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Abstract 

Fermented milk products are valued by consumers and the food industry for their nutritional 

properties, pleasant taste, and texture. Consumer demands and expectations for such products are 

constantly changing. Understanding how consumers perceive the sensory characteristics of food 

and the relationship these characteristics have with the chemical components of food can provide 

insight that can enable food researchers and manufacturers to develop food products that are 

tailored to provide enhanced sensory qualities. Establishing techniques that allow for in-silico 

prediction or correlation of sensory qualities can enable a more rapid approach that would aim to 

enable researchers to meet the demands of consumers.  

This research firstly explored mass spectrometric techniques for the rapid fingerprinting of milk 

and fermented milk products, using Matrix-Assisted Laser Desorption Ionisation - Time-of-Flight 

Mass Spectrometry (MALDI-TOF MS) and Rapid Evaporative Ionisation Mass Spectrometry 

(REIMS), two technologies that require minimal sample preparation and can rapidly generate a 

fingerprint of a food’s chemical components. Peptide fingerprints obtained by MALDI-TOF MS 

and analysed by principal component analysis were effective at discriminating the two fermented 

milk and milk samples. Supervised discrimination of low molecular weight fingerprints obtained 

via REIMS and MALDI-TOF MS proved less effective but demonstrated some potential and could 

be used alongside other analyses in future studies. These techniques were explored with a view to 

establishing a technique that could provide rapid insights into a food’s chemical composition, and 

which could also effectively discriminate the chemical components of the product. Such techniques 

could be used for rapid screening of products and can provide insight into the chemical components 

that are driving the variation in different products, which may be reflective of the differences in 

sensory characteristics.  

Next, peptide fingerprinting and predictive modelling were investigated in milk fermented with 

various bacterial combinations, including probiotic cultures. Fingerprinting was performed on 

samples collected at each hour of fermentation. Predictive modelling techniques, using both 
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regression and classification approaches, were trialled in order to predict the change in signal 

intensity throughout fermentation. This aimed to understand if peptides could be predicted 

throughout fermentation, with a view to enable the targeted prediction of desirable peptides, or 

other relevant components, which may impart favourable sensory qualities in the final product. 

Regression techniques were somewhat effective for predicting the signal intensity of individual m/z 

ions throughout fermentation. Most of the ions did not follow a linear relationship, and, as such, a 

multiple linear regression model was unable to model most of the ions. Using a generalised additive 

model, a non-linear approach, improved the performance in most cases and could predict the signal 

intensity of individual ions throughout fermentation. However, the model was unable to correctly 

predict all cases. Classification techniques were effective for predicting the general direction of the 

signal intensity between start and end fermentation times. Five classification techniques were 

trialled, with each model providing accurate predictions for the increase or decrease of signal 

intensity between early and late fermentation times. 

Lastly, consumer panellists were recruited to evaluate the change in important sensory 

characteristics throughout the fermentation of milk prepared using two different starter cultures. 

This aimed to understand if consumer responses to such products could be correlated with 

instrumental analysis, in order to predict the consumer responses from instrumental data. 

Consumers perceived significant differences in bitterness and flavour intensity between fermented 

milk samples at different fermentation time points. There were significant correlations between 

peptide fingerprints and the consumer rankings for the sensory attributes in each fermented milk 

product. XGBoost regression could predict consumer responses with reasonable accuracy.  

This thesis explored the fermentation of milk using specific bacteria and fermentation processes. 

To validate this work, further products could be explored, in addition to different processing 

parameters. Furthermore, a more in-depth analysis of the chemical components of the products 

could be investigated and analysed with additional sensory evaluation to further explore and 

confirm the findings. 
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Chapter 1 Introduction 

1.1 Background  

The fermentation of milk transforms it into various products with an extended shelf-life and is 

valued by consumers for its enhanced sensory and nutritional properties (Tamime and Robinson, 

1999). Milk fermentation involves the inoculation of a starter culture, which drives the fermentation 

process. The activity of this culture results in the generation of the various compounds that impart 

the typical flavour and taste of fermented milk (Tamime and Robinson, 1999). Different starter 

cultures can create products with variations in these characteristics; adjunct cultures can also be 

added to enhance sensory and nutritional properties (Routray and Mishra, 2011). The Codex 

standard defines fermented milk as a product obtained by fermentation of milk and includes 

yoghurt, Kefir, and Acidophilus milk, amongst others (WHO/FAO, 2003).  

The flavour profile of fermented milk is widely known to result from a combination of compounds 

such as lactic acid and acetaldehyde (Tamime and Robinson, 1999). However, the taste and flavour 

may also be affected by the proteolytic activity during fermentation; peptides and amino acids 

generated via proteolysis can have a direct and indirect impact on the taste and flavour by 

contributing to bitter, umami and kokumi sensations (Zhao et al., 2016) and by acting as precursors 

of flavour-producing reactions (Kilara and Panyam, 2003). Additionally, bioactive peptides may 

be generated which can contribute to the nutritional properties, adding to the commercial value of 

the product (Fijan, 2014). 

There has been an increased focus on understanding how tastant compounds develop in various 

fermented dairy foods in recent years (Toelstede and Hofmann, 2008a, Toelstede and Hofmann, 

2008b, Sebald et al., 2018, Sebald et al., 2019, Murray et al., 2018, Schäfer et al., 2019, Alim et 

al., 2020). These approaches have enabled researchers to explore the potential role of peptides, and 

other relevant compounds, in generating taste in fermented dairy products, with a view to 

improving the sensorial and nutritional quality of the product to make it more desirable to 
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consumers. Furthermore, the application and advancement of machine learning and predictive 

techniques have aided researchers in understanding and predicting fermentation processes and 

sensory properties, which can be utilised to improve and monitor product development to ensure 

product quality (Rocchetti et al., 2018, Dalabasmaz et al., 2019, Li et al., 2020b, Piras et al., 2021). 

The ability to rapidly screen different products and provide insight into the fermentation process as 

well as the generation of important compounds and sensory properties throughout the fermentation 

of milk could permit the development of new, improved products that are appreciated by 

consumers. 

1.2 Rationale and importance 

There is a growing demand globally for quality fermented dairy products, and the expectations and 

demands of consumers are constantly changing (Conti-Silva and Souza-Borges, 2019, Martins et 

al., 2018, Aryana and Olson, 2017, Chollet et al., 2013). In 2018, the global fermented milk market 

was valued at US$264.7 billion; this is expected to grow to $396.9 by 2026 (Allied Market 

Research, 2020). New Zealand is reputed worldwide for producing high-quality food products, in 

particular dairy foods (Tait et al., 2018).  

This PhD project was part of a wider programme (Fermented Foods) which aimed to accelerate the 

evolution of bacterial cultures to select for new cultures which could impart interesting flavours to 

fermented products. The project presented here explored a strategy to enable a more rapid and high-

throughput screening of products and to provide an instrumental approach to understand consumer 

responses to such products. This approach was with a view to providing New Zealand dairy 

manufacturers, as well as the dairy industry as a whole, with valuable insights that may enable the 

speedy development of new and interesting dairy products with targeted desirable properties. A 

suitable dairy food was required to investigate the feasibility of the approach taken for this project. 

Fermented milk was selected for this project as it is a product with a growing popularity worldwide 

and an increasing market share in the food and dairy industry (Aryana and Olson, 2017, Rul, 2017). 

Fermented milk also has a short fermentation time, lending itself to quick analysis.  
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1.3 Hypothesis and objectives 

The overall objective of this thesis was to evaluate rapid methods to provide insight into the 

molecular composition of fermented milk, and the sensory characteristics which may be affected 

by these molecules. The working hypothesis for this thesis was that the chemical fingerprint, which 

represents the unique pattern of molecular components in the sample, could provide us with insight 

that can be used for developing and screening new products. More specifically, that the peptide 

fingerprint of a fermented milk product changes throughout fermentation in a way that can be 

predicted and linked with changing tastant characteristics, as perceived by the consumer. This 

thesis focussed on how a fingerprint can be utilised to extract knowledge and insight into fermented 

milk products, without basing the assumptions and driving factors on the biological significance of 

such components, i.e., the detected compounds were assumed to be significant (with flavour/tastant 

properties) and following this their relationship and biological significance could be established, 

although the latter part of this was not investigated in this thesis.  

This thesis sought to answer the following research questions: 

1. Can milk fermented from different starter cultures be discriminated using rapid 

fingerprinting technologies coupled with multivariate modelling techniques? 

2. Is the peptide fingerprint different across fermentation times and for different starter and 

probiotic culture combinations?  

3. Can the peptide fingerprint be predicted across fermentation time points for different 

bacterial cultures? 

4. Can consumers perceive differences in important sensory attributes throughout 

fermentation? 

5. Can the peptide fingerprint be correlated with consumer responses and be used to predict 

such responses? 

With these questions in mind, the following objectives, as summarised in Figure 1.1, were set: 
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- Investigate appropriate techniques to rapidly discriminate fermented milk samples prepared 

from different culture combinations.  

- Develop an approach for predicting the changes in the peptide fingerprint throughout 

fermentation.  

- Evaluate the changes in key sensory attributes throughout fermentation using consumer 

panellists.  

- Integrate consumer and peptide fingerprints to correlate these two measures with a view to 

understanding the change in consumer response for different treatments. 

 

 
Figure 1.1 Summary of the primary project objectives. This figure was generated using BioRender.com. 
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Figure 1.1 continued 

 

1.4 Thesis outline 

To achieve the project objectives, the study was conducted in four stages, organised into the 

following chapters.  

Chapter 2 Literature review 

The literature review provides context and justification for some of the techniques used in this 

thesis, in addition to relevant literature that aims to summarise the techniques and tools used 

throughout. The contribution of peptides to taste in fermented dairy foods is described, as well as 

mass spectrometric, data and sensory analysis techniques used to investigate tastant peptides. 

Additionally, the mass spectrometry approach and modelling techniques used in this thesis were 

summarised. Finally, fermented milk is described in relation to its production, taste, and flavour.  

Chapter 3 Discrimination of milk and fermented milk by MALDI-TOF MS and REIMS 

fingerprinting 

A study (research question 1) was conducted to evaluate the potential for rapid fingerprinting 

technologies to discriminate the peptides and small molecules of fermented milk. Two high-

throughput techniques requiring minimal sample preparation, MALDI-TOF MS (Matrix-Assisted 

Laser Desorption Ionisation - Time-of-Flight Mass Spectrometry) and REIMS (Rapid Evaporative 
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Ionisation Mass Spectrometry), were employed to fingerprint and discriminate fermented milk 

prepared from different starter cultures. This study provided a means for rapid screening of 

fermented milk samples. The fingerprinting method and compound type that was most effective 

for discriminating these samples was employed in Chapter 4. This work was published in part as a 

manuscript entitled ‘Discrimination of milk fermented with different starter cultures by MALDI-

TOF MS and REIMS fingerprinting’. 

Chapter 4 Peptide fingerprinting & predictive modelling 

Chapter 4 (research questions 2 & 3) explores the feasibility of predicting the peptide fingerprint 

throughout the fermentation of milk prepared from different combinations of starter and probiotic 

cultures. This study provided an understanding of how the peptide fingerprint can change 

throughout fermentation in different culture combinations, and how it can be exploited to provide 

a means for targeted tracking of peptides throughout fermentation. Findings from this chapter, in 

terms of the most discriminating factors in the analysed treatments, were used for the basis of 

Chapter 5. 

Chapter 5 Consumer evaluation and peptide fingerprinting of milk throughout fermentation   

This chapter (research questions 4 & 5) describes a consumer study to evaluate the changes in key 

sensory attributes throughout fermentation, in order to provide insights on how these attributes 

develop and continue to change during fermentation. In parallel, samples were fingerprinted for 

peptides to establish if a correlation existed between the peptide fingerprints and the consumer 

responses to these products.  

Chapter 6 Discussion and conclusion 

The final chapter provides a summary of the main findings and applications of this work, as well 

as suggestions for future research.  
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Chapter 2 Literature review 

Summary 

This chapter presents a summary of literature that is considered relevant to this thesis. It describes 

relevant literature concerning tastant peptides in fermented dairy foods, and the mass spectrometric, 

sensory and data analysis techniques that may be used to detect and evaluate their tastant properties. 

Lastly this review describes fermented milk production and important properties of fermented milk. 

Much of the literature described in this chapter pertains to peptides in cheese, this is due to the 

majority of published literature on tastant peptides focussing on cheese, rather than other fermented 

dairy products.  

2.1 Peptides as tastant compounds 

The basic taste sensations are made up of sweet, sour, salty, bitter and umami and are evoked 

through specialised taste receptor cells in the mouth (Reineccius, 2006). The kokumi sensation was 

discovered in recent years and is associated with “mouthfulness”, “continuity” and “thickness”. 

Although they are not reported to be tasty on their own, kokumi-active compounds can enhance 

other tastes (Ueda et al., 1997). Peptides are said to impart taste across all taste sensations, although 

it is understood that in most cases, they contribute to background tastes and are not responsible for 

the primary taste of the food (Temussi, 2012). In a variety of fermented and aged foods, however, 

peptides can be potent and contribute primarily to bitter, umami and kokumi sensations (Zhao et 

al., 2016). The taste of peptides, and amino acids, is complex, and it can be difficult to assign and 

verify their taste. These compounds have the potential to elicit multiple taste qualities and are 

affected by their interactions with other compounds, as is the case with bitter peptides in fermented 

fish sauce, which were reported to have sweet or umami tastes in the presence of NaCl (Park et al., 

2002). It is a similar case with amino acids; L-Thr, for example, has been associated with both sour 

and sweet tastes in cheese (Fox et al., 2017). Aside from the direct contribution that peptides can 

have on taste, they also act as precursors for flavour production. In fermented dairy products, many 
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important flavour compounds are derived from casein (Liu et al., 2008, Kilara and Panyam, 2003). 

Cadwallader and Singh (2009) noted the absence of research on tastant compounds in dairy 

products; however, recently, there has been a greater focus on understanding tastant compounds in 

various dairy foods (Toelstede et al., 2008a, Toelstede et al., 2008b, Sebald et al., 2018, Sebald et 

al., 2019, Murray et al., 2018, Schäfer et al., 2019, Alim et al., 2020).  

2.1.1 Bitter peptides 

Bitter peptides are found in a variety of fermented dairy foods and, along with amino acids, can 

activate at least five of the 25 human bitter taste receptors, known as the TAS2Rs (Kohl et al., 

2013). Although they rarely have a significant impact on the bitter taste, some bitter peptides are 

known to be very potent (Fox et al., 2017) and are present in various types of cheeses where 

bitterness is usually viewed as a major defect. Small bitter peptides have also been reported in 

various aged meats (Sforza et al., 2001, Sentandreu et al., 2003) and fermented fish sauces (Park et 

al., 2002, Schindler et al., 2011). Humans are sensitive to bitterness and can detect it in micromolar 

amounts (Drewnowski and Gomez-Carneros, 2000); this, coupled with the negative perception 

consumers often have of bitterness in dairy foods, can be problematic to the development and 

quality of these products and, as a result, a great deal of research has been carried out on the 

mechanism of bitter peptides, as well as the potential for their debittering.  

2.1.1.1 Mechanisms for bitterness evoked by peptides 

The intensity of bitterness elicited by bitter peptides has been related to the number of hydrophobic 

amino acids, the sequence of the amino acids, and the size of the peptide (Fox et al., 2017). In 

general, the bitterness of a peptide can increase with an increasing number of amino acids, but only 

up to eight amino acids; the potency of the peptide does not substantially increase with more than 

seven amino acids (Tamura et al., 1990). The position and abundance of certain amino acids in the 

peptide can impact the bitterness (Ishibashi et al., 1987a, Ishibashi et al., 1987b, Ishibashi et al., 

1988a, Ishibashi et al., 1988b). A key determinant for bitterness in di- and tripeptides is a bulky 

hydrophobic amino acid at the C-terminal and a bulky amino acid at the N-terminal (Kim and Li-
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Chan, 2006, Xu et al., 2019). In larger peptides (i.e., four or more), it was recently shown that 

hydrophobic amino acids at the C-terminal were a less important determinant for bitterness than 

was previously thought (Xu and Chung, 2019).  

Bitter peptides in fermented dairy foods are known to be mostly casein-derived, particularly bovine 

β-casein, which is highly hydrophobic. Casein itself does not have a bitter taste; however, when 

hydrolysed, it can release bitter-tasting peptides (Kilara and Panyam, 2003). The peptide β-CN 

f193-209, for example, has a potent bitter taste, and it can accumulate in a variety of cheese types 

(Appendix 1). Numerous α-CN-derived peptides are also reported to have a bitter taste, many of 

which are products of the breakdown of αs1-CN f1-23. Several bitter peptides are also reported to 

have bioactive properties, such as β-CN f193-209 (Ong and Shah, 2008), αs1-CN fl-13 (Saito et 

al., 2000), and αs1-CN f1-9 (Saito et al., 2000, Ong and Shah, 2008) which can exhibit 

antihypertensive effects, as well as playing a role in immune defence and nervous system activity. κ-

casein was not previously thought to be a source of bitterness, but several bitter peptides derived 

from κ-casein were recently identified in cheese (Sebald et al., 2018, 2019). Casein-derived 

peptides are typically abundant in Pro, which contributes to their bitter taste as Pro is a source of 

bitterness in peptides. The role of Pro in bitterness is unrelated to its hydrophobicity, rather it is 

associated with the conformational alteration of the peptide skeleton, as well as the position of the 

amino acid in the peptide sequence; the bitter taste is reported to be more intense when Pro is 

situated at the C-terminus (Ishibashi et al. 1988b). The structure of peptides containing Pro also 

allow them to easily bind to the bitter taste receptor (Tamura et al., 1990). It was suggested that the 

distribution of Pro in the peptide can make it less susceptible to degradation, thereby hindering the 

breakdown of the peptide into smaller, non-bitter products (Lee et al., 1996).  

The association of bitterness and hydrophobicity can be used as a reliable indicator of the peptide’s 

potential to be bitter-tasting. Ney (1971) derived a rule based on this association: Ney proposed 

that a peptide must have a hydrophobicity, or Q-value, greater than 1,400, as well as a molecular 

weight < 6000 Dalton, to be bitter tasting. The Q value is defined as the average amount of free 
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energy required for the transfer of amino acid side chains from ethanol to water (Ney, 1971). This 

rule is widely used to predict the bitterness of peptides (Nielsen et al., 2017, Murray et al., 2018, 

Sebald et al., 2019). Some inconsistencies with the Q-rule have been reported, however (Toelstede 

and Hofmann, 2008b), and it may not be reliable in all cases as it does not consider the position of 

amino acids in the peptide, which is known to affect bitterness (Murray et al., 2018).  

2.1.1.2 Development of bitter peptides in fermented dairy foods  

In fermented dairy foods, the generation of bitter peptides (Appendix 1) is related to the activity of 

the lactic acid bacteria. Certain starter cultures may have a propensity for generating fewer bitter 

peptides or may contain enzymes that target bitter peptides for hydrolysis, thus reducing their bitter 

taste (Broadbent et al., 2002). In yoghurt, the proteolytic activity of Lactobacillus bulgaricus is 

mostly responsible for the production of bitter peptides, and an increased inoculation rate of this 

bacterium can lead to a bitter taste (Tamime and Robinson, 1999). The addition of adjunct cultures 

can aid in reducing bitterness by targeting bitter peptides; when Lactobacillus helveticus was used 

as an adjunct culture in Cheddar cheese production it resulted in the reduced concentration of the 

bitter peptide, β-CN f193-209 (Soeryapranata et al., 2002). 

During the fermentation process, bitter peptides may be liberated from the native protein via 

hydrolysis. Subsequent hydrolysis can reduce these products to amino acids and derivatives, 

thereby eliminating the bitter tasting peptides (Newman et al., 2014). Unequal rates of proteolysis 

and peptide hydrolysis, however, can cause bitter peptides to accumulate; excessive degradation of 

casein occurs via primary proteolysis, releasing bitter peptides. This was the case with Ragusano 

cheese where there were significantly greater rates of primary proteolysis than peptide hydrolysis 

leading to an increased concentration of bitter peptides (Fallico et al., 2005). This imbalance of 

hydrolysis was related to a combination of high salt-in-moisture and low moisture levels. In Prato 

cheese, the bitter peptide αs1-CN f1-13 accumulated more in cheeses with salt-in-moisture 

concentrations greater than 5%, compared to cheeses prepared at lower concentrations. It was 

speculated that the high salt content may inhibit bacterial activity, reducing the rate of hydrolysis 
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(Baptista et al., 2017). Conversely, in milk containing hydrolysed dairy proteins, excessive 

hydrolysis resulted in an accumulation of bitter peptides causing an increase in bitterness (in 

addition to higher salty and umami tastes), compared to samples that were only partially hydrolysed 

(Alim et al., 2020). In Parmesan cheese, an increasing salt concentration during ageing was found 

to inhibit the breakdown of the peptide αs1-CN (1–23) by interfering with endoproteases (Sforza et 

al., 2012). The percentage of fat may also suppress bitterness; bitter peptides may reside in the fat 

layers of high-fat dairy products, masking the bitter taste (Singh et al., 2005). Other processing 

parameters can also impact the generation of bitter peptides. Rocha et al. (2020) related a lower 

bitter taste to a decreased production of bitter peptides in cheese samples that were prepared from 

milk heat-treated with ohmic heating, compared to conventionally heat-treated milk. Yoghurts 

fermented at 38°C were more likely to have a bitter taste, attributed to bitter peptides, compared to 

yoghurts fermented at 44°C (Tamime and Robinson, 1999). Bitter peptides may also accumulate 

during storage. In hydrolysed-lactose milk samples, for instance, the bitter taste increased 

significantly during storage and was attributed to an increase in bitter peptides that formed via 

residual proteolytic activity (Nielsen et al., 2017). Schäfer et al. (2019) found a decreased bitterness 

intensity and bitter peptide production in cheese samples that were prepared from fermented skim 

milk retentates. The increased bitterness was associated with a decreased content of calcium; 

however, the bitterness and concentration of bitter peptides increased during storage.  

2.1.2 Umami peptides 

Umami taste can be found naturally in many foods and is described as a “pleasantly savoury” 

sensation (van den Oord and van Wassenaar, 1997). The principal umami taste receptor is the 

TAS1R1/TAS1R3 receptor, which is stimulated by L-Glu, the primary compound responsible for 

imparting an umami taste (Nelson et al., 2002). This receptor is also referred to as the “amino acid 

taste receptor” as it responds to numerous amino acids (Nelson et al., 2002). Umami taste is a 

desirable property in foods, and a better understanding of its formation and the compounds that 

generate its taste can aid to enhance the taste of food and consumer acceptance. 
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The role of peptides in forming an umami taste has been controversial (Yamasaki and Maekawa, 

1978, van den Oord and van Wassenaar, 1997, Maehashi et al., 1999). There have been at least 52 

reports of peptides with an umami taste in various foods; however, at least 20 of these are in dispute 

(Zhang et al., 2017). Umami peptides have been identified in various foods, such as soy sauce 

(Kaneko et al., 2011, Zhuang et al., 2016), aged meats (Dang et al., 2015), and a variety of food-

derived hydrolysates (Arai et al., 1972, Noguchi et al., 1975, Tamura et al., 1989, Maehashi et al., 

1999, Schlichtherle-Cerny and Amadò, 2002). In fermented dairy foods, however, it is suggested 

that in most cases, peptides likely do not have a significant impact on the umami taste (Engel et al., 

2000, Toelstede et al., 2009). Peptides with a reported umami taste are highly hydrophilic (Ardö 

and Varming, 2010), and will usually contain Glu in their sequence. Dipeptides containing Glu 

were first reported in Comté cheeses by Roudot-Algaron et al. (1994), some of which were said to 

have an umami taste, as well as having sour, bitter and salty notes. The authors were apprehensive 

about conclusively assigning an umami taste to these peptides but did conclude that the peptides 

contributed to the overall complexity of flavour in the cheese. As a free amino acid, Glu is thought 

to contribute to umami taste in many cheese varieties. In Swiss and Cheddar cheeses, Glu was 

primarily responsible for generating umami taste, though organic acids were also suggested to play 

a role in Swiss cheese (Drake et al., 2007). In Manchego cheese fractions, umami taste was related 

to Glu, as well as Asp (Taborda et al., 2008). Although in some umami-tasting fractions, the taste 

was unrelated to the concentration of Glu and Asp and was suggested to be associated with the 

presence of small hydrophilic peptides, which contained Glu-Glu in their sequences (Taborda et 

al., 2008). Gomez-Ruiz et al. (2007) also found several known umami peptides abundant in Glu in 

umami-tasting fractions of Manchego cheese. However, the peptides were undetected in some 

umami-tasting fractions, leaving uncertainty as to the contribution of peptides to umami taste in 

this cheese. Di- and tripeptides containing Glu have been linked with an umami taste in Cheddar 

cheese (Andersen et al., 2010, Andersen et al., 2008). Li et al. (2020) reported the presence of 

several small peptides, with known umami taste, namely Asp-Trp-Asp-Ser, Glu-Glu, Asp-Leu, and 
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Glu-Leu, in fermented brown milk. Umami-tasting amino acids and peptides may also play a role 

in suppressing salty and bitter tastes; the omission of Glu led to an increased salty taste in fractions 

of Cheddar cheese (Andersen et al., 2010), and umami-tasting peptides in protein hydrolysates 

blocked the bitter taste receptor (Schlichtherle-Cerny and Amadò, 2002, Kim et al., 2015).  

Though it is clear that the amino acid, Glu, does contribute to umami taste in various cheeses, the 

role of peptides remains unclear. In some cheese varieties, the umami taste has been attributed to 

the presence of organic acids and mineral salts (Drake et al., 2007, Andersen et al., 2010), and so 

it is likely that other compounds, and not peptides, are primarily forming an umami taste in 

fermented dairy foods.  

2.1.3 Kokumi peptides 

The kokumi sensation is associated with “mouthfulness”, “continuity”, and “thickness” and serves 

to complement other taste attributes. The first compound to be described as kokumi-active is the 

tripeptide (γ-L-glutamyl-L-cysteinylglycine - glutathione) (Ueda et al., 1997). The calcium-sensing 

receptor (CaSR) has been shown to play a role in the detection of the kokumi sensation (Ohsu et 

al., 2010). On their own, kokumi-active compounds are incapable of exhibiting taste-activity. In a 

water solution, kokumi-active peptides are tasteless or display other taste qualities such as sour, 

bitter, and salty tastes (Toelstede et al., 2009, Yang et al., 2019). In turn, the basic tastes are unable 

to generate kokumi activity in the absence of kokumi-active compounds, and it is only in the 

presence of a mixture of different tastes that the kokumi activity can be detected (Yang et al., 2019).  

Kokumi activity is mostly thought to be generated by small γ-L-glutamyl peptides (Appendix 2). 

The peptide γ-Glu-Val-Gly, in particular, has been reported to be a potent kokumi peptide and is 

said to enhance the sensorial quality of fermented foods (Kuroda et al., 2020). This peptide is 

suggested to be as much as 12.8 times more potent than glutathione (Ohsu et al., 2010). γ-Glu-Val-

Gly has not been detected in the raw material of these products, indicating that it is formed during 

the fermentation process (Kuroda et al, 2020). Kokumi-active peptides have been reported in 
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various cheeses and have also been found in a variety of other foods such as fermented cocoa beans 

(Salger et al., 2019), yeast extracts (Liu et al., 2015), fish sauce (Kuroda et al., 2012) and soy sauce 

(Kuroda et al., 2013).  

In Parmesan cheese, fifteen kokumi-enhancing γ-glutamyl di-peptides were recently identified and 

were present in high concentrations, although most of these peptides had a low dose-over-threshold 

(DoT) factor, which is the ratio of concentration and taste threshold (Hillmann and Hofmann, 

2016). However, the threshold for γ-glutamyl peptides enhancing kokumi-activity is said to be 

lower, relative to other peptides (Hillmann and Hofmann, 2016). Six of the identified γ-glutamyl 

dipeptides were also found to be kokumi-active in Gouda cheese (Toelstede et al. 2009). A number 

of the kokumi-active peptides identified by Hillmann and Hofmann (2016) had previously been 

proposed as umami-tasting peptides by Roudot-Algaron et al. (1994) in Comté cheese. Toelstede 

and Hofmann (2009) investigated a variety of cheeses for γ-glutamyl peptides, including blue, 

Gouda, Camembert, goat’s cheese, and others. Of these, the blue cheese was found to have the 

highest concentration of γ-glutamyl peptides. In most samples, the peptide γ -Glu-Glu was the most 

dominant of the γ-glutamyl peptides. Interestingly, Kuroda et al. (2020) recently investigated the 

potent kokumi peptide γ-Glu-Val-Gly in cheeses prepared from cow’s and ewe’s milk, and only 

found the peptide present in cheeses produced from ewe’s milk, which they related to the different 

proteins present in the raw milk. α-glutamyl peptides have also been investigated for their kokumi-

activity but were not found to be kokumi-active in either Gouda (Toelstede et al., 2009) or 

Parmesan cheeses (Hillmann and Hofmann, 2016) and were found at concentrations below their 

taste threshold. A number of kokumi peptides were also reported to elicit bitter notes in aged 

Gouda, namely γ-Glu-Tyr, α -Glu-Tyr, and α -Glu-Trp (Toelstede et al., 2009). γ- and α-glutamyl 

may also play a role in masking bitterness; reconstituted extracts of cheese containing γ- and α-

glutamyl peptides were said to have a less harsh bitter taste than extracts without these peptides 

(Toelstede et al., 2009). 
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2.1.4 Salty, sour, sweet peptides 

Peptides are not known for having salty, sour, or sweet tastes, although there have been some 

peptides and related compounds reported in the literature for their association to these tastes.  

Salty taste is primarily evoked by sodium ions (Briand and Salles, 2016) and is detected by the 

epithelial-sodium channel (ENaC) receptor (DeSimone and Lyall, 2006). There are few references 

to salty peptides or amino acids in fermented dairy foods, although there are some suggestions of 

these compounds enhancing the salty taste. Omission tests with Gouda cheese, for instance, 

indicated that the salty taste was significantly enhanced by the concentration of the amino acid, L-

Arg (Toelstede and Hofmann, 2008a). In various other fermented foods, peptides have been 

reported to enhance salty taste, such as in soy and fish sauces (Schindler et al., 2011, Yamamoto et 

al., 2014) and aged meats (Sforza et al., 2001). 

A sour taste can be found in a variety of foods and is particularly characteristic of some fermented 

dairy foods. This sour taste can be mostly attributed to lactic acid and is generated through 

fermentation (Tamime and Robinson, 1999). Transient receptor potential (TRP) channel PKD2L1 

and PKLD13 were previously reported as promising candidates for sour taste transduction (Challis 

and Ma, 2016). More recently, Tu et al. (2018) described Otopetrin1 (OTOP1), a protein involved 

in gravity-sensing otoconia in the vestibular system, as a potential candidate for sour taste 

reception. Peptides containing at least one Glu or Asp in their sequence have been associated with 

sour tastes (Linden and Lorient, 1999). In various fermented and aged foods, amino acids and 

peptides have been suggested to play a role in sourness (Maehashi et al., 1999, Park et al., 2002, 

Sforza et al., 2006, Kęska and Stadnik, 2017). In cheese, the L-configuration of amino acids His, 

Asp, Ser and Thr have been associated with a sour taste (Fox et al., 2017). Andersen et al. (2010) 

reported that a high concentration of free amino acids contributed to a sour taste, as well as 

contributing to the overall complexity and intensity, in mature Cheddar cheese. 
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Natural peptides are not typically associated with sweetness (Temussi, 2012). There are several 

widely found artificial, calorie-free peptides, such as aspartame, which is frequently used as a 

potent alternative to sugar in foods and is 100-200 times sweeter, on a weight basis, than sucrose 

itself (Mazur et al., 1969, Briand and Salles, 2016). There are also several large sweet-tasting 

proteins derived from plants, for example, thaumatin, monellin and brazzein, which are several 

hundred times sweeter than sucrose, on a weight basis (Temussi, 2012, Briand and Salles, 2016). 

The TAS1R1/TAS1R3 dimer is responsible for the perception of sweet taste and has been reported 

to be stimulated by various amino acids, such as Gly and D-Trp (Zhang et al., 2017). Nelson et al. 

(2002) also reported the response of the umami taste receptor (TAS1R1/TAS1R3) to the L-

configuration of sweet amino acids. The receptor was unresponsive to the D-configuration of these 

amino acids, as well as to other artificial and natural sweeteners. In aged pork meats and soy sauce, 

small peptides were correlated with a sweet taste (Kęska and Stadnik, 2017, Yamamoto et al., 

2014). There have been some reports of sweet-tasting amino acids in fermented foods. In cheese, 

the L configuration of Glu, Lys, Leu, Val, Ala, Gly, Pro, Met, Gln, Thr and Ser were all suggested 

to have some sweet notes (Fox et al., 2017). Lawlor et al. (2002) investigated eight different cheese 

types and reported that the sweetness was positively correlated with the concentrations of free 

amino acids, including Thr, Ser and Pro. In Swiss cheese, Pro was also linked to sweetness (Fox et 

al., 2017). In Gouda cheese, the amino acids Gly, L-Met, L-Ser, L-Ala, L-Thr and L-Pro were 

reported to have a sweet taste (Toelstede and Hofmann, 2008a). 

2.2 Mass spectrometry techniques to detect tastant compounds 

Mass spectrometry (MS) and chromatographic techniques are frequently used together to separate 

and identify compounds in complex food matrices and can be used to perform semi-quantitation 

on the compounds of interest (Desfontaine et al., 2018). Chromatographic methods, such as high-

performance liquid chromatography (HPLC), are commonly used for the separation of a wide 

variety of different compounds and are used for the analysis of various non-volatile and volatile 

compounds in fermented foods for their contribution to taste and flavour. Its ability to separate low 
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molecular weight compounds make it an attractive tool (Manso et al., 2005), although conventional 

HPLC systems may struggle to separate several different components in parallel (Mozzi et al., 

2013). HPLC is not well-suited for the detection of small hydrophilic peptides (i.e., umami 

peptides) as they have been found to elute in the void volume. Hydrophilic interaction liquid 

chromatography (HILIC) can be performed for the analysis of such peptides (Andersen et al., 

2008). Chromatographic systems coupled to a mass spectrometer can be used for the simultaneous 

separation and identification of sensory-active peptides and amino acids (Salles et al., 2002, 

Toelstede and Hofmann, 2008a, Toelstede and Hofmann, 2008b, Hillmann and Hofmann, 2016, 

Sebald et al., 2018, Sebald et al., 2019). Identification of compounds can be achieved through 

MS/MS (or tandem MS), where an initial mass spectrum is obtained, which undergoes a second 

MS, producing a spectrum for each precursor ion selected by the first round of MS. This can be 

used to identify the compound, by comparing experimental spectra to theoretical spectra, through 

a database search (McLafferty, 1983).  

2.2.1 Preparation of food samples for MS analysis 

Dairy products are a complex food matrix containing a wide variety of different compound classes, 

most of which are not of interest in the study of tastant peptides and can interfere or suppress 

compounds during MS analysis (de Hoffmann and Stroobant, 2007). As such, before mass 

spectrometry or chromatographic analysis, food samples must be appropriately prepared to isolate 

the fraction or individual compounds of interest. Fractionation may be performed based on the 

physicochemical and structural properties of the compound, such as molecular weight and 

hydrophobicity, amongst others (Martínez-Maqueda et al., 2013). Tastant peptides are contained 

in the water-soluble extract (WSE), and so typically, separation in fermented dairy foods will first 

involve the isolation of this extract, via homogenisation of the sample (in the case of cheese), 

followed by centrifugation and ultrafiltration to separate fat, casein and larger peptides and 

proteins. The ultrafiltrate can then be analysed using mass spectrometry and used for the 

identification of peptides (Soeryapranata et al., 2002, Toelstede et al., 2008b), although often 
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additional and repeated separation steps may be performed to further fractionate the sample or to 

isolate individual compounds. For instance, where Toelstede et al. (2008a) performed sensomics 

mapping of bitter-tasting peptides, utilising gel permeation chromatography, solid-phase 

extraction, and HPLC to obtain fractions of cheese samples which then underwent additional HPLC 

and HILIC steps to isolate individual compounds. This was in parallel with the evaluation of 

different fractions for taste activity via sensory testing. Liquid Chromatography-Time of Flight 

(LC-TOF-MS) was then performed to identify the peptides. The identified peptides can be 

compared against databases of known tastant peptides to infer taste activity. This approach is 

referred to as sensory-guided fractionation, whereby a sample is repeatedly fractionated and 

evaluated by a sensory panel to determine the most taste-active fraction. The most intensely tasting 

fraction, as determined by the panel, may then be searched for known taste-active peptides. These 

peptides can be isolated and further assessed by the taste panel to determine their taste activity, 

although synthetic peptides are often used for evaluation by the panel (Toelstede et al., 2008a). 

