
Optimisation par essaim de particules: application au clustering 
des donnees de grandes dimensions 

par 

Yanping Lu 

These en cotutelle presentee 

au Departement d'informatique en vue 

de l'obtention du grade de Docteur es sciences (Ph.D.) 

FACULTE DES SCIENCES, UNIVERSITE DE SHERBROOKE 

au Departement d'informatique en vue 

de l'obtention du grade de Docteur es sciences (Ph.D.) 

UNIVERSITE DE XIAMEN 

5 aout 2009 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Savoirs UdeS

https://core.ac.uk/display/51338001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de ('edition 

395, rue Wellington 
OttawaONK1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-52842-6 
Our file Notre reference 
ISBN: 978-0-494-52842-6 

NOTICE: AVIS: 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, prefer, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre im primes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1*1 

Canada 



Sommaire 

Le clustering est une tache difficile de forage de donnees dans des 

applications ou les donnees impliquees sont de grandes dimensions. 

Dans les applications reelles, chaque objet de donnees est souvent 

represents par un vecteur des caracteristiques (ou attributs) dont le 

nombre peutetre tres eleve. Par exemple, pour representer un texte 

on utilise un vecteur de grande taille dont les elements representent 

les frequences des mots. Les algorithmes traditionnels de cluster

ing ont beaucoup de difficulte quand la dimensionnalite est grande, 

leurs resultats deteriorent rapidement a mesure que le nombre de car

acteristiques augmente. Le phenomene s'appelle la malediction de la 

dimensionnalite (curse of dimensionality). En effet, quand le nom

bre de caracteristiques devient grand, les donnees deviennent tres 

clairsemees et les mesures de distance dans l'espace entier devien

nent non significatives. Dans ces cas, certaines caracteristiques peu-

vent etre non pertinentes ou superflues pour certains clusters, et de 

differents sous-ensembles de caracteristiques peuvent etre appropries 

pour differents clusters. Ainsi, des clusters se trouvent dans differents 

sous-espaces de caracteristiques plutot que dans l'espace de toutes 

les caracteristiques. Les methodes visant a trouver des clusters dans 

differents sous-espaces de caracteristiques sont appelees clustering de 

sous-espace ou clustering projectif. Cependant, la performance des 

algorithmes de clustering de sous-espace ou projectif diminue rapide

ment avec la taille (dimension) des sous-espaces dans lequel les clusters 

se trouvent. Aussi, beaucoup d'entre eux necessitent des informations 



a priori, fournies pars l'usager, pour les aider a determiner les valeurs 

de leurs parametres. Ces informations incluent la distance maximale 

entre les valeurs d'une dimension, les seuils tels que la densite min-

imale et la moyenne des dimensions a retenir pour les clusters, etc., 

qui sont en general difficiles a estimer. 

Le but principal de cette these est de developper une nouvelle 

methode, en se basant sur 1'optimisation par Essaim de Particules 

(PSO pour Particle Swarm Optimization), pour le clustering des donnees 

de grandes dimensions. Premierement, nous avons etudie les princi-

pales causes de la convergence prematuree de PSO et propose une 

nouvelle version de l'algorithme PSO amelioree que Ton appelle In-

formPSO. InformPSO est basee sur des principes de diffusion adap-

tative et de mutation hybride. En s'inspirant de la physique de diffu

sion d'information, nous avons congu une fonction pour obtenir une 

meilleure diversite de particules en tenant compte de leurs distri

butions et de leur nombre de generations evolutives et en ajustant 

leurs " habilites cognitives sociales ". En nous basant sur l'auto or

ganisation genetique et revolution de chaos, nous avons integre la 

selection clonale dans InformPSO pour implanter revolution locale 

du meilleur candidat particule, gBest, et fait usage d'une sequence de 

logistique pour controler la derive aleatoire du gBest. Ces techniques 

contribuent grandement a eviter des optimums locaux. La conver

gence globale de l'algorithme est prouvee en utilisant le theoreme de 

chaine de Markov. Nos experiences sur 1'optimisation des fonctions 

d'etalonnage unimodales et multimodales demontrent que, compare 

aux autres variantes de PSO, InformPSO converge plus rapidement 

et resulte en de meilleurs optimums. II est plus robuste et plus effectif 

a empecher la convergence prematuree. 

Par la suite, nous avons etudie deux des principaux problemes du 



clustering des donnees de grandes dimensions, a savoir le probleme de 

ponderation de variables dans ce qu'on appelle le " soft " clustering 

projectif avec un nombre fixe (ou connu) de clusters et le probleme 

meme de determination du nombre de clusters. Nous avons propose 

des fonctions objectives speciales et des schemas de codage adaptes 

pour permettre d'utiliser le PSO dans la resolution de ces problemes. 

Plus precisement, le premier probleme, avec le nombre de clusters 

prefixe et qui vise a trouver un ensemble de poids pour chaque clus

ter, est formule comme un probleme d'optimisation non lineaire avec 

des variables continues, sous contraintes de limites. Un nouvel al-

gorithme, appele PSOVW, est propose pour chercher les valeurs de 

poids optimales pour les clusters. Dans PSOVW, nous avons congu 

une fonction d'objectif de type &;-moyenne impliquant ies poids dont 

les variations sont exponentiellement refletees. Nous transformons 

egalement les contraintes d'egalite initiales en des contraintes de .lim

ites en utilisant une representation non normalised des poids vari

ables. Nous utilisons ensuite un optimisateur PSO pour minimiser 

la fonction objective. Nos resultats experimentaux sur des donnees 

synthetiques et des donnees reelles demontrent que notre algorithme 

ameliore significativement la qualite des clusters trouves. De plus, les 

resultats du nouvel algorithme dependent beaucoup moins des centres 

initiaux des clusters. 

Le deuxieme probleme vise a determiner automatiquement le nom

bre de clusters k et de trouver les clusters en meme temps. Ce 

probleme est aussi formule comme un probleme d'optimisation non 

lineaire avec des contraintes de limites. Pour ce probleme de la determination 

automatique de k, qui est problematique pour la plupart des algo-

rithmes existants, nous avons propose un nouvel algorithme de PSO 

appele 1'autoPSO. Un codage special des particules est introduit dans 



1'autoPSO pour representer des partitions avec differents nombres de 

clusters dans la meme population. L'index de DB est utilise comme 

fonction objective pour mesurer la qualite des partitions avec des nom

bres semblables ou differents de clusters. L'algorithme autoPSO est 

teste sur des ensembles de donnees synthetiques de grandes dimen

sions et des ensembles de donnees artificielles de petites dimensions. 

Ses performances ont ete comparees a celles d'autres techniques de 

clustering. Les resultats experimentaux indiquent que l'algorithme 

autoPSO a un potentiel interessant pour resoudre le probleme de 

clustering des donnees de grandes dimensions sans le prereglage du 

nombre de clusters. 
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Abstract 

Clustering high-dimensional data is an important but difficult task 

in various data mining applications. A fundamental starting point 

for data mining is the assumption that a data object, such as text 

document, can be represented as a high-dimensional feature vector. 

