein Stain (Thermo Scientific), and the whole proteome
was cut out and prepared for in-gel digestion. Proteins were reduced
with10 mMdithiothreitol (Sigma Aldrich) for 30 minat 37 °C, followed
by alkylation with 55 mMiodoacetamide (Sigma Aldrich) for 20 min at
room temperature in the dark. Gel pieces were incubated with 13 ng pl™
trypsin (Pierce, Thermo Fisher Scientific) at 37 °C for 16 h in 10 mM
ammonium bicarbonate, 10% acetonitrile (ACN). The samples were
cleaned up using Sep-Pak C18 cartridges (Waters) before strong cation
exchange chromatography.

The peptides were resuspended in SCX loading buffer (10 mM
KH,PO, and 30% ACN) and separated on a polysulfoethyl A column
(PolyLC, PolySulfoethyl A100 x 2.1 mm?,3 pm) using SCX elution buffer
(10 mM KH,PO,, 30% ACN and 1 M KCI). Separation of peptides was
accomplished using a nonlinear gradient with running buffer B (30%
ACN, 1MKCland 10 mM KH,PO,, pH 3.0), as described*’. Fractions of
200 pl each were collected over the elution window (approximately
18 column volumes). Collected fractions of interest from five runs
were pooled, desalted using Stage-Tips and stored at —20 °C.

Crosslinked peptidesineach SCX fraction (labeled fractions 16-22
intheJPOST deposition) were subsequently enriched by size-exclusion
chromatography using a Superdex Peptide 3.2/300 column (GE
Healthcare). The mobile phase consisted of 30% (v/v) ACN and 0.1%
trifluoroacetic acid, running at a flow rate of 10 pl min™. The earliest
five peptide-containing fractions (50 pl each, labeled SEC6-10) were
collected and dried ina vacuum concentrator. Whenever amounts were
insufficient for liquid chromatography (LC)-MS analysis, adjacent
fractions were pooled.

LC-MS acquisition of photo-L crosslinked E. coli membranes
Acquisition of crosslinked peptide spectrawas performed ona Fusion
Lumos Tribrid Mass Spectrometer (Thermo Fisher Scientific) con-
nected to an Ultimate 3000 UHPLC system (Dionex) operating with
XCalibur 4.4 and Tune 3.4. Chromatography was performed with
mobile 0.1% (v/v) formic acid as mobile phase A, and 80% (v/v) ACN,
0.1% (v/v) formic acid as mobile phase B. The samples were dissolved
in 1.6% ACN (Honeywell Fluka), 0.1% formic acid (Honeywell Fluka)
and separated on an Easy-Spray column (C-18, 50 cm, 75 pm internal
diameter, 2 pm particle size, 100 A pore size) running with 300 nl min™
flow rate using optimized gradients for each offline fraction (ranging
from 2% B to 55% B over 62.5,92.5 or 152.5 min, then to 55% in 2.5 min
and to 95%in 2.5 min).

The MS data were acquired in data-dependent mode using the
top-speed setting with a 3 s cycle time. For every cycle, the full-scan
mass spectrumwas recorded in the Orbitrap ataresolution 0f120,000
in the range of 400 to 1,450 m/z. lons with a precursor charge state
between +3 and +7 were isolated and fragmented with a decision tree

strategy*. Higher-energy collisional dissociation energies optimized
formass and charge of a precursor species were applied*. The fragmen-
tation spectrawere thenrecorded in the Orbitrap with aresolution of
50,000. Dynamic exclusion was enabled with single repeat count and
60 s exclusion duration.

Identification and statistical validation of crosslinked
peptides

LC-MSraw datawere searched against the E. coliK12 proteome (down-
load from UniProt February 2020) using MaxQuant 1.6.17 (ref. *?) (Sup-
plementary Data 3). The top 1,200 proteins by iBAQ were used as the
database for the crosslink search. For the crosslink search, raw data
were processed using MSconvert 3.0.22 (ref. **) to recalibrate precursor
masses and convert to mgf format. An open modification search with
MSfragger 3.4 (ref. **) was used to quantify modifications in the sample.
The peak files were then searched with XiSEARCH 1.7.6.4 (ref. **) with
the following settings: MS1 tolerance: 3 ppm; MS2 tolerance: 5 ppm,
allowing up to two missing monoisotopic peaks and three missed
tryptic cleavages. Cysteine carbamidomethylation was defined as a
fixed modification. Oxidation of methionine, deamidation of aspara-
gine and methylation of glutamic acid were defined as variable modi-
fications.-CH,SOH/-H,0/-NH, were defined as losses. In the crosslink
search, the photo-L crosslinker was defined as follows: the linkage mass
was set to —16.0313 Da and the specificity set to leucine to any amino
acid. Variable modifications on leucine to account for photo-L reac-
tions with water (1.97926 Da) or within a peptide (-16.0313) were
also defined. Noncovalent gas-phase associations were included in
the search*,