Where a specific peptide is targeted, MS analysis can be performed directly on the WSE of the 

sample, as was the case with quantification of the bitter peptide, β-CN 193-209 in cheese, where 

the WSE was analysed directly using MALDI-TOF MS (Soeryapranata et al., 2002). 

The mass spectrometry techniques used will depend on the objective of the study and the sensory 

analysis being performed. When being assessed for taste activity via sensory evaluation, either the 

whole sample, fractions of interest only (i.e., a fraction that contains the greatest number of known 

tastant peptides), or individual peptides of interest may be assessed. In the case of evaluation of 

specific fractions or peptides, additional separation and purification steps need to be carried out as 

mentioned above, and it is necessary to bear in mind the food grade standard of any chemicals used. 

Martínez-Maqueda et al. (2013) have reviewed the various steps employed by researchers to extract 

and fractionate peptides and proteins in a variety of foods. A typical workflow for preparing and 

analysing samples using MS is summarised in Figure 2.1. 
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Figure 2.1 Typical workflow for determining taste-activity in samples using mass spectrometry and 

sensory analysis. This figure was created using BioRender.  
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2.2.2 Rapid techniques for obtaining chemical fingerprints 

Fingerprinting produces a unique pattern that corresponds to the chemical components in the 

sample (Huang et al., 2019). In fingerprinting studies, identification of the compound is not a 

requirement, and the analysis can be based on MS1 only (i.e., the unique pattern). Fingerprinting 

technologies have a wide range of applications that can provide invaluable and rapid insights for 

the food industry. 

2.2.2.1 Matrix-assisted laser desorption/ionisation – time-of-flight 

Matrix-assisted laser desorption/ionisation (MALDI) is a popular method for direct mass 

spectrometry analysis, and it is routinely used for the analysis of milk-derived compounds. MALDI 

MS has been used for untargeted fingerprinting in dairy samples to monitor milk during storage 

(Dalabasmaz et al., 2019), to determine the authenticity of cheese (Rocchetti et al., 2018) and 

yoghurt (Liu et al., 2010), for the discrimination of different types of milk and milk powders (Garcia 

et al., 2012, Calvano et al., 2013a, Sassi et al., 2015, England et al., 2020, Piras et al., 2021), and 

to demonstrate the effects of fermentation on the peptide profile of kefir (Amorim et al., 2019). 

MALDI MS has become a widely used technique in the field of proteomics since it was first 

introduced by Karas and Hillencamp in the 1980s (Karas and Hillenkamp, 1988), due to its good 

mass accuracy, good resolution, and its rapid and high-throughput capability (Kempka, 2005). It 

has become a popular choice for the analysis of a broad range of analytes, from small to large, non-

volatile, and thermally labile molecules, including proteins, oligonucleotides, synthetic polymers, 

and inorganic compounds, amongst others (de Hoffmann and Stroobant, 2007). MALDI is achieved 

in two steps: firstly, the compound of interest, the analyte, is mixed with the matrix. The mixture 

of analyte and matrix is then deposited and co-crystallised on an electrically conducting target, e.g., 

a stainless-steel plate (Kempka, 2005). The target plate is then placed in a vacuum, inside the source 

of the mass spectrometer. The analyte and matrix solution is ablated by short bursts of intense laser 

pulses (de Hoffmann and Stroobant, 2007). The matrix will absorb the photon energy and rapid 

heating occurs. The analyte enters the gas phase, and the analyte is ionised (Kempka, 2005). When 
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Time of Flight (TOF) is utilised as the mass analyser, the technique is referred to as MALDI-TOF. 

Other mass analysers include orbitrap, ion traps, and ion cyclotron resonance, amongst others (de 

Hoffmann and Stroobant, 2007). These ions are accelerated and led through a flight path, at the end 

of which is an ion detector that records the time-of-flight and the intensity of the individual ions 

that meet the ion detector. The time-of-flight for each ion is converted to a mass-to-charge ratio 

(m/z) (Hosseini and Martinez-Chapa, 2016). 

2.2.2.2 MALDI-TOF sample preparation 

MALDI-TOF MS can be used to directly analyse samples and does not require extensive sample 

preparation, making it a more rapid technique compared to GC or LC-MS. MALDI-TOF still 

requires some sample preparation, however, in order to mix the matrix and analyte.  

The matrix selection and optimisation of the sample preparation protocol are the most important 

steps in the analysis and can determine the quality of the results (de Hoffmann and Stroobant, 

2007). The selection of the matrix is dependent on the class and size of the analyte, e.g., lipid, 

peptide, or protein. The matrix should meet a number of criteria – it should have strong absorbance 

at the laser wavelength, a low enough mass to avoid interference (in the case of larger molecules), 

vacuum stability, ability to promote analyte ionisation, solubility in a solvent compatible with the 

analyte and an absence of chemical reactivity (de Hoffmann and Stroobant, 2007). A number of 

sample deposition methods have been described. The dried-droplet is the most widely used 

procedure. It is a simple procedure requiring the matrix and analyte to be pre-mixed, and a droplet 

of this mixture to be applied to the target (de Hoffmann and Stroobant, 2007). A variety of other 

methods have been reported, such as the double layer, thin layer, and sandwich method. The choice 

of layering technique may depend on the choice of matrix and the analyte. 

There are several established and routinely used methods for the analysis of peptides and proteins 

using MALDI MS (Bruker-Daltonics, 2015). However, the quality of the results from MALDI-

TOF MS may vary considerably depending on the choice of sample preparation and acquisition 
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mode (Dave et al., 2011). A number of factors can influence the absolute ion intensity between 

different shots within a sample, these include the sample crystal size and homogeneity, the analyte 

distribution within the crystals and the thickness of the crystal layer (Parker et al., 2008). “Hot-

spots”, which is a region of high sample density resulting from uneven co-crystallisation of the 

matrix and analyte, may be introduced during the sample preparation steps (Duncan et al., 2008). 

Quantitation can be difficult to achieve when hot-spots are present; the spots may contain high 

levels of the sample, causing ion suppression, while other areas of the spot may not contain enough 

sample to produce a good signal and spectrum (O'Rourke et al., 2018). To improve upon the 

reproducibility of MALDI-TOF data, technical and experimental replicates are used, and averaging 

is performed across replicates which can increase the confidence in the profiles for comparison 

(Lancashire et al., 2009). 

Automating data acquisition can also reduce the bias toward collecting data from “hot-spot” 

regions, which would likely occur during manual acquisition (Duncan et al., 2008). Automated 

acquisition also enables more high-throughput data acquisition. Spectra acquired manually have 

been shown to have a higher reproducibility (Zhang et al., 2014); however, blind, and randomised 

data acquisition is an important aspect of the experimental design in proteomic mass spectrometry 

experiments (Hu et al., 2005a), and so it is important to assess the performance of the protocols 

when data is acquired automatically. 

Smaller compounds (m/z < 700) are difficult to detect using MALDI-TOF, largely due to the 

interference of the matrix, which typically has a low mass (Kang et al., 2001). Several matrices for 

the analysis of low molecular weight compounds using MALDI-TOF have been reported in the 

literature. High molecular weight matrices, for example, can minimise the interference in the low 

mass region, e.g., 2,3,4,5-tetrakis(3′,4′-dihydroxylphenyl)thiophene (DHPT) which has been used 

for the analysis of various small compounds (Chen et al., 2012). Ionic liquids, which are used in 

combination with conventional matrices, can enhance the signal-to-noise ratio and have been 

reported to produce fewer interfering ions in the low mass region (Bronzel et al., 2017). The 
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performance of the ionic liquid matrix, however, requires the correct pairing of base with matrix, 

and several combinations have been reported in the literature (Li and Gross, 2004, Zabet-

Moghaddam et al., 2004, Abdelhamid et al., 2014). A range of carbon-based materials have been 

reported for use as MALDI MS matrices in recent years, including graphite particles (Zumbühl et 

al., 1998), carbon nanotubes (Jing et al., 2005, Hu et al., 2005b, Pan et al., 2005, Wang et al., 2007), 

various forms of graphene (Dong et al., 2010, Liu et al., 2011, Liu et al., 2012), and pencil lead 

(Black et al., 2006, Langley et al., 2007). 

2.2.2.3 Rapid Evaporative Ionisation Mass Spectrometry 

Rapid Evaporative Ionisation Mass Spectrometry (REIMS) is an emerging technique that has been 

demonstrated to successfully fingerprint metabolites, including lipids, in tissues and micro-

organisms (Balog et al., 2016, Phelps et al., 2018, Shen et al., 2020, Barlow et al., 2021). REIMS 

can rapidly characterise samples in near real-time using a tool for volatilisation. For example, a 

handheld surgical knife (an iKnife) can create a metabolite-rich vapour by point heating the surface 

of a sample, allowing for direct analysis of intact samples, and eliminating the need for intensive 

sample preparation that is typically performed in MS analysis (Barlow et al., 2021). A Venturi 

pump pulls the volatilised metabolites into the mass spectrometer, resulting in the detection of a 

fingerprint of the metabolites (Balog et al., 2010). REIMS was initially developed as a tool to detect 

cancerous tissues (Balog et al., 2010, Phelps et al., 2018), and has recently been applied in various 

food-related studies to authenticate meat and fish species (Balog et al., 2016, Ross et al., 2020, 

Shen et al., 2020), to characterise fruits (Arena et al., 2020), and to detect fraud in honey samples 

(Wang et al., 2019). REIMS is a powerful and rapid technique that has shown promise in the food 

industry in recent years. The greatest advantage to REIMS is that it requires no sample preparation, 

and a fingerprint can be obtained in near real-time. Milk and fermented milk contain a variety of 

low molecular weight compounds, such as amino acids, small peptides, lipids, and more than 100 

different volatile compounds (Cheng, 2010). REIMS can detect a wide range of small molecules 

and lipids, with polar compounds, such as small phenolic compounds, fatty acids and phospholipids 
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readily detected in negative mode, and non-polar compounds, (e.g., acylglycerols) and some phenol 

derivatives readily detected in positive mode (Arena et al., 2020). The ionisation mode used for 

routine measurement varies depending on the matrix, with negative mode favoured for meat 

measurements (Balog et al., 2016) and honey measurements (Wang et al., 2019). Tentative 

compound identification is possible with REIMS based on high-resolution mass, though current 

instrumental configuration prevents automated MS/MS fragmentation to aid identification and 

identification of compounds ideally also requires verification using other analytical techniques 

(Ross et al., 2020). 

2.2.3 Data processing 

In order to extract meaningful information from mass spectrometry data, it must first be carefully 

processed. MS data is characterised by high-dimensionality, whereby the number of samples is 

significantly lower than the number of data points (Plechawska-Wojcik, 2012). As dimensionality 

increases, it becomes increasingly more difficult to identify the important data points amongst the 

noisy or irrelevant data, which can be problematic when performing data analysis and modelling 

(Lancashire et al., 2009). High-dimensional data should be appropriately processed (Plechawska-

Wojcik, 2012), and the use of feature extraction or selection may be performed to reduce the 

dimensionality of the data (Lancashire et al., 2009). MS data suffers from poor reproducibility, 

resulting from variability in sample preparation, such as ‘hot-spots’, as well as instrumental 

variability, amongst others. Issues with reproducibility, alongside high-dimensionality, can cause 

further issues by making the important features within the data even sparser with respect to the 

level of noise. Random and noisy features may be introduced to the data through the instrument 

settings, sample preparation, chemical noise, instrument temperature, sample runs, and storage 

(Lancashire et al., 2009, Tong et al., 2011). As a consequence, the pre-processing of data is 

especially important before conducting an analysis of the data to remove these redundant features 

and to extract meaningful information from the dataset.  

Typical processing steps may include some or all of the following: 
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• Transformation to simplify visualisation and to reduce the potential dependency of the 

variance from the mean.  

• Intensity smoothing to suppress high-frequency noise.  

• Baseline removal to eliminate background noise, i.e., chemical noise.  

• Equalising the intensities across multiple spectra.  

• Calibration to align spectra corresponding to different technical repeats.  

• Peak detection to reduce the number of features and identify true signals in the data.  

• Binning to make similar peak mass values identical.  

• Peak filtering to removal false positive peaks.  

• Feature matrix generated from the list of mass peaks and intensities.  

The generated feature matrix can then be used for downstream analysis. There are several well-

maintained packages that can be implemented using the statistical software, R, to process MALDI-

TOF MS data. There are a number of open-source software programs that can also be used, for 

instance Mass-up (López-Fernández et al., 2015) and MASSyPup (Winkler, 2014). REIMS data 

can be processed using ProGenesis software (Waters Corp. Wilmslow, UK), which is supplied by 

the instrument vendor.  

2.3 Sensory techniques to evaluate tastant compounds 

Through identification and database searching, it may be inferred that a peptide has tastant 

properties. Using sensory evaluation techniques, these properties can be explored and verified. 

Sensory evaluation is used to "measure, analyse and interpret" the sensory properties of food 

(Anonymous, 1975). Sensory evaluation can be carried out using either trained or naïve, consumer 

panellists, the choice of which very much depends on the type of sensory test being performed, the 

objective of the test, as well the resources and budget available. Typically, training a panel will 

involve screening prospective panellists, the most discriminating of which are then selected and 

trained (Kemp et al., 2009). This can be an expensive and time-consuming process. Where naïve 
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consumers are used, larger sample sizes are needed due to the variability of taste preferences and 

sensitivity between individuals (Civille and Oftedal, 2012).  

When evaluating the taste contribution of peptides in fermented dairy foods, several techniques are 

commonly used (Table 1). These can be categorised as either discriminative or descriptive tests. A 

discriminative test is used to determine if there is a perceivable difference or similarity between 

two or more samples. This can be attribute-specific, or simply that a difference or similarity exists 

between the samples. Inferring similarity between products is more challenging than inferring a 

difference and requires a larger number of panellists for statistical robustness (Kemp et al., 2009). 

Discriminative tests do not quantify the difference or similarity between the tested products, but 

simply indicate whether a perceivable difference or similarity does exist. Discriminative tests exist 

in many forms and have been utilised in a variety of studies aimed at establishing the role of 

peptides in the taste of fermented dairy foods. Commonly used techniques include the triangle test, 

duo-trio, and multiple paired comparisons (alternative forced-choice). In a triangle test, panellists 

are presented with three samples, two of which are identical and one which is different. The 

panellists are asked to select the ‘odd-one-out’. In a paired-comparison, or alternative-forced 

choice, test, panellists evaluate all samples in all possible pairings, and for each pairing are asked 

to select the sample with the greatest intensity of a specified attribute (Kemp et al., 2009). Tests 

such as these can provide insights into the role of whole tastant groups and individual taste 

compounds within the samples, for instance where Toelstede and Hofmann (2008a; b) performed 

omission tests, presented to panellists as a triangle test, to determine the taste recognition threshold 

concentration of bitter peptides and fractions of cheese samples. Discriminative tests can be used 

alongside analytical techniques to determine taste activity in fermented dairy samples. As 

previously discussed, this is referred to as sensory-guided fractionation, a systematic approach to 

identify potential tastant compounds, where fractionated samples are assessed for taste activity, 

thus guiding the researchers to search for tastant peptides only in the most taste-intensive fractions 

(Toelstede et al., 2008a, Murray et al., 2018, Sebald et al., 2018; 2019, Alim et al., 2020). 



27 
 

Table 1 Overview of sensory tests performed to identify taste activity in samples originating from fermented dairy foods 
 Class of Test Sensory Test  Sample Description of Test Reference 

Discriminative 

Triangle test  

Tastant groups; individual 
peptides 

Omission tests performed by omitting whole tastant 
groups or individual compounds. Samples presented to 
panellists as a triangle test to determine compounds or 
tastant groups that are different in taste to control 
stimulus.   

Toelstede and Hofmann, 2008b; 
Toelstede et al., 2009; Hillmann & 
Hoffmann, 2016 

Individual peptides 
Individual peptides presented to panellists as a triangle 
test to determine the taste recognition threshold 
concentration or to perform taste dilution analysis.  

Toelstede and Hofmann, 2008a; 
Toelstede et al., 2009; Hillmann & 
Hoffmann, 2016; Alim et al. 2020 

Alternative-forced 
choice 

Fractionated samples 

Taste dilution analysis performed on fractionated 
samples by presenting panellists with pairs of samples, 
as a 2-AFC test, to determine at which dilution step 
there was a perceivable difference between the dilution 
sample and the blank stimulus.   

Sebald et al., 2018 

Individual peptides 
Taste recognition threshold concentration performed on 
purified synthetic peptides. Samples presented as a 3-
AFC using incremental concentrations of the stimulus.   

Sebald et al., 2018; Sebald et al., 
2019 

Descriptive 

Attribute rating test Whole sample; 
fractionated samples 

Peptide fractions or whole samples presented to 
panellists and rated for their bitterness intensity using a 
scale (i.e., rated using descriptor terms, or 9-15-point 
scale)  

Lee et al., 1996; Soeryapranata et 
al., 2002; Broadbent et al., 2002; 
Singh et al., 2005; Schäfer et al., 
2019  

Taste profile analysis Whole sample; 
fractionated samples 

Taste profile analysis performed by presenting peptide 
fractions or whole samples and rating the intensity of 
each taste sensation. Texture and flavour descriptors 
also used (rated using 5-9-point scales).  

Salles et al., 2000; Toelstede and 
Hofmann, 2008a; Toelstede et al., 
2009; Hillmann & Hoffmann, 
2016; Sebald et al., 2018; Alim et 
al., 2020; Xia et al., 2020 
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Descriptive analysis is another class of sensory evaluation, which typically uses trained individuals 

to identify the characteristics of a food. Descriptive techniques can be used to quantitatively 

measure the intensity of specified characteristics and include tests such as profiling and quantitative 

descriptive analysis. In recent years, rapid techniques using naïve panellists have been introduced 

and include sorting and projective mapping. Though descriptive tests can be more complex than 

discriminative tests, they can provide a greater depth of information about the characteristics of 

food that cannot be obtained solely through discriminative analysis (Kemp et al., 2009). In 

investigations of tastant peptides, commonly used descriptive techniques include taste profile 

analysis and attribute rating. The data from these descriptive tests may be correlated with 

instrumental analyses to gain insights into the physical and chemical composition of the food 

(Kemp et al., 2009). Studies such as these can reveal insights into certain taste or flavour 

characteristics that are appealing or unappealing to consumers, for instance where off-flavours and 

bitterness can decrease consumer acceptability.  

Sensory analysis can be used in product development and to monitor the quality of products. Xia 

et al. (2020) demonstrated this recently by using a trained panel to measure the intensity of 14 

cheese descriptors to determine the suitability of using alternative starter cultures in blue cheese 

production. By measuring the sensory properties, alongside characteristics of proteolysis, lipolysis, 

and texture, the researchers could determine the impact of using new starter cultures on these 

properties, compared to cheese prepared from conventional starter cultures. Hillman and Hoffman 

(2016) used a combination of discriminative and descriptive tests to identify individual tastant 

peptides in Parmesan cheese samples, as well as the role of compounds in reconstituted mixtures. 

This can enable a more targeted approach in developing new cheeses with desirable sensory 

properties. Recently, Alim et al. (2020) performed taste profile analysis and taste dilution analysis 

to identify bitter peptides in milk with hydrolysed milk proteins. By doing so, they could determine 

the level of hydrolysis that generated the most bitter peptides which would enable them to control 

the processing conditions to generate a product with optimal flavour.  
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2.4 Predictive modelling overview 

Predictive modelling techniques are implemented to predict future outcomes as well as to provide 

insights on the association between explanatory variables and the response variable of interest 

(Wasserman, 2004). When the outcome is a numerical variable, regression techniques can be 

applied, when the outcome is categorical, classification techniques are used to generate the 

predictive model. Many of these techniques are interchangeable to solve either regression or 

classification problems. 

2.4.1 Regression techniques 

A simple linear regression models the relationship between a continuous response variable, y, and 

a single explanatory variable, x. Multiple linear regression builds on this by allowing additional 

explanatory variables. Linear regression assumes that there is a linear relationship between the 

outcome and explanatory variables, that the residuals are homoscedastic (constant variance), and 

normally distributed, and that the errors and observations are independent (Wasserman, 2004). A 

linear regression model assumes a straight-line relationship between the response and the predictor 

variables. If the true relationship is far from linear, then almost all of the conclusions derived from 

the fit are questionable, as well as potentially reducing the prediction accuracy significantly (James 

et al., 2013).  

An important aspect of model-building is assessing the model’s performance. A violation of the 

model assumptions does not invalidate the model; the limitations of the model can be 

acknowledged, or the interpretation of the model can be adjusted. Transformation of the data may 

also be performed which can mitigate the effects of the violations. For instance, squaring one of 

the terms to create a quadratic model may improve the model fit. However, there are drawbacks to 

higher-order polynomial terms as they can have a large influence on extreme values of the predictor 

variable (James et al., 2013, Kuhn and Johnson, 2013).  
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There are several criteria that can be used to assess the performance of a regression model, and it 

is recommended to use more than one to understand the model’s performance and fit (Wasserman, 

2004, James et al., 2013, Kuhn and Johnson, 2013). Visualising the model fit, in addition to 

visualising the residual plots can provide a good basis for assessing the performance. The residuals 

are defined as the observed value minus the predicted value. The mean squared error (MSE) can 

be calculated by squaring the residuals, summing them, and dividing by the number of 

observations. The root mean square error (RMSE) is the square root of MSE and is a metric that is 

frequently used to measure the model performance. RMSE provides a measure of the distance 

between the observed values and the predicted values. Because RMSE is the square root of MSE, 

the unit is the same as the original data, allowing it to be easily interpreted. R2 is another popular 

metric to evaluate model performance and is defined as the proportion of variation explained by a 

component (Blasco et al., 2015). This provides a measure of the amount of variance explained by 

the model (Wasserman, 2004, James et al., 2013, Kuhn and Johnson, 2013). R2 will usually return 

a number between 0 and 1, where a value closer to 1 indicates a model is explaining a good portion 

of the variation in the data. A value closer to 0 indicates a poor model fit and is closer to a horizontal 

line, indicating no relationship between predictor and response variable. R2 also accounts for how 

scattered the data is (James et al., 2013). 

When fitting a linear regression model, other potential problems may occur such as collinearity, 

whereby two or more predictors are highly correlated with one another, outliers, which are values 

that are far from the predicted value, and high-leverage data points, where a point has an unusual 

or extreme predictor value (James et al., 2013). Collinearity can be problematic in determining the 

effects of related predictor variables on the response variable, can reduce the accuracy of the 

estimates of the model coefficients, and can cause an increase in the standard error. Visualising 

correlation plots or calculating the variable inflation factor can be used to assess cases of 

(multi)collinearity. Outliers can have implications for the interpretation of the fit. Plotting of the 

studentised residuals can reveal outliers; typically, values that are not between -3 and 3, can be 
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considered as possible outliers. Outliers may be introduced erroneously through data collection or 

recording, but may also reflect model deficiencies, e.g., missing predictor variables, and so caution 

should be taken in removing such points (James et al., 2013). Studentised residuals are deleted 

residuals that have been standardised. High-leverage can be problematic where the least squares 

line is influenced by a small number of observations. A leverage statistic can be calculated; large 

values suggest high-leverage points (James et al., 2013).  

Parametric methods are typically easy to fit and interpret; however, they make strong assumptions 

about the data: data should be normally distributed, have approximately equal variance, and should 

not contain extreme outliers. If the data do not meet these criteria, then a parametric method may 

perform poorly, i.e., when the true relationship of the predictor and response variable is far from 

linear, then the model will be a poor fit of the data and the conclusions drawn from the model 

cannot be relied on (James et al., 2013). In practice, a true linear relationship rarely exists. Non-

parametric techniques can provide a more flexible approach.  

2.4.1.1 Generalised additive models 

Generalised additive models (GAM) are a non-parametric extension of the generalised linear model 

(GLM) (Zaniewski et al., 2002). In GLM, the response variable can follow a non-normal 

distribution, e.g., binomial, Poisson, or Gamma. A link function is used to fit the linear model in 

GLM (Ravindra et al., 2019). An advantage to GAMs is that they make no assumptions about the 

distribution of the data and can fit nonlinear relationships without the need to trial different data 

transformations (Ravindra et al., 2019). The model captures nonlinear relationships by fitting 

smooth functions, rather than linear or quadratic functions, which can give more flexible regression 

lines (Zaniewski et al., 2002). Similar to the linear regression model, GAM can be evaluated 

through inspection of the model residuals. The key to a good-fitting GAM is a trade-off between 

likelihood and the model’s complexity. The smoothing parameter, lambda, controls the balance 

between the complexity and likelihood; a high lambda that smooths too much can effectively create 

a straight line, with no curvature, whereas a lambda that is too low can lead to fitting noise rather 
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than fitting the actual trend of the data (Ross, 2019). The optimal smooth should balance over-and-

under-fitting (Pedersen et al., 2019). Over-fitting is the concept of a model fitting too closely with 

the training dataset and learning noise in the data, whereas under-fitting fails to learn the training 

data or make adequate predictions on new data. This can impact model accuracy and the model 

may fail to generalise over unseen data (Kuhn and Johnson, 2013).  

A GAM model can be evaluated by inspecting plots of residuals. Additional methods for assessing 

the suitability of a GAM model include inspecting concurvity, which is essentially a nonparametric 

extension of collinearity (Pedersen et al., 2019). GAM has been used successfully for a variety of 

applications and is particularly popular in ecological studies (Zaniewski et al., 2002, Ravindra et 

al., 2019). GAM has also been successfully applied to predict peptide retention times from 

chromatographic data (Stanstrup et al., 2015).  

2.4.2 Machine learning 

2.4.2.1 Gradient boosting machine 

Gradient boosting machine (GBM) is a popular machine learning technique, which sequentially 

learns new models. At each iteration a new model is trained with respect to the error of the previous 

model, generating a more accurate estimate of the response variable (Natekin and Knoll, 2013). 

The GBM algorithm is implemented in three steps: firstly, the loss function is optimised, next the 

weaker learner is predicted, and finally, an adaptive model is generated by adding trees to the 

weaker learner, reducing the loss function (Sandhu and Batth, 2020). The loss function used will 

depend on the response data, i.e., for categorical data (classification problems) a binomial or 

adaboost loss function may be used (Natekin and Knoll, 2013). GBM is reported to have improved 

performance for prediction of retention times from HPLC, compared to other machine learning 

techniques such as neural networks, random forests, and adaptive boosting amongst others for 

regression problems (Bouwmeester et al., 2019). In proteomics research, GBM models have been 

used effectively for estimating the quality score of peptide feature matches based on MS1 spectra 

(Ivanov et al., 2020). 
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2.4.2.2 eXtreme gradient boosting 

eXtreme gradient boosting (XGBoost) has become a popular technique for a variety of data science 

problems and is reported to outperform other techniques. XGBoost is implemented under the 

gradient boosting framework, combining many weak classifiers to form a strong classifier (Chen 

and Guestrin, 2016). XGBoost is known to perform well on small-medium sized datasets (Margulis 

et al., 2021), but is robust to scaling, and can be extended to handle very large datasets, without 

compromising performance or computational speed (Chen and Guestrin, 2016). Several parameters 

can be adjusted in an XGBoost to improve the model performance. Maximum tree depth and 

nrounds (similar to number of trees) have both been used as criteria to prevent model complexity 

and over-fitting (Nguyen et al., 2019). Parameter tuning can be introduced for complex or large 

datasets, but default parameters have been found to frequently produce good results. Max depth 

can cause over-fitting if the depth is too great; the larger the depth, the more complex the model is 

and thus there is a risk of over-fitting. Larger datasets require higher depth to learn the data. One 

approach to tune parameters is to fix certain settings, and iteratively adjust others until optimal 

parameters are found through improved performance.  

Recently, XGBoost has been implemented to predict antihypertensive properties in food-derived 

peptides (Wang et al., 2020), to predict milk source and quality using electronic nose data (Mu et 

al., 2020) and to predict the bitterness intensity of molecules (Margulis et al., 2021), amongst many 

others. In all applications, XGBoost performed particularly well.  

2.4.2.3 Random forest  

Random forest is a bagging type ensemble learning algorithm, composed of many decision trees. 

Random forest models are built by extracting m data points from the training data to form a new 

training subset. A classification decision tree or regression model is built for each training subset, 

by randomly selecting k features among all features as split nodes. The output is a category, for 

classification models, with the highest number of votes of each decision tree (Mu et al. 2020). 

Parameters such as number of trees, ntree, and mtry can be adjusted to prevent complexity and 
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computational time (Nguyen et al., 2019). Random forests have been used for identifying milk 

source and quality (Mu et al., 2020) amongst others. Random forest has been applied to various 

research predicting bioactive peptides, although it has been criticised for dealing poorly with data 

imbalances and peptide characteristics with high-dimensionality (Wang et al., 2020). 

2.4.2.4 Deep learning 

Deep learning is a machine learning algorithm that utilises the concept of neural networks in the 

human brain to learn from data. The model is built using deep layers that allow continuous learning 

to improve the model performance. A network model, a loss function and an optimisation method 

are used as the building blocks of the model. The model is constructed by mapping the input data 

to predictions, via the network model which connects multiple layers. Next, a loss function is 

calculated which evaluates the performance of the network by comparing the model predictions 

with the target. The optimisation methods then use the loss value to optimise the model. This is 

achieved through backpropagation, a procedure which uses the loss value as a feedback signal 

which sequentially adjusts the weights of the network connection. Deep neural networks (DNNs), 

convolutional neural networks (CNN), feedforward neural networks (FNN) or recurrent neural 

networks (RNN) are different network architectures that can be implemented. These vary in the 

number of neurons in each layer, the number of layers and the type of connection between the 

layers. The network in a DNN, for instance, is made up of an input layer, multiple hidden layers, 

and an output layer (Wen et al., 2020). Deep learning has been applied to solve various problems 

in proteomics, for instance, to predict the retention time for peptides using LC-MS data (Wen et 

al., 2020, Ma et al., 2018), to predict MS/MS spectra (Lin et al., 2019, Zhou et al., 2017) and to 

predict de novo peptide sequences based on MS/MS spectra (Tran et al., 2017). Deep learning 

techniques have also been applied to MALDI-TOF data to identify bacterial species and genera 

(using convolutional network: Zielinski et al. (2017), Papagiannopoulou et al. (2020)).  
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2.4.2.5 C4.5 Decision tree 

Decision trees are frequently used for classification model building. A decision tree is a directed 

tree comprised of a root node, with no incoming edges, and decision nodes, which are all the 

remaining nodes that each have an incoming edge. To optimise the model performance, the internal 

nodes partition the instance space into two or more parts during training. Each path from the root 

node to leaf node then forms a decision rule to classify each new instance (Dai and Ji, 2014). C4.5 

is an extension of the ID3 algorithm. It uses normalised information gain (i.e., the difference in 

entropy (i.e., the expected information needed to classify a record in a given node)) to select 

splitting attributes. This considers the number of outcomes that a specific attribute might produce. 

The attribute with the greatest normalised information gain is selected to make the decision on the 

data split (Quinlan, 1993, Hssina et al., 2014). C4.5 also uses tree-pruning methods, which work 

well for noisy datasets and minimises the risk of over-fitting (Hssina et al., 2014). 

2.4.2.6 Evaluating classification model performance 

There are several approaches to evaluate the performance of a model implemented in classification 

problems, but as with regression techniques, it is preferable to assess multiple metrics before 

deciding on a model. The appropriate metric can vary depending on the data, and the objective of 

the test. In binary classifications, accuracy and F-measure are among the most popular metrics used 

to evaluate performance. However, these are not without their faults. Accuracy is reported as the 

number of correct predictions as a ratio of all predictions made. Accuracy can be very misleading 

in cases where there are imbalances in the data and should not be used as the sole criteria for 

assessing model performance (Gay et al., 2002). The F-measure combines two other metrics, 

precision, and recall, where precision is the accuracy of the positive class and recall is the number 

of true positives divided by the number of all possible positive samples (Gay et al., 2002). F-

measures have been criticised for their over-optimistic score, particularly for imbalanced data 

(Chicco and Jurman, 2020). Matthew’s correlation coefficient (MCC) is a metric that is considered 

to be more robust and informative for binary classification than the F-measure, and also accounts 
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for imbalances in the data. MCC returns a value between -1 and 1, where -1 indicates a perfect 

misclassification, and +1 indicates a perfect correct classification. It returns a high score only if the 

majority of instances of both classes are correctly predicted. Recently, Chicco and Jurman, (2020) 

proposed that assessing binary classification problems is better done using MCC to evaluate 

performance. The area under the curve (AUC) evaluates how well a binary classification can 

distinguish between true positives and false positives, where a value closer to 1 is a perfect 

classifier. The area under the precision-recall curve (AUCPR) is more sensitive than AUC and has 

been hailed as a more informative metric than the AUC, particularly for data that is imbalanced 

(Chicco and Jurman, 2020). 

2.4.3 Exploratory techniques 

In the field of proteomics and metabolomics, exploratory tools, such as principal component 

analysis partial least squares -discriminant analysis, are frequently used as a first step in the data 

analysis pipeline to visualise patterns in the sample set and can provide an indication of the 

separation of classes by showing clustering or overlapping of samples. 

2.4.3.1 Principal component analysis 

Principal component analysis (PCA) is frequently used for data reduction and as an exploratory 

tool. PCA is an unsupervised technique, which does not consider the response variable during 

modelling. PCA functions by finding linear combinations of predictors, which are the principal 

components (PCs), and capturing the greatest variance in the data. PCA summarises the data by 

essentially creating new, uncorrelated variables (Kuhn and Johnson, 2013). PCA also has the 

advantage of being able to handle high-dimensionality in datasets, which is a characteristic of 

proteomics and metabolomics studies (Lancashire et al., 2009). 

2.4.3.2 Partial least squares-discriminant analysis 

Partial least squares-discriminant analysis (PLS-DA) can essentially be described as a supervised 

version of PCA, whereby it considers the class of the response variable during modelling. Similar 
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to PCA, PLS finds linear combinations of the predictor, which are referred to as the components or 

latent variables. In PLS, the model finds components that maximally summarise the variation of 

the predictor, while requiring the components to have a maximum correlation with the response 

(Kuhn and Johnson, 2013). In the context of supervised classification, PLS-DA is performed to 

differentiate and discriminate between sample classes. The concept was originally applied to 

regression problems but was extended to classification; in this context, the sample class is 

converted to a dummy variable, which is predicted using a regression (Rohart et al., 2017). In 

metabolomic fingerprinting studies, clustering of sample classes typically depends on the use of 

discriminant analysis techniques, such as PLS-DA, over PCA (Wang et al., 2019, Paxton, 2020). 

Recently, Multivariate INTegrative PLS-DA (MINT-PLS-DA; Rohart et al., 2017) was introduced 

as a technique to integrate omics datasets originating from independent studies. This is a novel 

approach that accounts for variation originating from different sample and data collection 

protocols, in addition to identifying molecular signatures. A sparse MINT can also be applied which 

allows for variable selection by selecting the optimal number of variables to retain for each 

component. This reduces the influence of noisy features and can improve the predictive 

performance of the model (Rohart et al., 2017). The MINT-PLS-DA approach offers a solution to 

overcome problems that are typical of omics studies, such as poor reproducibility and consistency 

between sample sets (Rohart et al., 2017). 

2.5 Data-driven approaches to evaluate tastant peptides 

Integrating sensory, analytical and data analysis techniques can provide rapid insights into tastant 

peptides in food. Recently, Sebald et al. (2018) coined the term ‘sensoproteomics’, a process that 

uses both targeted proteomics and sensory techniques to identify taste active peptides in food. This 

approach involved a targeted analysis by first compiling a database of known peptides from 

fermented foods. Cheese samples were fractionated and then evaluated for their sensory properties. 