Traditional clustering algorithms struggle with high-dimensional data 

because the quality of results deteriorates due to the curse of dimen

sionality. As the number of features increases, data becomes very 

sparse and distance measures in the whole feature space become mean

ingless. Usually, in a high-dimensional data set, some features may 

be irrelevant or redundant for clusters and different sets of features 

may be relevant for different clusters. Thus, clusters can often be 

found in different feature subsets rather than the whole feature space. 

Clustering for such data sets is called subspace clustering or projected 

clustering, aimed at finding clusters from different feature subspaces. 

On the other hand, the performance of many subspace/projected clus

tering algorithms drops quickly with the size of the subspaces in which 

the clusters are found. Also, many of them require domain knowledge 

provided by the user to help select and tune their settings, like the 

maximum distance between dimensional values, the threshold of input 

parameters and the minimum density, which are difficult to set. 

Developing effective particle swarm optimization (PSO) for cluster

ing high-dimensional data is the main focus of this thesis. First, in 

order to improve the performance of the conventional PSO algorithm, 



we analyze the main causes of the premature convergence and pro

pose a novel PSO algorithm, call InformPSO, based on principles of 

adaptive diffusion and hybrid mutation. Inspired by the physics of in

formation diffusion, we design a function to achieve a better particle 

diversity, by taking into account their distribution and the number 

of evolutionary generations and by adjusting their "social cognitive" 

abilities. Based on genetic self-organization and chaos evolution, we 

build clonal selection into InformPSO to implement local evolution of 

the best particle candidate, gBest, and make use of a Logistic sequence 

to control the random drift of gBest. These techniques greatly con

tribute to breaking away from local optima. The global convergence 

of the algorithm is proved using the theorem of Markov chain. Ex

periments on optimization of unimodal and multimodal benchmark 

functions show that, comparing with some other PSO variants, In

formPSO converges faster, results in better optima, is more robust, 

and prevents more effectively the premature convergence. 

Then, special treatments of objective functions and encoding schemes 

are proposed to tailor PSO for two problems commonly encountered 

in studies related to high-dimensional data clustering. The first prob

lem is the variable weighting problem in soft projected clustering with 

known the number of clusters k. With presetting the number of 

clusters k, the problem aims at finding a set of variable weights for 

each cluster and is formulated as a nonlinear continuous optimization 

problem subjected to bound constraints. A new algorithm, called 

PSOVW, is proposed to achieve optimal variable weights for clusters. 

In PSOVW, we design a suitable fc-means objective weighting func

tion, in which a change of variable weights is exponentially reflected. 

We also transform the original constrained variable weighting prob

lem into a problem with bound constraints, using a non-normalized 



representation of variable weights, and we utilize a particle swarm op

timizer to minimize the objective function in order to obtain global 

optima to the variable weighting problem in clustering. Our experi

mental results on both synthetic and real data show that the proposed 

algorithm greatly improves cluster quality. In addition, the results of 

the new algorithm are much less dependent on the initial cluster cen-

troids. 

The latter problem aims at automatically determining the number 

of clusters k as well as identifying clusters. Also, it is formulated as a 

nonlinear optimization problem with bound constraints. For the prob

lem of automatical determination of k, which is troublesome to most 

clustering algorithms, a PSO algorithm called autoPSO is proposed. 

A special coding of particles is introduced into autoPSO to represent 

partitions with different numbers of clusters in the same population. 

The DB index is employed as the objective function to measure the 

quality of partitions with similar or different numbers of clusters. au

toPSO is carried out on both synthetic high-dimensional datasets and 

handcrafted low-dimensional datasets and its performance is com

pared to other selected clustering techniques. Experimental results 

indicate that the promising potential pertaining to autoPSO applica

bility to clustering high-dimensional data without the preset number 

of clusters A;. 
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Chapter 1 

Introduction 

1.1 Motivation 

Clustering high-dimensional data is a common but important task in various 

data mining applications. A fundamental starting point for data mining is the 

assumption that a data object can be represented as a high-dimensional feature 

vector. Text clustering is a typical example. In text mining, a text data set is 

viewed as a matrix, in which a row represents a document and a column represents 

a unique term. The number of dimensions corresponds to the number of unique 

terms, which is usually in the hundreds or thousands. Another application where 

high-dimensional data occurs is insurance company customer prediction. It is 

important to separate potential customers into groups to help companies predict 

who would be interested in buying an insurance policy (62). Many other appli

cations such as bankruptcy prediction, web mining, protein function prediction, 

etc., present similar data analysis problems. 

Clustering high-dimensional data is a difficult task because clusters of high-

dimensional data are usually embedded in lower-dimensional subspaces and fea

ture subspaces for different clusters can overlap. In a text data set, documents 

related to a particular topic are chacterized by one subset of terms. For exam

ple, a group of documents are categorized under the topic, electronics, because 

they contain a subset of terms such as electronics, signal, circuit, etc. The terms 

1 



1.1 Motivation 

describing another topic, athlete, may not occur in the documents on electronics 

but will occur in the documents related to sports. 

Traditional clustering algorithms struggle with high-dimensional data because 

the quality of results deteriorates due to the curse of dimensionality. As the 

number of dimensions increases, data becomes very sparse and distance measures 

in the whole dimension space become meaningless. Irrelevant dimensions spread 

out the data points until they are almost equidistant from each other in very high 

dimensions. The phenomenon is exacerbated when objects are related in different 

ways in different feature subsets. In fact, some dimensions may be irrelevant or 

redundant for certain clusters, and different sets of dimensions may be relevant 

for different clusters. Thus, clusters should often be searched for in subspaces of 

dimensions rather than the whole dimension space. 

Clustering of such data sets uses an approach called subspace clustering or 

projected clustering, aimed at finding clusters from different subspaces. Sub-

space clustering in general seeks to identify all the subspaces of the dimension 

space where clusters are most well-separated (see for instance (35; 51; 54)). The 

terms subspace clustering and projected clustering are not always used in a con

sistent way in the literature, but as a general rule, subspace clustering algorithms 

compute overlapping clusters, whereas projected clustering aims to partition the 

data set into disjoint clusters (see for instance (12; 18; 22; 23)). Often, pro

jected clustering algorithms search for clusters in subspaces, each of which is 

spanned by a number of base vectors (main axes). The performance of many 

subspace/projected clustering algorithms drops quickly with the size of the sub-

spaces in which the clusters are found (37). Also, many of them require domain 

knowledge provided by the user to help select and tune their settings, such as 

the maximum distance between dimensional values (12), the thresholds of input 

parameters (22; 23) and the minimum density (51; 54), which are difficult to 

establish. 