The spectral matches were filtered before FDR estimation to
crosslinked peptide matches with a minimum of three fragments
matched per peptide. Results were thenfiltered to 5% crosslink-level FDR
inxiFDR 2.1.5.5 (ref. **) with the boosting feature for error thresholding
at lower levels enabled. The minimum peptide length was set to 6.
Consecutive peptides were removed from the analysis. The resulting
residue pairs are in Supplementary Data 2.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Crosslinking MS data are deposited in ProteomeXChange JPOST*
with accession codeJPST001851. Models and corresponding MSA and
simulated crosslinking data have been deposited on ModelArchive*®
with accession code ma-rap-alink. AlphaLink models based on
experimental crosslinks have been deposited as integrative/hybrid
models in PDB-Dev* with accession codes PDBDEV_00000165 to
PDBDEV_00000198 (group ID PDBDEV_G_1000001). Source data are
provided with this paper.

Code availability
The code for AlphaLink is deposited at https://github.com/lhatsk/
AlphalLink.
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Extended Data Fig.1| Performance onbenchmark dataset and distogram
effect. a- TM-score comparison (N =10) 49 challenging CAMEO targets for the
network trained with the soft-label representation and the network trained

with the distogram representation. Each target was predicted with 10 randomly
subsampled crosslink sets. Scatter points show the mean. The photo-L crosslinks
were represented as a uniformly distributed distogram. The performanceison
par. b- Performance on 60 CASP14 and 45 CAMEO (N,=10). AlphaLink improves
the TM-score on average by 15.2%. The error bars represent the 95% confidence
interval (N=10). Points show the mean. Purple highlights multi-domain targets,
green highlights single-domain targets. c- The effect two different distogram
inputs (dashed) have on the distogram AlphaLink predicts (solid) between
residues 11and 103 for TO164. The solid black line designates the real distance.
Blue shows the distogram without using crosslinks. The green distogram mimics

anupper bound contact restraint, while the purple distogram is the expected
distance distribution for simulated photo-L and photo-K crosslinks on the
training set. Predicted distogram based on the expected photoAA distance
distribution (purple, solid) is more narrow compared to the prediction with

the uniformdistance distribution (green, solid). Using a distance distribution
improves the prediction from TM-score of 0.68 to 0.7. We show the first 64 bins
of theinput distograms and sum up the probabilities for the rest. In the absence
of this restraint, the prediction has a TM-score of 0.28 (N.=10). d- Performance
of AlphaLink as a function of the number of crosslinks per residue (N.=10).
2bins (nc>0.1) were omitted because they only contained 1and 2 samples.
Performance generally increases with more crosslinks per residue. The line shows
the median and the whiskers represent the 1.5x interquartile range.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Photo amino acid crosslinking MS workflow and
membrane outliers. a- E. coli K12 grown with increasing concentration of
photo-L in M9 minimal media and structure of photo-L. Average cell density
withstandard error across 3 individual colonies is plotted. b- Workflow for
two-dimensional fractionation of peptides from E. coli crosslinked with photo-L
incell. Error bars representing standard error. c- Nodes represent proteins
detected with at least one crosslink, and edges indicate the presence of at least a

crosslinked residue pair between proteins. Nodes are coloured according to the
number of crosslinks detected in that protein. d- Two examples where crosslinks
negatively impact the performance in AlphaLink. The crosslink sets contain
overlengthlinks (showninred in the native structure) which cause movements
in AlphaLink (for example, domain movement in ATP synthase - likely a false
positive link). OmpF is homo-multimeric, the overlength links might stem from
links between different subunits.
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predicted TM-score (pTM) on N =320 predictions of the E. colimembrane meaning that the pTM-score of AlphaFold2 is a conservative estimate. The
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Extended Data Fig. 5| Predicting multiple conformations. a- Cdk2 predictions
by AlphaFold2.2 with default settings (full MSA, 5 models predicted, 5

random seeds per model), in gray, overlaid with the structure of the inhibited
conformation of Cdk2 (blue, pdb 1h01). The T-loop is highlighted in orange in

the AlphaFold2 predictions and in red in the inhibited conformation structure.
All 25 AlphaFold2 predictions converge on the cyclin A-bound conformation
ofthe T-loop and PSTAIRE helix of Cdk2. b- Each pointsis one prediction with a
randomly sampled crosslink (FDR = 5%) set which includes additional links from
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AlphaLinkis able to predict the ground state with good precision without MSAs.

Introducing co-evolutionary information leads to better clustering, although
some of the ground state predictions now end up in the average state. This
movement proceeds with more co-evolutionary information. With full MSAs,
almost all predictions have moved to the fold-switched state.
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(test set) with simulated SDA crosslinks. AlphaLink improves the TM-score on
average by 16.4% +9.7. AlphaLink predicts 5 additional targets witha TM-score >
0.5.Shown here is the mean and 95% confidence interval (N = 10) for AlphaLink
and the corresponding performance of AlphaFold2. b- We compare the mean

b
TM-score comparison
1.0
Distogram better
° °
)
0.8 + ° e
°
()
° °

o 0.6 L e
o
o
@ ()
= .

