724 research outputs found

    Multi self-adapting particle swarm optimization algorithm (MSAPSO).

    Get PDF
    The performance and stability of the Particle Swarm Optimization algorithm depends on parameters that are typically tuned manually or adapted based on knowledge from empirical parameter studies. Such parameter selection is ineffectual when faced with a broad range of problem types, which often hinders the adoption of PSO to real world problems. This dissertation develops a dynamic self-optimization approach for the respective parameters (inertia weight, social and cognition). The effects of self-adaption for the optimal balance between superior performance (convergence) and the robustness (divergence) of the algorithm with regard to both simple and complex benchmark functions is investigated. This work creates a swarm variant which is parameter-less, which means that it is virtually independent of the underlying examined problem type. As PSO variants always have the issue, that they can be stuck-in-local-optima, as second main topic the MSAPSO algorithm do have a highly flexible escape-lmin-strategy embedded, which works dimension-less. The MSAPSO algorithm outperforms other PSO variants and also other swarm inspired approaches such as Memetic Firefly algorithm with these two major algorithmic elements (parameter-less approach, dimension-less escape-lmin-strategy). The average performance increase in two dimensions is at least fifteen percent with regard to the compared swarm variants. In higher dimensions (≥ 250) the performance gain accumulates to about fifty percent in average. At the same time the error-proneness of MSAPSO is in average similar or even significant better when converging to the respective global optima’s

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Optimisation par essaim de particules application au clustering des données de grandes dimensions

    Get PDF
    Clustering high-dimensional data is an important but difficult task in various data mining applications. A fundamental starting point for data mining is the assumption that a data object, such as text document, can be represented as a high-dimensional feature vector. Traditional clustering algorithms struggle with high-dimensional data because the quality of results deteriorates due to the curse of dimensionality. As the number of features increases, data becomes very sparse and distance measures in the whole feature space become meaningless. Usually, in a high-dimensional data set, some features may be irrelevant or redundant for clusters and different sets of features may be relevant for different clusters. Thus, clusters can often be found in different feature subsets rather than the whole feature space. Clustering for such data sets is called subspace clustering or projected clustering, aimed at finding clusters from different feature subspaces. On the other hand, the performance of many subspace/projected clustering algorithms drops quickly with the size of the subspaces in which the clusters are found. Also, many of them require domain knowledge provided by the user to help select and tune their settings, like the maximum distance between dimensional values, the threshold of input parameters and the minimum density, which are difficult to set. Developing effective particle swarm optimization (PSO) for clustering high-dimensional data is the main focus of this thesis. First, in order to improve the performance of the conventional PSO algorithm, we analyze the main causes of the premature convergence and propose a novel PSO algorithm, call InformPSO, based on principles of adaptive diffusion and hybrid mutation. Inspired by the physics of information diffusion, we design a function to achieve a better particle diversity, by taking into account their distribution and the number of evolutionary generations and by adjusting their"social cognitive" abilities. Based on genetic self-organization and chaos evolution, we build clonal selection into InformPSO to implement local evolution of the best particle candidate, gBest, and make use of a Logistic sequence to control the random drift of gBest. These techniques greatly contribute to breaking away from local optima. The global convergence of the algorithm is proved using the theorem of Markov chain. Experiments on optimization of unimodal and multimodal benchmark functions show that, comparing with some other PSO variants, InformPSO converges faster, results in better optima, is more robust, and prevents more effectively the premature convergence. Then, special treatments of objective functions and encoding schemes are proposed to tailor PSO for two problems commonly encountered in studies related to high-dimensional data clustering. The first problem is the variable weighting problem in soft projected clustering with known the number of clusters k . With presetting the number of clusters k, the problem aims at finding a set of variable weights for each cluster and is formulated as a nonlinear continuous optimization problem subjected to bound. constraints. A new algorithm, called PSOVW, is proposed to achieve optimal variable weights for clusters. In PSOVW, we design a suitable k -means objective weighting function, in which a change of variable weights is exponentially reflected. We also transform the original constrained variable weighting problem into a problem with bound constraints, using a non-normalized representation of variable weights, and we utilize a particle swarm optimizer to minimize the objective function in order to obtain global optima to the variable weighting problem in clustering. Our experimental results on both synthetic and real data show that the proposed algorithm greatly improves cluster quality. In addition, the results of the new algorithm are much less dependent on the initial cluster centroids. The latter problem aims at automatically determining the number of clusters k as well as identifying clusters. Also, it is formulated as a nonlinear optimization problem with bound constraints. For the problem of automatical determination of k , which is troublesome to most clustering algorithms, a PSO algorithm called autoPSO is proposed. A special coding of particles is introduced into autoPSO to represent partitions with different numbers of clusters in the same population. The DB index is employed as the objective function to measure the quality of partitions with similar or different numbers of clusters. autoPSO is carried out on both synthetic high-dimensional datasets and handcrafted low-dimensional datasets and its performance is compared to other selected clustering techniques. Experimental results indicate that the promising potential pertaining to autoPSO applicability to clustering high-dimensional data without the preset number of clusters k

    Parallel competing algorithms in global optimization

    Get PDF
    Specialized techniques are needed to solve global optimization problems, due to the existence of multiple local optima or numerical noise in the objective function. The complexity of the problem is aggravated when discontinuities and constraints are present, or when evaluation of the objective function is computationally expensive. The global (minimization) programming problem is defined as finding the variable set for which the objective function obtains not only a local minimum, but also the smallest value, the global minimum. From a mathematical point of view, the global programming problem is essentially unsolvable, due to a lack of mathematical conditions characterizing the global optimum. In this study, the unconstrained global programming problem is addressed using a number of novel heuristic approaches. Firstly, a probabilistic global stopping criterion is presented for multi-start algorithms. This rule, denoted the unified Bayesian stopping criterion, is based on the single mild assumption that the probability of convergence to the global minimum is comparable to the probability of convergence to any other local minimum. This rule was previously presented for use in combination with a specific global optimization algorithm, and is now shown to be effective when used in a general multi-start approach. The suitability of the unified Bayesian stopping criterion is demonstrated for a number of algorithms using standard test functions. Secondly, multi-start global optimization algorithms based on multiple local searches, combined with the unified Bayesian stopping criterion, are presented. Numerical results reveal that these simple multi-start algorithms outperform a number of leading contenders. Thirdly, parallelization of the sequential multi-start algorithms is shown to effectively reduce the apparent computational time associated with solving expensive global programming problems. Fourthly, two algorithms simulating natural phenomena are implemented, namely the relatively new particle swarm optimization method and the well-known genetic algorithm. For the current implementations, numerical results indicate that the computational effort associated with these methods is comparable. Fifthly, the observation that no single global optimization algorithm can consistently outperform any other algorithm when a large set of problems is considered, leads to the development of a parallel competing algorithm infrastructure. In this infrastructure different algorithms, ranging from deterministic to stochastic, compete simultaneously for a contribution to the unified Bayesian global stopping criterion. This is an important step towards facilitating an infrastructure that is suitable for a range of problems in different classes. In the sixth place, the constrained global programming problems is addressed using constrained algorithms in the parallel competing algorithm infrastructure. The developed methods are extensively tested using standard test functions, for both serial and parallel implementations. An optimization procedure is also presented to solve the slope stability problem faced in civil engineering. This new procedure determines the factor of safety of slopes using a global optimization approach.Dissertation (MSc)--University of Pretoria, 2000.Mechanical and Aeronautical EngineeringMScUnrestricte

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    • …
    corecore