Recently, a number of soft projected clustering algorithms have been devel

oped to identify clusters by assigning an optimal variable weight vector to each 

?, 



1.2 Thesis Objectives 

cluster (14; 15; 32; 36). Each of these algorithms iteratively minimizes an ob

jective function. Although the cluster membership of an object is calculated in 

the whole variable space, the similarity between each pair of objects is based on 

weighted variable differences. The variable weights transform distance so that 

the associated cluster is reshaped into a dense hypersphere and can be separated 

from other clusters. Soft projected clustering algorithms are driven by evaluation 

criteria and search strategies. Consequently, defining the objective function and 

efficiently determining the optimal variable weights are the two most important 

issues in soft projected clustering. 

Another fundamental difficulty in clustering high-dimensional data concerns 

how an algorithm automatically determines the number of clusters k in the data 

set. Most existing subspace algorithms require the number of clusters k as an 

input parameter, and this is usually very difficult to set where the structure 

of the data set is completely unknown. While a number of different clustering 

approaches to automatically determine the number of clusters have been proposed 

(7; 8; 31; 39; 47), no reliable method exists for clustering high-dimensional data. 

1.2 Thesis Objectives 

Developing effective algorithms for clustering high-dimensional data is the main 

focus of this thesis. The goal is to address two main problems, namely the vari

able weighting problem in soft projected clustering with a number of clusters k, 

and the problem of automatic determination of k. Given a preset number of 

clusters k, the first of these is formulated as a nonlinear continuous optimization 

problem subjected to bound constraints. The aim is to find a set of variable 

weights for each cluster. The second problem is also formulated as a non-linear 

constrained continuous optimization problem. The aim is to find a set of cluster 

centers with the correct number of clusters. The objective criteria, the encod

ing of particles and searching techniques are addressed. The inherent properties 

3 



1.3 Organization of the Thesis 

of high-dimensional data, such as sparsity and equidistance, make cluster iden

tification a rather tedious task. This emphasizes the need to develop modern 

tools to analyze and design algorithms for clustering high-dimensional data. In 

this thesis, the goal is to develop particle swarm optimization techniques as new 

heuristic methods with global search capabilities, to solve the problem of cluster 

identification. An attempt is made to modify the original PSO algorithm, in or

der to explore its potential suitability for some of the optimization problems that 

exist in the area of clustering. Finally, the performances of the improved PSO 

algorithms is investigated and compared to that of other algorithms commonly 

used for clustering high-dimensional data. 

1.3 Organization of the Thesis 

The main tasks involved in the development of this thesis are detailed in five 

chapters. Chapter 1 highlights the motivation behind the thesis and introduces 

its main objectives. The concepts of particle swarm optimization theory are 

described in Chapter 2, which presents the development of the theory and its 

advantages over other global optimization approaches. In addition, an improved 

particle swarm optimizer to overcome the premature convergence problem is de

scribed in this chapter, and experimental results on benchmark tests for compar

ison of other PSO variants are also presented. Chapter 3 includes a recent and 

detailed state of the art review on the variable weighting problem in soft subspace 

clustering, proposes an advanced PSO algorithm for the variable weighting prob

lem and, finally, presents experiments comparing the approach with other soft 

projected clustering algorithms on both synthetic and real-life data sets. The 

application of the new algorithm to text clustering is described in detail in this 

chapter. Chapter 4 reviews the literature on recently proposed approaches to 

solve the problem of determining of the number of clusters k and addresses au

tomatic determination of k by another enhanced PSO algorithm. The enhanced 

algorithm is compared to other techniques and its effectiveness on synthetic and 
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1.3 Organization of the Thesis 

real-life data sets is assessed. Chapter 5 gives concluding remarks and presents 

the main contributions of the thesis and possible future extensions to the thesis 

research. 

5 



Chapter 2 

Particle Swarm Optimization 

2.1 Optimization and Swarm Intelligence 

Optimization has been an active area of research for several decades. Although 

there have been many local optimization methods, better global optimization 

algorithms are always needed because real-world optimization problems are be

coming increasingly complex. Optimization problems with bound constraints can 

be formulated as a d-dimensional minimization problem via the following formula: 

mmF(x),x = [x1^2, ...,xd],u <x<l (2.1) 

where d is the number of parameters to be optimized, u and I represent the lower 

and upper bound of the search space, respectively. 

Swarm intelligence (SI) is one of the advanced global heuristic techniques 

used for complex optimization problems. SI is artificial intelligence based on the 

collective behavior of decentralized, self-organized systems. The expression was 

introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular 

robotic systems. 

SI systems are typically made up of a population of simple agents interacting 

locally with one another and with their environment. The agents follow very 

simple rules, and although there is no centralized control structure dictating how 

individual agents should behave, local interactions between such agents lead to the 

fi 



2.1 Optimization and Swarm Intelligence 

emergence of complex global behavior. Natural examples of SI include ant colony 

behavior, bird flocking, animal herding, bacterial growth, and fish schooling (see 

Figure 2.1). 

"^Ss^te 

(a) ant chains (b) ant wall 

(c) fish schooling (d) birds flocking 

Figure 2.1: Several models of collective behavior: (a) ant chains, (b) ant wall, (c) 

fish schooling, (d) birds flocking. 

Since 1990, several algorithms inspired by collective behavior (such as that 

of social insects, or bird flocking) have been proposed. The application areas 

of these algorithms include such well-studied optimization problems as NP-hard 

problems (the Traveling Salesman Problem, the Quadratic Assignment Problem, 

graph problems), network routing, clustering, data mining, job scheduling, etc. 

In this thesis, we are most interested in Particle Swarm Optimization (PSO), 

which is currently one of the most popular algorithms in the swarm intelligence 

domain. 

7 



2.2 PSO and its Developments 

2.2 PSO and its Developments 

2.2.1 Particle Swarm Optimization (PSO) 

PSO is a population-based stochastic optimization technique developed by 

Eberhart and Kennedy in 1995 (16), inspired by the social behavior of insects, 

animal herding, bird flocking and fish schooling, where these swarms search for 

food in a collaborative manner. PSO shares many similarities with evolutionary 

computation techniques such as genetic algorithms (GA). The system is initial

ized with a population of random solutions and searches for optima by successive 

updating. However, unlike GA, the potential solutions are called particles in PSO 

and each particle is also associated with a position and a velocity. In PSO, there 

are no genetic operators such as crossover and mutation. Particles fly through 

the problem space with velocities which are dynamically adjusted according to 

the current optimal particles. 

In PSO, an individual in the swarm, called a particle, represents a potential 

solution which is usually a point in the search space. Each particle adapts its 

search patterns by learning from its own experience and that of other particles. 

These phenomena are studied and their mathematical models are constructed. 