In parallel with this, the cheese fractions were analysed using targeted proteomics with proteomics 

software and LC-MS/MS. The combined methods allowed the researchers to shortlist 17 bitter 
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peptide candidates from their original database of 1600 peptides. Sebald et al. (2019) later 

developed an alternative approach to shortlist potential bitter peptides in cheese samples, that 

required no prior literature knowledge of tastant peptides. Their approach involved systematically 

shortlisting candidate bitter peptides by first conducting a database search of MS/MS spectra 

obtained, further refining this list using SWATH-MS (Sequential Window Acquisition of All 

Theoretical Mass Spectra), followed by using targeted proteomics software. The list of candidate 

peptides was then further shortlisted by filtering the peptide list and selecting only peptides that 

were present in the most bitter-tasting fractions. Using this approach, they shortlisted their list of 

candidate bitter peptides from nearly 1000 to 42, which were then evaluated for their taste activity. 

The authors concluded that this technique holds promise for selecting candidate bitter peptides and 

was less time and labour-intensive than alternative methods.  

The application of predictive modelling and machine learning can aid in better understanding the 

role of different taste compounds. Newman et al. (2014) assessed various methods of evaluating 

the bitterness intensity in dairy protein hydrolysates. They integrated HPLC with trained taste 

panels and compared this to an electronic tongue. Using a PLS (Partial Least Squares) regression, 

they were able to build a predictive model using the results of the electronic tongue to predict the 

bitterness intensity of their samples, although they did conclude that ideally the HPLC and 

electronic tongue data should both be used in combination to get more accurate and reliable results. 

A similar approach was adopted to evaluate the correlation between electronic tongue and trained 

panel measurements in fermented milk (Hruskar et al., 2010), using PLS-regression and artificial 

neural networks. Recently, Rocha et al. (2020) noted the advantages of using machine learning 

techniques with sensory evaluation. By using machine learning techniques, the authors could 

determine the sensory drivers for cheese samples prepared using different processing parameters. 

They found these techniques to be more rapid, efficient, and accurate for analysing sensory data 

compared to conventional statistical modelling techniques. In soy sauces, Yamamoto et al. (2014) 

correlated the taste differences in soy sauces with dipeptides. They constructed a PLS regression 



39 
 

model using peptidomic data obtained from both GC-MS and LC-MS, and sensory data, obtained 

via quantitative descriptive analysis. Using the PLS model, they found a number of dipeptides 

correlated with the basic tastes. Recently, Daher et al. (2020) developed a PCA model using 

peptidomic data and descriptive sensory data of dairy protein hydrolysates to demonstrate the 

similarities in instrumental and sensory data. The authors inferred the relevance of such a model in 

evaluating the bitterness of protein hydrolysates.  

In-silico approaches have also been developed to predict the potential taste activity of peptides, 

many of which draw on the wealth of information in publicly available databases. Using the amino 

acid sequence of known porcine-derived proteins, Kęska and Stadnik (2017) compared their 

sequences to the BIOPEP database and identified the number of taste active peptides and amino 

acids in the protein sequences. This study aimed to predict the role of a protein in taste activity 

based on the protein's ability to produce peptides and amino acids, which were known for their 

taste activity. BitterDB is a curated database composed of over 1000 bitter molecules cited in the 

literature (Wiener et al., 2012) and has been used to build predictive tools, such as BitterIntense. 

This tool was developed using machine learning techniques to predict the bitter intensity of a 

compound, utilising available information from BitterDB. The developed models could classify 

molecules as either “very bitter” or “not very bitter”, with about 80% accuracy (Margulis et al., 

2021). BitterPredict is a similar predictive tool, based on BitterDB, which can classify with 80% 

accuracy a compound as either “bitter” or “non-bitter”, based on the chemical structure of the 

compound (Dagan-Wiener et al., 2017).  

2.6 Challenges in inferring the role of compounds in taste 

Understanding the role of tastant compounds within food can be problematic, and there have been 

some questionable results presented. Some authors have suggested anomalies in results are due to 

the purity of the peptides studied. This was the case with the reported “delicious” umami peptide 

(Yamasaki and Maekawa, 1978), which was later suggested to have bitter peptides interfering with 

the results (van den Oord and van Wassenaar, 1997). Similarly, a proposed salty peptide had 
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artefacts of NaCl introduced during peptide synthesis and did not impart a salty taste, as previously 

suggested (van den Oord and van Wassenaar, 1997). Additionally, the interactions the peptide may 

have with other tastant compounds may affect the taste elicited by the peptide (Zhao et al., 2016). 

For instance, the presence or absence of 5′-ribonucleotides can affect the umami taste of peptides 

(Zhuang et al., 2016), and the presence of NaCl in low concentrations caused sour-tasting peptides 

to elicit sweet and umami tastes in fish sauce (Park et al., 2002).  

Whilst it is plausible that discrepancies are due to impurities, it is also possible that the difference 

in sensitivity among participants during sensory evaluations could lead to varying results. This is 

particularly notable for studies on umami peptides. The umami taste has long been recognised in 

Asian cultures and was first described by Japanese researchers at the beginning of the 20th century 

(Ikeda, 1909). However, it was refuted by Western researchers that the umami taste existed 

(Behrens et al., 2011), and numerous studies have disputed the existence of umami peptides and 

described their taste as mostly bitter or tasteless (van den Oord and van Wassenaar, 1997, Zhang 

et al., 2017). One potential explanation for this could be the existence of “supertasters” and “non-

tasters”. A supertaster experiences an increased intensity of a taste and was reported by Bartoshuk 

et al. (1994) in relation to the compound 6-n-propylthiouracil (PROP), which was perceived as 

intensely bitter by supertasters. The concept of the supertaster is complicated, however, insofar as 

someone may have a heightened response to some bitter compounds but not others (Hayes and 

Keast, 2011). Since the discovery of the bitter supertaster, further studies have found evidence to 

support heightened responses to all taste modalities (Hayes and Keast, 2011). Chen et al. (2009) 

reported variations by individuals in response to different concentrations of umami-tasting 

compounds, which was related to variations in the gene, TAS1R3. Reports have found that there is 

a higher prevalence of PROP-supertasters and low sweet likers in Asian populations compared to 

Caucasians (Yang et al., 2020), which could offer an explanation for the differences in findings 

between Western and Asian sensory studies. Aside from genetics and ethnicity, differences in taste 

perception may also be affected by differences in gender and age. For instance, females are more 
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sensitive than males to the bitter and sweet taste (Michon et al., 2009). Monteleone et al. (2017) 

reported some similar findings, and also found that taste perception was significantly decreased in 

older cohorts. 

2.7 Fermented milk 

The fermentation of milk transforms it into various products with an extended shelf-life and 

enhanced sensory and nutritional properties (Tamime and Robinson, 1999). Fermented milk is 

generally produced by inoculating milk with lactic acid bacterial culture, which acidifies the milk. 

Fermented milk products are valued by consumers and the food industry for their perceived health 

and nutritional properties, pleasant taste, and texture. Demand for fermented dairy products has 

surged worldwide in recent years, particularly in North and South America, as well as many parts 

of Asia, where fermented dairy products are not traditionally eaten regularly (Rul, 2017).  

2.7.1 Manufacture of fermented milk 

The raw materials used in the production of fermented milk can determine the taste, texture, and 

quality of the final product. Fermented milk may be produced using the milk of a variety of animals, 

although, in industrial yoghurt-making, cow’s milk is the most commonly used milk base 

(Chandan, 2014). The origin of the milk may affect the sensory characteristics in the final product, 

which is related to the protein content of the milk base, in addition to the fat content (Tamime and 

Robinson, 1999). For instance, in Manchego-type cheeses produced from both cow’s and ewe’s 

milk, the cheese produced from the cow’s milk was found to have a stronger bitter taste that was 

not observed in cheese produced from ewe’s milk (Fernandez-Garcia et al., 1990). Fermented milk 

produced from sheep and buffalo milk (which are high-fat) resulted in a much richer and creamier 

product, with a more pleasant “mouth-feel” than that produced from lower fat milk (e.g., horse or 

cow milk), or from milk that has had the fat content removed, such as skimmed milk (Tamime and 

Robinson, 1999).  



42 
 

Fermented milk is manufactured by heat-treating a milk mix, inoculating with a starter culture, and 

fermenting until a pH of 4.5 is reached (Nguyen et al., 2018). A final pH of 4.2-4.5 is typical in 

commercial fermentations; a pH ≤4.6 is the isoelectric point of casein and causes precipitation of 

the protein (Tamime and Robinson, 1999). In industrial manufacturing, additional processing steps 

such as homogenisation and the addition of stabilisers or sweeteners might take place.  

The heat treatment of the milk serves to eliminate any existing micro-organisms in the milk, 

reducing the competition for the starter culture and ensuring the product is safe for consumption. 

The heat treatment also results in thermal breakdown of milk constituents, which releases 

compounds that are utilised for bacterial growth (Chandan, 2014). The temperature and duration 

of the heat treatment can impact the sensorial properties of the product; increased temperatures and 

treatment times can increase the denaturation of the milk proteins. During denaturation, the whey 

proteins interact with κ-casein on the casein micelle surface, leading to increased gel firmness and 

viscosity (Lucey and Singh, 1999). Lucey et al. (1998) reported that milk treated at high 

temperatures (greater than 80°C) resulted in a final product that had acid gels with a rough surface, 

cracks, reduced thickness and some whey separation. In contrast, Yadav et al. (2018) reported that 

fermented milk produced from milk treated at high temperatures (85°C for 30 minutes) was found 

to have significantly improved body, texture and overall acceptability compared to a product made 

at lower temperatures for the same duration (e.g., 80°C, and 75°C). 

Following the heat-treatment and subsequent cooling of the milk to fermentation temperature, the 

starter culture is added. The mix is incubated, and typically maintained at a temperature of 43°C, 

as the fermentation process takes place (Chandan, 2014). The fermentation temperature is also 

reported to impact the taste in fermented milk; milk fermented at 44°C is reported to yield a product 

that is less likely to be bitter than one fermented at 38°C (Tamime and Robinson, 1999).  

Starter cultures refer to a microbial composition of a large number of cells containing at least one 

micro-organism that are added to a raw material, such as milk, and which drive the fermentation 
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process to produce a fermented product (Leroy and De Vuyst, 2004). Depending on its primary 

function, added micro-organisms may be considered a starter or primary culture (if it contributes 

to the acidification process), and adjunct, maturing or secondary cultures (if it contributes to 

flavour, aroma, probiotic or maturing properties). The starter culture used in fermented milk 

production is comprised of Streptococcus thermophilus and Lactobacillus subsp. bulgaricus, which 

drive the fermentation process and are responsible for creating the flavour, body and texture that is 

typical of fermented milk (Tamime and Robinson, 1999). Often, other adjunct cultures will be 

added which do not contribute to the acidification but are added for their contribution to sensory or 

health-promoting properties, for example Lactobacillus acidophilus, Bifidobacterium lactis, and 

Lactobacillus casei which are commonly added for their probiotic potential (Routray and Mishra, 

2011, Fijan, 2014). The choice of starter strain can play a role in the formation of flavour defects, 

such as bitterness (Lemieux and Simard, 1991). A high inoculation rate of the starter bacteria can 

also lead to a product of inferior quality and flavour defects, particularly Lb. bulgaricus which is 

mostly responsible for the production of bitter peptides in fermented milk products (Tamime and 

Robinson, 1999).  

2.7.2 Characteristic taste and consumer preferences for fermented milk 

Fermented milk is characterised by a distinctive sharp acidic and green apple flavour, attributed to 

lactic acid (Cheng, 2010). The concentration of lactic acid in the final product can determine its 

acceptability; either too low or too high can have a negative impact on the typical mild-flavour 

(Ravyts et al., 2012). The activity of the starter culture produces a variety of compounds that form 

the distinctive taste and flavour of the product (Beshkova et al., 1998). These compounds are mostly 

derived from fat, protein or carbohydrates present in the milk (Cheng, 2010) and may be divided 

into volatile and non-volatile acids, carbonyl compounds and miscellaneous compounds, such as 

products generated through the degradation of protein, fat, or lactose (Tamime and Robinson, 

1999).  
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More than 100 different aroma compounds have been identified in fermented milk products, most 

of which are present at very low concentrations and are not known to make a significant 

contribution to flavour formation (Cheng 2010). The typical aroma of fermented milk is a result of 

acetaldehyde, imparting a fresh and fruity aroma of green apple or nuts (Chen et al., 2017, Cheng, 

2010, Rul, 2017). The concentration of acetaldehyde depends on the bacterial strains and the 

processes used during fermentation (Cheng, 2010). Acetaldehyde can be formed either through 

pyruvate decarboxylation or amino acid conversion, via threonine aldolase (Chaves et al., 2002). 

Diketones such as 2,3- butanedione (diacetyl), acetoin, acetone, and 2–3 pentanedione are also 

major compounds found in fermented milk products and impart a butter-like flavour (Imhof et al. 

1995, Ott et al. 1997; Rul, 2017). The balance of these flavour compounds is important in 

determining the sensory characteristics of dairy products and can often determine a consumer’s 

liking of the product (Smit et al., 2005).  

The acceptability for fermented milk products can vary considerably among consumers. 

Unsurprisingly, many studies have concluded that the preference and acceptability of fermented 

milk products is strongly influenced by its sweetness (Harper et al., 1991, Barnes et al., 1991a, 

Barnes et al., 1991b, Allgeyer et al., 2010, Bayarri et al., 2011). Consumer studies investigating the 

liking of six fermented milk products demonstrated that sweetness was positively correlated with 

consumer liking for a large proportion of the surveyed group (52%) (Bayarri et al., 2011). 

Fermented milk, however, is typically regarded as a healthy food, and the high levels of added 

sugar and the addition of artificial sugars may damage this perception (Chollet et al., 2013). 

Consumer studies indicated that sweet taste alone is not the sole determinant for acceptability in 

fermented milk products. Pohjanheimo and Sandell (2009) investigated the motivation for food 

choice and preferences in drinking yoghurt and concluded that consumers who generally appreciate 

more natural ingredients and tend to avoid additives are more inclined to eat yoghurt products that 

are less sweet tasting. Jaworska et al. (2005) reported that negative sensory attributes, such as off-

flavours and bitterness, were of critical importance for consumer acceptance of natural fermented 



45 
 

milk products. Although this is not always the case; following a consumer study, Bayarri et al. 

(2011) identified a small subset (about 10% of 120 participants) of those surveyed whose liking for 

yoghurt and fermented drink products was driven by attributes such as bitterness, saltiness, acidity 

and astringency, and a disliking for products that was driven by sweetness. 

2.7.3 Changes in peptide composition throughout fermentation of milk 

Typical starter cultures, St. thermophilus and Lb. bulgaricus can ferment milk individually; 

however, when grown together, these bacteria are known to have a mutually beneficial interaction, 

referred to as ‘proto-cooperation’ (Tamime and Robinson, 1999). The mutual stimulation of the 

two bacteria is said to positively contribute to a number of desirable characteristics within the final 

product (Ott et al., 2000, Sodini et al., 2004, Sieuwerts et al., 2008). Because St. thermophilus is 

non-proteolytic, it depends on the supply of amino acids and peptides that are generated through 

the extracellular protease activity of Lb. bulgaricus on milk casein (Radke-Mitchell and Sandine, 

1984). Briefly, the process of proto-cooperation in fermented milk is as follows: following 

inoculation, St. thermophilus grow exponentially by utilising the free amino acids, dipeptides, 

tripeptides, and oligopeptides in the milk (Sieuwerts et al., 2008). Initially, Lb. bulgaricus benefits 

St. thermophilus by releasing amino acids (e.g., valine, leucine, histidine, and methionine) from the 

milk which are utilised by the growing St. thermophilus. The high pH at this point is also optimal 

for the growth of St. thermophilus. During this exponential growth period, almost no growth is 

observed in Lb. bulgaricus. The proto-cooperation between the two cultures during this phase 

results in increased lactic acid and aromatic compound formation (compared to when the two 

cultures are individually grown) (Routray and Mishra, 2011). During the second growth phase, the 

concentration of essential amino acids (e.g., glutamic acid and methionine) in the milk are 

insufficient for the requirements of St. thermophilus, and the available amino acids soon become 

limited. St. thermophilus subsequently enter into a non-exponential growth phase (Juillard et al., 

1995, Letort et al., 2002). St. thermophilus stimulates the growth of Lb. bulgaricus by releasing 

small amounts of formic acid, folic acid, and pyruvic acid (Tamime and Robinson, 1999). As the 
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levels of acid in the milk increase, the pH of the milk lowers and favours the growth rate of Lb. 

bulgaricus, which enters an exponential growth phase and proteases expression is initiated 

(Routray and Mishra, 2011). Lb. bulgaricus continue to grow in a third growth phase. St. 

thermophilus proceeds to enter a second growth phase. During this growth phase, St. thermophilus 

use milk casein as a source of amino acids (Letort et al., 2002). 

Products generated through proteolytic processes may be subsequently utilised in other processes. 

Amino acids can be converted in many different ways by enzymes such as deaminases, 

decarboxylases, transaminases (aminotransferases), and lyases (van Kranenburg et al., 2002). 

Aromatic amino acids (e.g., Phe, Tyr, Trp), branched-chain amino acids (e.g., Val, Leu, Ile), and 

sulfuric amino acids (e.g., Cys, Met) are reported to be important substrates for flavour 

development (van Kranenburg et al., 2002). Most amino acids may be converted by 

aminotransferases to α-keto acids. From here, they may proceed to be converted to hydroxy acids, 

aldehydes, organic acids, alcohols, and esters (Smit et al., 2005). 

The concentration of peptides is reported to increase in fermented milk products, compared to 

unfermented milk. Li et al., (2020) reported an increase in the content of small peptides in 

fermented milk products compared to unfermented products; 19 small peptides were differentially 

abundant in the fermented product. Amorim et al. (2019) also noted an increase in the number of 

ions detected pre- and post-fermentation when analysing their samples: they identified 51 m/z ions, 

via MALDI-TOF MS, that were unique to unfermented Kefir samples and 183 unique to fermented 

samples. The increased rate of peptides in the fermented products could be attributed to the bacterial 

utilisation of protein during fermentation; proteins are degraded during fermentation, which results 

in the accumulation of smaller products. In turn these products may be used directly for bacterial 

growth as nutrients or are further degraded into smaller products. The resulting products may also 

be used for bacterial growth, depending on the stage of bacterial growth, or are transformed into 

aroma or flavour compounds via enzymatic reactions as mentioned above.  
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2.8 Literature review conclusions and perspectives 

Methods of fermentation have been used by humans for thousands of years to extend the shelf-life 

of food and impart favourable sensory qualities (Tamime and Robinson, 1999). Due to perceived 

health benefits and the positive view consumers have of many fermented products, their 

consumption worldwide has increased considerably since their commercialisation (Aryana and 

Olson, 2017). To meet such demands and to ensure the quality of these products, it is imperative 

to understand the role of tastant compounds in these foods.  

Peptides and amino acids are widely regarded to be important tastants in a variety of fermented and 

aged foods, and it has been shown that they can contribute or interact with taste across all taste 

modalities (Park et al., 2002, Lawlor et al., 2002, Toelstede and Hofmann, 2008a, Maehashi and 

Huang, 2009, Andersen et al., 2010, Kohl et al., 2012, Zhuang et al., 2016, Kęska and Stadnik, 

2017, Sebald et al., 2018, 2019). A great deal of the work conducted on tastants in fermented foods 

relates to the bitter taste. There are a few reasons for the extensive body of work conducted on the 

bitter taste – firstly, it has been demonstrated that the bitter taste, and the role of peptides and amino 

acids in generating this taste, is both complex and interesting (Ishibashi et al., 1987a, Ishibashi et 

al. 1987b, Ishibashi et al., 1988a, Ishibashi et al., 1998b, Tamura et al., 1990, Maehashi and Huang, 

2009, Kohl et al., 2013). Secondly, bitterness in many foods is considered to be undesirable and 

can compromise the quality of the product, and so understanding the bitter taste and its prevention 

and/or masking is in the interest of food manufacturers. Further to this, many bitter peptides also 

possess bioactive properties. This can be problematic as efforts to debitter such peptides have been 

found to negatively impact the peptide's bioactive properties (Murray et al., 2018), and when 

bioactive peptides are added to products, such as fermented milk, they have been found to 

significantly increase the bitterness intensity (Ahtesh et al., 2018). While the bitter taste has been 

well documented in the literature, the mechanism for taste in other taste types is somewhat 

neglected in the literature, by comparison, particularly pertaining to peptides and fermented dairy 

foods.  
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There are many new and exciting approaches proposed to explore tastant peptides in foods. Sensory 

evaluation using human panels is ultimately the gold standard; however, these can be costly and 

time-consuming, and the advent of more data-driven and integrative approaches could prove 

invaluable to provide quick and less-costly insights into taste-formation and activity in a variety of 

foods. Such insights can enable food manufacturers to develop products with targeted, desirable 

characteristics, enhancing the sensory properties of the food.  

2.9 Rationale of the techniques selected for use in this thesis 

• As demonstrated, there are numerous mass spectrometric, data analysis and sensory 

analysis approaches which can be taken to investigate tastant properties in food. This thesis 

sought to build on this by exploring rapid techniques that can provide insights into the early 

stages of product development. The work carried out in this thesis is not conclusive and 

provides a potential preliminary approach for short-listing potential compounds which 

could be further investigated using some of the more in-depth approaches outlined 

throughout the literature review.  

• Conventional mass spectrometry techniques, such as GC- and LC-MS, can provide 

powerful insights into the tastant properties of food. These protocols typically will include 

derivatisation and time-consuming separation techniques, which are not very conducive to 

rapid, high-throughput screening. Fingerprinting technologies may offer an alternative 

approach to provide quick insights, that may be particularly useful to manufacturers during 

the early stages of product development. This thesis wished to explore alternative 

techniques which may not provide as much information and insight as LC-MS but offer 

quick insights that would lend themselves to more to high-throughput screening.  

• It is widely understood that the characteristic taste and flavour in fermented milk results 

from lactic acid, acetaldehyde, diacetyl, and acetoin, amongst others. Peptides, although 

not widely reported to contribute to taste in fermented milk, are widely reported in cheese. 
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As mentioned in this literature review, tastant peptides in fermented dairy foods are known 

to contribute directly or indirectly to taste and flavour. As such, peptides may potentially 

play a role in taste and flavour in fermented milk. This thesis sought to investigate if such 

a correlation can be made.  

• There is a wide variety of sensory evaluation techniques that can be employed to 

characterise or measure various attributes of a food product. Multiple paired comparison 

tests are often performed for evaluating taste perception in various foods and can provide 

an initial insight into the differences that exist between products. Although they do not 

provide a quantitative measure of the attribute, they can provide an indication of the 

difference in samples which may guide further analysis.
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Chapter 3 Discrimination of milk and fermented milk by MALDI-

TOF MS and REIMS fingerprinting  

Summary 

This chapter describes rapid techniques for fingerprinting the peptides and small molecules in milk 

and fermented milk products with different flavour characteristics. Rapid Evaporative Ionisation 

Mass Spectrometry (REIMS) and Matrix-Assisted Laser Desorption Ionisation - Time-of-Flight 

Mass Spectrometry (MALDI-TOF MS) are rapid techniques, with high-throughput potential and 

require minimal sample preparation. Using these techniques, different fermented milk produced 

from different bacterial strains were fingerprinted. Supervised and unsupervised multivariate 

analysis techniques were employed to analyse the data and could distinguish the fermented milk 

samples at peptide and small molecular level. These techniques can aid in quick and cost-effective 

fingerprinting to screen different fermented milk products. This is the first study demonstrating the 

use of REIMS for the measurement of liquid dairy samples.  

 

3.1 Introduction 

The first objective of this thesis was to explore a rapid and effective technique to distinguish the 

compounds generated by different bacteria in fermented milk samples. Many metabolomic 

untargeted analyses use separation (e.g., liquid (LC) and gas chromatography (GC)) prior to mass 

spectrometry (MS) analysis to fractionate the sample, which aims to increase the number of 

compounds observed and improve identification via MS/MS (Moros et al., 2017, Calvano et al., 

2013b, Mischak et al., 2013). Sample preparation and data acquisition via LC-MS or GC-MS are 

both relatively time- and labour-intensive, and as such, they are not well-suited for high-throughput 

use in the food processing industry for monitoring, quality control and rapid screening of samples 

during product development. Molecular fingerprinting is a rapid means to differentiate samples 
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(England et al., 2020) where the fingerprint represents the distinctive pattern of the sample’s 

chemical components (Huang et al., 2019). Fingerprinting studies are typically based on MS1 only, 

where MS1 is a scan of the ions by their mass-to-charge ratio. MS/MS (or MS2) is the 

fragmentation of ions selected by MS1 and subsequent identification of compounds through 

database searching (de Hoffmann and Stroobant, 2007). Fingerprinting technologies allow for a 

quick analysis time between samples and are considerably quicker than using a separation method, 

making them more suited for high-throughput use in the food processing industry (Barlow et al., 

2021, Cohen and Gusev, 2002, Huang et al., 2019). 

This chapter explored if Matrix-Assisted Laser Desorption Ionisation - Time-of-Flight Mass 

Spectrometry (MALDI-TOF MS) and Rapid Evaporative Ionisation Mass Spectrometry (REIMS), 

mass spectrometry-based fingerprinting techniques requiring minimal sample preparation, could 

be used to distinguish fermented milk samples prepared with different starter cultures in a high-

throughput manner. The molecular fingerprint obtained by these techniques can provide rapid 

insights into the chemical composition of different fermented products. Such insights could be used 

for the screening and development of fermented products and bacterial strains with targeted 

properties. As an exemplar, cow skim milk and two types of fermented milk produced from the 

skim milk were analysed. The fermented milk was produced from two commercial bacterial culture 

combinations, both containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus 

thermophilus. The two commercial cultures are known for producing fermented milk with opposing 

flavour and viscosity; the product information sheets describe the CH1 culture as producing 

fermented milk with a strong flavour and low viscosity, whereas the YF-L811 culture produces 

fermented milk with a very mild flavour and a high viscosity (Hansen, 2011, Hansen, 2016). The 

performance of both unsupervised and supervised multivariate techniques to discriminate the 

peptide and small molecular fingerprints of fermented milk was evaluated. By coupling mass 

spectrometry with multivariate data analysis techniques, an efficient means to discriminate between 
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different fermented milk products, known to have contrasting flavour characteristics, was 

established.  

3.2 Materials and methods 

3.2.1 Samples and reagents 

MALDI matrices and peptide standards were purchased from Bruker Daltonics (Bremen, 

Germany). Acetonitrile and ethanol were obtained from Fluka Analytical (Merck, Kenilworth, NJ, 

USA) and were LC-MS grade. Isopropanol, trifluoroacetic acid (TFA) and water were purchased 

from Fisher Scientific (Hampton, NH, USA), and were all LC-MS grade. Graphene oxide was 

purchased from GRAPHENEA (San Sebastián, Spain). Starter cultures were purchased from 

Christian Hansen (CHR Hansen A/S, Denmark). Skim milk powder was purchased from Fonterra 

(Co‐operative Group, New Zealand).  

3.2.2 Fermented milk preparation 

Two types of fermented milk were prepared using commercial starter cultures (CH-1 and YF-L811, 

CHR Hansen A/S, Denmark). The fermented milk used for the following experiments were 

prepared in collaboration with the Fermented Foods programme, at AgResearch, Palmerston North. 

Each culture contained different strains of Lactobacillus delbrueckii subsp. bulgaricus and 

Streptococcus thermophilus. Briefly, the samples were prepared as follows: milk was prepared by 

reconstituting skim milk powder (Fonterra Co‐operative Group, New Zealand) at 9.1% (w/v) and 

heat-treating at 85°C for 30 minutes in a Grant OLS Aqua Pro Shaking Water Bath (Grant 

Instruments Cambridge Ltd., Shepreth, UK). The milk was allowed to cool to incubation 

temperature (43°C) and inoculated with the starter cultures CH-1 and YF-L811. The milk was 

inoculated at a rate of 110 mg/L of bacteria/skim milk. The pH of the milk was monitored using a 

pH meter (Hanna Instruments, USA), calibrated using buffers of 4.01 and 7.01 The inoculated milk 

was incubated until pH 4.5 was reached. Reconstituted milk from the same batch of milk powder 
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was used as a control sample. Five replicates were prepared for each of the three sample types. The 

milk and fermented milk samples were then stored at −20 °C until MS analysis. 

3.2.3 MALDI-TOF MS 

3.2.3.1 Sample preparation 

The water-soluble extract (WSE) for each sample was obtained according to the protocol outlined 

in De Noni and Cattaneo (2010), with adjustments. The milk and fermented milk samples were 

defrosted and brought to room temperature prior to sample preparation.  

Milk-like samples: For milk-like samples (e.g., those with a pH > 4.5), 1 mL milk was acidified to 

pH 4.5 by slowly adding small drops of 1 M HCl. The samples were left for approximately 15 

minutes prior to pH measurement. The acidified milk was then centrifuged at 5000xg for 20 

minutes at 4 °C (Kubota, Tokyo, Japan). The supernatant was transferred to a fresh Eppendorf and 

centrifuged again at 5000xg for 20 minutes at 4 °C, to remove any additional casein and fat.  

Fermented samples: For fermented samples (e.g., those with a pH < 4.5), 1 mL of fermented milk 

was placed in an Eppendorf tube. Samples were centrifuged at 5000xg for 20 min at 4 °C. The 

supernatant was collected, and the pH adjusted to 4.50 (+/- 0.01) using 1 M NaOH. The pH adjusted 

WSEs were re-centrifuged at 5000xg for 20 minutes at 4 °C. 

The dilution resulting from the addition of HCl or NaOH was kept constant across all samples by 

adding Milli-Q water, where needed. Once the WSEs were obtained for all samples, MS analysis 

was performed as described in the following sections.  

3.2.3.2 Peptide analysis 

In the first stage of MALDI-TOF MS fingerprinting, the peptide fingerprint of the three samples 

was acquired. As peptides are typically ionised in positive mode, only this mode was used at the 

peptide level. MS/MS-based identification of molecules was not performed as the goal was to 

determine if fermented milk could be differentiated rapidly based on MS1 only. To perform peptide 

fingerprinting, a saturated solution of α-cyano-4-hydroxycinnamic acid (HCCA) was prepared in a 
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30:70 solution of acetonitrile and 0.1% TFA. A dried droplet deposition was done in duplicate by 

pre-mixing 1 μL of sample and 1 μL matrix and spotting 1 μL of the mixed solution onto the target 

plate (Anchor Chip plate, Bruker Daltonics, Germany) for each sample (Figure 3.1).  

 

Figure 3.1 MALDI MS target plate. Sample is mixed with a matrix and spotted on the target plate 

prior to being inserted into the instrument. 

3.2.3.3 Metabolite analysis 

Graphene oxide matrix was prepared according to Liu et al. (2012). For each sample in duplicate, 

1 mg of matrix was mixed in 1 mL solution of equal parts ethanol and 0.1% TFA and water. The 

mixture was sonicated for 3 minutes. A thin layer of the matrix was formed by pipetting 1 μL of 

the matrix onto the MALDI target plate. Once dried, 1 μL of the sample solution was pipetted onto 

the layer of dried matrix.  

3.2.3.4 Instrument settings 

All samples were fingerprinted using an Ultraflex III MALDI-TOF tandem mass spectrometer, 

containing a smartbeam™-I laser, with 355 nm wavelength (Bruker Daltonics, Bremen, Germany). 

For peptide analysis, the instrument was calibrated using peptide standard II (Bruker Daltonics, 

Bremen, Germany) as an external calibrant. The mass spectra were acquired in the range of m/z 

700 to 3,500 in positive ion mode. 1,500 shots were accumulated for each spot in AutoXecute 

mode, with a frequency of 100 Hz, and the laser movement set to random walk.  
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For metabolites, the instrument was calibrated using a 1:9 mixture of 2,5-dihydroxybenzoic acid 

(DHB) and HCCA. The mass spectra were manually acquired in the range of m/z 50 to 750, in both 

positive and negative ion mode. 1,500 shots were accumulated for each spot, with a frequency of 

200 Hz, and the laser movement set to random walk. The instrument was optimised for small 

compounds (i.e., the matrix suppression was turned off). 

3.2.4 REIMS 

REIMS analysis was performed directly on each sample as follows: 2 mL of sample was pipetted 

into an aluminium foil cup and a section of the surface vaporised using an electronic monopolar 

surgical knife (Electrosurgical pencil and Erbe VIO 50C generator, Erbe Medical UK Ltd, UK) at 

50 V in cutting mode (Figure 3.2). The vaporisation time was 2 s, with 10 s between ‘burns’ to 

allow the MS signal to return to baseline. Samples were measured in triplicate. The MS data were 

acquired in both positive and negative ionisation mode using a Waters Xevo® G2 Q-TOF MS with 

REIMS interface (Waters Corp. Wilmslow, UK), in sensitivity mode at 100 μL/min isopropanol 

flow rate, with a scan time of 0.5 s and mass range m/z 50-1,200. The instrument was calibrated 

using 5 mM sodium formate in isopropanol before analysis. REIMS data collection was carried out 

in collaboration with the wider Fermented Foods team, at AgResearch, Lincoln. 

 

Figure 3.2 To analyse samples using REIMS, milk/fermented milk was placed in an aluminium foil cup; 

a surgical knife was applied to the surface of the milk. This cuts directly through the sample surface, 

vaporising it and injecting it into a mass spectrometer via a pump, generating a fingerprint of the 

metabolites.  
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3.2.5 Data analysis  

Prior to data analysis, the MALDI-MS fid files (Bruker Daltonics, Bremen, Germany) were 

converted to mzXML format using CompassXport (Version 3.0.13.1, Bruker Daltonics, Bremen, 

Germany). The mzXML files were processed using the R packages ‘MALDIquant’ (Gibb and 

Strimmer, 2012), and ‘MALDIquantForeign’ (Gibb, 2018), with R version 4.0.2 (R Core Team., 

2020). For both peptide and small molecules, processing steps included Savitzky-Golay smoothing, 

baseline correction by Top Hat method, intensity calibration by total ion current, spectra alignment 

and averaging across technical repeats. For peptide spectra, a square root transformation was 

performed before smoothing. Peak detection was performed using the Super Smoother method and 

a signal-to-noise ratio of 2. A feature matrix was then generated with detected m/z ions (peptides 

and metabolites) and corresponding intensity values. Raw spectra were visualised using 

FlexAnalysis, version 3.4 (Bruker Daltonics, Bremen, Germany). 

The REIMS measurements were split into individual replicates, baseline removed, and mass-

aligned to m/z 325.240 in negative mode and m/z 91.059 in positive mode using ProGenesis Bridge 

(Waters Corp. Wilmslow, UK). Further data processing in ProGenesis QI (Waters Corp. Wilmslow, 

UK) removed noise, grouped mass adducts and normalised the data. The normalised abundance of 

the detected ions from the technical replicates were averaged for each sample. The processed data 

were exported into Excel and imported into R for further analysis.  

Principal components analysis (PCA) was conducted on the processed feature matrices for each 

measurement and visualised using the R packages ‘FactoMinerR’ (Le et al., 2008), and ‘factoextra’ 

(Kassambara and Mundt 2020). A permutational multivariate analysis of variance 

(PERMANOVA) was calculated to determine the PCA model significance using the ‘vegan’ 

package (Oksanen et al., 2013). A partial least squares discriminant analysis (PLS-DA) was 

performed on the processed data using the R package ‘mixOmics’ (Rohart et al., 2017). The R 

package ‘ropls’ was used to calculate performance metrics of the PLS-DA models (Thévenot et al., 

2015). In the context of supervised classification, PLS-DA is performed to differentiate and 
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discriminate between sample classes. The concept was originally applied to regression problems 

but was extended to classification; in this context, the sample class is converted to a dummy 

variable, which is predicted using a regression (Rohart et al., 2017). The package ‘pcaMethods’ 

was used to calculate metrics for the PCA models (Stacklies et al., 2007). 

Both MALDI-TOF and REIMS are rapid fingerprinting techniques with minimal sample 

preparation, allowing for a quick analysis time (Figure 3.3). 

 

 
Figure 3.3 Workflow for sample preparation and data acquisition using MALDI-TOF MS. Samples are 

pH adjusted, followed by centrifugation to obtain a supernatant. Samples are diluted 1:25 ul TFA and 

spotted on target plate. Data acquisition can be performed manually or automated to obtain a spectrum 

(a). Workflow for data acquisition using REIMS. Samples require no sample preparation prior to MS 

analysis. Spectra are obtained in near-real time (b). This figure was generated using BioRender.com. 