0.4 ()

® o
0.2 H
Soft-label better
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

TM-score

TM-score (N =10) per target on 59 CASP14 targets for the network trained

with the soft-label representation vs the network trained with the distogram
representation. Each target was predicted with a single MSA subsample (N ;=10)
and 10 randomly subsampled crosslink sets. The sulfo-SDA crosslinks were
represented as a uniformly distributed distogram. The soft-label representation
outperforms the distogram representation on average by 5%.
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are atleast 80% covered by the crystal structure, the correlationis 0.82. The true correlationis 0.95.The shaded area corresponds to the 95% confidence interval.
IDDT-Ca score is generally underestimated, meaning that the pLDDT-score is a Line shows the linear fit.
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Extended Data Fig.10 | Refining on low N, targets doesn’t change results
substantially. a- Performance improvements we observed are due to adding
crosslinking information, not additional fine-tuning of the AlphaFold2 weights
onlow Ntargets. There are few outliers on both sides. The performance is
virtually identical for targets without MSAs (TM-score average: AlphaLink =
0.322, AlphaFold2 = 0.308, Z-statistic = —0.072). b- Performance improvements
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we observed are due to adding crosslinking information, not additional fine-
tuning of the AlphaFold2 weights on low Neff targets. There are few outliers on
bothsides. The performance s virtually identical for N.=10 (TM-score average:
AlphaLink =0.701, AlphaFold2 = 0.702, Z-statistic = 0.033). Points show the mean
(N=10) over 10 MSA subsamples.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

nature portfolio

Corresponding author(s):  Juri Rappsilber

Last updated by author(s): Jan 27, 2023

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested

|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

0 XX X OO

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

L1X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Thermo XCalibur 4.4 and Tune 3.4 on Orbitrap Fusion Lumos instrument

Data analysis MaxQuant 1.6.17, MSconvert MSfragger 3.4, ProteoWizard MSConvert 3.0.22, xiSEARCH 1.7.6.4, xiFDR 2.1.5.5, AlphaFold v2.1 AlphaFold v2.2,
OpenFold v0.1.0, AlphaLink (https://github.com/Ihatsk/Alphalink, described in this manuscript and included in deposition)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Crosslinking Mass spectrometry data is deposited in ProteomeXChange JPOST42 with accession
code JPST001851 (reviewer link
Crosslinking Mass spectrometry data is deposited in ProteomeXChange JPOST42 with accession

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<

Lc0c Y21o




code JPST001851 (reviewer link

https://repository.jpostdb.org/preview/14305031816331a59080810 Access key 2354).

Models are deposited in ModelArchive (accession ma-rap-alink)

Integrative models from Alphalink with experimental crosslinks are deposited in PDB-Dev (awaiting accession number)

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment

Ethics oversight

N/A

N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences

|:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

A single data set of crosslinks from E. Coli membranes was used due to obtain crosslinks to evaluate AlphaFold and Alphalink's performance
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Benchmark sets for figures 2 and 4 were selected from CASP14 and CAMEO from 2020 to include all protein targets that were part of
modeling evaluations but not part of AlphaFold's training. This resulted in a sample size of 154 protein targets.

no data was excluded

Neuronal network replication is described in detail in the methods section. Simulated crosslinks were subsampled 10-times to obtain error
bars for predicting structures based on simulated data (Figure 2). Experimental data in Figure 3 is analyzed without replication as the data
comes from a single E. Coli membrane fraction. Multiple sequence alignments in figure 4 were subsampled 10 times and all replicas are
shown.

Crosslinks and multiple sequence alignments were subsampled randomly and the sampling repeated as described whenever comparing the
performance of Alphalink and AlphaFold2 (Fig.2,4 and 5). No randomization is applied when analysing exprimental mass spectrometry data
(Fig. 3).

The analysis of crosslinking mass spectrometry involved "blinding" in determining false discovery rates by supplying the program with decoy
sequences to determine the false positive rate of database-spectral matching.
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Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
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calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
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If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.
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Field conditions
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Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

State the location of the sampling or experiment, providing relevant parameters (e.qg. latitude and longitude, elevation, water depth).

Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).
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Disturbance Describe any disturbance caused by the study and how it was minimized.
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Dual use research of concern

Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pname any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.
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Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
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Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
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ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to

(e.g.UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots
Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.
|:| A numerical value for number of cells or percentage (with statistics) is provided.
Methodology
Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.




Software

Cell population abundance

Gating strategy

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Design specifications

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

Acquisition
Imaging type(s)
Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

[ ] Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference
(See Eklund et al. 2016)

Correction

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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