Each particle has a fitness value and a velocity to adjust its flying direction and 

the particles fly through the problem space by learning from the best experiences 

of all the particles. The particles thus have a tendency to fly towards a better 

search area and search for the global optimum in the d-dimensional solution space. 

The velocity and position updates of the ith particle are as follows: 

Vi(t + l)=w* Vi(t) + cl* r l * {pBesU - X ^ t ) ) + c2 * r2 * (gBest-X^t)) (2.2) 

X{(t + I) = Vi(t + 1) + Xi(t) (2.3) 

where Xi is the position of the ith particle, V* represents its velocity and pBesti 

is the best previous position, i.e. the one that yields the best fitness value for 

the particle. gBest is the best position discovered by the whole population and 

8 



2.2 PSO and its Developments 

w is the inertia weight used to balance between global and local search abilities. 

Basically, a high inertia weight is more appropriate for global search, and a low 

inertia weight facilitates local search, cl and c2 are the acceleration constants, 

which represent the weighting of stochastic acceleration terms that pull each 

particle towards the pBest and gBest positions, r l and r2 are two random 

numbers in the range [0, 1]. A particle's velocity on each dimension is restricted 

to a maximum magnitude. If V̂  exceeds a positive constant value Vmax specified 

by the user, then the velocity is assigned to Vmax. 

2.2.2 PSO Developments 

The PSO algorithm is simple in concept, easy to implement and computation

ally efficient. Since its introduction in 1995 by Kennedy and Eberhart (16), PSO 

has generated considerable interest and has been empirically demonstrated to per

form well on many optimization problems. However, it may easily get trapped in 

local optima when solving non-linear optimization problems. Research into im

proving the performance of PSO continues to receive a lot of attention. In order 

to enhance the performance of PSO on non-linear optimization problems, many 

researchers have made modifications to the original algorithm deriving many in

teresting variants.. 

Some of these improve the performance of the original PSO by introducing 

different parameters into its velocity update. The original algorithm includes a 

parameter called inertia weight Formula2.2 whose function is to balance the global 

and local search abilities. A high inertia weight is more appropriate for global 

search, and a low inertia weight facilitates local search. Shi and Eberhart (65) in 

1998 proposed a linearly decreasing inertia weight over the course of search. Fuzzy 

methods for modifying the inertia weight were designed by Shi and Eberhart 

(66). In addition to the time-varying inertia weight, Fan in (20) introduced a 

linearly decreasing scheme. Another parameter, called the constriction factor, 

was introduced by Clerc in (41), by analyzing the convergence behavior of the 
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PSO. The constriction factor guarantees convergence and makes the algorithm 

converge rapidly. 

Improving PSOs performance by designing different types of topologies has 

been an active research direction. Kennedy (33) claimed that PSO with a small 

neighborhood might perform better on complex problems, while PSO with a 

large neighborhood would perform better on simple problems. Suganthan (56) 

applied a dynamic adjustment whereby the neighborhood of a particle gradually 

increases until it includes all particles. In (29); Hu and Eberhart also used a 

dynamic neighborhood where the closest particles in the performance space are 

selected to be the new neighborhood in each generation. Parsopoulos and Vrahatis 

combined the global and local versions together to construct a unified particle 

swarm optimizer (UPSO) (49). Mendes and Kennedy introduced a fully informed 

PSO in (52). Instead of using the best previous position gBest of the swarm 

in the standard algorithm, all the neighbors of the particle are used to update 

the velocity. The influence of each particle on its neighbors is weighted based 

on its fitness value and the neighborhood size. Veeramachaneni et al. developed 

the fitness-distance-ratio-based PSO (FDR-PSO) with near neighbor interactions 

(58). When updating each velocity dimension, the FDR-PSO algorithm selects 

another particle which has a higher fitness value and is closer to the particle being 

updated. 

Some researchers have investigated hybridization by combining PSO with 

other search techniques to improve its performance. Evolutionary operators such 

as selection, crossover, and mutation have been introduced into PSO to keep the 

best particles (6), increase the diversity of the population (30), and improve the 

ability to escape local minima (42). Mutation operators are also used to mutate 

parameters such as the inertia weight (46). Other approaches that have been 

investigated include relocating the particles when they are too close to each other 

(40) or using collision-avoiding mechanisms (10) to prevent particles from moving 

too close to each other in order to maintain diversity and escape from local op

tima. In (42), the swarm is divided into subpopulations, and a breeding operator 
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is used within a subpopulation or between the subpopulations to increase the 

diversity of the population. Negative entropy is used to discourage premature 

convergence in (63). In (49), deflection, stretching, and repulsion techniques are 

used to find as many minima as possible by preventing particles from moving to 

a previously discovered minimal region. Recently, a cooperative particle swarm 

optimizer (CPSO-H) (60) was proposed. Although CPSO-H uses one-dimensional 

(1-D) swarms to search each dimension separately, the results of these searches 

are integrated by a global swarm to significantly improve the performance of the 

original PSO on multimodal problems. 

The original PSO and its variants can generate a high-quality solution within 

an acceptable calculation time and with a- stable convergence characteristic in 

many problems where most other methods fail to converge. It can thus be ef

fectively applied to various optimization problems. A number of papers have 

been published in the past few years that focus on the applications of PSO, such 

as neural network training (61), power and voltage control (27), task assignment 

(5), single machine total weighted tardiness problems (45) and automated drilling 

(24). • 

2.3 InformPSO 

2.3.1 Motivation 

Although there are numerous versions of PSO which improve the performance 

of the original PSO to a certain degree, premature convergence when solving 

complex optimization problems is still the main deficiency of PSO. In the origi

nal PSO algorithm, each particle learns from its pBest and gBest to obtain the 

personal and social cognitions simultaneously and then changes its velocity. How

ever, applying the same social cognition aspect to all particles in the swarm only 

makes the original PSO converge fast and appears to be a somewhat arbitrary de

cision. Each particle obtains the same information from the gBest as others even 
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if it is far from the gBest. In such situations, particles may be quickly attracted 

by the gBest, resulting in a rapid loss of population diversity. Consequently, the 

algorithm easily becomes trapped in a local optimum if the gBest is in a complex 

search environment with numerous local optima. 

Another cause of the premature convergence problem plaguing the original 

PSO is that the pBest and gBest do not contribute to gBest in the velocity 

update equation. gBest, the best particle in the original PSO, always flies in the 

direction of its previous velocity, which means it easily become trapped in a local 

optimum and is unable to break away from it. In other words, gBest, as the most 

important memory unit, is restricted to learning from particles with better fitness 

values and does not employ the self-learning mechanism. 

In order to increase the population diversity of the original PSO and improve 

the ability to get away from local optima, we have to propose a new variant to 

discourage premature convergence and improve on the performance of the original 

version. In our algorithm, an information diffusion function is introduced into 

the social cognition part of the velocity update. The function ensures that the 

diversity of the swarm is preserved to discourage premature convergence. Another 

mutation strategy is employed to improve gBesVs ability to break away from local 

optima. 