3.3 Results and discussion 

3.3.1 MALDI-TOF 

The raw mass spectra acquired from the MALDI-TOF MS peptide analysis showed distinct 

differences between the sample types (Figure 3.4) and resembled similar spectra observed 

previously for endogenous peptide profiles of milk (England et al., 2020, Ebner et al., 2015). Both 

a 

b 
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fermented milk products contained unique ions, i.e., m/z 2824.38 is present in YF-L811 only. The 

fermented products also had many compounds in common, i.e., m/z 1329.65 and 1991.09, as well 

as in common with the unfermented milk, i.e., m/z 2460.43.   

 
Figure 3.4 Raw, unprocessed peptide spectra for milk and fermented milk prepared from cultures CH-

1 and YF-L811. Peptide fingerprints obtained by MALDI-TOF MS between m/z 700-3,500. 

Unsupervised multivariate analysis of the peptide fingerprints shows three distinct groupings, 

corresponding to the three different products (Figure 3.5). The model metrics were: R2 = 0.69 and 

Q2 = 0.58. R2 is the explained variance or goodness of fit of the model, and Q2 is a measure of the 

goodness of prediction of the model (Blasco et al., 2015). An R2 value > 0.5 has been suggested as 

a good explanation of biological models (Blasco et al., 2015). There is no critical value of Q2 for 

statistical significance, although a value greater than 0.4 is considered adequate (Blasco et al., 2015, 

Worley and Powers, 2013). A PERMANOVA of the model was statistically significant (P ≤ 0.001). 

There is little variation between the replicates of each sample type, as they cluster closely together 
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in the PCA space. The PCA demonstrates that MALDI-TOF MS can effectively group these 

samples based on their peptide fingerprints and that different peptides were present in the milk 

before and post-fermentation.  

 

Figure 3.5 PCA plot of peptide fingerprints obtained using MALDI-TOF MS on milk (blue) and milk 

fermented using CH-1 (red) and YF-L811 (green), with 95% confidence ellipses. N = 5 replicates for 

each sample type, MALDI-TOF MS replicates (n = 2) were averaged. A PERMANOVA of the model 

was statistically significant (P ≤ 0.001). 

Prior to sample preparation, the performance of the matrix (HCCA) was compared to other 

commonly used MALDI-TOF MS matrices. HCCA performed better than DHB: the number of 

peaks and signal intensity of samples fingerprinted with HCCA was greater than those prepared 

using DHB, and HCCA samples were also less similar in a PCA plot, compared to DHB samples 

(Appendix 3, 4). HCCA was selected as a matrix for use in these experiments, as a result. Filtration 

devices are frequently used in the sample preparation of fermented milk samples prior to MS 

analysis (Yildiz et al., 2011, Nguyen et al., 2014, Theodorou and Politis, 2016). This removes large 

proteins and peptides which can interfere or suppress smaller ions. Ultrafiltration devices (3 kDa 



60 
 

and 10 kDa filter) were trialled prior to this experiment and were found to remove a large number 

of ions in the ultrafiltrate that were present in the unfiltered samples, as well as introducing some 

suppressing and interfering ions (Appendix 5). As such, no filtration devices were used for these 

experiments.  

In the second stage of fingerprinting with MALDI-TOF MS, small molecules present between m/z 

50 – 750 were analysed in positive and negative ionisation mode. The spectra obtained for these 

small molecules had substantially more background noise compared to the peptide spectra; this is 

expected due to the matrix interference at the low mass region. For both modes, the raw spectra 

contained many ions in common between the samples, though there were some clear differences in 

the compounds of the fermented versus unfermented samples (Figure 3.6a; b). The spectra acquired 

in positive ionisation mode showed more distinguishable differences between the sample types than 

those observed in the negative ion mode spectra. In the negative mode spectra, there were no ions 

present in the region of ≥ m/z 300. The positive mode spectra, on the other hand, contained 

numerous ions between m/z 500-750, that were present only in the fermented samples. This could 

be a result of the amalgamation of smaller metabolites or the breakdown of larger ones. Notably, 

there was an increase in the relative intensity of some compounds (e.g., m/z 381.1 in positive mode) 

in the fermented product compared to the milk. This was also notable between the m/z 150 – 250 

region. A blank matrix spectrum was also collected to assess the level of interference introduced 

by the matrix. Conventional matrices, such as HCCA, are not well-suited for the analysis of 

molecules less than m/z 500, due to interference from the matrix peaks in the low mass region and 

its inefficiency in ionising low molecular weight compounds (Kang et al., 2001). To allow efficient 

ionisation of small molecules, graphene oxide was used as a matrix to fingerprint the smaller 

peptides and metabolites in this experiment. Graphene oxide is not a well-established matrix and 

because MALDI-TOF MS is not routinely used for the analysis of such compounds, various 

matrices were first trialled prior to the experiment (Appendix 7, 8). 
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Figure 3.6 Small molecule fingerprints obtained in negative mode by MALDI-TOF MS, between m/z 50-750. Only m/z 50-300 is displayed (a). Small molecule 

fingerprints obtained by MALDI-TOF MS in positive mode, between m/z 50-750 (b). Graphene oxide was used as matrix. 

a 
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Figure 3.6 continued 

 

b 
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A PCA of the small molecule fingerprints indicated some clustering according to sample type, 

although there was no clear grouping between the different sample types (Figure 3.7a). The model 

metrics were: R2 = 0.49 and Q2 = 0.08, indicating overfitting. Overfitting is the concept of overly 

optimising results, where the model fails to generalise over new, unseen data (Kuhn and Johnson, 

2013). Large variations between R2 and Q2 (i.e., R2 >> Q2), in addition to a low Q2, are an indication 

of overfitting (Worley and Powers, 2013). In positive mode, the unfermented milk formed a 

different cluster from the fermented milk, although there was an overlap of the YF-L811 and CH-

1 samples (Figure 3.7b). Compared to the peptide fingerprints, there was more variation within the 

replicates for each sample, particularly for the milk samples which did not cluster closely in the 

PCA space for either negative or positive mode. The variation seen in the PCA plot could be due 

to poor ionisation of the low molecular weight compounds, as well as interference from the matrix. 

The model metrics were: R2 = 0.51 and Q2 = 0.10, again indicating overfitting. Both models were 

statistically significant, according to a PERMANOVA (p ≤ 0.05).  

 

Figure 3.7 PCA plot of small molecule fingerprints obtained using MALDI-TOF on milk (blue) and 

milk fermented using CH-1 (red) and YF-L811 (green) in negative mode (a) and in positive mode (b), 

with 95% confidence ellipses. N = 5 replicates for each sample type, MALDI-TOF replicates (n = 2) 

were averaged. A PERMANOVA of each model was statistically significant (negative mode p ≤ 0.001, 

positive mode p = 0.004). 
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Next, a supervised analysis was performed to further explore the differences in the fingerprints of 

the small molecules obtained by MALDI-TOF using a PLS-DA. Using a PLS-DA on the negative 

mode fingerprints, the three groups were separated using components 1, 3 and 4 (Figure 3.8a). A 

PLS-DA using component 2 was unable to group the samples according to their respective classes. 

The model fit metrics were: R2X = 0.56, R2Y = 0.96 and a Q2 = 0.6. R2X is the X variance explained 

by the model (Blasco et al., 2015); R2Y is the sum of variation in Y (sample class) explained by 

the model. This model indicates good class separation (R2Y), and good predictive ability (Q2), but 

the disparity between R2Y and Q2 indicate it may be overfit. A PLS-DA applied to the positive 

mode samples was able to separate the two fermented milk samples using components 1, 2 and 4, 

although the YF-L811 samples were not fully separated from the unfermented milk (Figure 3.8b). 

The model fit metrics were: R2X = 0.69, R2Y = 0.87 and a Q2 = 0.28. This model indicates good 

class separation, but a low predictive ability and the variability between R2 and Q2 suggest it is 

overfit.  

 

 

Figure 3.8 Milk (blue) and fermented milk samples prepared from starter cultures CH-1 (red) and YF-

L811 (green). PLS-DA performed on small molecules obtained by MALDI-TOF MS in negative mode 

(a) and in positive mode (b), with 95% confidence ellipses. 
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Unsupervised analysis of the small molecules detected by MALDI-TOF MS was able to cluster the 

fermented milk to some extent, although, the peptide fingerprints demonstrated a greater ability to 

distinguish the different milk products. The peptide profile of other fermented milk products has 

previously been shown to change during fermentation; the number of peptides increased in the 

fermented product and there were few peptides reported to be in common between fermented and 

unfermented samples (Ebner et al., 2015). This is consistent with the results of the present 

experiment: the m/z ions in the fermented samples were more abundant in the raw spectra of the 

fermented samples, and multivariate analysis demonstrates there are few similarities between the 

peptide fingerprints of these products. The profile of small compounds (including amino acids, 

peptides, and fatty acids), obtained via UPLC-QTOF-MS, in fermented milk was recently shown 

to be different to that of unfermented milk and has been demonstrated using multivariate analysis 

techniques (Li et al., 2020b). In this study, the low molecular weight compounds proved less 

informative than the peptides. 

3.3.2 REIMS 

The raw spectra obtained by REIMS for the fermented milk samples contained many of the same 

m/z ions, for both positive and negative mode, though there were several compounds present in the 

CH1 samples that are not observed in the YF-L811 samples (Figure 3.9a; b). There were few ions 

present between m/z 900-1200, and so this region was excluded when visualising the raw spectra. 

Both the fermented milk samples and unfermented milk showed compounds with the same m/z in 

the negative ion mode. Some compounds (e.g., m/z 311.17, 325.18 and 329.20) were observed in 

the negative mode in the milk as well as both of the fermented milk. The unfermented milk 

contained a number of ions > m/z 600, that were not present in either fermented milk. The positive 

spectra for the fermented milk samples were also very similar and contained many of the same 

peaks between m/z 50 – 300. The CH1 samples, however, showed more compounds than YF-L811, 

particularly between m/z 400 to 900.
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Figure 3.9 Negative mode profiles obtained by REIMS, between m/z 0 – 900 (a). Positive mode profiles obtained by REIMS, between m/z 0 - 900 (b). 

a b 
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Unsupervised analysis of the REIMS fingerprints in negative mode was able to cluster the 

unfermented milk separately from the two fermented milk samples; however, there was an overlap 

between the fermented milk (Figure 3.10a). The model metrics were: R2 = 0.46 and Q2 = 0.27. The 

low Q2 suggest poor predictive ability. Post-processing, REIMS detected 3,320 m/z ions in negative 

mode. A PCA of the positive mode samples showed the milk samples forming a different cluster 

to the fermented milk (Figure 3.10b). There was some overlap between the two fermented milk 

samples, with one YF-L811 sample clustering closely with the CH-1 samples. The model metrics 

were: R2 = 0.42 and Q2 = 0.10. REIMS detected 6,092 m/z ions in positive mode. A PERMANOVA 

of both models was statistically significant (p ≤ 0.001). In this analysis, distinct clustering could be 

seen in the fermented versus unfermented samples, suggesting that the small molecules in the 

fermented samples undergo a compositional change during fermentation that is detectable by 

REIMS. Although the clusters corresponding to the fermented samples were overlapping, 

indicating that the molecular fingerprint is similar in the two fermented products.  

 

Figure 3.10 Milk (blue) and fermented milk samples prepared from starter cultures CH-1 (red) and YF-

L811 (green). PCA plot of metabolites obtained by REIMS in negative mode (a) and positive mode (b), 

with 95% confidence ellipses. A PERMANOVA of the models was statistically significant (negative 

mode p ≤ 0.001; positive mode p ≤ 0.001). N = 5 replicates for each sample type, REIMS replicates (n 

= 3) were averaged. 
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Supervised analysis of the negative mode fingerprints, using components 1, 2, 3 was able to 

separate the three sample groups (Figure 3.11a). The model fit metrics were: R2X = 0.47, R2Y = 

0.88 and a Q2 = 0.38.  A PLS-DA on the positive mode fingerprints using components 1, 2, 3 was 

also able to discriminate the three sample groups (Figure 3.11b). The model fit metrics were: R2X 

= 0.49, R2Y = 0.88 and a Q2 = 0.55. Both models indicate good class separation (> 0.5), but a low 

predictive ability and the variability between R2 and Q2 suggest they are overfit, particularly in the 

case of negative mode. 

 

Figure 3.11 PLS-DA of metabolites from REIMS in negative mode (a). PLS-DA of metabolites from 

REIMS in positive mode (b), with 95% confidence ellipses. 

The greatest advantage to REIMS is that it requires no sample preparation, and a fingerprint can be 

obtained in near real-time. REIMS can detect a wide range of small molecules and lipids, with polar 

compounds, such as small phenolic compounds, fatty acids and phospholipids readily detected in 

negative mode, and non-polar compounds, (e.g., acylglycerols) and some phenol derivatives 

readily detected in positive mode (Arena et al., 2020). While PCA can be useful as an exploratory 

tool to visualise the relationship between samples, in metabolomic fingerprinting studies separation 

of sample class typically depends on the use of discriminant analysis techniques, such as PLS-DA 

or orthogonal-PLS-DA (Wang et al., 2019, Paxton, 2020). Classification rates in discriminant 
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models can also be improved using feature reduction or sparse models (i.e., removal of noisy 

features that do not contribute to the discrimination). It is possible that the metabolites primarily 

detected by REIMS, such as lipids and fatty acids, do not undergo major compositional change 

during fermentation of milk using the analysed bacterial cultures, and thus there is little variation 

between the samples at this level. It is also possible that REIMS does not readily detect the primary 

metabolites that are present in milk and fermented milk, though there are no similar studies with 

which to compare. The absence of published work on non-solid substrates also limits the 

interpretation of these results. Techniques that will allow REIMS to better analyse liquid samples 

are currently being investigated by other researchers, which may improve REIMS’ capabilities for 

the analysis of dairy and liquid products (Paxton, 2020).  

3.4 Conclusions 

This chapter reported the use of different fingerprinting technologies to rapidly discriminate 

between unfermented milk and milk fermented milk using different starter cultures. Both 

techniques can detect a broad range of molecule class, and as preliminary screening tools can 

provide insights into the compounds undergoing compositional change during fermentation. This 

can direct further studies targeting a specific class of compound during the development of 

fermented milk products. Both fingerprinting techniques were able to show some clustering 

according to the sample type using unsupervised multivariate analysis. PCA analysis revealed that 

the molecules driving variation between the groups is more apparent at the peptide level compared 

to the small molecule level. The REIMS fingerprint did not result in distinct clusters for the 

different cultures using non-discriminant analysis (PCA), likely this is due to the majority of 

molecules detected by REIMS not being impacted by the differences in the two 

cultures. Discriminant analysis did lead to the separation of the different sample types, reflecting 

that REIMS could be used for differentiating between the two different cultures. Although model 

performances were poor in this instance, feature reduction can improve model performance and 

lead to improved classification rates. Advances in applications of REIMS for dairy and liquid 
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samples may also show promise for the use of this instrument in the dairy industry in the future. In 

summary, changes in the peptide fingerprints demonstrated the greatest discrimination between the 

different products analysed in this study, suggesting that the mode of proteolysis is the main 

differentiator between the two cultures tested, which could relate to the contrasting flavour and 

textural properties of the fermented milk. This chapter demonstrated that peptide fingerprinting via 

MALDI-TOF was an effective and rapid means to discriminate between different fermented milk 

products and may be used in further applications to discriminate fermented milk products and to 

monitor product development. This technique was therefore selected as a means for rapid 

fingerprinting and discrimination of milk fermented with various bacterial cultures in subsequent 

chapters in this thesis.  
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Chapter 4 Peptide fingerprinting and predictive modelling of 

fermented milk 

Summary 

The objective of this chapter was primarily to model the peptide fingerprint of fermented milk 

throughout fermentation. Fingerprinting techniques established in Chapter 3 were employed to 

obtain peptide fingerprints of fermented milk prepared from a variety of starter and probiotic 

bacterial combinations. The results section is divided into three parts: exploration and visualisation 

of peptide fingerprints using untargeted multivariate analysis techniques, implementation of 

regression techniques to predict the change in signal intensity across fermentation time for 

individual m/z ions, and finally implementation of classification techniques to classify signal 

intensities between unfermented and fermented samples. Exploration of fingerprints using 

untargeted multivariate analysis techniques revealed that the samples primarily group by starter 

culture and fermentation time. Regression techniques could successfully model the signal change 

in some cases. Classification techniques were successful in classifying the direction of signal 

intensity over fermentation time.  

4.1 Introduction 

Understanding the changes occurring during fermentation can be useful for quality control and 

monitoring of certain parameters that might be critical for sensory, safety or health-promoting 

properties. Monitoring and prediction of fermentation parameters have been applied for various 

fermented foods using regression and classification techniques, using a variety of techniques to 

collect data as input for predictive models (Mains et al., 2017, Temizkan et al., 2020, Li et al., 

2020a). Such techniques have been applied to predict fermentation characteristics and outputs, such 

as pH, fat, protein, lactose, and salt content (Subramanian et al., 2009, Cimander et al., 2002, 

Temizkan et al., 2020), as well as predicting the concentration of important taste-related 

compounds (Hruskar et al., 2010). These models are beneficial for enabling scheduled fermentation 
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processes, improving throughput and efficiency, improved quality control, and enhancing sensory 

characteristics. 

Products generated during fermentation, via proteolysis, can contribute to the taste, flavour, and 

can have bioactive functions in fermented milk. Prediction of MALDI-TOF MS signal intensity 

has been explored previously, using various physicochemical properties of peptides to predict peak 

presence and/or intensity (Gay et al., 2002, Aiche et al., 2012), but not with regard to the 

development of peptides during fermentation of milk. Predicting changes in the peptide fingerprint 

during fermentation can be beneficial while screening for new bacterial strains to enable the 

development of new and diverse fermented products, with targeted and desirable characteristics. 

Such insights can be used as a starting point for monitoring, prediction, and targeted screening of 

potentially important compounds generated during the fermentation of milk. 

Background to chapter: To provide some context and rationale for this chapter, the objectives and 

methods are discussed in more detail below. 

The primary aim of this chapter was to explore and predictively model the peptide fingerprints over 

fermentation time. Ultimately, this chapter sought to answer the following: can the peptide 

fingerprint be used to provide a means to discriminate milk fermented with different bacterial 

combinations, and can this fingerprint be predicted with the expectation that some of the 

components may have a direct or indirect impact on the sensory profile? Insights from such 

analyses could then be used as basis for targeted screening, prediction and monitoring of potentially 

important molecules produced during fermentation. 

Probiotic cultures were investigated in this chapter for several reasons. The addition of probiotic 

cultures can contribute to the commercial value of fermented products by generating peptides that 

can enhance the nutritional properties (Aryana and Olson, 2017). Probiotic cultures have also been 

reported to impact the metabolites generated in yoghurt products: the concentration of volatile 

compounds was increased in yoghurts fermented with Lactobacillus acidophilus (Østlie et al., 
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2003, Østlie et al., 2005) and Bifidobacterium (Oliveira et al., 2012, Özer and Kirmaci, 2010, 

Prasanna et al., 2014). Because of the potential value of adding probiotics, as well as the 

comparatively few studies investigating the influence of probiotics on peptide fingerprint (and 

related compounds) throughout fermentation, this chapter sought to investigate if differences in the 

peptide fingerprint of probiotic cultures could be modelled throughout fermentation.  

Furthermore, as the intention of this work is to contribute to screening for new bacterial cultures, 

it was considered important to understand if rapid fingerprinting technologies (MALDI-TOF MS) 

could extend to discriminate milk fermented with different probiotics. This would provide some 

understanding of the limitations of this work: can MALDI-TOF MS also be used for screening 

different probiotic cultures, or is the variation in the peptide fingerprint mostly influenced by the 

starter culture? To answer some of these questions, principal components analysis was performed 

to visualise the fingerprints and to establish which factors were driving the variation.  

Predictive modelling techniques were performed to explore if the peptide fingerprint could be 

predicted throughout fermentation. The objective in this section was to initially explore the 

feasibility of predicting the signal intensity for individual peaks (which are assumed to possess 

relevant biological functions for the purposes of this work) throughout fermentation. The goal for 

this work was to understand how peptides break down throughout fermentation, components that 

may be impactful on the final sensory profile, and to be able to predict how such changes to the 

fingerprint occur throughout the course of fermentation. By providing some insight into the change 

in these components throughout fermentation, this potentially could reduce the need to carry 

fermented milk products to full fermentation during initial screening, saving time and cost. As a 

first step in the modelling process, linear and nonlinear regression models were explored to predict 

individual m/z ions/peaks throughout the course of fermentation. It should be acknowledged that 

although these techniques have their limitations and may not be the most suitable, they were 

employed as a first step to explore the data, and to understand if classical statistical techniques 

could suitably model this data. 
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Following on from this, classification techniques were explored. The objective was to predict more 

generally whether a peak would “increase” or “decrease” in signal intensity from early to late 

fermentation time. For this purpose, only a subset of the peptide fingerprint was used; only the 

peaks that displayed a relatively large change in intensity between fermentation times were 

considered here, as it is assumed that they would have a more pronounced effect on the sensory 

profile. Essentially, it is assumed that peaks that are not changing throughout fermentation are 

unlikely to have a significant impact on the sensory profile of the final product. 

For the purposes of this work, some assumptions were made which could be expanded on in future 

works. The m/z ions, or peaks (which comprise the peptide fingerprint), referred to throughout were 

not identified and as such it cannot be said for certain that they do correspond to actual peptides. 

As such, when referring to prediction, the term m/z ion or peak is used, rather than referring to them 

as “peptides”. However, the working assumption in this thesis is that these peaks do correspond to 

real peptides, with biological properties that potentially may be of significance.  

4.2 Materials and methods 

4.2.1 Chemicals and reagents 

MALDI-TOF MS matrices and peptide standards were purchased from Bruker Daltonics (Bremen, 

Germany). Acetonitrile was liquid chromatography-mass spectrometry (LC-MS) grade from Fluka 

Analytical (Merck, Kenilworth, NJ, USA). Optima LC-MS grade water and trifluoroacetic acid 

(TFA) were obtained from Fisher Scientific (Hampton, NH, USA). 

Freeze-dried yoghurt starter cultures YF-L811 and YC380, both containing different strains of 

Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus were purchased from 

Christian Hansen (Hørsholm, Denmark). According to the technical information for the two 

cultures, YC380 has a strong flavour with medium viscosity, and YF-L811 has a very mild flavour 

and very high viscosity. The experiments carried out in Chapter 3 were done in collaboration with 

the wider project team (Fermented Foods Team) and due to the availability of bacterial cultures, 
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YC380 was used in place of CH-1 for the remaining work in this thesis. CH-1 and YC380 both 

have similar properties in terms of flavour, and so it was assumed that results from Chapter 3 would 

be consistent with results in subsequent chapters. 

Probiotic cultures of Lactobacillus acidophilus (LA5), Bifidobacterium (BB12), and Lactobacillus 

paracasei subsp. paracasei (LC) were also purchased from Christian Hansen (Hørsholm, 

Denmark). The cultures were stored at −20 °C until use. Skimmed bovine milk powder was 

purchased from Fonterra (Fonterra Co‐operative Group, New Zealand) and stored at 4 °C until use. 

4.2.2 Experimental design 

A randomised block design was generated using CycDesignN (version 6.0) using the following 

parameters: a resolvable row-column design was generated with 6 rows and 6 columns. The spatial 

arrangement was intended to account for potential temperature variations in the water bath that 

might induce slower or faster fermentation rates (Aguirre-Ezkauriatza et al., 2008). Three factors 

(starter culture, probiotic, fermentation time) with 2 * 3 * 6 levels, for a total of 36 samples (Table 

2). 

Table 2 Factor levels used in experimental design. 

Factor 1 2 3 
Levels  2 3 6 

 Starter Probiotic  Fermentation 
Time 

 YF-L811 LA5 0 
 YC380 BB12 1 
 

 
LC 2 

 
  

3 
 

  
4 

      5 
 

This experimental design was replicated and randomised across five days for a total of 180 samples. 

Each time point was prepared in a separate tube and removed from the water bath, accordingly. 

Samples were prepared in separate tubes according to fermentation time point to limit potential 
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contamination when removing samples. Furthermore, preparing the samples separately would limit 

agitation of the mixture which is reported to interfere with the fermentation process (Aguirre-

Ezkauriatza et al., 2008). An example layout of the sample placement in the water bath is presented 

in Table 3.  

Table 3 An example of the placement of samples in the water bath according to experimental design 

generated in CycDesignN. The numbers correspond to the Starter, Probiotic, Fermentation Time Point, 

where e.g., (2,3,5) corresponds to Starter YC380, Probiotic LC and fermentation time point 5 (e.g., 5 

hours). 

(2,3,5) (1,3,3) (2,1,3) (2,2,4) (1,2,5) (1,1,2) 

(1,2,4) (2,2,1) (1,3,1) (2,3,2) (1,1,3) (2,1,5) 

(1,1,1) (2,1,2) (1,2,2) (1,3,5) (2,3,1) (2,2,0) 

(2,2,3) (2,3,4) (1,1,4) (2,1,1) (1,3,0) (1,2,1) 

(1,3,2) (1,2,0) (2,2,5) (1,1,0) (2,1,4) (2,3,3) 

(2,1,0) (1,1,5) (2,3,0) (1,2,3) (2,2,2) (1,3,4) 

 

4.2.3 Preparation of fermented milk 

Six different inoculated milk mixes were prepared using a combination of two different starter 

cultures combined with one of three probiotic cultures. The probiotic cultures were not mixed in 

combination with one another. Samples were prepared as outlined in Figure 4.1. 

Reconstitution of skim milk: Two litres of milk were reconstituted at 9.1% (w/v; 3% protein) by 

slowly adding milk powder to distilled water while agitating gently using a magnetic stirrer. The 

mixture was prepared to contain 3% protein; this was in line with the objectives of the wider project 

team. The solution was mixed for 30 minutes and stored overnight in a fridge at 4 °C to allow the 

milk to fully rehydrate.  
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Figure 4.1 Workflow to demonstrate the preparation of fermented milk. Skimmed milk powder was 

reconstituted, followed by a heat treatment, and a 1:1 inoculation of starter: probiotic. Samples were 

fermented at 43 °C for up to 5 hours. Samples were removed each hour and placed on ice. This figure 

was generated using BioRender.com. 
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Heat treatment: The milk was heat-treated in a Grant OLS Aqua Pro Shaking Water Bath (Grant 

Instruments Cambridge Ltd., Shepreth, UK). The reconstituted milk was aliquoted in to 500 mL 

Duran® bottles and placed in the water bath, set to 88 °C at 80 rpm. The temperature of the milk 

was monitored every 5-10 minutes until the milk reached a temperature of 84 °C (+/- 0.2 °C). A 

“test” bottle was used to monitor the temperature milk, to reduce potential contamination of the 

milk. Once the milk reached 84 °C, the water bath was adjusted to 85 °C and timed for 30 minutes. 

The milk was cooled in ice water to 43 °C. The milk, minus test bottle, was pooled together under 

a laminar flow hood and then aliquoted in to six 200 mL bottles. The milk was pooled to ensure 

that there were no variations in the milk being used for each treatment.  

Inoculation of starter culture: Each culture was prepared in sterile milk at a concentration of 110 

mg/L of skim milk. This was achieved by mixing 500 mg of each culture in 50 mL of sterile milk 

and gently agitating using a magnetic stirrer for 15 minutes. Each starter culture was mixed with 

heat-treated milk by adding 2.2 mL of the starter culture in to three different bottles of 200 mL 

milk. Next, 2.2 mL of each probiotic mixture was added to a bottle containing each of the starter 

cultures to make six different inoculation milk mixes. The mixtures were gently agitated for 10 

mins using a magnetic stirrer to ensure the culture was fully dispersed in the milk.  

Fermentation: Approximately 35 mL of each of the six fermented milk treatments was aliquoted 

in to six different polypropylene tubes (each tube representing a fermentation time point). Each 

tube was labelled and placed into the water bath according to the randomised design (Figure 4.2), 

set to 43 °C. Samples corresponding to Hour 0 were immediately withdrawn from the water bath. 

Samples were collected at five time points/hours during fermentation. Samples were removed and 

immediately placed on ice water to halt fermentation. Samples were allowed to ferment up to 5 

hours to ensure that they had reached a pH of ≤ 4.5. Samples were stored at −20 °C until MS 

analysis. 
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Figure 4.2 Placement of tubes/fermented milk in the water bath. The position of each tube in the water 

bath was randomised according to the experimental design prepared in CycDesignN. Each tube 

corresponds to a different starter/probiotic/fermentation time point. 

pH Measurements: The pH of each sample was recorded in triplicate to track the progress of the 

fermentation using a pH meter (Hanna Instruments, USA). The pH meter was calibrated using 

buffers of 4.01 and 7.01 (Hanna Instruments, USA). To measure the pH of each sample, 

approximately 1 mL of sample at room temperature was placed in a small beaker. The pH electrode 

was placed directly into the milk sample. The pH reading was allowed to stabilise for a few seconds 

before the reading was taken. Between measurements of different samples, the pH electrode was 

rinsed using distilled water. Samples were discarded after the pH reading was taken.  

4.2.4 MALDI-TOF MS sample preparation 

Samples were first thawed and brought to room temperature. Samples were then prepared as 

described in Section 3.2.3.1 and 3.2.3.2. Samples were prepared in the same block as the 

preparation of the fermented milk, i.e., milks fermented on day 1 were prepared for MS analysis at 

the same time. 
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4.2.5 MALDI-TOF analysis 

Three repeats of MALDI-TOF data acquisition were performed for each sample.  

Instrument Settings: All samples were profiled using an Ultraflex III MALDI-TOF tandem mass 

spectrometer, containing a smartbeam™-I laser, with 355 nm wavelength (Bruker Daltonics, 

Bremen, Germany). The instrument was calibrated using peptide standard II (Bruker Daltonics, 

Bremen, Germany) as an external calibrant. The mass spectra were acquired in the range of m/z 

700 to 3,500 in positive ion mode. 3,500 shots were accumulated for each spot in AutoXecute 

mode, with a frequency of 66.7 Hz, 90 shots were collected per raster shot and the laser movement 

was set to random walk. 

4.2.6 Data pre-processing 

Processing of the MALDI-TOF spectra was performed as described in Section 3.2.5. Following 

processing, a feature matrix was generated with detected peaks (or m/z ions) and corresponding 

intensity values. The feature matrix generated was averaged by technical repeats (n=3). This 

resulted in a feature matrix with 143 peaks and 178 samples. Two samples were removed as they 

had been mis-labelled during sample preparation. This was observed during exploratory analysis 

via principal components analysis. The feature matrix was used for subsequent analysis, unless 

otherwise stated. The terms peak and m/z ion may be used interchangeably throughout this chapter. 

Although peptide fingerprinting was performed in this chapter and it is assumed for the purpose of 

this work that the detected peaks/ions correspond to peptides, the peaks were not identified and 

therefore cannot be confirmed or referred to as true peptides. 

4.2.7 Data analysis and modelling 

4.2.7.1 Exploratory analysis 

Principal component analysis (PCA) was performed on the processed feature matrix using the R 

packages ‘factoextra’ (Kassambara and Mundt 2020) and ‘factominer’ (Le et al., 2008). The PCA 

allowed visualisation of patterns and trends within the fingerprints. To understand the influence of 
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each factor (i.e., fermentation time, starter, probiotic), three PCA plots were generated and colour-

coded by factor. A permutational multivariate analysis of variance (PERMANOVA) was calculated 

using the package ‘vegan’ (Oksanen et al., 2013), to compare groups in the PCA.  

4.2.7.2 Predictive modelling 

Individual m/z values were investigated using regression techniques to establish if these techniques 

could be used to model individual peaks over fermentation time and to predict the signal intensity 

recorded by MALDI-TOF. This also served as an exploratory exercise to understand the behaviour 

of individual peaks across different bacterial combinations throughout fermentation. 

Multiple Linear Regression: Multiple linear regression analysis (Wasserman, 2004) was performed 

on individual peaks obtained from the feature matrix (n=143 peaks) using base R function ‘lm’ and 

visualised using the package ‘ggplot2’ (Wickham, 2011). Diagnostic plots were generated using 

base R functions and ‘ggplot2’ (Wickham, 2011). The multiple regression models were generated 

using the signal intensity of individual peaks as response variable, and the fermentation time 

(numeric), starter culture (factor) and probiotic culture (factor) as explanatory variables. Note, 

assumptions were checked after model generation. 

First, a null, intercept-only model was generated for each peak (n=143 models) and compared 

against a model with increasing complexity to understand the significance and performance of each 

predictor term. This was assessed using two criteria: first, by generating each model with added 

interaction terms and comparing the resulting Akaike information criterion (AIC) for each model. 

AIC is a technique frequently used to compare multiple statistical models (James et al., 2013, 

Pedersen et al., 2019, Portet, 2020). Two or more models may be evaluated, and an AIC value 

calculated; the lower the AIC value, the more optimal the model, though the values themselves 

bear no actual meaning. When comparing models using AIC, as a standard rule of thumb, for a 

model to be considered significantly better, it should be ≥2 AIC units lower than another model 

(Burnham & Anderson 1998). 
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Secondly, an Analysis of Variance (ANOVA) was carried out to compare each model to assess the 

significance of each added term and evaluate whether the final model significantly outperforms 

null or less complex models (James et al., 2013). The model for each peak was summarised by 

extracting the adjusted R2 and model p-value, with adjustment of p-values by Benjamini-Hochberg 

correction (Benjamini and Hochberg, 1995). An adjusted R2 accounts for the number of predictors 

in the model (James et al., 2013). 

Multiple linear regression models were visualised using the package ‘ggplot2’ (Wickham, 2011). 

Plotting the data can reveal problems with a model that cannot be determined from statistics alone, 

such as the R2 (James et al., 2013), i.e., over, or underestimating data points. If the plot resembles 

data from a bivariate normal population, then R2 can be considered a meaningful metric; however, 

R2 can be viewed as less reliable when data do not follow this population (Weisberg, 2013).  

Model evaluation: The suitability and performance of the multiple linear regression models were 

then assessed by inspecting model diagnostic plots. The diagnostic plots display four plots: (1) the 

original data to assess for a linear relationship between predictor and response variable. (2) The 

residuals vs fitted values should show the points sitting randomly and evenly around zero. When 

there is an obvious pattern in the shape of the data points, the model may be poorly fit and not 

follow assumptions of a linear model. (3) A histogram of residuals should be normally distributed, 

with a bell-shaped curve where most of the data points sit around 0. If there is a tail either side, it 

indicates it does not follow assumptions of the model. (4) A QQ-plot of residuals, the model 

residuals are compared to a normal distribution. Well-fit residuals should be close to a straight line; 

data that deviate from this line indicate a poor fit and can be used to indicate potential outliers 

(Wasserman, 2004, James et al., 2013). Other criteria, such as collinearity or high-leverage could 

also be used for assessing the assumptions and suitability of a regression model, although these 

issues are not reported here. 
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Generalised additive model: Generalised additive models (GAM) were generated using the R 

package ‘mgcv’ (Wood, 2015). The models were visualised using the package ‘tidymv’ (Coretta, 

2021). The GAM model was performed to further explore the behaviour of the peaks through time, 

and to establish whether a non-linear model may be more effective in generalising over these data. 

GAM models were generated using the signal intensity of individual peaks as response variable, 

and using a smooth term for fermentation time, and an interaction smooth between all three factors. 

To compare the performance of a GAM model over a multiple linear regression model, a model 

was generated using each technique for all peaks (n=143), using base R functions, ‘aov’ and ‘AIC’. 

The models were assessed by comparing the two models by AIC, ANOVA and adjusted R2.  

A diagnostic check of the GAM model was performed to test for patterns in the residuals, in a 

similar manner to the multiple linear regression diagnostics.  

Classification and data preparation: 

Discriminant analysis: The feature matrix was reduced to select only for peaks that were 

significantly changing throughout fermentation, eliminating peaks of low intensity and peaks that 

were changing minimally throughout fermentation. A linear discriminant analysis was performed 

to rank the peaks changing significantly over time using the R package ‘sda’ (Ahdesmaki et al., 

2015). A subset of the peaks changing most over time was selected; a subset of ‘40’ peaks were 

retained and were visualised according to their t-score ranking. The t-scores, based on a statistical 

t-test, are used to identify the most important class discriminating peaks (Bø and Jonassen, 2002, 

Inza et al., 2004, Mundra and Rajapakse, 2016). The peaks in the feature matrix are then ranked by 

their t-score. In this case, this allowed for visualising peaks that are typical or characteristic of 

early/late fermentation times. The assumption being that if a peak is characteristic of early 

fermentation, then it is less prevalent at later fermentation times. The discriminant analysis uses a 

shrinkage t-statistic (James-Stein) which makes no assumptions of distributions for data or the 

model parameters. This approach has been found to lead to consistently high rankings of features 
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(Opgen-Rhein and Strimmer, 2007). The decision to retain 40 was somewhat arbitrary and not 

based on any specific threshold or criteria. This has been reported in other studies, where a 

seemingly arbitrary number of features has been selected for analysis (Blanco et al., 2018, 

Ahdesmaki et al., 2015, Bø and Jonassen, 2002). Incorporating false discovery rates (FDR) can be 

used as a threshold to select a subset of features that meet a certain criteria. This was not utilised in 

this case as the number of samples was deemed to be too low to produce reliable statistics for FDR 

calculations (Ahdesmaki et al., 2015).  

Data preparation: The top 40 peaks were extracted from the original feature matrix and were 

reformatted for classification using the packages ‘reshape2’ (Wickham, 2007) and ‘tidyverse’ 

(Wickham et al., 2019). The processed feature matrix (now containing 40 peaks (columns) * 178 

samples (rows)) was reformatted by converting the data to a long format, i.e., the feature matrix 

was transformed to have each instance of a peak as a row rather than a column, giving a total of 

1120 data points at each fermentation time point. For classification, fermentation hour 4 was 

selected as an exemplar, with the aim of predicting the changes in peak intensity over time through 

prediction of the class labels (increase or decrease), from hour 0 to hour 4. Hour 4 was selected as 

the pH of these samples most closely resembled that of commercial fermented milk (most samples 

had pH ~ 4.5). The differences in intensity between time points were calculated and each instance 

of a peak was assigned a label to indicate the direction of the intensity (either increasing or 

decreasing) over time. Boxplots were generated using ‘ggplot2’ of the top 40 peaks to visualise the 

change in signal intensity between early and late fermentation time points. Data were randomly 

sampled and divided into training and test sets (70% training and 30% test) for model generation.  

Model generation: Classification techniques were performed using the R package ‘H2O’ (LeDell 

et al., 2020), ‘xgboost’ (Chen et al., 2021), and ‘RWeka’ (Hornik et al., 2007). Five models were 

generated: deep learning (DL; Kuhn and Johnson, 2013), random forest (RF; Breiman, 2001), 

gradient boost machine (GBM; Friedman, 2001), eXtreme Gradient Boosting (XGBoost; Chen and 

Guestrin, 2016), and C4.5 (Quinlan, 1993). Each model was generated using the default model 
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parameters. The response variable was the class label (increase or decrease), with signal intensity 

as predictor variable. 

Assessing model performance: The following metrics were calculated for each model and used to 

assess model performances: mean class error, area under the curve (AUC), area under the precision-

recall curve (AUCPR), F-measure, Matthew’s correlation coefficient (MCC) and predictive 

accuracy. There are numerous metrics with which to assess model performance in classification 

models, and it is recommended to use more than one metric for model selection (Hastie et al., 2009, 

Kuhn and Johnson, 2013, James et al., 2013). The appropriate metric can vary depending on the 

data, and the objective of the test. In binary classifications, accuracy and F-measure are among the 

most popular metrics used to evaluate performance (Hastie et al., 2009, Kuhn and Johnson, 2013, 

James et al., 2013). The F-measure combines two other metrics, precision, and recall, where 

precision is the accuracy of the positive class and recall is the number of true positives divided by 

the number of all possible positive samples. MCC is a metric that is said to be more robust and 

informative for binary classification than the F-measure (Chicco and Jurman, 2020). MCC returns 

a value between -1 and 1, where -1 indicates a perfect mis-classification, and +1 indicates a perfect 

correct classification. Other metrics used include accuracy, which is the number of correct 

predictions as a ratio of all predictions made. The AUC evaluates how well a binary classification 

can distinguish between true positives and false positives, where a value closer to 1 is a perfect 

classifier. The AUCPR is more sensitive than AUC and is suggested to be a more informative 

metric than the AUC (Chicco and Jurman, 2020). 

4.3 Results and discussion  

4.3.1 Exploration of samples and peptide fingerprints through multivariate analysis 

Untargeted multivariate analysis was performed on the processed peptide fingerprints (feature 

matrix) using principal components analysis (PCA: Figure 4.3). The PCA in Figure 4.3b indicated 

that the biggest chemical variation in these samples is derived from the difference in starter culture. 

The samples were separated along the first principal component (PC1), accounting for 33.4% of 
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the variance, with the exception of a cluster of samples corresponding to the unfermented milk 

samples at hour 0. Samples were separated along PC2 by fermentation time (Figure 4.3a), 

accounting for 19.3% of the total variance. In the case of YC380, the unfermented and hour 1 

samples were further separated along PC1. No clear grouping could be seen by probiotic culture 

(Figure 4.3c). 

For YF-L811, the earlier ferments cluster separately, with the hour 1 samples clearly splitting from 

the unfermented samples, but the later ferments clustered closely in the PCA space (hour 3-5). For 

YC380, samples formed more distinctive groups at later fermentation times, with the exception of 

hours 4 and 5. The grouping in the PCA plots was consistent with what is seen in the pH profiles 

(Appendix 10); YC380 samples were slower to ferment and grouped closely at the early 

fermentation times, whereas YF-L811 was quicker to ferment and grouped separately at early 

fermentation times. The PCA suggest that samples fermented using YC380 as starter culture were 

undergoing greater changes in the peptide composition during fermentation than those fermented 

using YF-L811. This is further supported by the visualisation of peak patterns, where there were 

distinct differences between fermentation time points and between starter cultures. YC380 is 

known to generate a product with a strong flavour; the separation of YC380 samples at later 

fermentation times could be reflective of the intense flavour being generated and may suggest that 

the peptide fingerprint is a component of the flavour formation of the product, amongst the 

numerous other compounds known to contribute to flavour in fermented milk products. 

Each treatment was also modelled separately by PCA by bacterial combination which indicated a 

greater separation and more distinctive grouping by time in the PCA space. Hierarchical clustering 

and PCA modelling by individual time point also indicated some clearer grouping by probiotic type 

(Appendix 16, 17).  

The PCA plots established that MALDI-TOF MS can capture the variation in peptide fingerprint 

attributed to fermentation time and starter culture, and to a lesser extent the probiotic cultures. 
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Figure 4.3 PCA plot of the peptide fingerprints, for all replicates, coloured by fermentation time (a), 

starter culture (b), probiotic culture (c). A PERMANOVA of each model indicated significant 

differences between the treatments (P<0.05). 

b 

a 
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Figure 4.3 continued 

 

Multivariate techniques have previously been demonstrated to be effective at discriminating the 

small compounds in various types of raw milk (England et al., 2020), to characterise the effects of 

fermentation on milk (Li et al., 2020), as well as various processing parameters including 

inoculation rate (Dan et al., 2017) and addition of adjunct cultures (Tian et al., 2017, Ebner et al., 

2015). The volatile compounds of yoghurts fermented using various probiotic cultures were 

analysed while in storage by Tian et al., (2017). Yoghurts fermented using L. casei were sampled 

across multiple storage time points and all formed one group in a hierarchical clustering analysis, 

whereas all other samples (fermented with L. acidophilus, L. plantarum, and L. rhamnosus, and 

starter cultures only), clustered together by storage time rather than by bacterial culture (Tian et al., 

2017), indicating that L. casei has a pronounced effect on the volatile profile of yoghurts, while in 

storage.  

c 
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4.3.2 Exploration of individual peaks during fermentation using regression techniques 

4.3.2.1 Linear regression 

Next, individual m/z values were explored using classical statistical techniques. A multiple linear 

regression model was assessed for its suitability to predict the change in signal intensity across time 

points for each peak detected by MALDI-TOF MS (n=143 peaks/models). Predictor terms were 

assessed using AIC and ANOVA (Table 4). The full interaction model was significant (according 

to ANOVA) and was more suitable (according to AIC) for about two-thirds of the peaks analysed. 

As indicated in Table 4, some of the models were not improved by the addition of any term, i.e., 

only 115 out of 143 models were significant when time was added as a term vs. the null model. 

Inspection of the AIC values across each model revealed that differences in AIC between some 

models was minimal (<1) and would suggest that the added term is not always justified based on 

this criteria alone. 

Table 4 Comparing added terms for each peak (n = 143). Performance and significance of models with 

added complexity were assessed by AIC and ANOVA. m/z signal intensity was used as the response 

variable. 

 
Intercept-only model vs. added interaction terms  

Model  

Number of models with 
lower AIC 

Number of significant models 
(p ≤ 0.05) 

Null vs Model 1 (time)  123 115 

Model 1 vs Model 2 (time * 
starter)  139 134 

Model 2 vs Model 3 (time * 
starter * probiotic)  91 90 

Next, a model was generated for each peak using all interaction terms. Though this model did not 

significantly improve performance for all peaks, the full model was generally improved compared 

to a less complex model (Table 5). A summary of the peaks with the highest and lowest adjusted 

R2 is presented in Table 5. Of these, 116 models/peaks were significant (p ≤ 0.05), and 96 had an 

adjusted R2 greater than 0.5, 35 had an R2 value greater than 0.7. The multiple linear regression 
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model performed poorly in some cases, with adjusted R2 values < 0 for some (Table 5). A full list 

of the m/z ions and corresponding adjusted R2 and p-values from the multiple linear regression 

model are reported in Appendix 18. Evaluating and interpreting R2 very much depends on the 

application and data being analysed. James et al., (2013) suggest that large residual errors can be 

expected in typical biological applications, due to various other factors that have not been measured 

and accounted for. In such cases, an R2 as low as 0.1 might be expected. In the current study, there 

are other factors that might be influencing the response variable. This could include anything from 

variations during the fermentation process, sample preparation and instrumental analysis. These 

factors, as well as other unmeasured factors, may account for some of the variation in this data.  

Table 5 Adjusted R2 and p-values of model with full interaction terms. This is a subset of peaks with the 

highest and lowest R2 values. P-values were adjusted using Benjamini-Hochberg correction. 

  m/z Adj_R2 p-value 

Lowest 

1988.17 -0.01 1.00 
1746.62 0.07 0.13 
1761.65 0.11 0.61 
786.7 0.12 0.63 

1066.13 0.15 0.25 
1189.79 0.16 1.00 
3307.15 0.16 ≤0.001 
3499.59 0.18 1.00 
1614.42 0.22 ≤0.001 
1633.88 0.22 0.06 

Highest 

2395.59 0.82 ≤0.001 
1976.61 0.82 ≤0.001 
2201.87 0.84 0.01 
3346.38 0.85 ≤0.001 
2807.34 0.86 ≤0.001 

1860.65 0.86 ≤0.001 

2120.84 0.87 ≤0.001 

2300.61 0.88 ≤0.001 

2854.27 0.89 ≤0.001 

2316.09  0.89 ≤0.001 

To assess the performance of the multiple linear regression on these data and to explore how each 

peak behaved by treatment, the model was visualised and evaluated. As an exemplar, two models 
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were evaluated: one model which had a low adjusted R2 and one with a high R2. A multiple linear 

regression model of m/z value 1860.65 had an adjusted R2 of 0.86 and was significant (p ≤ 0.05). 

The model was visualised, faceting by starter culture and colour-coded according to probiotic 

culture (Figure 4.4). This model indicated a positive linear relationship of signal intensity over 

time, the model performed well for each bacterial combination and was suitably describing the 

variance in the model. 

 

 
Figure 4.4 Multiple linear regression model of m/z value 1860.65. Fermentation hour, starter culture 

and probiotic terms were used as predictor terms to predict the response of signal intensity. The signal 

intensity is along the y-axis, fermentation time is along the x-axis. The plot is faceted by starter culture 

and coloured by probiotic culture. Legend indicates the corresponding probiotic culture. Formula: 

lm(Signal_Intensity  ~ Time  * Starter * Probiotic). 

The suitability and performance of the regression model were assessed by inspecting the model 

diagnostic plots (Figure 4.5). A scatter plot of residuals vs fitted values (Figure 4.5b) show most of 
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the data points scattered around the blue line, with no distinctive pattern. The histogram of residuals 

(Figure 4.5c) appears to be normal, indicating no obvious skewness. The QQ-plot of residuals 

(Figure 4.5d) shows most of the data points follow the line, though there are two samples that are 

selected as potential outliers: samples 58 and 75. Overall, this appears to be a good fit and the 

model describes the data well, with no major concerns for violations of model assumptions. 

 

Figure 4.5 Model diagnostics for multiple linear regression of Signal Intensity ~ Time * Starter * 

Probiotic. Model diagnostic plots: Raw data plotted by signal intensity ~ time (a), a scatter plot of 

residuals vs fitted values (b), a histogram of residuals (c), QQ plot of residuals (d). 
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The model performance was also assessed for a model with low R2 value. A multiple linear 

regression model of m/z value 1189.79 had an adjusted R2 of 0.16 and was not significant (p > 0.05). 

The model was visualised, faceting by starter culture and colour-coded according to probiotic 

culture (Figure 4.6). Unsurprisingly, the line does not run through most of the data; the data 

modelled here does not follow a linear relationship, so the straight line of best fit is unsurprisingly 

not very helpful and does not run through most of the data.  

 

  
Figure 4.6 Multiple linear regression model of m/z value 1189.79, fermentation hour, starter culture 

and probiotic terms were used as predictor terms to predict the response of signal intensity. The signal 

intensity is along the y-axis, fermentation time is along the x-axis. The plot is faceted by starter culture 

and coloured by probiotic culture. Legend indicates the corresponding probiotic culture. Formula: 

lm(Signal_Intensity  ~ Time  * Starter * Probiotic). 
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As expected, the diagnostics, in this case, indicate a poor model performance (Figure 4.7). The data 

do not indicate linearity (Figure 4.7a). The scatter plot of residuals confirms nonlinearity and shows 

that the variance of the residuals is increasing with the fitted values (Figure 4.7b); the residual plot 

shows a discernible pattern, indicating there is a problem with some aspect of the linear model. The 

residuals show a V-shaped pattern, strongly indicating non-linearity in the data. The histogram of 

residuals (Figure 4.7c) is skewed to the right (non-normal), and several data points along the QQ 

plot (Figure 4.7d) are deviating from the reference line indicating it is non-normal. 

 
Figure 4.7 Multiple linear regression model of m/z value 1189.79, fermentation time, starter culture 

and probiotic terms were used as predictor terms to predict the response of signal intensity. The signal 

intensity is along the y-axis, fermentation time is along the x-axis. The plot is faceted by starter culture 

and coloured by probiotic culture.  
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Of note, the signal intensity for this peak (m/z 1189.79) increased in the middle of fermentation 

before decreasing towards the end of fermentation, indicating it is an intermediate peptide. This 

could be related to bacterial utilisation or the conversion of peptides into other products. The 

increase in intensity could be explained by the degradation of milk proteins and the subsequent 

liberation of peptides, causing an increase in the peptides during fermentation. For instance, during 

the fermentation process, bitter peptides may be liberated from the native protein via hydrolysis. 

Subsequent hydrolysis can reduce these products to amino acids and derivatives, thereby 

eliminating the bitter tasting peptides (Newman et al., 2014). As such, this could translate to an 

increase in the concentration of certain peptides as they are liberated, followed by a decrease as 

they are used in other processes. 

Overall, the multiple linear regression described some of this data well but failed to model all of 

the peaks adequately. The multiple linear regression was significant in most cases and the R2 value 

was reasonable (> 0.5). In many cases, however, the data did not follow a linear trend and inspection 

of the model diagnostics did not suggest a good fit.  

4.3.2.2 Generalised additive modelling  

Next, in an attempt to further explore the behaviour of these peaks through time, and to establish 

whether a non-linear model may be more effective in generalising over this data, a general additive 

model (GAM) was trialled (James et al., 2013). To compare the performance of a GAM model over 

a multiple linear regression model, a model was generated using each technique for all peaks 

(n=143). The models were assessed by comparing the two models by AIC, ANOVA and adjusted 

R2 (Table 6).  

Table 6 Multiple linear regression model vs general additive model across all peaks. Models were 

compared by AIC, ANOVA and R2. 

Linear model vs GAM model  
Number of GAM models with lower AIC 138  

Number of significant models (p ≤ 0.05) 136  

Number of GAM models with greater Adj R2 136  
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Table 6 indicates that the GAM model improved performance for the majority of peaks (138 out of 

143), the GAM was significantly different to the linear model in most cases (136 out of 143) and 

had increased adjusted R2 for most peaks (136/143). 

The adjusted R2 values were inspected again for the lowest/highest R2 values as outputted in the 

linear regression model to understand how the GAM model improved performance (Table 7). In 

many cases, the R2 value was increased considerably, for instance in m/z 1066.13 which increased 

from 0.15 to 0.91 in the GAM model. Although, in some cases, it was only marginally improved, 

i.e., m/z 3499.59. In the peaks with the “highest” R2 value in the linear model, in most cases, the 

performance remained the same or was improved. For some m/z values, the R2 did marginally 

decrease in the GAM model, i.e., for m/z 2201.87 which decreased from 0.84 to 0.80. A full list of 

m/z ions and corresponding adjusted R2 for the GAM model are reported in Appendix 18.  

 Table 7 Comparison of adjusted R2 values outputted by the multiple linear regression and GAM models. 

These are organised by lowest/highest based on R2 from the linear regression model. 

Adj R2 m/z Linear Model GAM Model 

Lowest 

1988.17 -0.01 0.59 
1746.62 0.07 0.78 
1761.65 0.11 0.72 
786.7 0.12 0.73 

1066.13 0.15 0.91 
1189.79 0.16 0.88 
3307.15 0.16 0.49 
3499.59 0.18 0.23 
1614.42 0.22 0.89 
1633.88 0.22 0.82 

Highest 

2395.59 0.82 0.94 
1976.61 0.82 0.88 
2201.87 0.84 0.80 
3346.38 0.85 0.94 
2807.34 0.86 0.94 
1860.65 0.86 0.93 
2120.84 0.87 0.86 
2300.61 0.88 0.88 
2854.27 0.89 0.92 
2316.09 0.89 0.82 
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The GAM model was visualised for m/z 1189.79 to evaluate how well this model improved over 

the multiple linear regression model (Figure 4.8). For peak m/z 1189.79, the R2 for the GAM model 

was vastly improved at 0.88 (compared to 0.16 in the linear model). The GAM model appears to 

fit the trend of the data better than the linear model. In Figure 4.8, it is clear how differently this 

peak behaves over fermentation for the two different starter cultures. The peak has a higher signal 

intensity in YC380, compared to YF-L811.  

 
Figure 4.8 GAM model of m/z 1189.79, fermentation time, starter culture and probiotic terms were used 

as predictor terms to predict the response of signal intensity. The signal intensity is along the y-axis, 

fermentation time is along the x-axis. The plot is faceted by starter culture and coloured by probiotic 

culture. Confidence intervals are indicated by the shaded area around the dotted line. Legend indicates 

the corresponding probiotic culture. GAM formula: bam(Signal_Intensity ~ Starter + Probiotic 

+s(Time, k = 6) + s(Time, by = interaction(Starter, Probiotic), k = 6)).  

A diagnostic check of the GAM model performs a statistical test for patterns in the residuals. The 

QQ plot in Figure 4.9a shows the points are deviating from the line somewhat for this model. The 

plot of residuals shows there is an increasing variance in the residuals, which indicate it might not 

be a great fit (Figure 4.9b). The histogram of residuals looks to be normal (Figure 4.9c). The plot 
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of response vs fitted values would ideally form a straight line and sit around the 1-to-1 range on 

the y-axis. The data points in Figure 4.9d trend towards a straight line although some points deviate 

as the fitted values increase. It is not an ideal fit in all cases but is a vast improvement on the 

multiple linear regression model.  

 
Figure 4.9 Diagnostic plot of GAM model on m/z 1189.79. Diagnostic plots are a QQ plot comparing 

model residuals to a normal distribution (a), a plot of the residuals (b), a histogram of residuals (c), 

and a plot of response vs fitted values (d). 

The GAM models were a considerable improvement over the multiple linear regression models, in 

most cases. The R2 was still low for some m/z values, i.e., m/z 3499.59, which had an R2 value of 

0.18 in the linear model and 0.23 in the GAM model. Inspection of this m/z value indicated that the 

signal intensity was not changing notably over fermentation time, and the signal intensity was also 

comparatively lower than many of the other peaks detected and was sitting just above zero on the 
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y-axis (Appendix 22, Appendix 23). It is possible in this case that m/z 3499.59 is simply noise and 

ought to have been eliminated during processing steps, although MS/MS would be required to 

verify whether it is in fact an actual peptide. During data pre-processing, peak-picking algorithms 

attempt to find m/z values which are likely to be a ‘true’ peptide, amongst thousands of redundant 

data points. During this step, there is a compromise in how strict the filtering and peak detection 

is, for instance increasing the signal-to-noise would eliminate peaks such as this but runs the risk 

of eliminating peaks that are potentially real peptides of biological interest.  

Exploring individual peaks through regression techniques revealed how differently peptides behave 

throughout fermentation and how this can differ by starter culture. Evidently, this exercise revealed 

that differences in probiotic culture were impacting the peptide fingerprint less than the starter 

culture in most instances. Both multiple linear regression and GAM appropriately modelled some 

of the peaks throughout fermentation time but failed to adequately generalise and fit all of the 

peaks. Many of the detected peaks inherently will not follow a linear trend as they are likely to 

correspond to intermediate peptides, whereby the peptide increases during the early stages of 

fermentation as a result of protein degradation, before being degraded into smaller products. While 

GAM was a considerable improvement on the linear modelling, it was unable to effectively model 

all peaks, and would suggest some limitations to this work; the starter cultures cause major 

differences in the development of peptides during fermentation, resulting in different rates of 

fermentation and generation of compounds. As such, using a regression model to generalise over 

the peptide fingerprint obtained from different culture combinations at different fermentation time 

points may not be feasible.  

4.3.3 Classification exercises to predict change in signal intensity 

The previous exercise revealed how peptide mass spectra behave during fermentation and how 

suitable they are for modelling using classical statistical techniques. To further attempt to model 

the peptide mass spectra over fermentation time, classification techniques were employed, which 

attempted to predict simply whether a peak would increase or decrease in signal intensity from the 
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beginning until the end of fermentation. A subset of ‘40’ peaks were retained and were visualised 

according to their t-score ranking (Figure 4.10). The peaks were organised based on their change 

in signal intensity through fermentation time, i.e., out of the 143 peaks in the feature matrix, these 

were the top 40 peaks changing throughout fermentation. Figure 4.10 is organised by the top-

ranking peaks along the rows, and subset by fermentation time in the columns. Certain peaks seem 

to be typical of a particular fermentation time point, i.e., peaks m/z 1590.58 and 3031.13 are typical 

of unfermented milk, whereas 1860.65 is more typical of fermented milk.  

 

Figure 4.10 Top 40 ranking peaks selected by discriminant analysis. To identify the most important 

class discriminating peaks, standard t-scores are used. The peaks (rows) in the feature matrix are 

ranked by their t-score. Fermentation times are along the columns.  

The top 40 peaks were then extracted from the original feature matrix, and the peak intensities 

between early and later ferments were compared and assigned a class label of “increasing” or 

“decreasing” depending on their change in intensity (Figure 4.11). 
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Figure 4.11 Boxplot of signal intensity for each m/z value selected through discriminant analysis; comparison between Time 0 (pink) and Time 4 (blue). 25 out 

of the 40 m/z values were decreasing between start and later fermentation times. Vertical lines represent minimum and maximum, horizontal line represents 

the median. Data below the line is in quartile 1, data above the median is quartile 3. The black dots indicate outliers.
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Visualising the differences in signal intensity between the time points for each m/z value 

demonstrated that most of the peaks were decreasing in signal intensity over fermentation. As 

expected, the top-ranked peaks have the biggest changes in intensity between early and later 

fermentation.  

Next, five machine learning techniques were trialled to predict the class label for m/z values 

changing between hour 0 – hour 4. Of the techniques attempted, all models performed reasonably 

well on both training and test data and were able to predict the class label (increasing or decreasing) 

with good accuracy (Table 8). For the training data, Matthew’s correlation coefficient (MCC) and 

accuracy are all on-par with one another for most models. Gradient boosting machine (GBM), 

eXtreme gradient boosting (XGBoost), and deep learning (DL) all had comparable MCC scores, 

as well as accuracy. Of note is the high MCC, accuracy and F-measure that is returned in the 

XGBoost and random forest (RF) models, but considerably lower area under the precision-recall 

(AUCPR) values which reveal a much poorer performance. For this reason, it is worth assessing 

the models based on more than one criteria, and that a metric more suited to imbalanced data is 

warranted. The models were ranked by MCC, AUCPR, F-measure then accuracy.  

 Table 8 Performance metrics for six models on training data: XGBoost, Gradient Boost Machine, Deep 

Learning, C4.5 and Random Forest. Each model was trained using a 70% subset of the data.  

Model F1 Mean class 
error AUC AUCPR MCC Training 

Accuracy 

XGBoost 0.930 0.053 0.989 0.529 0.888 0.947 

GBM 0.911 0.073 0.974 0.959 0.859 0.935 

DL 0.895 0.089 0.933 0.867 0.840 0.926 

C4.5 0.922 0.089 0.911 0.887 0.834 0.930 

RF 0.852 0.126 0.916 0.193 0.791 0.901 

 

When applied to test data, each model had a marginally worse performance but still had > 85% 

accuracy in all cases (Table 9). The GBM and deep learning models all performed well, and 
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performance metrics were comparatively the same. On test data, the XGBoost model had 

marginally worse performance based on accuracy (88%) and MCC (0.75). The C4.5 model 

performed worst based on test data for MCC and accuracy but had a higher AUCPR compared to 

the random forest and XGBoost.  

Table 9 Performance metrics for six models on test data: Deep Learning, Gradient Boost Machine, 

XGBoost, C4.5 and Random Forest. 

Model F1 
Mean 

class error AUC AUCPR MCC 
Test 

Accuracy 

DL 0.855 0.124 0.898 0.906 0.775 0.892 

GBM 0.857 0.122 0.915 0.877 0.774 0.892 

XGBoost 0.855 0.129 0.898 0.421 0.755 0.883 

RF 0.830 0.144 0.892 0.208 0.730 0.871 

C4.5 0.856 0.163 0.822 0.809 0.708 0.859 

 

Taking all metrics into account, the deep learning model performed marginally better than other 

models. This model performed well on the test data and could predict both classes with high 

accuracy (89%). The prediction of the “Increase” label performed worse with 20% incorrectly 

labelled, compared to 4.4% for the “Decrease” label (Table 10). This was not unexpected as the 

number of labels “increasing” was less than those “decreasing”. 

Table 10 Confusion matrix showing correctly and incorrectly predicted labels for deep learning model 

on data from hour 0 vs hour 4. For the label ‘Decrease’, 195 were correctly labelled; 9 were incorrectly 

labelled as ‘Increase’. For the label ‘Increase’, 109 were correctly labelled; 28 were incorrectly 

labelled as ‘Decrease’. 

 Decrease Increase Error Rate Precision 

Decrease 195 9 0.0441 9 / 204 0.87 

Increase 28 109 0.2044 28 / 137 0.92 

Total 223 118 0.1085 37 / 341  

Recall 0.96 0.8    
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Although the deep learning model performed well, these models tend to require large amounts of 

data for reliable and robust models (Costello and Martin, 2018). The performance of random forest 

models has also been noted to improve by increasing the size of the dataset (Wang et al., 2020). 

With that in mind, GBM or XGBoost would be preferable models for this purpose.  

Classification techniques were successful in predicting the direction of the signal intensity between 

start and end fermentation times. These models were implemented using default model parameters 

only. Although adjustments and fine-tuning of parameters could be made to improve model 

performances, the model performed adequately using only the default arguments, and so no 

adjustments were deemed necessary in this case. This exercise indicated that the changes in peptide 

signal intensity recorded by MALDI-TOF MS could be predicted over fermentation time for these 

bacterial combinations. This was a simple approach using minimal information from the peptide 

fingerprint. Modelling of these data could be approached in numerous different ways, using 

enumerable modelling techniques for both regression and classification which could provide 

improved or more robust performances. The modelling question could be reframed to predict the 

“presence” or “absence” of peaks (Timm et al., 2008, Gay et al., 2002). The inclusion of additional 

physicochemical properties of the peptides might also be useful for building more informative and 

robust models (Gay et al., 2002). Furthermore, a larger dataset might lead to improved models, as 

well as more balanced classes.  

4.4 Conclusions 

This chapter revealed how different starter cultures and probiotics behaved throughout the course 

of fermentation, and the effects of fermentation on peptide fingerprint. Exploration of peptide 

fingerprints via multivariate analysis techniques revealed that the primary changes to the peptide 

fingerprints of the fermented milk occur between early fermented samples vs later ferments, i.e., 

hour 0-1 vs hour 2 onwards. The starter culture accounted for much of the variation in the peptide 

fingerprint, indicating that there are different peptides generated by different starter cultures. The 
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probiotic cultures had less influence on the peptide fingerprints. Probiotic cultures were not used 

in further analyses because of this. 

The primary aim of this chapter was to investigate the potential to predict and model the changes 

in peptide signal intensity over fermentation time. This was achieved using regression techniques, 

with some success using both linear and nonlinear techniques. Modelling the peptide fingerprints 

of fermented milk products can be used as a means to monitor, predict, and screen potentially 

important compounds during fermentation of milk, which could be used for targeting desirable 

compounds that impart favourable sensory characteristics. It has been established that certain m/z 

values are typical of a product that is at its end-fermentation time; such m/z values could be used 

as markers to signal fermentation end-points. This is beneficial for the screening of new products 

using various starter strains which may have variable lengths of fermentation time. Furthermore, 

classification techniques proved promising for predicting the general direction of the signal 

intensity over fermentation time. This was a simple model which proved effective at generally 

predicting whether the signal intensity would increase or decrease throughout fermentation. This 

could be extended to predict the presence/absence of a peak and could include additional 

parameters or peptide characteristics to build a more robust and accurate model. 
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Chapter 5 Consumer evaluation and peptide fingerprinting of milk 

throughout fermentation  

Summary 
Consumer perception of important sensory attributes in fermented milk was investigated. 

Fermented milk was prepared using two different commercial starter cultures, YF-L811 and 

YC380, and sampled throughout fermentation. Samples were evaluated by consumers in a multiple 

paired comparison test to understand the changes in bitterness and flavour intensity throughout 

fermentation for each starter culture. Consumers perceived significant differences in these 

attributes between pairs of samples fermented for different lengths of time. The intensity of 

bitterness and flavour increased significantly with fermentation time in fermented milk prepared 

from the different starter cultures. In parallel with this, peptide fingerprinting with MALDI-TOF 

MS was performed on replicate samples. Significant correlations were reported between the peptide 

fingerprints and the consumer rankings for the sensory attributes in each product. Machine learning 

techniques were employed to predict the consumer responses. XGBoost models performed 

reasonably well for predicting the consumer responses.  

5.1 Introduction 

The quality and acceptability of fermented milk depends on consumers perception of sensory 

characteristics, including the taste, flavour, and texture of the product (Reineccius, 2006, Briand 

and Salles, 2016). The sensorial quality of fermented dairy products is mostly thought to be derived 

from lactic acid and aroma compounds, although it is said to be partially dependent on the 

proteolytic activity, as peptides and amino acids generated via proteolysis can have a direct impact 

on flavour and taste (Ahtesh et al., 2018). Peptides can directly contribute to taste in fermented 

foods by producing bitter, umami and kokumi sensations, and are also critical to flavour formation 

by acting as precursors for flavour-producing enzymatic reactions (Tamime and Robinson, 1999, 

van Kranenburg et al., 2002, Sanlier et al., 2019). Consumers typically have a negative perception 
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of bitterness in fermented dairy foods, and it is seen as a major defect by food manufacturers (Zhao 

et al., 2016). Kokumi peptides are related to continuity1 and mouthfulness2 (Ueda et al., 1997), and 

can contribute to the taste profile of a product by enhancing other taste qualities (Yang et al., 2019). 

Umami taste is viewed as pleasant and desirable by consumers, and umami peptides have been 

reported to contribute to the overall complexity of flavour in fermented dairy products (Roudot-

Algaron et al., 1994). Understanding how the peptide fingerprint of a product relates to consumer 

acceptability can contribute to developing strategies to mitigate deleterious flavour characteristics 

and enhance desirable flavours. Many of the current approaches used in the literature to evaluate 

flavour and taste in fermented products are costly and time-consuming. The current approach aims 

to enable a simple, rapid, high-throughput and consumer-led means to correlate important sensory 

attributes with instrumental analysis. By better understanding the development of desirable and off-

flavour characteristics during the fermentation of milk, this information can potentially aid in the 

selection and screening of fermented milk products with enhanced sensory properties. 

The previous two chapters in this thesis explored rapid instrumental techniques to fingerprint and 

discriminate between different fermented milk products, as well as to couple such techniques with 

machine learning and predictive modelling. Six bacterial combinations were used for fermented 

milk preparation in Chapter 4; differences in the peptide fingerprints were found not to be primarily 

driven by the probiotic cultures used. In the current chapter, fermented milk was prepared using 

only the starter cultures, YF-L811 and YC380, and were not prepared in combination with the 

probiotic cultures used in Chapter 4. The objective of this chapter was to explore how consumer 

perception of key sensory attributes in different fermented milk changes throughout fermentation 

and to develop an approach to link consumer response with instrumental analysis. 

                                                   
1 Continuity: the prolonged taste intensity after consumption.  
2 Mouthfulness: reinforcement of the taste sensation throughout the mouth, not limited to just the tongue. 
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5.2 Materials and methods 

5.2.1 Consumer study 

5.2.1.1 Fermented milk preparation 

Materials: Skim milk powder was obtained from Fonterra (Fonterra Co‐operative Group, New 

Zealand). Commercial freeze-dried starter cultures YF-L811 and YC380, both containing different 

strains of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, were 

purchased from Christian Hansen (Hørsholm, Denmark) and stored at −20 °C until use. 

Milk reconstitution: Sample preparation took place at the Massey Food Pilot Plant, Palmerston 

North over two separate days for each of the two starter cultures used. The evening prior to 

fermentation, approximately 60 L of skim milk powder (Fonterra Co‐operative Group, New 

Zealand) was reconstituted in water (8.5% w/v; 3% protein). The skim milk powder was slowly 

added to water and mixed using an overhead stirrer for 30 minutes at 700 rpm (Figure 5.1). The 

reconstituted milk was stored in a chiller overnight, at 4 °C. 

 

Figure 5.1 Fermented milk for the consumer study prepared at the Massey University Food Pilot Plant. 

Milk was reconstituted by mixing skim milk powder and water using an overhead stirrer (a). The milk 

was heat-treated using a steam kettle to rapidly heat the milk to 85 °C (b). The milk was then held in a 

water-jacketed kettle, set to 85 °C for 30 mins. Fermentation took place in the water-jacketed kettle (c). 

Heat treatment: The milk was first heat treated in batches in a steam-jacket pan (Mercer Stainless, 

New Zealand), to rapidly bring the milk to 85 °C (Figure 5.1). The milk was then placed in a water-

jacketed kettle (Mercer Stainless, New Zealand), and held at 85 °C for 30 minutes. Following the 
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heat-treatment, the milk was cooled to fermentation temperature (43 °C). This was achieved by 

flushing out the hot water in the kettle and re-filling with cold water.  

Inoculation: The starter culture was removed from the freezer 15 minutes prior to mixing. The 

inoculation mix was prepared by adding 6.6 g of starter culture to sterile milk and mixing by hand 

for approximately 15 minutes, to ensure the mix was fully dissolved. Once the milk had cooled to 

fermentation temperature, the starter culture mix was added and stirred gently using an overhead 

stirrer (400 rpm) for approximately 15 minutes (Figure 5.1). 

Fermentation: The inoculated milk was fermented at 43 °C for 5 hours (until pH ≤ 4.5) in the water-

jacketed kettle (Figure 5.1). As described in section 4.2.1, fermented milk was withdrawn every 

hour before fermentation had commenced (inoculated milk), up until after fermentation was 

completed (pH ≤ 4.5). The fermented milk samples were removed via the tap of the water-jacketed 

kettle. Approximately 10 L was removed per fermentation time point (n=6) and placed in sterile 

containers. Samples were removed before (hour 0), during and after fermentation was complete. 

The containers were immediately covered and placed on ice water to halt the fermentation. At each 

hour of fermentation (hour 0 – 5), samples were withdrawn as such. Containers containing the 

samples were placed in a cooler (4 °C) for 3-4 days to enable microbial safety checks.  