2.3.2 InformPSO 

Information diffusion function 

In fact, information diffusion among biological particles is a time-dependent 

process. Obviously, particles close to the current best particle gBest quickly 

change their direction and rate of velocities towards it, while other particles far 

from gBest move more slowly towards it or break away from its effect. On 

the assumption that information is diffused among particles in a short time, 

information received by particles close to gBest is more than that received by 

those far from it. Therefore, an information diffusion function, related to degree 
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of membership with respect to the "surroundings" of gBest, is incorporated into 

the velocity update in the original PSO to adjust the variable "social cognition" 

aspect of particles. 

In this improved version of PSO, the velocity update is expressed as follows: 

Vi(t + l) = w- Yi(t) + cl • rl • (pBesti - Xt) + H • c2 • r2 • (gBest - Xt) (2.4) 

Hi = [i ^ ] - - ^ - r - ( i - £ ) (2-5) 
L maxi<j-<ndj + lJ n + n' + l v T' V ' 

where H is an information diffusion function, dj is the distance between particle 

i and gBest, t represents the current number of evolution generations, and T is 

the total number of generations and the overall number of generations specified 

by the user, respectively. 

The scale of motion particles towards gBest in the information diffusion func

tion consists of three sections, namely, 

• • 1 di+l , ,, combines the scale of motion with the membership degree 

of with respect to the "surroundings" of gBest. Particles close to gBest 

move quickly towards it, while particles far from it move slowly towards it. 

As a result, particles in the same generation move towards gBest according 

to variable scales to maintain the population diversity, di is the distance 

between ith particle and gBest and here the distance is measured by their 

position difference. " 1 " is added to prevent the denominator from being 

zero. 

• n+n,l+i combines the scale of motion with the particle distribution. During 

the search procedure, the distribution of particles is examined. Once the 

number of particles very close to gBest exceeds a threshold value specified 

by the user, the scale of motion becomes small to avoid losing the population 

diversity. Here, n' is the user-defined number of particles very close to 
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gBest. n is the number of other particles. " 1" is added to prevent the 

function value from being zero. 

• \ — -f combines the scale of motion with the number of evolution generations. 

The earlier particles have lower quality and hence the scale of motion is 

relatively large, favoring global search by the particles. As the number of 

generations increases, the scale becomes smaller, favoring local search by 

the particles and maintaining the population diversity. 

By inspecting the equations in 2.4 and 2.5, we understand that particles per

form variable-wise velocity update to gBest. This operation improves the local 

search ability of PSO, increases the particles' diversity and enables the swarm to 

overcome the premature convergence problem. 

Clonal selection operator 

In non-linear optimization problems, the best position candidate, gBest, is 

often a local optimum, which may give other particles wrong information and 

lead to premature convergence. Besides learning from particles with better fit

ness values, gBest also needs to be able to move out of local optima, i.e., it 

requires mutation ability to implement local self-evolution. PSO variants en

dowed with the deterministic mutation operation can be easily trapped in local 

optima, while PSO variants incorporating the random mutation operation are 

unable to implement precise local search. The PSO variants employed with the 

deterministic mutation operation can be easily trapped in local optima. Based on 

genetic self-organization and chaos evolution, we build clonal selection into our 

PSO algorithm to implement local evolution of gBest and make use of a logistic 

sequence to control the random drift of gBest. These mutation techniques are 

simultaneously deterministic and random and hence strongly promote the ability 

to break away from local optima. 

The genetic evolution principle of clonal selection theory can be stated as 

follows: A gene, as a memory unit which carries genetic information to the next 

generation, will replicate and grow by self-replicating; but due to the changing 
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environment, copying errors occur frequently to the genetic material during the 

process of self-replication, leading to genetic mutation. The majority of these mu

tant genes will have no effect and will die because of the mutation, but one might 

survive to change the genetic information and thus produce its own offspring. 

Self-replication of genes in a small region, genetic mutation and mutation death 

cause the original gene to spread far and wide. Over time the number of genes 

with this mutation may form a larger percentage of the population. Inspired by 

the genetic evolution principle, Our new algorithm applies the clonal selection 

operation on the best position gBest in the swarm, and thus pulls gBest in an

other direction if it is trapped in a local optimum. The clonal selection operation 

proceeds as follows: 

• The best position in the population, gBest, self-replicates into a sub-swarm, 

in which the individual has the same characteristics as gBest. 

• Based on a Cauchy distribution, this sub-swarm is edited and mutated in a 

local region to form a cluster, in which individuals are different and might 

have different fitness values. 

• The individual with the best fitness value is chosen from the new sub-swarm 

as the gBest for the velocity update of the next generation. 

From the above description, we can see that the essence of the clonal approach 

is the evolution of one generation, and near the candidate solution it will create 

a cluster of mutation solutions depending on the fitness. As a result, gBest is 

improved in a local region by the clonal selection operation, which enables the 

PSO effectively to break away from local optima. It is also able to more correctly 

guide other particles to move and convergence is greatly accelerated. 

Logistic sequence mutation 

Actually, the clonal selection operation is a kind of mutation with small scale. 

For optimization functions in which local optima are close to the global optima, 

it can effectively help gBest to move out of local optima. However, for functions 
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where local optima are far from the global optima, it only accelerates the algo

rithm's convergence to some local optimum. So, when gBest is trapped in a local 

optimum and there are no better local optima close by, a random but regular 

mutation drift must be used to replace the clonal selection operation in order to 

help gBest escape. 

The nonlinear time sequence, which has a series of properties such as ran-

domicity and, ergodicity, has been introduced into the evolutionary computation 

to construct new intelligent algorithms. Once the clonal selection operation ceases 

improve gBest in a local region, the new algorithm makes use of a logistic se

quence to control the random drift of gBest, What this algorithm needs is a large 

random drift, i.e. the ergodicity space of the logistic reflection needs to be large. 

We therefore set two parameters in the logistic sequence, the control parameter r 

and the initial value x(0), by observing their influence on the space of the logistic 

inflection ergodicity scope. 

A logistic sequence is a nonlinear system: 

x(t + l) = r-x(t)-[l-x(t)],rER,x(0)e[0,l] (2.6) 

where r is a control parameter. After defining r, we start with an initial arbitrary 

value and produce a time sequence x(l),x(2), • • -. Formula 2.6 is a deterministic 

system with no stochastic disturbance. 

gBest{t + 1) = gBest(t) + [r3 < Pm] • x(t) • rA + [r3 > Pm] • x(t) • r5 (2.7) 

1 if rS < P 

^ < «J - {S Z <2-8> 
where r3, r4 and r5 are random numbers in the range of [0, 1]. Pm is the 

mutation probability in the range of [0.05, 0.5]. We experimentally set Pm = 

0.05+ 0 . 4 5 - ^ ^ , where m is the dimension of problem. 