All equipment used was hand-washed, followed by running in a dishwasher at a high temperature 

(90 °C), and finally using alcohol to sanitise. The tank used for fermentation was hand washed 

using detergent and water, followed by sterilisation with alcohol.  

pH measurements: pH was recorded in triplicate using a pH meter in order to track the progress of 

the fermentation (Orion Versa Star Pro Benchtop pH Meter, Thermo Scientific, USA). The pH 

meter was calibrated using buffers of 4.01 and 7.01 (Thermo Scientific, USA). To measure the pH, 

approximately 10 mL of sample was placed in a small beaker. The pH electrode was placed directly 

into the milk sample. The pH reading was allowed to stabilise for a few seconds before the reading 

was taken. Between measurements of different samples, the pH electrode was rinsed using distilled 
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water. pH measurements were recorded at room temperature. Samples were discarded after the pH 

reading was recorded.  

Microbial testing: Each sample was tested for coliforms before being deemed safe for consumption. 

Microbial testing was carried out independently by the team at the Microbiology Laboratory at 

Massey University. 

5.2.1.2 Multiple paired comparison / 2-alternative forced choice test 

Participants: Four consumer sessions were carried out to evaluate bitterness and flavour intensity 

for each of the two starter cultures. The participants were recruited from Massey’s Food experience 

and sensory testing (Feast) Lab’s consumer database. The criteria for selection were availability to 

attend the sessions, no dairy allergies, and a frequent consumer of dairy products. A minimum of 

40 participants were recruited for each session based on the chosen statistical parameters of (α risk1 

= 0.05, β risk2 = 0.3 and Pmax
3 70% for 40 assessors (Rogers, 2017)). The same participants returned 

for each pair of sessions (i.e., the same participants evaluated bitterness and flavour intensity in 

each starter culture).  

Sample preparation: The samples used for the consumer test were held in the chiller, at 4 °C 

following fermentation; samples evaluated for bitterness were held for three days following 

production, and samples evaluated for flavour intensity were held for four days. On the morning of 

each session, each fermented milk sample was mixed using an overhead stirrer (700 rpm for 60 

seconds). The sample was then poured in to 1 L sterile Durant bottles. The bottles were gently 

rotated up and down five times before being poured into small plastic cups to ensure the milk was 

homogenously mixed. Approximately 15 mL of each sample was poured into each cup. The cups 

were covered with plastic lids and were kept chilled in a fridge until ready for evaluation. 

                                                   
1 α risk: probability of concluding a perceivable difference exists when there is none.  
2 β risk: the probability of concluding that there is no perceivable difference when there is an actual difference.  
3 Pmax: the meaningful difference from equal intensity (50:50 split) that the test should be able to detect, i.e., Pmax of 70% indicates a 70:30 split 
as a meaningful difference from equal intensity (Rogers, 2017). 
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Experimental design: In order to compare each fermentation time-point with all others, a 2-

alternative forced-choice (2-AFC), or multiple paired comparison test, was employed. A William’s 

Latin Square, partially balanced design was generated using Compusense (version 20, Compusense 

Inc., Guelph, Canada). Each sample (n=6 samples) was assigned five random 3-digit codes, for a 

total of 30 codes. Each sample was assigned a new random code for every pairing it was in to avoid 

biases or memorisation of codes. The samples were presented as 15 pairs. The codes assigned to 

each sample type were alternated every second day, i.e., sessions 1 and 3 had the same sample 

codes, and sessions 2 and 4 had the same sample codes. This was to ensure that the consumers did 

not memorise codes or associate them with a specific sample.  

The cups for each sample type were labelled with their corresponding random code. The position 

of each sample and pairing was randomised for every participant, according to the experimental 

design. Table 11 displays an example layout for the samples presented to three different 

participants, where the random (blind code) and the actual sample (fermentation time) that it 

corresponds to. The participants received the sample cups labelled with the random, blind code. 

Test instructions: Prior to the test, the participants were provided with instructions for carrying out 

the test. Participants were provided with brief instructions on what to consider when evaluating the 

products for each characteristic. For flavour intensity, the participants were advised to imagine the 

contrast between a food full of flavour, such as a blue cheese, compared to a mild-flavoured food, 

such as a mild cheddar cheese. A participant code was generated for each panellist, and they were 

allocated a sample set that would appear on screen during the test, in the order determined by the 

experimental design. The test was created to display the random pairings of samples, as above. For 

each session, the participants were presented with an iPad instructing them to consume each pair 

of samples from left to right, and in the order presented on the screen. For each pair of samples, the 

participants were asked to select the most bitter-tasting sample, and in a separate session, the most 

intensely flavoured sample. This was repeated for each starter culture. The test was forced-choice, 

where participants could not select “no difference”. The participants were prompted to take at least 
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a 10-second break between each pairing and to consume water and plain crackers to cleanse the 

palate and eliminate carryover. The participants evaluated the samples in ten individual partitioned 

sensory booths. The sessions were conducted under red-lighting to minimise visual differences 

(Figure 5.2). The participants were presented with three trays in total, each containing five pairs of 

samples (Figure 5.2). The participants were given approximately 5 minutes break between each 

tray. The questionnaire design and data collection were conducted in Compusense. 

Table 11 Random, blind codes assigned to each sample type and the actual sample it corresponds to. 

The positioning of each sample is partially balanced and randomised per participant. 

 1- Blind 
Code 

1- Actual 
Sample 

2 - Blind 
Code 

2 - Actual 
Sample 

3 - Blind 
Code 

3 - Actual 
Sample 

Pair 1 671 156 4 0 475 715 2 0 904 623 2 3 
               

Pair 2 315 963 3 1 281 672 3 0 632 143 2 1 
               

Pair 3 735 832 4 5 943 893 5 0 154 591 5 1 
               

Pair 4 632 143 2 1 458 593 1 0 315 963 3 1 
               

Pair 5 823 124 4 2 259 198 1 4 723 982 5 3 
               

Pair 6 904 623 2 3 361 527 2 5 671 156 4 0 
               

Pair 7 204 415 4 3 415 204 3 4 527 361 5 2 
               

Pair 8 154 591 5 1 982 723 3 5 735 832 4 5 
               

Pair 9 198 259 4 1 124 823 2 4 593 458 0 1 
               

Pair 10 723 982 5 3 591 154 1 5 823 124 4 2 
               

Pair 11 893 943 0 5 832 735 5 4 672 281 0 3 
               

Pair 12 527 361 5 2 623 904 3 2 204 415 4 3 
               

Pair 13 715 475 0 2 156 671 0 4 715 475 0 2 
               

Pair 14 593 458 0 1 143 632 1 2 198 259 4 1 
               

Pair 15 672 281 0 3 963 315 1 3 893 943 0 5 
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Figure 5.2 The sessions took place in individual partitioned sensory booths. Participants were 

presented with pairs of samples on trays, with random codes assigned to each sample. The presentation 

of the samples was randomised for each participant. Participants were presented with a screen on an 

iPad with instructions to consume samples and evaluate the sample for bitterness, or flavour intensity. 

The paired comparison test was performed in four sessions across four days. For each session, the 

testing took place throughout the day. On each day, the first set of consumers began evaluating 

samples at 10:00am and the final consumers began evaluating samples at 16:00pm.  

Session 1: participants evaluated bitterness in pairs of samples prepared using starter culture YF-

L811 (n = 41 participants). Session 2: participants evaluated flavour intensity (e.g., umami/kokumi 

sensation) in pairs of samples prepared using YF-L811 (n = 41 participants). Session 3: participants 

evaluated bitterness in pairs of samples prepared using YC380 (n = 43 participants). Session 4: 

participants evaluated flavour intensity in pairs of samples prepared using YC380 (n = 43 

participants). Four participants were removed from the overall results as they missed one of the 

sets of sessions. 
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5.2.1.3 Data and statistical analysis 

The data were analysed using a Friedman analysis (Equation 1) as described in Meilgaard et al. 

(1999) using Microsoft Excel (version 16.0). This test allows for a global comparison across the 

samples. Data were first converted to ranks by calculating a ranking score. The ranking score is 

equal to = (Number of times the product is selected x 2) + (Number of times the product is not 

selected x 1).  

Equation 1 Friedman’s T is computed using the following formula, where p=total panellists, 
t=treatments and R=rank sum: 

𝑇𝑇 = �
4
𝑝𝑝𝑝𝑝
��𝑅𝑅𝑖𝑖2

𝑡𝑡

𝑖𝑖=1

− 9𝑝𝑝(𝑡𝑡 − 1)2 

Where the Friedman test was significant, a multiple comparison was performed using Tukey’s 

Honestly Significant Difference (HSD; Equation 2) test to determine the significance of all pairwise 

comparisons. The significance in the Friedman test is determined by comparing the test statistic, 

Friedman’s T, with the critical value of χ2, at α=0.05, with (t – 1) degrees of freedom, where t is the 

number of treatments (Meilgaard et al., 1999). The rank sum scale of each attribute was calculated 

and plotted in R (version 4.0.3), using base R functions.  

Equation 2 Tukey’s HSD is computed as follows: 

𝐻𝐻𝐻𝐻𝐻𝐻 =  𝑞𝑞𝛼𝛼,𝑡𝑡,∞  �
𝑝𝑝𝑝𝑝
4  

Values of d` (d-prime) were calculated automatically in Compusense. The value of d` is used as a 

measure of sensory difference between signal and noise, derived from signal detection theory 

(Lawless and Heyman, 1999). It is an indication of the difference perceived in the samples, where 

smaller values are small perceptual differences (or noise), and larger values represent a greater 

difference in the perceptual difference. A d` of 1 can be used as a threshold to determine a 

noticeable difference for consumers (O’ Mahony and Rousseau, 2003). d` was calculated in 

addition to performing a Friedman analysis in order to confirm the interpretation of results. 
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5.2.2 Matrix-assisted laser desorption/ionisation – time of flight Mass Spectrometry (MALDI 

– TOF MS) 

5.2.2.1 Chemicals and reagents 

MALDI-TOF MS matrices and peptide standards were purchased from Bruker Daltonics (Bremen, 

Germany). Acetonitrile and ethanol were liquid chromatography-mass spectrometry (LC-MS) 

grade solvents from Fluka Analytical (Merck, Kenilworth, NJ, USA). Optima LC-MS grade water 

and trifluoroacetic acid (TFA) were obtained from Fisher Scientific (Hampton, NH, USA). Skim 

milk powder was obtained from Fonterra (Fonterra Co‐operative Group, New Zealand). Freeze-

dried DVS yoghurt starter cultures YF-L811 and YC380, both containing different strains of 

Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus were purchased from 

Christian Hansen (Hørsholm, Denmark). The cultures were stored at −20 °C until use. 

5.2.2.2 Experimental design 

A randomised block design was generated using CycDesignN (version 6.0) using the following 

parameters: a resolvable row-column design was generated with 10 rows and 6 columns. Three 

factors (starter culture, fermentation time, replicate) with 2 * 6 * 5 levels, for a total of 60 samples 

(Table 12). Each fermented milk time point was prepared in a separate falcon tube and removed 

from the water bath, accordingly, as outlined in section 4.2.3. 

Table 12 Experimental design; position one in the three-digit code represents the starter culture, 

followed by fermentation time and replicate. 

(2,2,4) (1,5,1) (1,1,3) (2,4,3) (1,3,6) (2,3,2) 
(1,1,5) (2,4,1) (2,3,4) (1,5,3) (2,1,2) (1,2,1) 
(1,4,2) (2,2,2) (2,5,6) (1,2,5) (2,3,3) (1,1,6) 
(2,4,5) (1,3,3) (2,2,3) (2,1,6) (1,4,1) (1,5,4) 
(1,2,3) (2,3,6) (2,4,2) (2,5,4) (1,1,4) (1,3,5) 
(2,3,1) (1,1,2) (1,2,4) (1,1,1) (2,4,4) (2,5,3) 
(2,1,3) (1,2,6) (1,4,5) (1,3,2) (2,5,1) (2,2,5) 
(1,5,6) (1,4,4) (2,1,5) (2,2,1) (1,2,2) (2,4,6) 
(2,5,2) (2,1,4) (1,3,1) (2,3,5) (1,5,5) (1,4,3) 
(1,3,4) (2,5,5) (1,5,2) (1,4,6) (2,2,6) (2,1,1) 
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5.2.2.3 Fermented milk preparation  

Additional fermented milk replicates were prepared in the laboratory in Lincoln for MS analysis. 

The fermented milk samples were prepared using the same milk powder and starter cultures as 

those used for the consumer study. The fermented milk was prepared as outlined in section 4.2.3.  

pH measurements: The pH of each sample was recorded at room temperature using a pH meter 

(Hanna Instruments, USA). The pH meter was calibrated using buffers of 4.01 and 7.01. Three 

measurements were recorded for each sample, in the same manner as the consumer study.  

5.2.2.4 MALDI-TOF MS sample preparation 

MALDI-TOF MS analysis was carried out as outlined in section 4.2.4 and section 4.2.5. Pre-

processing of MALDI-TOF data was carried out as described in section 4.2.6. MALDI-TOF MS 

was carried out on both the samples prepared during the consumer trial, and the additional replicates 

prepared in section 5.2.2.3.  

5.2.2.5 Data analysis and modelling 

Plots of pH values were created using Excel. To determine how different the peptide fingerprints 

were for the two sample sets (i.e., samples prepared for consumer and instrumental analysis), a 

Multivariate INTegrative Partial Least Squares Discriminant Analysis (MINT-PLS-DA) was 

employed. This is an emerging technique that enables combining and integrating independent 

studies measuring the same variable (peptides). This allows us to gain some insights into the 

differences that may arise due to differences in geographical sites or different sampling times 

(Rohart et al., 2017) in order to determine how different the peptide fingerprints were for the 

different studies. This analysis was performed separately for each starter culture. A sparse MINT-

PLS-DA was performed on the feature matrices using the R package ‘mixOmics’ (Rohart et al., 

2017), including samples prepared during the consumer study. A 10-fold cross validation was 

performed for each dataset to optimise the tuning parameters. For the YF-L811 model, three 
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components were retained with 40, 10, and 6 variables on these components, respectively. For the 

YC380 model, two components were retained with 80 and 20 variables, respectively.  

Principal component analysis (PCA) was performed on the processed feature matrices using the R 

packages ‘factoextra’ (Kassambara and Mundt, 2020) and ‘factominer’ (Le et al., 2008) to visualise 

the similarities in the peptide fingerprints of each fermentation time point, using only data obtained 

from the instrumental analysis. PCA captures and reports the largest variation between samples and 

creates new variables that capture this variation in the dataset, allowing a summary of the data using 

a few relevant vectors. The analysis was performed separately for each starter culture. A Spearman 

correlation was performed using the package ‘GGally’ (Schloerke et al., 2021). An XGBoost 

regression model was applied to predict the consumer responses for each attribute, using the top 

principal components as predictors. XGBoost is a popular gradient boosting algorithm that has been 

used to much success to solve a wide range of data science problems (Chen et al., 2021). Extreme 

Gradient Boosting (XGBoost) regression modelling was carried out using the R package ‘H2O’ 

(LeDell et al., 2020). The ranks calculated from the consumer responses for each attribute were 

used as response variable and extracted principal components were predictor variables. Default 

parameters were used to generate each model. Model performance was evaluated using the 

following: Root Mean Squared Error (RMSE) evaluates how well a model can predict a value. 

Mean Square Error (MSE) measures the average of the squares of the errors or deviations. For both 

MSE and RMSE, the smaller the values the better the model performance. RMSE and MSE, 

however, can be sensitive to outliers; the Mean Absolute Error (MAE) is a more robust metric to 

outliers. MAE is the average of the absolute errors; the units are the same as the predicted target, 

which allows for easy interpretation. R2 is a popular metric to evaluate regression model 

performance. This provides a measure of the amount of variance explained by the model (Kuhn 

and Johnson, 2013).  
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5.3 Results and discussion 

Fermented milk, prepared from two different starter cultures, was sampled throughout 

fermentation, and presented to consumers in a multiple paired comparison test to assess the 

perceived change in bitterness and flavour in these products. Several defects were evident in the 

samples prepared for the consumer study. Samples from hour 3 (YF-L811) had considerable whey 

separation after production (Figure 5.3). There are numerous possibilities for this: high incubation 

temperatures (Lee and Lucey, 2003) or disruption of the gel network during sample removal (Lee 

and Lucey, 2010) may have led to the defects in this sample, although they were not observed in 

other samples. Consumers have a negative perception of whey separation (Lee and Lucey, 2010); 

however, this defect is visual and is not known to directly affect taste or flavour. Samples collected 

at hour 2 (YC380) had an unpleasant pungent odour. Neither of these defects appeared to influence 

the consumer responses. These defects are not unexpected, as most of the samples were semi-

fermented making them defective by definition.  

 

Figure 5.3 Samples collected at hour 3 for YF-L811 had whey separation. This defect was found only 
in this sample. 

 
The samples were tested for microbial safety prior to the consumer test (Appendix 26, 27). Samples 

were prepared several days in advance of the consumer sessions to allow for microbial testing. 

Preliminary trials showed contamination with coliforms and Escherichia coli (Appendix 28): this 

was determined to be due to the tap from which the samples were withdrawn from the tank, as well 

as a homogeniser for mixing the samples. To address this, additional cleaning and sterilisation steps 
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were introduced to ensure that all of the equipment was adequately sterilised before sample 

preparation, during fermentation and during sample withdrawal. The protocol was adjusted so that 

samples could be prepared in bulk and were only sampled by participants following a clear 

microbial test.  

Post-acidification occurred during storage resulting in a decrease in the pH for all samples (Figure 

5.4a, b). Post-acidification can be explained by the continued metabolic activity of the lactic acid 

bacteria during cooling and refrigerated storage (at 4°C) (Beal et al., 1999). Fermented milk is more 

stable at a lower pH; high final pH values are known to lead to greater rates of post-acidification 

(Beal et al., 1999). The rate of post-acidification is consistent with what is reported in the product 

information for each starter culture and is similar to other studies sampling yoghurts with different 

pH values throughout storage (Beal et al., 1999, Papadimitriou et al., 2007). Lb. delbrueckii subsp. 

bulgaricus is considered to be responsible for post-acidification and for the generation of any bitter 

peptides during post-acidification (Moller et al., 2007). 

  

Figure 5.4 mean pH (n=3) recorded on day of preparation and after 4 days in storage for samples 

prepared using the starter culture YF-L811 (a), and pH recorded on day of preparation and after 4 

days in storage for samples prepared using the starter culture YC380 (b). Post-acidification occurred 

while the samples were in storage. Average of three measurements for each sample. 
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Figure 5.4 continued  

 

5.3.1 Consumer evaluation throughout fermentation of milk 

The bitter taste perceived by consumers increased with an increased fermentation time for both YF-

L811 and YC380 (Figure 5.5). The arbitrary numbers on the line scale represent the rank position 

of the samples within the sample set, and different lettering indicates a significant difference (at 

α=0.05). In YF-L811, there was an increase in the perceived bitterness after two hours of 

fermentation, though this did not change significantly for the remainder of the fermentation time.  

 

For YC380, after two hours there was also a significant change in the perceived bitterness. This 

bitterness continued to increase but did not change significantly after three hours of fermentation. 

This suggested that the bitter taste did not significantly change in either starter culture after a certain 

period of fermentation. This may be related to the breakdown of potentially bitter peptides at early 

stages of fermentation.  

 

 

3.8

4.3

4.8

5.3

5.8

6.3

6.8

H O U R _ 0 H O U R _ 1 H O U R _ 2 H O U R _ 3 H O U R _ 4 H O U R _ 5

YC380 - CONSUMER TEST
Date_of_prep Date_of_testing

b 



121 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Rank sum scale of bitterness for YF-L811 (n=41 participants) and YC380 (n=43 

participants). The arbitrary numbers correspond to the samples rank position within the sample set. 

Different lettering above the samples indicates a significant increase in bitterness (at α=0.05), 

determined by Tukey’s HSD test. The samples prepared for each starter culture increase in perceived 

bitterness, with an increased fermentation time. 

The d` values were obtained for each pair of samples for bitter intensity in each fermented milk 

type (Figure 5.6a, b). For bitter intensity in samples prepared using YF-L811, the d` ranged from 

0.13 (for pairs at hours 5 - 3, and hours 4 - 3) to 1.35 (pair hours 5 - 0). The d` was 0.22 for the pair 

comparing hours 1 - 0, indicating that there were no differences in perceived bitterness for this pair, 

and thus there was no perceivable change in the development of bitter taste in the first hour of 

fermentation. The d` for hours 2-1 increased to 1.09, indicating that the perceived bitterness began 

to develop and increase after one hour of fermentation. Pairs of samples comparing hours 3 – 1 and 

2 – 1 were significantly different (d` = 1.09) but decreased for the pair comparing samples at hours 

4 – 1 (0.77) and 5 – 1 (0.98).

Rank Sum Scale of Bitter Intensity: YF-L811 

 

Rank Sum Scale of Bitter Intensity: YC380 

 

Increase in bitterness 
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Figure 5.6 d` values for bitterness in YF-L811 (a) and YC380 (b). The 15 pairs of samples are organised on the x-axis, in order of increasing fermentation time. 

The d` denotes the sensory distance between the more fermented vs less fermented samples in each pairing.

b a 
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It could be that bitter peptides were developing throughout fermentation, via proteolysis, and were 

subsequently breaking down as fermentation continued, thereby limiting the development of 

bitterness.  

The d` ranged from 0.49 (pair hour 3 - 2 and 4 - 3) to 2.11 (pair hour 2 - 0 and 4 - 0) for bitterness 

intensity in YC380 samples, indicating that the difference in bitterness intensity between pairs was 

more perceivable by consumers. Similar to YF-L811, the d` increased in pair hour 5 – 1 (1.71), 

compared to hour 4 – 1 (1.55) and 3 – 1 (1.55), which might again suggest that there was some 

bitterness developing during late fermentation.  

Bitterness intensity in YC380 yielded higher d` values, compared to YF-L811. The number of 

participants assessing samples prepared from YC380 was higher by two than the number assessing 

YF-L811 samples; a higher sample size can lead to higher d` values (O'Mahony and Rousseau, 

2003). 

For both starter cultures, the bitterness was not easily distinguished by the panellists in pairs of 

samples close together in fermentation time (i.e., pair hour 4 - 3). These results are consistent with 

the results from the Friedman analysis, where the bitterness intensity did not increase significantly 

after a certain period of fermentation for either starter culture. These results indicate that 

fermentation time significantly affected the perceived bitterness for these starter cultures. 

Flavour intensity increased significantly with fermentation time for both starter cultures (Figure 

5.7). The flavour intensity in YF-L811 developed slowly at the beginning of fermentation. There 

was not a significant increase in the flavour intensity in samples fermented for less than two hours, 

after this, the flavour increased but did not change significantly again after three hours of 

fermentation. In YC380, there was a steady increase in the flavour intensity across fermentation. 

After one hour of fermentation, the flavour intensity continued to increase significantly with 

fermentation time. This continued throughout the fermentation, suggesting flavour continued to 

increase with increased fermentation time.  
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Figure 5.7 Rank sum scale of flavour intensity for YF-L811(n=41 participants) and YC380 (n=43 

participants). The arbitrary numbers correspond to the samples rank position within the sample set. 

Different lettering above the samples indicates a significant increase in bitterness (α=0.05), determined 

by Tukey’s HSD test. The samples prepared for each starter culture increase in perceived flavour 

intensity, with an increased fermentation time. 

The d` for flavour intensity in YF-L811 ranged from -0.22 (pair hour 1-0) to 2.34 (pair hour 4-2) 

(Figure 5.8a). For the pair at hours 1 - 0, samples at hour 1 were perceived to be less flavoursome 

than hour 0. The d` increased between pairs of samples, with an increase in fermentation time. 

Compared to the bitter intensity, there was a gradual increase in perceivable flavour intensity 

between all pairs with hour 0.  

The d` for flavour intensity in YC380 ranged from 0.86 (pair 2 - 1) and 2.11 (pair 3 - 0, 5 - 0, and 

5 - 3) (Figure 5.8b). 

Rank Sum Scale of Flavour Intensity: YF-L811 

Rank Sum Scale of Flavour Intensity: YC380 

 

Increase in flavour intensity 
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Figure 5.8 d` values for flavour intensity in YF-L811 (a) and YC380 (b). The 15 pairs of samples are organised on the x-axis, in order of increasing fermentation 

time. The d` denotes the sensory distance between the more fermented vs less fermented samples in each pairing. 

  

a b 
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The panellists could discriminate between all pairs of samples, with the exception of pair 2 – 1. Of 

note was the decrease in d` between pair 4 - 0, and the increase again between pair 5 – 0, which 

may be reflective of compounds developing with continued fermentation that are affecting the 

flavour intensity. The d` values were high for all pairings, thus the flavour intensity between all 

pairs of samples was different and perceivable by consumers. YC380 is known for producing 

fermented milk with a strong flavour, compared to YF-L811 which produces a milder flavoured 

product. As a result, it was not unexpected that the consumers were able to easily discriminate 

between the different samples fermented with YC380. 

Compared to bitter intensity, there was a gradual increase in perceivable flavour intensity between 

all pairs with hour 0. With bitter intensity, after a certain period of fermentation, there was a 

decrease in the ability to discriminate between samples. The d` decreased in pairs of samples that 

were close in fermentation time, although in most cases there was still a perceivable difference in 

the flavour intensity between the samples in each pairing. These results indicate that fermentation 

time significantly affected perceived flavour intensity for these starter cultures. 

5.3.2 Peptide fingerprinting of samples 

Replicate samples were prepared on a small scale in the laboratory at AgResearch, Lincoln and, 

alongside samples used for the consumer trial, were fingerprinted for peptides using MALDI-TOF. 

pH profiles: The acidification profile was inconsistent between the samples prepared in the 

different locations; samples prepared in Lincoln fermented slower than those prepared for the 

consumer trial in Palmerston North (Figure 5.9a, b). The pH profile was similar for both locations 

for samples prepared using YF-L811, with the exception of the sample from Palmerston North at 

hour 2, which had a pH of 4.79 (± 0.01), compared to 5.11 (± 0.02) in samples prepared in Lincoln. 

The pH profiles for hours 2 onwards were different for samples prepared using YC380.  
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Figure 5.9 pH profiles of replicate samples prepared in Lincoln (labelled Lin) and in Palmerston North 

(PN) for YF-L811 (a) and YC380 (b). Average of three measurements for each sample. A two-way 

ANOVA (pH ~ location * time) for each starter type was not significant (p = 0.679 for YF-L811, p = 

0.350 for YC380). 

There are several potential reasons for the variations in pH change. The samples prepared for the 

consumer trial were prepared in a large 60 L tank. This may have resulted in an uneven distribution 
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of heat throughout the milk, and milk closer to the perimeter of the tank is closer to the heat source 

and as such may have been subjected to higher temperatures than milk at the centre of the tank. 

Samples prepared in Lincoln were prepared in small 15 mL tubes, where the temperature is much 

easier to distribute throughout the milk. Temperature variations have been recorded in fermenting 

tanks in other studies, affecting the pH of the milk during fermentation. Aguirre-Ezkauriatza et al. 

(2008) observed temperatures in a 5 L tank varying from 39 to 44 °C in radial distance of less than 

7 cm, and the temperature of samples collected from the bottom of the tank were recorded as high 

as 70 to 80 °C after 4 and 5 hours of fermentation. After 5 hours of fermentation, temperatures 

recorded at the top and bottom of the tank were 30 and 80°C, respectively. Samples collected at the 

same time point varied in pH by as much as 0.5 units when sampled from different radial locations 

within the tank (Aguirre-Ezkauriatza et al., 2008). Variations in temperatures throughout the tank 

may have induced pH gradients resulting in different growth and lactic acid production rates in this 

study. Moreover, once fermentation begins, heat transfer is slowed due to the increase in viscosity, 

which can cause wider ranges in temperature (Aguirre-Ezkauriatza et al., 2008). Additionally, 

samples prepared in Palmerston North were removed in 10 L batches which were distributed into 

three 3 L containers and placed on ice water in a cold room. However, these samples likely 

continued to ferment while the mixture was being cooled. The small batches prepared in Lincoln 

cooled much more rapidly due to their small volume, causing the fermentation to halt faster. That 

said, it is unexpected that the variations in the pH are inconsistent between the different products. 

Comparison of samples prepared for consumer and instrumental analysis 

Next, the peptide fingerprints obtained from each set of samples (Palmerston North and Lincoln) 

were assessed to understand how comparable the samples were. Differences in the samples have 

implications for scaling up the sample preparation and for making comparisons with experimental 

samples prepared in a laboratory.  
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A sparse MINT-PLS-DA for the peptide fingerprints obtained for YF-L811 demonstrated that most 

of the samples could be grouped according to their fermentation time (Figure 5.10). Samples 

corresponding to hours 3, 4 and 5 were all grouped close together, though there was a split in the 

group for hour 4 and 5. The samples prepared in the different locations were grouping together at 

their respective fermentation time points, although the replicates prepared in Palmerston North at 

hours 0 and 2 were tending to group away from the Lincoln samples.  

 

Figure 5.10 A Sparse MINT-PLSDA on peptide fingerprints from samples prepared using YF-L811. 

Samples are colour-coded by fermentation time point. The different shapes correspond to location of 

sample preparation: Lin = Lincoln, PN = Palmerston North. Five replicates were prepared for each 

sample in Lincoln. Three measurements were taken using MALDI-TOF MS for each sample type. 

A sparse MINT-PLS DA of YC380 samples was able to group all samples separately by each time 

point (Figure 5.11). For most of the fermentation time points, the samples prepared in both Lincoln 
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and Palmerston North were grouping together, with the exception of one replicate corresponding 

to hour 1, 3 and 5 from Palmerston North. However, these samples were from the same biological 

replicate and this separation was driven by technical variation. 

 

Figure 5.11 A Sparse MINT-PLSDA on peptide fingerprints from samples prepared using YC380. 

Samples are colour-coded by fermentation time point. The different shapes correspond to location of 

sample preparation: Lin = Lincoln, PN = Palmerston North. Five replicates were prepared for each 

sample in Lincoln. Three measurements were taken using MALDI-TOF MS for each sample type. 

The sparse MINT-PLS-DA indicated that comparisons can be made between the peptide 

fingerprints of samples prepared in different locations, at different time points, and in different 

quantities. This is an important conclusion for future studies when attempting to draw conclusions 

based on samples prepared on a laboratory scale. However, this should be approached cautiously 

as the deviations in the pH may have led to variations in other characteristics in the fermented 

products.  
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5.3.3 Correlating consumer responses with peptide fingerprints 

Next, a means to correlate the consumer response with the peptide fingerprints of the fermented 

products was explored. First, principal components analysis (PCA) was performed on the samples 

prepared in Lincoln, averaged by their technical replicate (n=3). PCA of peptide fingerprints for 

YF-L811 showed a similar grouping as the MINT-PLS-DA (Figure 5.12). Samples at fermentation 

hours 0 and 1 did not cluster closely in the PCA space, which is in contrast to the bitterness and 

flavour intensity responses by the consumers, where hours 0 and 1 were not significantly different 

in either attribute. The samples clustered closely at the end of fermentation, which was similar to 

what was seen in the consumer responses where bitterness and flavour intensity did not increase 

significantly after a certain period of fermentation.  

 
Figure 5.12 Principal components analysis of peptide fingerprints for samples prepared using YF-L811. 

Data is colour-coded by fermentation time point. Large dots indicate the average for that sample type. 

Five replicates were prepared for each sample type. MALDI-TOF technical repeats were averaged. 

Samples measured were prepared in Lincoln.  
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PCA of peptide fingerprints for YC380 was able to group each fermentation time (Figure 5.13). 

The more fermented samples (hour 2 onwards) were not grouped closely. This was similar to the 

consumer responses to flavour intensity for this starter culture; the flavour intensity continued to 

develop significantly throughout the fermentation. The PCA plot indicated that the peptide 

components in this starter culture were continuing to change with an increased fermentation time.  

 

Figure 5.13 Principal components analysis of peptide fingerprints for samples prepared using YC380. 

Data is colour-coded by fermentation time point. Large dots indicate the average for that sample type. 

Five replicates were prepared for each sample type. MALDI-TOF technical repeats were averaged. 

Samples measured were prepared in Lincoln.  

For each PCA, the top four components were extracted. A Spearman correlation was then applied 

to the top components and the consumer responses for each attribute (Figure 5.14a, b; Table 13). 

There was a significant correlation for bitterness intensity on component 2 for YF-L811 

(correlation coefficient = 0.506) and component 1 (0.583), 2 (0.188) and 3 (-0.158) for YC380. The 
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Spearman correlation returned a correlation coefficient between -1 and 1, where values closer to 1 

indicate a perfect correlation and values closer to 0 indicate no correlation. Although the correlation 

coefficients were significant, the correlation with components 2 and 3 for YC380 was low.  

 

 

Figure 5.14 The Spearman correlation was performed by extracting the top four principal components 

from PCA of peptide fingerprints and performing a correlation with the consumer scores obtained for 

bitter intensity in YF-L811 (a) and YC380 (b). Consumer rankings for bitterness are denoted along the 

y-axis; the x-axis represents the extracted principal component scores.  

 

Table 13 Spearman correlation of top four components from a PCA of peptide fingerprints for YF-L811 

and YC380 on consumer responses to bitter intensity. * Indicates a significant correlation (p ≤ 0.05).  

Correlation – 
Bitter Intensity Component 1 Component 2 Component 3 Component 4 

YF-L811 -0.028 0.506* -0.02 0.001 

YC380 0.583* 0.188* -0.158* 0.022 
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The correlations with flavour intensity were higher than bitterness for each starter culture (Figure 

5.15a, b; Table 14). There was a significant correlation with the top three components for YF-L811, 

with correlation coefficients of -0.31, 0.529 and -0.32, respectively. There was also a significant 

correlation with the top three components for YC380, with correlation coefficients 0.602, 0.361 

and -0.207, respectively.  

 

 
Figure 5.15 The Spearman correlation was performed by extracting the top four principal components 

and performing a correlation with the consumer scores obtained for flavour intensity in YF-L811 (a) 

and YC380 (b). Consumer rankings for flavour intensity are denoted along the y-axis; the x-axis 

represents the extracted principal component scores. 

 

Table 14 Spearman correlation of top four components from a PCA of peptide fingerprints for YF-L811 
and YC380 on consumer responses to flavour intensity. Significant correlations are denoted by “*”. 

Correlation – 
Flavour Intensity Component 1 Component 2 Component 3 Component 4 

YF-L811 -0.31* 0.529* -0.32* -0.015 

YC380 0.602* 0.361* -0.207* -0.01 
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5.3.4 Prediction of consumer responses from peptide fingerprint data 

XGBoost models were built using components 1, 2 and 3 extracted from a PCA of the peptide 

fingerprints. The XGBoost model metrics indicated adequate performance for predictions of 

flavour intensity in both YF-L811 and YC380 (Table 15). For the XGBoost model of flavour 

intensity in YF-L811, the model metrics were R2 of 0.53, and 1.088, 1.184 and 0.856, for RMSE, 

MSE and MAE, respectively. For the XGBoost model of flavour intensity in YC380, the model 

metrics were R2 = 0.69, RMSE = 0.896, MSE = 0.802 and MAE = 0.710.  

Table 15 XGBoost model metrics for predictions of consumer responses to flavour intensity for YF-

L811 and YC380. 

Flavour Intensity  RMSE MSE MAE R2 

YF-L811  1.088 1.184 0.856 0.53 

YC380  0.896 0.802 0.710 0.69 

The XGBoost predictions of flavour intensity in YF-L811 were able to closely predict some of the 

ranks (Figure 5.16).  

 

Figure 5.16 Predicted vs Observed values for XGBoost model of flavour intensity on the principal 

components of peptide fingerprints obtained from YF-L811 samples. 
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Although, in most cases, the predictions were inaccurate, and the model struggled to correctly 

predict higher ranking samples. This is not surprising as the consumer results indicated that the 

panellists were unable to discriminate differences in flavour and bitterness intensity towards the 

end of fermentation (with the exception of flavour intensity in YC380).  

The XGBoost model’s predictions of flavour intensity rankings for YC380 demonstrated good 

accuracy (Figure 5.17). The XGBoost model was able to accurately predict the consumer responses 

for each ranking, and had a high R2 (0.69), indicating that consumer responses to flavour intensity 

in milk fermented with YC380 can be reliably predicted.  