Graph (a) of Figure 2.2 shows the chaos process of the logistic sequence with 

a time increase. When 3 < r < 4, the sequence becomes very complicated. When 
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r = 3.56, it will be led to the chaos through a multi-period process. Graphs (b) 

and (c) of Figure 2.2 describe the influence of the chaos factor r on the space of the 

logistic inflection ergodicity scope. The solid lines are the sequence's trajectory 

when r = 4, while the broken lines are the sequences trajectory when r = 3.6 

and r = 3.9. Obviously, the former ergodicity scope is wider than the latter ones. 

Therefore, we set r = 4 in the new algorithm. In graph (d), we examine the 

influence of initial value x(0) on the logistic sequence when r = 4. The sequence 

tends to be zero when r = 4 and x(0) — 0.5, otherwise it tends towards chaos. 

Therefore, we take r = 4 and a value of x(0) in the range of [0,1], except for 0, 

0.5 and 1. 

Convergence Analysis 

The improved PSO algorithm based on clonal selection and adaptive mutation, 

termed InformPSO, operates synchronously on two swarms, the particle swarm 

and the memory swarm (pBest and gBest). The evolutionary processes of the two 

swarms run side by side. The particle swarm is the foundation of the search in the 

search space, so more attention is paid to global search. The information diffusion 

function adjusts the flying speed of each particle to the best position, gbest, and 

carries out variable local search, in order to achieve a better particle diversity. 

The best particle candidate, gBest, as one of the most important memory units 

is replaced by better particles to accelerate convergence. On the other hand, local 

evolution is implemented by the clonal selection operation and a logistic sequence 

is incorporated to control the random drift of gBest. These techniques greatly 

enhance the ability break away from local optima. The cooperation among these 

operations makes the new algorithm converge to global optima. We prove the 

global convergence of InformPSO as follows: 

Assume that (1) the problem domain Q, is a bound region in m-dimensional 

Euclidean space, and (2) the objective function / is continuous on definition 

domain f2. This implies the existence of the set of global optima A* of the 

function / in its definition domain Q. 
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Definition 1. Define the set of global optimal solutions to the problem to be 

optimized as: 

A* = {A e S\f(A) = f* = mmf(A'),A' e S} 

where S is called the population space. For the population A, 6{A) = \A D A*\ 

gives the number of global optimal solutions in A. S\ = {A G Si\6(A) > 1} 

is called the optimal population space, within which there exists at least one 

optimal individual. So =? S\Si is called the normal population space. 

Definition 2. For random state A0, the algorithm converges to the global 

optimum with probability 1, if and only if lim^oo P{6(A(t)) > 11 A(0) = A0} = 1; 

or any random sequence {£n}converges to random variable £ with probability 1, 

if P{Hn=i U > „ \h - £1 > r} = 0 for Vr > 0. 

Theorem 1. For the optimization problem with bound constraints min/(a;) 

x = (xi,X2,- • -,xn), s.t.di < Xi < bi,i = 1, 2, • • -,n, the original particle swarm 

optimization algorithm (PSO) converges to local optima and converges to global 

optima with probability 1. 

Please see references (21; 26). 

Theorem 2. For the optimization problem with bound constraints min/(:r), 

x = (xi,x2, •••, xn), s.t.cii < Xi < bi,i = 1, 2, •••,?!, the particle swarm optimization 

algorithm (InformPSO) converges to local optima and converges to global optima 

with probability 1. 

Proof. InformPSO converges to local optima, see (26). 

There exists the set of global optima of the optimization problem with bound 

constraints. From the main idea of our algorithm, it is based on the original PSO 

with three operations added to it. 

• Adaptive diffusion operation: From formula 2.4, the change in positions 

between two adjacent generations is Ax] = w • Vi + cl • (pBestf — X?) • r\ + 

Hi-cl- (gBesi - x{) • r2. r l , r2 N(0, aj), so A] N(0, Oj). 
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• Clonal selection operation: From the property of the clonal selection 

operation, where the optimal population won't evolve into the normal one, 

the following equation holds: 

P{6(A(t + l)) = 0\S(A(t))^0} = Pw = 0 

• Logistic sequence mutation: Note that B(x*,r) = {x e £2||/(x) — /*| < 

r}, Vr > 0 is the neighborhood of the global optimum x*. Note that At = 

{(A(t) fl B(x*,r)) ^ 0 } represents a random sequence entering B(x*,r) at 

the tth iteration. For a given r, the occurrence of Ax leads to the occurrence 

of A2 due to the ergodicity of the logistic sequence. Hence, we have 

A1CA2C...QAtc... 

Therefore, 

P(Ax) < P(A2) <•••< P(At) <••• 

Note that 0 < P(At) < 1. 

So, limt^oo P(At) exists. 
,. , , r r 1 entering B(x*,r) at tth iteration 

Assume that random sequence dt = \ _ , L . „ , ' .. ^ ,th ., ,. , L 0 not entering B(x ,r) at vn iteration 

t = l , 2 , . . . . 

Then At = {5t = l}. 

Let P{At} = P{6t = l}=Pt, P{8t = 0} = l-pt, St = £•£!<**. t = 1 ,2 , - , 

Therefore, 

where E(St) and D(St) are the expectation and the variance of sequence 

St, respectively. 

From the Chebysher's Inequality, 

D2(St) 1 
P{\St-E(St)\>r}< 

r 
2 4 • m • r2 
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Consequently, 

\imP{\St-E(St)\>r} = 0 
t—>oo 

Note that 

8t = t-St-(t-l)- St_i 

Thus, 

lim P{\5t - E(St)\ >r} = 0 
t—>oo 

Therefore, 

oo 

•P i f lU i5fc - ^ * ) i ^ r> = p { l i m U \5k - E(^)i ^ r> = l i m pWt - E^\ > r> = ° 
t=l k>t k>t 

So, random sequence {5t} converges to a global optimum with probability 1. 

Also sequence At converges to a global optimum with probability 1, namely 

PfPl^i Ufc>t At} = 0. Thus, InformPSO converges to a global optimum 

with probability 1. 

2.4 Validation of Effectiveness 

2.4.1 Benchmark Functions 

A comprehensive performance study was conducted to evaluate the perfor

mance of our PSO variant (InformPSO), in terms of convergence speed and global 

search capability, on 10 benchmark functions with different properties. Other 

PSO variants were chosen for comparison. The properties and the formulas of 

these functions are presented below. 

The benchmark functions in Table 2.1 have different characteristics. Func

tions / i to /5 are continuous, unimodal functions, which are usually used to test 

the convergence speed of algorithms. The function / 5 Rosenbrockis a typical, 
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Name 

Sphere 

Hyper-ellipsoid 

Sum of different 

powers 

Rotated 

hyper-ellipsoid 

Rosenbrock 

Griewank 

Ackley 

Rastrigin 

Weierstrass 

Schwefel 

Function 

/l = E£l*? 
/2 = £ £ I « - S ? 

/3 = Ef=iWm 

/4 = £ £ i E U * i ] 2 

/s = Ef=i 100 • ( * m - xf? + (Xi - l )2 

/6 = ^o-E. t i^- rc=i««^+i 
/ 7 = 20 + e - 20 • e-a2Vzr£?=i*? 

/s = E f = i k 2 - 10 -cos 2 7 ^ + 10] 

A = E*=i E ^ S * [^ -cos2^6*^ + 0.5)] 
-DYXTQ [ak • cos27r6fc • 0.5] 
a = 0.5,6 = 3, A;max = 20 

jfio = 418.9829 • D - Y°=i xisin \A^\ 

x* 

[0,0,0] 

[0,0,0] 

[1.1.1] 

[0,0,0] 

[1.1.1] 
[0,0,0] 

[0,0,0] 

[0,0,0] 

[0,0,0] 

[420.96,420.96, 

420.96] 

/ (**) 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Table 2.1: the ten benchmark functions. Functions f\ to / 5 are unimodal func

tions, while functions f§ to fw are multimodal ones 2. f(x*) means the global 

minimum of functions and x* is the global minimal optimum. 

complex optimization problem, whose global minimum is inside a long, narrow, 

parabolic-shaped flat valley. Finding the valley is trivial, however, converging 

to the global minimum is difficult. Functions fe to fw are complex, nonlinear 

multimodal problems with a large number of local optima. When attempting to 

solve functions fe to fw, algorithms may easily fall into a local optimum. Hence, 

an algorithm capable of maintaining a larger population diversity, breaking away 

from local minima, and avoiding premature convergence is likely to yield better 

results. 
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2.4.2 Parameter Setting 

To allow fair comparison of InformPSO with other PSO variants, we set the 

same parameters as in (30; 52). The machine precision is set at 10 -40 and w 

decreases with increasing generations from 0.9 to 0.4. c\ and c2 are both set at 2. 

Particles' initial positions are restricted by the search range and their velocities 

are restricted by Vmax, which is equal to the search range. For other parameter 

settings, please see Table 2.2. Aside from these common parameters used in 

PSO variants, there is an additional parameter in InformPSO that needs to be 

specified. It is the sub-swarm's population size, m. Given that it is unknown 

whether the function to be optimized is unimodal or multimodal, m is set at 10 

for all functions. Throughout this thesis, we run each algorithm implemented by 

us using MATLAB or VC++ on the following system: Microsoft Windows XP 

Pro., Intel Core 2 Duo CPU 2.66GHz, 1,96GB of RAM. MATLAB constructs the 

double data type according to IEEE Standard 754 for double precision. The range 

of double-precision positive real numbers in MATLAB is 2.22507 x~308 through 

1.79769X308. 

2.4.3 Experimental Results 

In this section, we examined the performances of eight PSO variants including 

InformPSO on the above ten benchmark functions. We implemented PSO_w, 

FDFLPSO and InformPSO. Also, we got the MATLAB code of CLPSO from 

Liang (30). Other interesting variations of the PSO algorithm (described below) 

have recently been proposed by researchers. Although we have not implemented 

all of these algorithms, we conducted comparison with them using the results 

reported in the publications cited below: 

• Original PSO (16) 

• Modified PSO with inertia weight (PSO_w)(65) 

• Local version of PSO with constriction factors (PSO_cf_local) (34) 
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Function 

h 
h 
h 
h 
h 
h 
h 
h 
h 
fw 

InitialRange 

[-100, 100 

[-5.12, 5.12] 

[-1, 1] 
[-65, 65] 

[-2.048, 2.048] 

[-600, 600] 

[-32.768,32.768] 

[-5.12, 5.12] 

[-0.5, 0.5] 

[-500, 500] 

Max-Gen 

3000 

3000 

3000 

3000 

3000 

3000 

3000 

3000 

3000 

3000 

Size 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

Dim 

20 

10 

10 

10 

10 

10 

10 

10 

10 

10 

Table 2.2: Parameters for benchmark functions. InitialRange, the variable range 

in biased initial particles; Vmax, the max velocity; Size, the number of particles; 

MaxJGen, the max generation; Dim, the number of dimensions. Parameters 

for functions / i to / 5 are set to the same values as in (52) and parameters for 

functions f$ to /io are set to the same values as in (30). 

• Unified particle swarm optimization (UPSO) (49) 

• Fitness-distance-ratio based particle swarm optimization (FDR_PSO) (52) 

• Cooperative PSO (CPSO_H)(9) 

• Comprehensive learning PSO (CLPSO) (30) = 

• Our improved PSO (InformPSO) 

Graphs (a) to (i) of Figure 2.3 present the results of InformPSO, PSO_w, 

FDR_PSO and CLPSO on the ten optimization functions introduced in the pre

vious section. From graphs (a) to (e), we note that InformPSO converges to 

the global optima with a significantly better speed. On functions / i , /2 and /3 , 

PSO_w and CLPSO achieve the best solution within 10 -20. They get to 10~30 at 

a cost of convergence speed on functions f±, /5. Worse, PSO_w tends to prema

turely converge on these two unimodal functions. On functions /2, fz and /s , the 
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best fitness value of InformPSO keeps changing throughout the search process, 

reaching 10~40 within 1000 iterations. InformPSO steadily converges to global 

optima (see graphs (b), (c), and (e)). On. function / i , f±, InformPSO achieves 

high precision with better convergence speed than other the three PSO variants, 

especially when it is compared with PSO_w and CLPSO (see graphs (a) and (d)). 

From graphs (a) to (e), we see that FDR_PSO also performs well on unimodal 

functions; however, it could not converge as fast as InformPSO. 

Function 

/ i 

h 

h 

u 

h 

Best/Worst Fitness Value 

PSO_w FDR.PSO CLPSO InformPSO 

7.70 xlO" 1 2 3.72xl0-33 6.56xl0-15 9.85xl(T41 

2.03xl0-8 6.72xl0"32 1.16xHT14 8.98xl0-41 

9.60xHT41 4.72xl0"41 4.14X10"35 7.95xl0"41 

9.82xl0"38 9.30xl0"41 1.78xl0"32 8.77xl0"41 

8.70xl0-41 2.90xl0"41 1.19xl0~41 7.18xl0-41 

8.91 xlO-41 5.30xl0~41 3.37xl0-41 8.08xHT41 

9.36xl0"20 5.72xl0"33 8.5xHT3 1.06xl0"35 

4.71xl0-17 4.13xl0-30 0.1092 1.3'8xl0-33 

5.12xl0-20 9.20xl0-41 7.60X10"11 9.79xl0-41 

1.16xl0"16 9.71xl0-41 3.50xl0-06 9.85xl0"41 

Table 2.3: Results of each algorithm on unimodal functions. Each algorithm 

was continuously run 30 times on each unimodal function. The fitness value is 

described by the function value. All results in this table are derived from our 

experiments. 