 

Figure 5.17 Predicted vs Observed values for XGBoost model of flavour intensity on the principal 

components of peptide fingerprints obtained from YC380 samples. 

The results of these predictive models indicated that consumer responses to flavour intensity can 

be reasonably predicted for these two starter cultures using data obtained from peptide 

fingerprinting. The ability to predict the flavour intensity for different extremes of flavour (i.e., 

mild vs strong) could prove beneficial for screening new products or bacterial cultures that possess 

different levels of flavour in the final product.  
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The metrics were worse for models predicting bitter intensity scores. For bitter intensity on YF-

L811 samples (Table 16), the R2 was low: 0.22, accounting for a low proportion of the variation in 

the model. The RMSE and MSE were high for this model at 1.238 and 1.532 respectively. The 

MAE is 0.971 for bitterness in YF-L811. The model performance for the XGBoost model 

predicting bitter intensity ranks in YC380 samples was slightly improved: the R2 was 0.54. The 

RMSE, MSE and MAE were slightly lower, compared to YF-L811, at 1.134, 1.285 and 0.910, 

respectively. 

Table 16 XGBoost model metrics for predictions of consumer responses to bitter intensity for YF-L811 

and YC380.  

Bitter Intensity  RMSE MSE MAE R2 

YF-L811  1.238 1.532 0.971 0.22 

YC380  1.134 1.285 0.910 0.54 

A plot of the predicted vs observed values for bitterness prediction in YF-L811 samples 

demonstrated the error in the predictive accuracy (Figure 5.18). The model did not correctly predict 

any sample with a rank greater than 4.  

 
Figure 5.18 Predicted vs Observed values for XGBoost model of bitter intensity on the principal 

components of peptide fingerprints obtained from YF-L811 samples.  
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A plot of the predicted vs observed values for bitterness prediction in YC380 samples showed the 

model was able to predict some of the bitterness rankings with reasonable accuracy (Figure 5.19). 

However, similar to YF-L811, the model did not correctly predict any samples with a ranking 

greater than 4.  

 

Figure 5.19 Predicted vs Observed values for XGBoost model of bitter intensity on the principal 

components of peptide fingerprints obtained from YC380 samples. 

In conclusion, significant correlations could be made with MALDI-TOF data and consumer 

responses to important sensory attributes in fermented milk. Predictions for flavour and bitterness 

intensity were better for fermented milk prepared using YC380 than for YF-L811. This may 

suggest that predictions of flavour intensity can be made with reasonable accuracy for both starter 

cultures, and potentially could be used for future studies. Predictions of YF-L811 were poor for 

bitterness intensity but were improved for flavour intensity. Higher ranking samples, for both 

bitterness and flavour intensity, were not accurately predicted. This could be related to the 

consumer’s inability to discriminate between more fermented samples (i.e., higher ranking 

samples). Alternative modelling approaches and techniques, as well as incorporating other data 

measurements, could be explored to improve predictions. Additionally, increasing the sample size 

may lead to more accurate and reliable results.  
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5.4 Conclusions 

This chapter explored an approach to correlate and predict responses to key sensory attributes 

throughout fermentation of milk with the peptide fingerprint of the same products. Consumers 

perceived significant differences in bitter and flavour intensity throughout the fermentation of milk 

prepared from different starter cultures. Flavour and bitterness intensity developed at different rates 

during fermentation for different starter cultures, and through a multiple paired comparison test, 

the points in fermentation where these attributes began to change in their perceived intensity could 

be identified. Instrumental analysis, using MALDI-TOF MS, was able to track changes in the 

peptide fingerprint throughout fermentation when analysed using multivariate analysis. The peptide 

fingerprints could be significantly correlated to the consumer responses for each attribute. XGBoost 

regression was employed to predict the consumer responses, with varying success. The model 

resulted in an adequate performance for the prediction of flavour intensity. Exploring other 

modelling techniques could improve the performance. By better understanding the development of 

desirable and off-flavour characteristics during fermentation, and by correlating consumer and 

instrumental data, this information can potentially aid in the rapid screening and selection of new 

and interesting bacterial cultures to enhance the sensory perception of fermented milk products.  
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Chapter 6 Discussion and conclusion 

Developing new products that are acceptable to consumers can be a timely and costly task. Insights 

into the product development process could provide invaluable information to food manufacturers, 

aiding in monitoring and quality control during development stages. The overall goal of this thesis 

was to identify a means to aid in the rapid screening of fermented products which may enable the 

development of new products with desirable properties, and which can also contribute to 

understanding potentially important characteristics of the end product. The overall project 

objectives and applications are summarised in Figure 6.1. 

This thesis constituted a feasibility study: the feasibility of using fingerprinting technologies to 

extract knowledge and as a tool for screening fermented milk was investigated (Chapter 3). It was 

demonstrated that using rapid fingerprinting technologies, MALDI-TOF and REIMS, could be 

used to screen fermented milk with differing flavour attributes. REIMS has not previously been 

demonstrated for use on dairy products, and this is the first study showing a side-by-side analysis 

of REIMS and MALDI-TOF data. As REIMS provides results in near-real-time, this could prove 

hugely beneficial for the dairy industry during product development. For the starter cultures 

investigated in this study, peptides fingerprinted using MALDI-TOF MS and analysed using 

principal component analysis (PCA) revealed the strongest discrimination between samples. Using 

peptide fingerprints, it was demonstrated that unique peptides are produced from these two bacterial 

combinations, which create a product with differing flavour and textural attributes. This technique 

could be used in further applications to discriminate different fermented milk and to monitor 

product development. Although REIMS did not provide a powerful split between the different 

samples, it indicated some promise for visualising and clustering samples, and perhaps can be 

explored as a complementary screening tool. These two techniques could be used in tandem as an 

indication of the differences in the molecular composition of fermented milk prepared using various 

starter cultures. These tools require much less sample preparation compared to other 

instrumentation, as well as having shorter data acquisition and data processing time, making them 
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more suitable for high-throughput use in the food processing industry for monitoring, quality 

control and rapid screening of samples during product development (Barlow et al., 2021, Cohen 

and Gusev, 2002, Huang et al., 2019). The techniques described in the literature, such as 

‘sensoproteomics’ (Sebald et al., 2018), can provide substantial insights into the chemical 

composition of food products and the peptides that may be impacting the sensory profile. However, 

these techniques employ sample preparation, instrumentation, and data analysis that could be 

laborious and costly, and may not lend themselves to rapid screening of products. This thesis 

explored techniques that could be first used as preliminary screening tools. It is the intention that 

follow-up techniques, similar to ‘sensoproteomics’, could then be utilised on candidate products to 

explore these further.  

The ability to reveal strong clustering of different sample types within a short period of time can 

enable the rapid screening of a large number of samples. Furthermore, when samples are analysed 

alongside unfermented milk samples, multivariate analysis can indicate which samples undergo the 

greatest compositional change during fermentation, which may be reflective of end product 

characteristics, such as flavour, taste, textural or nutritional characteristics. To determine this for 

certain, the peptides in the samples would need to be identified and their sensory properties 

determined through database searching or by conducting sensory evaluation. Lastly, this chapter 

demonstrated the potential predictive power of classifying fermented milk prepared using different 

bacterial strains. This could prove advantageous and has become a common approach in food 

studies of late, particularly due to the increased occurrence of food fraud; in the dairy industry this 

has been associated with authenticity of milk type and origin (Garcia et al., 2012, Calvano et al., 

2013a, Sassi et al., 2015, England et al., 2020, Piras et al., 2021) as well as the bacterial composition 

(Liu et al., 2010, Rocchetti et al., 2018).  
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Figure 6.1 A summary of the primary project objectives and their potential applications. This thesis 
was divided in to three chapters to address the thesis objectives: Clustering and discrimination of 
fermented milk prepared from different bacterial cultures; Prediction of signal intensity throughout 
fermentation of milk, and evaluation and prediction of consumer responses throughout fermentation of 
milk. This figure was generated using BioRender.com. 
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The peptide fingerprint was further explored in milk fermented with various probiotic cultures, that 

was sampled throughout fermentation (Chapter 4). This study indicated that the starter culture and 

fermentation time had a more pronounced effect on the peptide fingerprint, compared to the 

probiotic bacterial cultures. Studies have shown that there is an increase in certain compounds 

during fermentation with probiotics, compared to milk fermented without probiotics 

(Settachaimongkon et al., 2014, Tian et al., 2017), although it is said that the bacteria may not 

significantly impact the sensory profile (Chen et al., 2017). Probiotic cultures have been reported 

to generate bioactive peptides in dairy products (Hernández-Ledesma et al., 2014), as such it would 

be expected that the generation of such peptides might be reflected in the peptide fingerprint by 

demonstrating some clustering between these cultures.  

Fingerprinting of these samples also provided some insight into how the fermented milk with 

milder flavour clustered more closely with the unfermented milk samples, which may be reflective 

of the potentially low proteolytic activity occurring in fermentation with this starter culture, and 

which may also be related to flavour and textural properties. For instance, as indicated by the 

multivariate analysis of YF-L811 and YC380, samples fermented with YF-L811 formed a similar 

cluster with unfermented milk inoculated with YC380. This suggests that YC380 is undergoing a 

greater change of the peptide fingerprint during fermentation. Unique m/z ions were also shown to 

be characteristic of fermented and unfermented samples; this could also be used as a means to 

monitor the fermentation process and as a predictor of the endpoint of fermentation. Such 

approaches have been reported by other researchers in milk products (Amorim et al., 2019, 

Dalabasmaz et al., 2019, Ebner et al., 2016).  

Classical statistical and machine learning techniques were employed to explore the feasibility of 

predicting the peptide fingerprinting throughout fermentation of milk inoculated with various 

combinations of starter and probiotic culture (Chapter 4). This objective aimed to predict the signal 

intensity of m/z ions detected by MALDI-TOF throughout fermentation. Regression techniques 

were used to predict the peptide intensity at different stages of fermentation using both linear and 
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nonlinear techniques. Nonlinear general additive models proved effective for modelling most m/z 

ions detected, and also provided some valuable insight into the behaviour of m/z ions throughout 

fermentation for different bacterial combinations. This behaviour could be reflective of the 

underlying proteolytic processes, i.e., proteins break down into peptides, peptides break down into 

smaller peptides and amino acids and derivatives, which may contribute to flavour, taste, textural 

or bioactive properties (Tamime and Robinson, 1999). Machine learning classification techniques 

were effective for predicting the general change in direction of these m/z ions based on their starting 

signal intensity. This approach used only a subset of the m/z ions detected, which were changing 

the most throughout fermentation. The models were effective for predicting the direction of the 

signal intensity from the beginning until the end of fermentation time. This may prove useful for 

tracking specific peptides with desirable properties and could provide a quick and efficient way to 

understand the breakdown of a peptide, without the need for complex data analysis.  

Finally, important sensory attributes in milk fermented for different lengths of time were 

investigated using a multiple paired comparison test (2-alternative forced-choice) with a consumer 

panel (Chapter 5). This indicated significant differences in perceived bitterness and flavour 

intensity at different fermentation times. Furthermore, this work explored the consistency of 

samples prepared on a small laboratory scale, compared to samples prepared on a larger scale 

intended for human consumption. This work indicated that comparisons could be drawn between 

the peptide fingerprints of samples produced under different conditions and different geographical 

locations. Finally, the feasibility of integrating consumer data obtained via multiple comparisons 

with peptide mass spectra was investigated. This work provided insights into how important 

sensory characteristics develop throughout fermentation, and how they continue to develop after 

the standard period of fermentation (e.g., pH ~ 4.5). This emphasises how critical the end 

fermentation time is during fermented milk preparation and development. Lastly, this study 

demonstrated that significant correlations could be made between peptide mass spectra and 

consumer responses to fermented milk, particularly in the case of responses to flavour intensity. 
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Predictive modelling proved somewhat successful in predicting these responses using XGBoost 

regression models, in particular for the prediction of flavour intensity. The ability to predict key 

sensory attributes from instrumental data can provide huge advantages to the food industry, 

providing a less-costly and less-timely alternative to sensory evaluation. Correlating sensory results 

with instrumental analysis is a valuable methodology that can be applied for improving and 

maintaining quality during production and development. Sensory evaluation is ultimately the gold 

standard, however, using instrumental analysis in particular at early stages of product development 

may aid in steering the decision-making and help to shortlist prospective candidate products that 

could then be taken to sensory evaluation. Correlating sensory and instrumental analysis has been 

successfully shown in fermented milk products previously (Gallardo-Escamilla et al., 2005, Güler, 

2007) and in various cheese products (Lawlor et al., 2002) with much success. The current study 

investigated the feasibility of correlating peptide fingerprints using rapid mass spectrometry, 

MALDI-TOF, with consumer responses to fermented milk, which has not previously been 

demonstrated in the literature.  

The typical flavour of fermented milk results from a combination of lactic acid, aroma compounds 

and various compounds generated during fermentation, via proteolytic or enzymatic activity 

(Tamime and Robinson, 1999). Tastant peptides in fermented dairy foods are typically derived 

from the native protein (Toelstede et al., 2008a, b, Toelstede et al., 2009). The correlation between 

the peptide fingerprint and sensory responses to flavour in this study indicate that the peptide 

composition in these samples is impacting the flavour profile. Whether there are peptides (e.g., 

kokumi or umami) directly impacting the flavour profile would require further investigation 

through peptide identification and sensory evaluation of such peptides (Toelstede et al., 2008a, b, 

Toelstede et al., 2009).  

Limitations 

Investigating chemical composition and its relation to sensory properties in food poses a number 

of challenges. In fermented dairy products, this is further complicated by the effects of the 
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fermentation process and storage on the product. Compounds may be degraded when exposed to 

heat or oxygen, and storage time and temperature can induce changes in chemical composition 

(Cheng, 2010). Furthermore, sample preparation techniques for MS analysis can result in the loss 

or degradation of important compounds that may influence the sensory properties (Cheng, 2010). 

As such, it can be difficult to accurately characterise the product’s chemical composition. 

Samples prepared for sensory evaluation in this thesis were unavoidably sampled throughout the 

day by consumers, which raises the issue of whether samples evaluated at the beginning of the day 

are identical to those evaluated at the end of the day. It is possible that samples have undergone 

fermentation while in storage during the day which may have affected the sensory characteristics 

of the product. Due to the logistical challenges of conducting sensory evaluation and the 

challenging nature of fermented products, such a limitation is difficult to avoid.  

As indicated by fingerprinting analysis of fermented milk (Chapter 4), different bacterial 

combinations result in different proteolytic activity and behaviour throughout fermentation, as such 

attempting to treat and analyse all of these different samples simultaneously may not be practical. 

MALDI-TOF is not quantitative and only provides a relative quantitation; however, the signal 

intensity is correlated with the concentration of a molecule and so the prediction of signal intensity 

could provide an understanding of the general trend of the molecule. Although, this should be 

approached with caution as complex mixtures can result in poor correlations with ion intensity 

(Duncan et al., 2008).  

The multiple paired comparison test performed during the consumer trial did not provide a measure 

of the actual intensity of the attribute (e.g., bitterness or flavour intensity), but rather it provided a 

measure of the perceivable differences in intensity within that sample set (Kemp et al., 2009). A 

trained panel could be used to measure the intensity of these attributes, which may provide 

additional insights and measurements to correlate with instrumental analysis (Toelstede et al. 

2008a, b).  



147 
 

The large number of samples may have induced carry-over effects or fatigue in the participants 

during the multiple paired comparison testing (Rogers, 2017). During each session of the consumer 

trial, the participants were consuming 30 samples. Although the experimental design and breaks 

between each sample set should offset such issues to some extent, the volume and number of 

samples being consumed may have caused some fatigue and carry-over which may have impacted 

the results. Untrained panellists are also more prone to fatigue and carry-over effects (Rogers, 

2007). 

Value for dairy industry 

This study explored numerous methodologies which may be valuable to the dairy industry. Rapid 

fingerprinting techniques could be utilised to discriminate different fermented milk products and 

to monitor product development. Short data acquisition and data processing time make these 

techniques more suitable for high-throughput use in the food processing industry for monitoring, 

quality control and rapid screening of samples during product development. Multivariate analysis 

can reveal which cultures undergo the greatest compositional change during fermentation, which 

may be reflective of the end product characteristics, such as flavour, taste, textural or nutritional 

characteristics. Unique m/z ions were also shown to be characteristic of fermented and unfermented 

samples, this could be used as a means to monitor the fermentation process and as an indicator of 

the endpoint of fermentation. Prediction of peptides is useful for tracking specific peptides with 

desirable properties and could provide a quick and efficient way to understand the breakdown of a 

peptide, without the need for complex data analysis. By being able to correlate the changes in 

important sensory attributes with peptide fingerprints, the aim was to be able to provide an 

understanding of how the breakdown of products of proteolysis may affect the generation and 

development of these attributes. 

Future prospects 

The peptide fingerprint on its own does not provide an abundance of information. This study wished 

to understand how the peptide fingerprint could be exploited, without the need for time-consuming 
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peptide identification via MS/MS or other complex data analysis. Of course, this type of analysis 

can provide important biological insight into peptides and can provide a further understanding of 

the complex processes occurring during fermentation. However, this study was approached as a 

feasibility study: can the peptide fingerprint alone be used to provide rapid insights into a fermented 

product? A follow-up analytical study could be carried out to identify the peptides within the 

samples, which could then extend this work for tracking and targeting specific peptides with 

desirable properties. Several future works are proposed in Figure 6.2. 

Findings from this research were specific to fermented milk and, for the most part, specific to 

peptide fingerprinting. There are numerous approaches that could be taken to further the work 

undertaken in this thesis, including using different food products, instrumental, sensory and data 

analysis techniques.  

Fermented milk prepared under different processing conditions (heat-treatment, fermentation time, 

different milk base) using additional starter cultures could be examined to investigate whether the 

results in this study hold true under these conditions. Furthermore, additional measurements of 

peptide characteristics, using different analytical techniques, could be performed to validate and 

complement these findings. Further work could investigate other fermented foods with longer 

fermentation times, such as cheese. The effects of extended storage times on the peptide fingerprint 

and sensory properties could be examined to understand how these properties change throughout 

the product’s life cycle.  

Additional sensory testing, using trained panellists, could be carried out on specific peptides to 

determine their sensory properties and to quantify the intensity of the sensory attributes. Other 

sensory properties, such as the texture of fermented milk could also be investigated to understand 

if these properties may link with the peptide fingerprints.  

Importantly, MALDI-TOF m/z ions could be identified to determine if these correspond to real 

peptides with relevant or interesting biological functions which could be utilised for tracking and 
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targeting during development. Additionally, quantitation on the peptides could be performed to 

validate whether the trend in the signal intensity recorded in MALDI-TOF is consistent with the 

actual concentration of peptides in these samples.  

Further modelling on the peptide fingerprints could be performed to explore other predictor or 

response variables, i.e., pH values. Additional mass spectrometry analysis could be performed to 

measure other compounds (i.e., volatiles) which may be used alongside the current data to extend 

predictive capabilities and to understand whether the generation of these compounds could be 

correlated with the breakdown of the peptide profile. The inclusion of physicochemical properties, 

such as hydrophobicity could also be incorporated which may improve prediction and correlation 

with bitterness (Newman et al., 2014). Other modelling techniques for the prediction of sensory 

attributes could also be investigated. MALDI-TOF and REIMS datasets could be integrated to 

potentially strengthen the predictive power and capabilities of these techniques.  

 

Figure 6.2 Opportunities for future work to further the work explored in this thesis 
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Concluding remarks 

In conclusion, peptide fingerprinting of fermented milk products can provide insights into sensory 

characteristics, as perceived by consumers, and may be additionally used to predict changes in the 

fingerprint that could potentially enable the targeting of peptides that infer desirable characteristics.  

Both MALDI-TOF and REIMS have promise as rapid screening methods for fermented milk and 

other dairy foods. These fingerprinting techniques are a rapid and inexpensive means, relative to 

GC-MS or LC-MS, to discriminate between flavour characteristics of fermented milk. Because of 

the quick analysis times, these techniques could be used in the food processing industry to rapidly 

screen samples during the development of new fermented milk products with different flavour 

characteristics. Molecular fingerprinting could distinguish the differences in proteolytic activity at 

different stages of fermentation for milk fermented using different bacterial combinations. 

Predictive modelling techniques could predict changes in the peptide fingerprint throughout 

fermentation; this was achieved to some degree using regression techniques to predict the intensity 

of individual m/z ions at different times and using classification techniques to generally predict the 

direction of intensity. This enables an understanding of how the peptide fingerprint changes 

throughout fermentation and could be utilised in the development of products to target specific 

molecules with desirable properties, without the need to carry products to full fermentation. Lastly, 

consumer responses to important sensory characteristics could be correlated with the peptide 

fingerprints, specifically in the case of flavour intensity. This enables an approach to understand 

and predict how consumers respond to these products.  

This thesis presented novel approaches for screening the molecules in fermented milk products, for 

prediction of peptide fingerprints throughout fermentation and the correlation of consumer data 

with MALDI-TOF data, which may be utilised by food researchers and industry.  
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Appendices 

Chapter 2: Literature Review 
 

Appendix 1   
Sequence and fragment bitter peptides isolated from fermented dairy foods and evaluated for taste activity 
via sensory techniques 
Peptide Sequence  Fragment Food Type Reference 

ELEEL β-CN (2−6) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

VPGEIVESL β-CN (8- 16) Cheddar Lee et al., (1996) 

SLVYPFPGPIPNSL β-CN (57−70) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

LVYPFPGPIHN β-CN (58–68)  Gouda Toelstede and 
Hofmann, (2008a) 

VYPFPGPIPN β-CN-A2 (59–68)   

YPFPGPIHN β-CN (60-68) Gouda Toelstede and 
Hofmann, (2008a; b) 

YPFPGPIPN β-CN- A2 (60–68) Gouda Toelstede and 
Hofmann, (2008a) 

YPFPGPIHNS β-CN (60-69) Gouda Toelstede and 
Hofmann, (2008a; b) 

TQTPVVVPPFLQPE β-CN (78−91) Various cheeses & 
commercial dairy products 

Sebald et al. (2018); 
Sebald et al. (2019) 

TQTPVVVPPFL β-CN (78−88) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

VVPPFL β-CN (84−88)   

VPPFLQPE β-CN (84−91) Various cheeses & 
commercial dairy products 

 

MAPKHKEMPFPKYPVEPF β-CN (102−119) Various cheeses & 
commercial dairy products 

Sebald et al. (2018); 
Sebald et al. (2019) 

VENLHLPLPLL β-CN (130−140) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

VENLHLPLPLLQSW β-CN (130−143)   

NLHLPLPLLQS β-CN (132−142)   

LHLPLP β-CN (133−138) Various cheeses & 
commercial dairy products 

Sebald et al. (2018); 
Sebald et al. (2019) 

LHLPLPLL β-CN (133−140)   

LHLPLPLLQS β-CN (133−142) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

HLPLPLLQ β-CN (134−141) Various cheeses & 
commercial dairy products 

Sebald et al. (2018); 
Sebald et al. (2019) 

HLPLPLLQS β-CN (134−142) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

LPLPLLQSW β-CN (135−143)   

WMHQPHQPLPPTVMFPPQ β-CN (143−160)   

KVLPVPQKAVPYPQ β-CN (169−182) Various cheeses & 
commercial dairy products 

Sebald et al. (2018); 
Sebald et al. (2019) 

VLPVPQ β-CN (170−175)   

VLPVPQKAVPYPQ β-CN (170−182) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

QEPVLGPVRGPFPII β-CN (194−208)   
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Appendix 1 - Continued    

Peptide Sequence  Fragment Food Type Reference 

YQEPVLGPVRGPF
PIIV β-CN (193-209) Cheddar; Gouda 

Broadbent et al. (1998); 
Soeryapranata et al. 
(2002); Broadbent et al. 
(2002); Singh et al, 
(2005); Soeryapranata et 
al. (2008); Toelstede and 
Hofmann, (2008a) 

RPKHPIKHQ αs1-CN (1-9) Cheddar Broadbent et al. (1998); 
Broadbent et al. (2002) 

RPKHPIK αs1-CN (1-7) Cheddar Lee et al. (1996) 
RPKHPIKHQGLPQ αs1-CN (l-13)   

RPKHPIKHQGLPQ
EVLNENLLRF αs1-CN (1-23)  Cheddar 

Lee et al. (1996); 
Soeryapranata et al. 
(2008) 

LPQE αs1-CN (11-14) Cheddar; Gouda 
Lee et al. (1996); 
Toelstede and Hofmann, 
(2008a; b) 

NLLRFF αs1-CN (19−24) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

FFVAPFPEVF αs1-CN (23−32)   

VAPFPEVFGKE αs1-CN (25−35) Various cheeses & 
commercial dairy products 

Sebald et al. (2018); 
Sebald et al. (2019) 

VFGKEKVNEL αs1-CN (31−40)   
DIKQM αs1-CN (56−60)   
IQKEDVPS αs1-CN (81−88)   

ERYLGYLEQ αs1-CN (89−97) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

LLRLKK αs1-CN (98−103)   
KPWIQPK αs2-CN (f191- 197) Cheddar Lee et al. (1996) 

FALPQYLKT αs2-CN (174−182) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

EIVPN αs1-CN (70–74)/ αs1-
CN (110–114) Gouda Toelstede and Hofmann, 

(2008a; b) 

FFSDKIAK κ-CN (17−24) Various cheeses & 
commercial dairy products Sebald et al. (2018) 

IAKYIPI κ-CN (22−28) Various cheeses & 
commercial dairy products Sebald et al. (2019) 

NYYQQKPVA κ-CN (41−49)   

YQQKPVAL κ−CN (43−50) Various cheeses & 
commercial dairy products 

Sebald et al. (2018); 
Sebald et al. (2019) 

ARHPHPHLSFM κ-CN (96−106)   
AIPPKKNQDKTEIP
TIN κ-CN (107−123) Various cheeses & 

commercial dairy products Sebald et al. (2019) 

AIPPKKNQDKTEIP
TINTIASGEPT κ-CN (107−131) Various cheeses & 

commercial dairy products 
Sebald et al. (2018); 
Sebald et al. (2019) 

Peptides are abbreviated to one letter code.    
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Appendix 2.    
Kokumi active peptides identified in cheese and evaluated for taste activity via sensory techniques 

Peptide Sequence  Food Type Reference 

γ-Glu-Glu Various cheeses Toelstede et al. (2009); Hillman and Hofmann (2016) 
γ-Glu-Gly   
γ-Glu-Met   
γ-Glu-His    
γ-Glu-Gln Various cheeses Toelstede et al. (2009) 
γ-Glu-Leu Various cheeses Toelstede et al. (2009) 
γ-Glu-Thr Parmesan cheese Hillman and Hofmann (2016) 
γ-Glu-Ala   
γ-Glu-Lys   
γ-Glu-Val   
γ-Glu-Tyr   
γ-Glu-Asp   
γ-Glu-Trp   
γ-Glu-Ile   
γ-Glu-Phe     
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Chapter 3:  
 

 

 
Appendix 3: Samples mixed with both peptide standard (a) and BSA (b) using the matrix HCCA, 
detected more peaks consistently and had a higher signal intensity for the detected peaks. HCCA 
mixed with peptide standard detected 55 peaks, averaged across all replicates, while DHB detected 
48 peaks. HCCA mixed with BSA detected an average of 79 peaks, and DHB mixed with BSA detected 
64 peaks.  
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Appendix 4: Principal component analysis (PCA) was performed on the processed data to determine 
the reproducibility of replicates and the similarity between samples prepared using the same matrix. 
Some replicates were removed due to poor quality spectra identified during processing, The BSA 
samples group together for both matrices, but the samples spiked with the peptide standard are 
grouped apart. The samples prepared using just the DHB matrix cluster closer to the BSA and peptide 
groups, suggesting that they are more similar in peptide composition than those prepared using 
HCCA. This indicates that there may peaks in the spiked samples that originate from the DHB matrix. 
This provided insights into the level of interference that may be carried over from the matrix used. 
This may prove problematic when screening large numbers of samples if there are similarities in the 
fingerprint of samples prepared using DHB, which may interfere with sample discrimination.  
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Appendix 5: Ultrafiltration devices were trialled with a 3kDa (Pall) and 10kDa (Millipore, Inc, 
Billerica, MA) cut off; however, these devices removed a large number of ions in the ultrafiltrate that 
were present in the unfiltered samples, as well as introducing some suppressing and interfering ions.  

 

 

Appendix 6: Dilutions trialled to establish suitable sample dilution. Four dilutions were trialled – 1 
in 10 ul, 1 in 25 ul, 1 in 50 ul, 1 in 100 ul, sample: matrix. 1 in 25 ul was selected.  
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Appendix 7: Two matrices were shortlisted: graphene oxide and 6B graphite pencil. Using the 
graphene oxide as matrix, the three tested amino acids were detected with minimal background 
interference from the matrix. The labelled peak indicates the analyte. A blank sample of the graphene 
oxide spectrum is included to indicate the level of background noise introduced by the matrix when 
used with the analyte. 
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Appendix 8: Each amino acid was also detected with the 6B graphite pencil as matrix. There was 
minimal background interference from the pencil matrix, indicating its suitability for the analysis of 
low molecular weight compounds using MALDI-TOF.  
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Appendix 9: The sample preparation was adequate for fingerprinting the smaller compounds in milk 
and fermented milk samples using graphene oxide as matrix. There was minimal interference from the 
graphene oxide matrix in the milk and fermented milk spectra. There were many ions in common 
between the milk and fermented milk, although the fermented milk appears more abundant in ions, 
particularly in the m/z 100-200 region. From this work, we could establish an appropriate matrix for 
the analysis of both peptides and small compounds in milk and fermented milk, that lends itself to 
rapid and automated acquisition.  
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Chapter 4: 

Appendix 10: pH readings of each fermented milk type. These are an average of three measurements. An ANOVA of the pH readings by replicate for 
each fermented milk type was not significant. (P = 0.999, 0.899, 0.909, 0.851, 0.997, and 0.962, respectively, for each fermented milk type). 
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Appendix 11 Barchart of m/z ions detected by MALDI-TOF throughout fermentation across all 
samples. m/z ions are grouped by size. Chart is colour-coded by fermentation time, with m/z ions in 
common between all samples also highlighted. 

 

 

Appendix 12a  m/z ions detected for YF-L811, for fermented samples. The bar chart is colour-coded 
according to probiotic type used and the number of ions in common across all samples. 
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Appendix 12b  m/z ions detected for YC380, for fermented samples. The bar chart is colour-coded 
according to probiotic type used and the number of ions in common across all samples. 
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Appendix 13 MALDI-TOF spectra - Starter YF-L811, Probiotic BB12 
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Appendix 14 MALDI-TOF spectra - Starter YC380, Probiotic BB12 
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Appendix 15 Hierarchically clustered heatmap of the peaks present across all samples. The rows are samples and columns are m/z values. The rows 
are annotated by starter culture and fermentation time. The heatmap is colour-coded by peaks present (light-orange) and absent (dark-orange). 
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 Appendix 16 Hierarchical clustering of peptide fingerprints (averaged across the technical repeats) 
presented in a circlised layout. Dendrogram was generated using a Bray-Curtis distance and Ward.D2 
linkage. Colours correspond to the bacterial combination. The dendrogram is annotated with labels 
corresponding to smaller sub-clusters. Potential outliers are highlighted. 
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Appendix 17a PCA plots of peptide fingerprints, faceting by bacterial combination and colour-coded by fermentation time point.  
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Appendix 17b PCA plots of peptide fingerprints, faceting by time and colour-coded by probiotic culture. This includes three MALDI technical repeats. 
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MALDI-

TOF 
m/z ion 

Multiple linear 
regression 

model: Adj_R2  

Significance of 
multiple linear 
model: p-Value 

Generalised 
additive 
model: 
Adj_R2  

Significance of multiple 
linear model vs 

Generalised additive 
model 

704.16 0.56 1.03E-16 0.7 1.54E-10 
705.4 0.30 2.08E-01 0.38 8.27E-05 
706.5 0.57 2.87E-04 0.73 2.83E-16 

715.42 0.52 3.64E-25 0.64 1.09E-09 
716.63 0.43 2.28E-13 0.56 1.85E-08 
720.29 0.55 4.02E-04 0.71 1.18E-13 
732.49 0.67 8.66E-02 0.75 6.09E-07 
733.55 0.39 3.25E-04 0.41 2.50E-01 
734.59 0.60 6.64E-12 0.7 3.16E-09 
744.56 0.65 1.14E-02 0.76 9.20E-11 
745.53 0.53 2.38E-02 0.6 3.16E-04 

747.5 0.58 2.27E-06 0.85 2.16E-58 
758.49 0.68 3.28E-07 0.78 1.60E-12 
760.61 0.60 3.18E-01 0.82 5.70E-34 
772.54 0.33 6.37E-02 0.41 1.68E-04 
775.72 0.61 1.08E-13 0.75 3.03E-14 

786.7 0.12 1.02E-01 0.73 8.01E-69 
787.62 0.28 1.33E-01 0.66 2.52E-32 
788.58 0.76 1.14E-07 0.71 NA 
797.55 0.38 2.24E-16 0.73 5.41E-39 
798.58 0.56 6.51E-01 0.66 8.45E-08 
826.54 0.52 2.60E-01 0.76 5.58E-30 

843.5 0.58 1.21E-30 0.7 2.31E-11 
851.6 0.53 5.70E-17 0.72 3.00E-20 

877.15 0.32 1.42E-10 0.63 1.01E-25 
893.21 0.66 1.25E-27 0.71 3.32E-04 
909.14 0.53 1.27E-16 0.61 1.43E-05 
923.65 0.57 1.22E-26 0.85 9.59E-61 
947.09 0.67 2.15E-19 0.87 1.50E-52 

1012.77 0.55 9.25E-30 0.94 2.96E-245 
1022.76 0.41 8.45E-09 0.77 1.54E-50 
1051.71 0.55 7.90E-30 0.76 2.60E-27 
1052.73 0.28 2.28E-05 0.75 2.92E-59 
1066.13 0.15 3.87E-02 0.91 5.39E-296 
1125.7 0.40 2.02E-18 0.91 1.53E-186 

1140.79 0.48 1.43E-22 0.91 8.78E-171 
1151.89 0.30 5.72E-01 0.95 0.00E+00 
1184.22 0.59 3.56E-28 0.71 1.43E-12 
1189.79 0.16 3.39E-01 0.88 8.73E-212 
1198.71 0.44 4.80E-04 0.85 1.46E-95 
1252.37 0.80 8.22E-08 0.86 5.65E-14 
1304.26 0.32 8.60E-13 0.78 1.65E-65 
1314.36 0.44 4.08E-04 0.9 4.29E-161 
1330.23 0.68 1.38E-23 0.75 2.69E-07 
1344.28 0.77 2.88E-24 0.93 1.64E-85 
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MALDI-
TOF 

m/z ion 

Multiple linear 
regression 

model: Adj_R2  

Significance of 
multiple linear 
model: p-Value 

Generalised 
additive 
model: 
Adj_R2  

Significance of multiple 
linear model vs 

Generalised additive 
model 

1366.35 0.44 3.88E-06 0.84 1.08E-84 
1393.55 0.51 1.61E-06 0.59 3.37E-05 
1415.33 0.79 4.79E-21 0.93 9.47E-73 
1465.38 0.81 1.42E-30 0.85 2.73E-08 
1485.64 0.49 5.32E-17 0.51 1.10E-01 
1495.42 0.64 5.92E-38 0.92 7.73E-117 
1521.51 0.71 2.29E-22 0.92 4.71E-80 
1536.54 0.72 1.29E-17 0.93 2.38E-97 
1543.43 0.37 1.88E-06 0.72 2.76E-39 
1556.43 0.80 2.78E-18 0.93 1.04E-62 
1562.41 0.58 2.47E-05 0.91 3.78E-127 
1590.58 0.59 9.64E-35 0.91 4.61E-115 
1614.42 0.22 2.86E-10 0.89 1.33E-218 
1626.4 0.41 3.50E-06 0.89 1.03E-151 

1633.88 0.22 8.42E-03 0.82 1.80E-111 
1650.53 0.64 8.15E-15 0.92 5.52E-128 
1665.57 0.77 2.14E-14 0.94 2.78E-109 
1701.91 0.73 3.70E-34 0.84 1.29E-17 
1718.67 0.77 5.46E-07 0.83 6.72E-08 
1746.62 0.07 2.02E-02 0.78 8.79E-109 
1761.65 0.11 9.84E-02 0.72 3.00E-71 
1764.61 0.67 1.02E-12 0.82 3.22E-25 
1782.74 0.49 1.76E-03 0.9 2.33E-137 
1788.87 0.32 2.03E-03 0.82 1.01E-90 
1794.91 0.43 4.98E-01 0.9 1.03E-164 
1826.59 0.27 4.80E-08 0.94 0.00E+00 
1860.65 0.86 3.19E-73 0.93 1.05E-22 
1863.63 0.55 1.05E-10 0.91 1.78E-132 
1877.75 0.56 7.39E-11 0.78 1.35E-32 
1881.77 0.51 1.13E-02 0.92 1.55E-183 
1919.73 0.41 1.97E-01 0.88 4.42E-138 
1958.55 0.50 2.78E-04 0.65 1.67E-11 
1973.78 0.76 6.64E-12 0.85 1.52E-14 
1976.61 0.82 1.55E-15 0.88 1.11E-12 
1988.17 -0.01 5.56E-01 0.59 1.59E-46 
1991.8 0.80 9.37E-19 0.91 6.15E-35 

1994.81 0.45 9.19E-01 0.7 7.99E-26 
2107.84 0.44 1.78E-05 0.79 5.23E-52 
2120.84 0.87 7.25E-26 0.86 8.88E-01 
2192.11 0.69 1.18E-38 0.82 4.29E-21 
2201.87 0.84 1.15E-03 0.8 NA 
2216.78 0.71 8.34E-08 0.83 5.37E-18 
2217.75 0.73 1.41E-08 0.85 1.56E-21 
2235.06 0.66 1.07E-20 0.84 9.91E-35 
2253.19 0.75 9.46E-22 0.93 1.03E-91 
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MALDI-
TOF 

m/z ion  

Multiple linear 
regression 

model: Adj_R2  

Significance of 
multiple linear 
model: p-Value 

Generalised 
additive 
model: 
Adj_R2  

Significance of multiple 
linear model vs 

Generalised additive 
model 

2261.13 0.69 5.28E-40 0.87 5.99E-41 
2300.61 0.88 7.84E-24 0.88 9.71E-01 
2309.61 0.50 4.94E-01 0.79 7.08E-41 
2316.09 0.89 5.17E-38 0.92 4.81E-11 
2332.36 0.44 2.41E-08 0.93 2.48E-227 
2348.02 0.53 3.91E-17 0.87 3.13E-89 
2383.03 0.54 1.39E-29 0.91 1.76E-136 
2395.59 0.82 4.42E-50 0.94 1.71E-69 
2438.52 0.68 3.88E-01 0.83 2.04E-28 
2445.88 0.68 1.42E-16 0.86 5.55E-40 
2461.91 0.67 1.07E-21 0.88 1.44E-55 
2498.27 0.43 5.07E-18 0.76 7.68E-42 
2567.45 0.70 1.44E-32 0.83 1.73E-26 
2607.68 0.75 1.29E-24 0.91 1.87E-58 
2618.45 0.39 6.66E-15 0.93 1.60E-288 
2621.55 0.79 2.95E-02 0.85 1.36E-11 
2657.46 0.45 2.83E-21 0.87 3.65E-103 
2724.62 0.55 2.57E-28 0.93 9.48E-178 
2764.83 0.44 1.18E-17 0.89 1.86E-133 
2767.91 0.50 9.55E-22 0.92 9.21E-162 
2785.82 0.70 1.07E-16 0.79 2.40E-11 
2796.66 0.81 1.92E-03 0.86 1.98E-08 
2807.34 0.86 1.99E-41 0.94 2.72E-40 
2822.89 0.81 3.42E-43 0.89 8.72E-20 
2837.69 0.44 1.71E-22 0.78 1.90E-47 
2854.27 0.89 1.70E-16 0.82 NA 
2896.4 0.59 5.91E-28 0.92 2.53E-135 

2911.28 0.60 3.03E-23 0.88 1.02E-77 
2940.87 0.65 7.50E-38 0.82 1.85E-27 
2951.98 0.49 2.47E-11 0.76 2.61E-34 
3015.57 0.64 2.89E-38 0.94 2.41E-175 
3024.12 0.65 4.70E-40 0.92 2.49E-114 
3026.91 0.59 1.89E-25 0.8 4.25E-30 
3031.13 0.63 3.15E-38 0.95 8.49E-239 
3043.3 0.67 3.75E-03 0.83 2.23E-30 

3052.43 0.44 2.08E-09 0.84 1.21E-77 
3111.11 0.74 7.53E-48 0.9 2.65E-52 
3116.64 0.67 2.81E-10 0.85 2.02E-35 
3126.49 0.81 1.64E-02 0.83 2.89E-03 
3140.25 0.25 4.38E-03 0.57 2.04E-20 
3155.09 0.70 6.55E-16 0.83 1.58E-21 
3171.42 0.69 7.75E-01 0.81 8.31E-20 
3217.83 0.56 4.59E-21 0.89 3.22E-103 
3223.18 0.74 1.62E-47 0.8 2.57E-08 
3238.59 0.77 7.12E-54 0.84 3.51E-12 
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MALDI-
TOF 

m/z ion 

Multiple linear 
regression 

model: Adj_R2  

Significance of 
multiple linear 
model: p-Value 

Generalised 
additive 
model: 
Adj_R2  

Significance of multiple 
linear model vs 

Generalised additive 
model 

3253.21 0.45 1.08E-18 0.78 9.55E-47 
3307.15 0.16 1.31E-06 0.49 3.27E-18 
3346.38 0.85 7.70E-29 0.94 1.42E-51 
3392.49 0.70 4.50E-34 0.78 3.39E-10 
3397.42 0.45 2.12E-15 0.75 3.33E-35 
3418.78 0.72 9.89E-38 0.81 1.09E-12 
3452.88 0.52 2.55E-06 0.73 1.40E-21 
3499.59 0.18 2.83E-01 0.23 4.95E-03 

 

 

Appendix 18: A full list of m/z ions detected by MALDI-TOF MS, after processing. Reported are the 
adjusted R2 obtained from the full multiple linear regression model, the significance (p-value) of the 
multiple linear regression model, the adjusted R2 obtained from the generalised additive model, and 
the p-value reported from an ANOVA of the multiple linear regression model vs. generalised additive 
model. 
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Appendix 19 Smooth terms for GAM model of m/z 1189.79. Plot of signal intensity ~ time (a), smooth 
term for Time * interaction (YC380 *Bifidobacterium) (b), smooth term for Time* interaction (YF-
L8110 *Bifidobacterium) (c), smooth term for Time * interaction (YC380 *. L. acidophilus) (d), smooth 
term for Time * interaction (YF-L811 *. L. Acidophilus) (e), smooth term for Time * interaction (YC380 
*.L. casei) (f), smooth term for Time * interaction (YF-L811 *.L. casei) (g), effect of starter culture (h), 
effect of probiotic culture (i).  

 

Inspection of the smooth terms indicates that the signal intensity behaves differently over time for each 
bacterial combination (Appendix 19). Starter YC380 has a higher intensity over time, relative to YF-
L811, and no differences could be seen between the probiotics, although LC was marginally higher in 
intensity compared to BB12 and LA5. A good smooth should have some complexity to it, i.e., should 
not be linear, and the smooth term should be significant, i.e., non-significant terms in this case indicates 
there is no certainty as to the shape or direction of the effect. In this case, the smooth terms for the 
interaction of YF-L811 and time were linear and non-significant, suggesting a lack of complexity (i.e., 
linearity), and lack of certainty as to the direction of the effect. YC380 smooth terms were non-linear 
and significant, indicating complexity. 

GAM interactions for 1189 It would appear that time has a non-linear effect on the peptide intensity but 
behaves differently for each starter culture and probiotic combination. In YF-L811, it is a straight, linear 
line. We can also see that there are different effects on the two starter cultures. Starter YC380 has a 
higher intensity relative to YF-L811. There are no major differences for the probiotic, although L. casei 
appears slightly higher in intensity.  

The starter and probiotics were input as categorical variables. This fits a model then with a fixed effect 
for each level of the category. It appears that YF-L811 has a negative effective; YC380 has a positive 
effect, i.e. has a higher intensity over time. There are no major effects from the probiotics, these are all 
positive effects.  

c b a 

d e f 

g h i 
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A significant smooth term is one where you cannot draw a horizontal line through the 95% confidence 
interval. The interaction of time with the YF-L811 samples is a significant term as a line can be drawn 
through the confidence interval. Looking at the summary of the model, the interaction smooth terms for 
YC380 are significant. The YF-L811 smooths have an edf of 1, indicating a straight line/linearity. 

In the case of YF-L811, the smooth terms are linear and non-significant. Indicating that there is no 
complexity to the smooth, and there is not certainty as to the shape or direction of its effect. YC380 is 
non-linear and significant, indicating it has some complexity.  
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Summary of GAM model for m/z ion 1189: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 20 Table 17 Summary of GAM model on peptide 1189 

 

 

 

 

 

 

 

 

 

Parametric coefficients Estimate  Std. Error t-value Pr(>|t|) 

(Intercept) 1.12E-03 3.57E-05 31.373 <2e-16 

Starter [YF-L811] -5.48E-04 3.58E-05 -15.303 <2e-16 

Probiotic 
[L.Acidophilus] 4.97E-05 4.38E-05 1.135 0.2583 

Probiotic [L. casei] 1.29E-04 4.40E-05 2.931 0.0039 

Approximate significance of smooth terms: edf Ref.df F p-value 

s(Time) 4.5198 4.8619 39.657 <2e-16 

s(Time) * 
interaction(Starter,Probiotic)YC380.Bifidobacterium 4.6794 4.9377 23.171 <2e-16 

s(Time) * interaction(Starter, Probiotic)YF-
L811.Bifidobacterium 0.2669 0.4821 0.05 0.876 

s(Time) * interaction(Starter, Probiotic)YC380.L. 
Acidophilus 4.6108 4.9134 21.587 <2e-16 

s(Time) * interaction(Starter, Probiotic)YF-L811.L. 
Acidophilus 1 1 0.128 0.721 

s(Time) * interaction(Starter, Probiotic)YC380.L. 
casei 4.7959 4.9705 28.675 <2e-16 

s(Time) * interaction(Starter, Probiotic)YF-L811.L. 
casei 1 1 0.199 0.656 
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Smooth Term k' edf k-index p-value 

s(Time) 5 4.52 1.21 0.99 

s(Time) * 
interaction(Starter,Probiotic)YC380.Bifid
obacterium 

5 4.679 1.21 1 

s(Time) * interaction(Starter, 
Probiotic)YF-L811.Bifidobacterium 5 0.267 1.21 1 

s(Time) * interaction(Starter, 
Probiotic)YC380.L. Acidophilus 5 4.611 1.21 0.99 

s(Time) * interaction(Starter, 
Probiotic)YF-L811.L. Acidophilus 5 1 1.21 0.99 

s(Time) * interaction(Starter, 
Probiotic)YC380.L. casei 5 4.796 1.21 0.99 

s(Time) * interaction(Starter, 
Probiotic)YF-L811.L. casei 5 1 1.21 1 

Appendix 21 Gam.Check results for GAM model on peptide 1189. Low p-values indicate that k is too 
low, especially when edf is close to k' 

 

 

 

Appendix 22 MALDI-TOF processed spectra. Peaks are highlighted in red. Some peaks are notably 
low intensity (inset). 
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Appendix 23 Linear model of m/z 3499.59 ~ Fermentation time, starter and probiotic..  

 

 

Appendix 24 Heatmap of class labels for each m/z value across fermentation time points, comparing 
change in signal intensity between hour 0 vs hour 5, hour 1 vs hour 5, hour 2 vs hour 5, hour 3 vs hour 
5 and hour 4 vs hour 5. The fermentation times are coloured-coded along the rows, m/z values are 
labelled along the columns and are organised by lowest-highest molecular weight. The heatmap is 
coloured by the class label: “decreasing” or “increasing”. 
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Appendix 25 Violin plot of distribution of signal intensities for each class, for all instances of the top 
40 m/z values between time 0 and 4. 
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Appendix 26 Microbial results from Consumer Trial for YF-L811 samples 
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Appendix 27 Microbial results from Consumer Trial for YC380 samples 
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Appendix 28 Microbial results from Consumer Trial – preliminary testing showing contamination of samples
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Appendix 29: YF-L811 Bitter Responses for each sample type 

 

Pairing Sample 1  Sample 2 
Responses 18 23 

     
Pairing Sample 1  Sample 3  

Responses 8 33 
     

Pairing Sample 1  Sample 4 
Responses 8 33 

     
Pairing Sample 1  Sample 5 

Responses 9 32 
     

Pairing Sample 1  Sample 6 
Responses 7 34 

     
Pairing Sample 2 Sample 3  

Responses 9 32 
     

Pairing Sample 2 Sample 4 
Responses 9 32 

     
Pairing Sample 2 Sample 5 

Responses 12 29 
     

Pairing Sample 2 Sample 6 
Responses 10 31 

     
Pairing Sample 3 Sample 4 

Responses 14 27 
     

Pairing Sample 3 Sample 5 
Responses 14 27 

     
Pairing Sample 3 Sample 6 

Responses 15 26 
     

Pairing Sample 4 Sample 5 
Responses 19 22 

     
Pairing Sample 4 Sample 6 

Responses 19 22 
     

Pairing Sample 5 Sample 6 
Responses 16 25 
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Appendix 30: YF-L811 Bitter Responses d` values for each sample type 

 

d' (Sample 1 > Sample 2) d' (Sample 2 > Sample 1) 
-0.22 0.22 

    
d' (Sample 1 > Sample 3) d' (Sample 3 > Sample 1) 

-1.22 1.22 
    

d' (Sample 1 > Sample 4) d' (Sample 4 > Sample 1) 
-1.22 1.22 

    
d' (Sample 1 > Sample 5) d' (Sample 5 > Sample 1) 

-1.09 1.09 
    

d' (Sample 1 > Sample 6) d' (Sample 6 > Sample 1) 
-1.35 1.35 

    
d' (Sample 2 > Sample 3) d' (Sample 3 > Sample 2) 

-1.09 1.09 
    

d' (Sample 2 > Sample 4) d' (Sample 4 > Sample 2) 
-1.09 1.09 

    
d' (Sample 2 > Sample 5) d' (Sample 5 > Sample 2) 

-0.77 0.77 
    

d' (Sample 2 > Sample 6) d' (Sample 6 > Sample 2) 
-0.98 0.98 

    
d' (Sample 3 > Sample 4) d' (Sample 4 > Sample 3) 

-0.58 0.58 
    

d' (Sample 3 > Sample 5) d' (Sample 5 > Sample 3) 
-0.58 0.58 

    
d' (Sample 3 > Sample 6) d' (Sample 6 > Sample 3) 

-0.48 0.48 
    

d' (Sample 4 > Sample 5) d' (Sample 5 > Sample 4) 
-0.13 0.13 

    
d' (Sample 4 > Sample 6) d' (Sample 6 > Sample 4) 

-0.13 0.13 
    

d' (Sample 5 > Sample 6) d' (Sample 6 > Sample 5) 
-0.39 0.39 
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Appendix 31: YF-L811 Bitter Responses – ranking score for each participant for each sample type 

Ranking Score Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 
YS001 0 1 2 3 4 5 
YS002 0 1 2 4 3 5 
YS003 2 2 2 4 2 3 
YS004 2 1 2 1 5 4 
YS005 0 1 3 2 4 5 
YS006 1 1 2 4 3 4 
YS007 0 1 3 3 4 4 
YS008 0 1 2 4 4 4 
YS009 0 2 3 2 3 5 
YS010 2 2 4 4 1 2 
YS011 2 3 3 3 2 2 
YS012 0 3 3 3 3 3 
YS014 1 2 5 2 2 3 
YS015 2 0 4 3 4 2 
YS016 1 0 2 4 4 4 
YS017 0 1 2 4 4 4 
YS018 3 1 3 4 1 3 
YS019 1 2 2 5 2 3 
YS020 3 5 4 2 1 0 
YS021 1 0 3 2 4 5 
YS022 0 1 4 2 4 4 
YS023 2 2 4 2 2 3 
YS024 4 5 2 3 1 0 
YS025 2 1 2 4 3 3 
YS026 0 1 3 3 5 3 
YS027 1 4 3 4 2 1 
YS028 0 1 2 3 4 5 
YS031 1 0 3 3 3 5 
YS032 3 0 1 5 4 2 
YS033 1 0 2 3 5 4 
YS034 0 1 2 4 3 5 
YS035 2 1 5 4 2 1 
YS036 0 4 2 3 3 3 
YS037 1 1 1 5 3 4 
YS038 0 1 2 3 5 4 
YS039 1 1 4 3 1 5 
YS041 1 1 1 3 5 4 
YS042 1 2 2 3 3 4 
YS043 4 3 4 3 1 0 
YS048 1 0 2 3 4 5 
YS049 4 3 1 1 3 3 
Sum  50 63 108 130 126 138 
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Appendix 32: YF-L811 Bitter Responses – calculation of Rank Sum to input for Friedman analysis 

Selected Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 
YS001 0 2 4 6 8 10 
YS002 0 2 4 8 6 10 
YS003 4 4 4 8 4 6 
YS004 4 2 4 2 10 8 
YS005 0 2 6 4 8 10 
YS006 2 2 4 8 6 8 
YS007 0 2 6 6 8 8 
YS008 0 2 4 8 8 8 
YS009 0 4 6 4 6 10 
YS010 4 4 8 8 2 4 
YS011 4 6 6 6 4 4 
YS012 0 6 6 6 6 6 
YS014 2 4 10 4 4 6 
YS015 4 0 8 6 8 4 
YS016 2 0 4 8 8 8 
YS017 0 2 4 8 8 8 
YS018 6 2 6 8 2 6 
YS019 2 4 4 10 4 6 
YS020 6 10 8 4 2 0 
YS021 2 0 6 4 8 10 
YS022 0 2 8 4 8 8 
YS023 4 4 8 4 4 6 
YS024 8 10 4 6 2 0 
YS025 4 2 4 8 6 6 
YS026 0 2 6 6 10 6 
YS027 2 8 6 8 4 2 
YS028 0 2 4 6 8 10 
YS031 2 0 6 6 6 10 
YS032 6 0 2 10 8 4 
YS033 2 0 4 6 10 8 
YS034 0 2 4 8 6 10 
YS035 4 2 10 8 4 2 
YS036 0 8 4 6 6 6 
YS037 2 2 2 10 6 8 
YS038 0 2 4 6 10 8 
YS039 2 2 8 6 2 10 
YS041 2 2 2 6 10 8 
YS042 2 4 4 6 6 8 
YS043 8 6 8 6 2 0 
YS048 2 0 4 6 8 10 
YS049 8 6 2 2 6 6 
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Appendix 32: YF-L811 Bitter Responses – calculation of Rank Sum to input for Friedman analysis 
continued 

Unselected  Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 
YS001 5 4 3 2 1 0 
YS002 5 4 3 1 2 0 
YS003 3 3 3 1 3 2 
YS004 3 4 3 4 0 1 
YS005 5 4 2 3 1 0 
YS006 4 4 3 1 2 1 
YS007 5 4 2 2 1 1 
YS008 5 4 3 1 1 1 
YS009 5 3 2 3 2 0 
YS010 3 3 1 1 4 3 
YS011 3 2 2 2 3 3 
YS012 5 2 2 2 2 2 
YS014 4 3 0 3 3 2 
YS015 3 5 1 2 1 3 
YS016 4 5 3 1 1 1 
YS017 5 4 3 1 1 1 
YS018 2 4 2 1 4 2 
YS019 4 3 3 0 3 2 
YS020 2 0 1 3 4 5 
YS021 4 5 2 3 1 0 
YS022 5 4 1 3 1 1 
YS023 3 3 1 3 3 2 
YS024 1 0 3 2 4 5 
YS025 3 4 3 1 2 2 
YS026 5 4 2 2 0 2 
YS027 4 1 2 1 3 4 
YS028 5 4 3 2 1 0 
YS031 4 5 2 2 2 0 
YS032 2 5 4 0 1 3 
YS033 4 5 3 2 0 1 
YS034 5 4 3 1 2 0 
YS035 3 4 0 1 3 4 
YS036 5 1 3 2 2 2 
YS037 4 4 4 0 2 1 
YS038 5 4 3 2 0 1 
YS039 4 4 1 2 4 0 
YS041 4 4 4 2 0 1 
YS042 4 3 3 2 2 1 
YS043 1 2 1 2 4 5 
YS048 4 5 3 2 1 0 
YS049 1 2 4 4 2 2 
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Appendix 32: YF-L811 Bitter Responses – calculation of Rank Sum to input for Friedman analysis 
continued 

Ranking Score Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 
YS001 5 6 7 8 9 10 
YS002 5 6 7 9 8 10 
YS003 7 7 7 9 7 8 
YS004 7 6 7 6 10 9 
YS005 5 6 8 7 9 10 
YS006 6 6 7 9 8 9 
YS007 5 6 8 8 9 9 
YS008 5 6 7 9 9 9 
YS009 5 7 8 7 8 10 
YS010 7 7 9 9 6 7 
YS011 7 8 8 8 7 7 
YS012 5 8 8 8 8 8 
YS014 6 7 10 7 7 8 
YS015 7 5 9 8 9 7 
YS016 6 5 7 9 9 9 
YS017 5 6 7 9 9 9 
YS018 8 6 8 9 6 8 
YS019 6 7 7 10 7 8 
YS020 8 10 9 7 6 5 
YS021 6 5 8 7 9 10 
YS022 5 6 9 7 9 9 
YS023 7 7 9 7 7 8 
YS024 9 10 7 8 6 5 
YS025 7 6 7 9 8 8 
YS026 5 6 8 8 10 8 
YS027 6 9 8 9 7 6 
YS028 5 6 7 8 9 10 
YS031 6 5 8 8 8 10 
YS032 8 5 6 10 9 7 
YS033 6 5 7 8 10 9 
YS034 5 6 7 9 8 10 
YS035 7 6 10 9 7 6 
YS036 5 9 7 8 8 8 
YS037 6 6 6 10 8 9 
YS038 5 6 7 8 10 9 
YS039 6 6 9 8 6 10 
YS041 6 6 6 8 10 9 
YS042 6 7 7 8 8 9 
YS043 9 8 9 8 6 5 
YS048 6 5 7 8 9 10 
YS049 9 8 6 6 8 8 

Rank Sum 255 268 313 335 331 343 
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Appendix 33: YF-L811 Bitter Responses – Friedman analysis 

 

Samples Sample 1 Sample 
2 

Sample 
3 

Sample 
4 

Sample 
5 

Sample 
6  

Rank Sum 255 268 313 335 331 343  
Rank Sum Sq  65025 71824 97969 112225 109561 117649  
        
        
        
P = Total 
Panellists  43      
T = Treatments  6      
R = Rank Sum        
        
4/pt 0.01626016       
Rank Sum Sq  65025 71824 97969 112225 109561 117649  
Sum Rank Sum 
Sq 574253       
9p (t-1) ^ 2 9225       
        
Test Stat = 112.447154       
        
Difference 
Between Rank 
Sums: Difference       
Sample 1 vs 2 13       
Sample 1 vs 3 58       
Sample 1 vs 4 80       
Sample 1 vs 5 76       
Sample 1 vs 6 88       
Sample 2 vs 3 45       
Sample 2 vs 4 67       
Sample 2 vs 5 63       
Sample 2 vs 6 75       
Sample 3 vs 4 22       
Sample 3 vs 5 18       
Sample 3 vs 6 30       
Sample 4 vs 5 4       
Sample 4 vs 6 8       
Sample 5 vs 6 12       
        
df =  t -1 = 5 0.10 0.05 0.01 
table chi-sq 9.24 11.1 15.1 

    
conclusion: Test Stat (112.475 is > 
than the chi-squate critical values 
and is significant.     
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Appendix 34: YF-L811 Bitter Responses – HSD analysis 

 

 

HSD   
   

critical val from table - q alpha (0.95), t (6) inf 
from table is = 
4.03  

sq(pt)/4 61.5 7.842193571 

   
HSD Value calculated ->  31.60404009  
   
   

Comparing the Difference between samples 
and HSD Value   

   

Difference Between Rank Sums: Difference 
Greater than HSD 
Value? 

Sample 1 vs 2 13 FALSE 
Sample 1 vs 3 58 TRUE 
Sample 1 vs 4 80 TRUE 
Sample 1 vs 5 76 TRUE 
Sample 1 vs 6 88 TRUE 
Sample 2 vs 3 45 TRUE 
Sample 2 vs 4 67 TRUE 
Sample 2 vs 5 63 TRUE 
Sample 2 vs 6 75 TRUE 
Sample 3 vs 4 22 FALSE 
Sample 3 vs 5 18 FALSE 
Sample 3 vs 6 30 FALSE 
Sample 4 vs 5 4 FALSE 
Sample 4 vs 6 8 FALSE 
Sample 5 vs 6 12 FALSE 

   
** this is with 2 participants removed -- 44, 45   
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Appendix 35: YF-L811 Flavour intensity– Friedman analysis 

 

Samples Sample 1 Sample 
2 

Sample 
3 

Sample 
4 

Sample 
5 

Sample 
6  

Rank Sum 263 253 278 315 356 380  
Rank Sum Sq 69169 64009 77284 99225 126736 144400  
        
        
P = Total Panellists 41       
T = Treatments 6       
R = Rank Sum        
        
        
4/pt 0.016260163       
Rank Sum Sq  69169 64009 77284 99225 126736 144400  
Sum Rank Sum Sq 580823       
9p (t-1) ^ 2 9225       
        
Test Stat = 219.2764228       
        
df =  t -1 = 5 0.10 0.05 0.01     
table chi-sq 9.24 11.1 15.1     
        

  

 

     

  
   

   
 

    
   

conclusion: Test Stat (219.276) is > than the chi-
squate critical values and is significant.    
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Appendix 36: YF-L811 Flavour intensity– HSD analysis 

 

HSD   

critical val from table - q alpha (0.95), t (6) inf 
from table is = 
4.03  

   
sq(pt)/4 61.5 7.842193571 

   
   
   
HSD Value calculated ->  31.60404009  
   
   

Comparing the Difference between samples 
and HSD Value   

   
   

Difference Between Rank Sums: Difference 
Greater than HSD 
Value? 

Sample 1 vs 2 10 FALSE 
Sample 1 vs 3 15 FALSE 
Sample 1 vs 4 52 TRUE 
Sample 1 vs 5 93 TRUE 
Sample 1 vs 6 117 TRUE 
Sample 2 vs 3 25 FALSE 
Sample 2 vs 4 62 TRUE 
Sample 2 vs 5 103 TRUE 
Sample 2 vs 6 127 TRUE 
Sample 3 vs 4 37 TRUE 
Sample 3 vs 5 78 TRUE 
Sample 3 vs 6 102 TRUE 
Sample 4 vs 5 41 TRUE 
Sample 4 vs 6 65 TRUE 
Sample 5 vs 6 24 FALSE 
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Appendix 37 YC380 Bitter – Friedman analysis 

 

 Samples Sample 1 Sample 2 Sample 3 Sample 
4 Sample 5 Sample 

6 
Rank Sum 255 274 338 354 373 386 
Rank Sum Sq  65025 75076 114244 125316 139129 148996 

       
       
P = Total Panellists  44     
T = Treatments  6     
       
R = Rank Sum       
       
       
4/pt 0.015151515      
Rank Sum Sq  65025 75076 114244 125316 139129 148996 
Sum Rank Sum Sq 667786      
9p (t-1) ^ 2 9900      
       
       
Test Stat = 217.969697      
       
Difference Between 
Rank Sums: Difference      
Sample 1 vs 2 19      
Sample 1 vs 3 83      
Sample 1 vs 4 99      
Sample 1 vs 5 118      
Sample 1 vs 6 131      
Sample 2 vs 3 64      
Sample 2 vs 4 80      
Sample 2 vs 5 99      
Sample 2 vs 6 112      
Sample 3 vs 4 16      
Sample 3 vs 5 35      
Sample 3 vs 6 48      
Sample 4 vs 5 19      
Sample 4 vs 6 32      
Sample 5 vs 6 13      
       
       
df =  t -1 = 5 0.10 0.05 0.01    
table chi-sq 9.24 11.1 15.1    
       
       
    
     
conclusion: Test Stat (217.9) is > than the chi-
square critical values and is significant.      
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Appendix 38 YC380 Bitter – HSD analysis 
     
     
    

HSD    

 
from table is = 
4.03   

critical val from table - q alpha (0.95), t (6) 
inf 66 8.124038405  
sq(pt)/4    
HSD Value calculated ->  32.73987477   
    
    
    
Comparing the Difference between samples 

and HSD Value    
  

Difference Between Rank Sums: Difference 
Greater than HSD 
Value? 

Sample 1 vs 2 19 FALSE 

Sample 1 vs 3 83 TRUE 

Sample 1 vs 4 99 TRUE 

Sample 1 vs 5 118 TRUE 

Sample 1 vs 6 131 TRUE 

Sample 2 vs 3 64 TRUE 

Sample 2 vs 4 80 TRUE 

Sample 2 vs 5 99 TRUE 

Sample 2 vs 6 112 TRUE 

Sample 3 vs 4 16 FALSE 

Sample 3 vs 5 35 TRUE 

Sample 3 vs 6 48 TRUE 

Sample 4 vs 5 19 FALSE 

Sample 4 vs 6 32 FALSE 

Sample 5 vs 6 13 FALSE 

    
    
    
    

Appendix 39 YC380 Flavour intensity – Friedman analysis 
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Samples Sample 1 Sampl
e 2 

Sampl
e 3 

Sampl
e 4 

Sampl
e 5 

Sampl
e 6 

Rank Sum 253 277 315 343 376 416 

Rank Sum Sq 64009 76729 99225 
11764

9 
14137

6 
17305

6 
       

       
P = Total Panellists 45      
T = Treatments 6      
R = Rank Sum       
       
       

4/pt 
0.01515151

5      

Rank Sum Sq  64009 76729 99225 
11764

9 
14137

6 
17305

6 
Sum Rank Sum Sq 672044      
9p (t-1) ^ 2 9900      
       

Test Stat = 
282.484848

5      
       
       
df =  t -1 = 5 0.10 0.05 0.01    
table chi-sq 9.24 11.1 15.1    
       

 

  
  
conclusion: Test Stat (282.48) is > than the chi-square 
critical values and is significant.   
  

 

 

 

 

 

 

 

 

Appendix 40 YC380 Flavour intensity – HSD analysis 

  
Appendix 39 YC380 Flavour intensity – Friedman analysis 
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HSD    

critical val from table - q alpha (0.95), t (6) inf 
from table is 
= 4.03   

    
sq(pt)/4 66 8.124038405  
    
    
    
HSD Value calculated ->  32.73987477   
    
    
Comparing the Difference between samples and 

HSD Value    
    

Difference Between Rank Sums: Difference Greater than HSD 
Value?  

Sample 1 vs 2 24 FALSE  
Sample 1 vs 3 62 TRUE  
Sample 1 vs 4 90 TRUE  
Sample 1 vs 5 123 TRUE  
Sample 1 vs 6 163 TRUE  
Sample 2 vs 3 38 TRUE  
Sample 2 vs 4 66 TRUE  
Sample 2 vs 5 99 TRUE  
Sample 2 vs 6 139 TRUE  
Sample 3 vs 4 28 FALSE  
Sample 3 vs 5 61 TRUE 

 
Sample 3 vs 6 101 TRUE  
Sample 4 vs 5 33 TRUE  
Sample 4 vs 6 73 TRUE  
Sample 5 vs 6 40 TRUE  

 

Appendix 40 YC380 Flavour intensity – HSD analysis 
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Appendix 41 MALDI-TOF processing, R code used to process – as an exemplar, the code used to 

process data in Chapter 4 is presented.  

# Processing MALDI-TOF data - before technical averaging 

 

SampleDir<-("C://Users//murphyf//OneDrive - 
AgResearch//MALDI_Data_R_Drive//Time Course Exp Nov2019//All Reps Jan 2020") 

 

#### SampleNames <- factor(sapply(samples,function(x)metaData(x)$file)) 

library(MALDIquantForeign) 

library(MALDIquant) 

# importing samples using MALDIquantForeign 

samples <- importMzXml(SampleDir) 

# importing metaData (MetaData_Samples) 

metaSamples =read.csv(file.choose( ), header=T) 

# some samples were removed - one whole day's rep was removed. Bio Rep 2, 
Maldi Rep 2 

metaSamples$MALDI_Bio_Rep<-
paste0(metaSamples$Bio_Rep,metaSamples$MALDI_Rep) 

which(metaSamples$MALDI_Bio_Rep == "11") 

which(metaSamples$MALDI_Bio_Rep == "22") 

metaSamples[,643] 

metaSamples[643,] 

metaSamples[642,] 

metaSamples[750,] 

metaSamples[751,] 

750-643 

643-750 

spectra <- samples[-643:-750] 

type <- metaSamples[-643:-750,] 

# screening spectra for poor quality spectra. removed from the metadata and 
spectra 

sc.results <- screenSpectra(spectra, meta = type) 

(sc.results <- screenSpectra(SamplesForProcessing, meta = 
metaSamples$SampleName, threshold = 3, estimator = "MAD", method = "Hampel")) 

# summary of faulty spectra 

summary(sc.results) 

plot(sc.results, labels = TRUE) 
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# Filtered list of mass spectra 

spectra <- sc.results$fspectra  

type <- sc.results$fmeta 

# getting sample info - spectra to be averaged 

SampleReps <- type$Sample_to_Ave 

# MALDIquant processing  

spectra2 <- transformIntensity(spectra, method="sqrt") 

spectra2 <- MALDIquant::smoothIntensity(spectra2 ,method = 
"SavitzkyGolay",halfWindowSize = 20) 

spectra2 <- MALDIquant::removeBaseline(spectra2,method = "TopHat") 

spectra2 <- MALDIquant::calibrateIntensity(spectra2,method = "TIC") 

spectra2<-
MALDIquant::alignSpectra(spectra2,halfWindowSize=20,SNR=2,tolerance=0.002, 
warpingMethod="lowess") 

avgSpectra <- MALDIquant::averageMassSpectra(spectra2, labels=SampleReps, 
method="mean") 

names(avgSpectra) 

# peak detection - I had tried SNR = 1 too, but it's allowing peaks that are 
very low intensity (false peaks) so I'm opting for a slightly more strict 
SNR.  

peaks <- MALDIquant::detectPeaks(avgSpectra,method = 
"SuperSmoother",halfWindowSize = 20,SNR = 2) 

peaks <- MALDIquant::binPeaks(peaks, tolerance=0.002) 

peaks <- MALDIquant::filterPeaks(peaks, minFrequency=0.25) 

featureMatrix <- MALDIquant::intensityMatrix(peaks2, avgSpectra) 

 

rownames(featureMatrix) <- SampleNames 

 

#end result is feature matrix with 490 samples and 143 peaks. 

> dim(featureMatrix) 

[1] 490 143 

 

# making a dupe of the featurematrix 

featMat <- featureMatrix 

 

# renaming these rownames is important because the order of the outputted 
avgSpectra/Feature matrix was not in order.  
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rownames(featMat) <- SampleNames 

 

which(rownames(featMat) == "124_4_3") 

which(rownames(featMat) == "124_4_2") 

 

# Samples "124_4_3"  and   "124_4_2" (125 and 126 in featureMatrix), and 
"234_4_3", "234_4_2" (456 after others (125, 126) are removed) 

featMat <- featMat[-125, 126] 

featMat <- featMat[-456,457] 

 

# getting names of the filtered featMat. Getting info on hours/starter/bioRep 
and MALDIrep 

SampleNamesNew <- rownames(featMat) 

length(SampleNamesNew) 

dim(featMat) 

HoursNew <- substr(SampleNamesNew, 3,3) 

StarterNew <- substr(SampleNamesNew, 1,1) 

Bio_RepNew <- substr(SampleNamesNew, 5,5 ) 

MALDI_RepNew <- substr(SampleNamesNew, 7,7 ) 

 

# performing DA to extract the top 40 most discriminant peaks by time point 

library('sda') 

ddar <- sda.ranking(Xtrain=featMat, L=as.factor(HoursNew),fdr=FALSE, 
diagonal=TRUE) # DDA 

Top40_ddar <- rownames(ddar[1:40,]) 

Top40Peaks <- featMat[,c(Top40_ddar)] 

colnames(Top40Peaks) <- round(as.numeric(colnames(Top40Peaks)), digits=2) 
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