The best/worst experimental results of each algorithm clearly indicate that 

InformPSO surpasses the other three variants. It has a large potential search 

space, and achieves higher function precision in fewer iterations. These good re

sults do not occur in the other PSO variants, because the gBest employed in them 

changes slowly and cannot correctly guide other particles' flying. The reason that 

InformPSO performs well is because it employs a clonal selection operation for 

gBest, which is deterministic and makes gBest implement local evolution so that 
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InformPSO is able to find the correct direction in a short time and accelerating 

convergence. CLPSO does not perform well on unimodal function, because a par

ticle in CLPSO learns from other particles' pBest instead of gBest to maintain 

population diversity which in turn leads to slow convergence. 

From graphs (/) to (j), we observe that InformPSO converges faster and 

achieves better results, except on function / 9 (Weierstrass), when compared to 

FDR_PSO. It attains global minima for the three multimodal functions /6 , f&, 

and /9 . On multimodal functions, except for function f7 (Ackley), PSO_w and 

FDR_PSO perform well in the early iterations. However, they rapidly lose pop

ulation diversity and easily converge to local optima. And they are unable to 

improve the best fitness in later iterations, i.e., gBest has no ability to get out of 

local optima when it is trapped in one. From graphs (/), (h), (i), (j), we find that 

premature convergence does not occur with InformPSO. The better population 

diversity of InformPSO results from its use of an information function which ad

justs particles' velocity variable-wise towards gBest, by taking into account their 

distribution and the number of evolutionary generations, and effectively prevents 

premature convergence. The clonal selection improves the ability of gBest to 

move out of local optima and makes it implement local evolution. Consequently, 

the best particle candidate varies so that it correctly guides other particles' move

ments as well as accelerating convergence. 

From graphs '(f),'(h), (i), (j), we can see that CLPSO achieves a performance 

relatively close to that of InformPSO. However, from the results of CLPSO and 

InformPSO run continuously 20 times on the function shown in graph (k), we no

tice that InformPSO has a better ability to move out of local optima. Although 

CLPSO achieves a strong population diversity, it is unable to break away from 

local optima when it is trapped in one. Graph (g) also shows the rapid conver

gence of InformPSO compared to CLPSO. For functions Ackley and Schwefel, 

both algorithms converge to local optima. The reason is that local optima are 

very far from the global optima in these two functions. The clonal selection of 

InformPSO did not help it break away from local optima throughout the whole 
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2.4 Validation of Effectiveness 

process of iterations and a nonlinear time sequence controls the random drift, so 

InformPSO is unable to get out of local optima for this kind of function optimiza

tion. Also, it can be observed that all PSO variants fail on the functions Ackley 

and Schwefel, which are much harder to optimize. 

Fun 

h 

h 

h 

h 

/ i o 

PSO_w 

0.1132 

0.155 

3.55xl0-15 

3.55xl0~15 

4.9748 

10.9445 

0 

0.0011 

4.75 xlO2 

5.92xl02 

Best/Worst Fitness Values Achieved 

PSO.cLlocal 

2.80xl0~2 

6.34xl0~2 

5.78xl0-2 

2.58XHT1 

3.48 

9.05 

5.16X10-2 

7.85x10-2 

2.93xl02 

8.78 xlO2 

FDR.PSO 

0.0295 

0.2533 

7.11xl0-15 

7.11xl0-15 

3.9798 

8.9546 

7.11xl0-15 

2.42xl0-4 

7.10xl02 

l . l lx lO 3 

FIPS 

9.32xl0-2 

1.31X10-1 

3.75xl0"15 

2.13xl0"14 

1.33 

2.12 

2.02xl0"3 

6.40 x lO - 3 

7-lOxlO1 

1.50xl02 

CLPSO 

6.71 xlO08 

7.4xl0~3 

7.11xl0-15 

3.55xl0-15 

0 

0.995 

0 

0 

1.27xl0-4 

1.18xl02 

InformPSO 

0 

2.7x10-2 

8.88xl0-16 

3.55xl0-15 

0 

1.20xl0"8 

0 

0 

1.27xl0-4 

1.18xl02 

Table 2.4: Results on multimodal functions. Each algorithm was run continu

ously 20 times on each multimodal function. The best/worst results of PSO_w, 

PSCLcUocal, FIPS, FDR_PSO, CLPSO and InformPSO are from our experi

ments, while those of PSO_cf_local and FIPS are from (30). 

The results in Table 2.4 further illustrate that InformPSO yields the best 

precision on the five multimodal functions. It is able to converge to global optima, 

0, on functions /6, $% and /9 in each case except two cases on function /6 . For 

function Ackley, it also reaches a local optimum, 8.8818e-016, better than the 

other PSO variants. In the experiments on multimodal functions, we can see 

that PSO_w on function /9, CLPSO and InformPSO on functions /6, /s , /9, are 

able to prevent premature convergence and get to global optima. We also notice 

that InformPSO converges faster, results in better optima, is more robust, and 

prevents premature convergence more effectively than the other PSO variants. 
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2.5 Conclusions 

2.5 Conclusions 

Following an analysis of the main causes of the premature convergence shown 

by the original PSO, we propose a novel PSO algorithm, called InformPSO, based 

on principles of adaptive diffusion and hybrid mutation. On the one hand, in

spired by the physics of information diffusion, we design a function to achieve a 

better particle diversity, by taking into account the distribution of particles and 

the number of evolutionary generations and by adjusting their "social cognitive" 

abilities. On the other hand, based on genetic self-organization and chaos evo

lution, we build clonal selection into InformPSO to implement local evolution of 

the best particle candidate, gBest, and make use of a logistic sequence to control 

the random drift of gBest. These techniques greatly enhance the ability to break 

away from local optima. The global convergence of the algorithm is proved using 

the Markov chain theorem. Experiments on optimization of unimodal and multi

modal benchmark functions show that, compared with some other PSO variants, 

InformPSO converges faster, results in better optima, is more robust, and more 

effectively prevents premature convergence. 

However, although InformPSO achieves higher precision than other PSO vari

ants on the Schewefel and Ackley functions, it also converges to local optima. 

The reason is that for these two functions where local optima are very far from 

global optima, the clonal selection operation is a small mutation and unable to 

work during most of the iterations, and a large mutation guided by a nonlinear 

time sequence is too random to help gBest get out of local optima. Our work 

in the future is to broaden the test range and look for new cooperations among 

particles to improve the algorithm's convergence performance. 
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Figure 2.3: Comparison of convergence characteristic. It presents the convergence 

characteristic of InformPSO vs. PSO.w, FDR.PSO, CLPSO in terms of the best 

fitness value on benchmark functions. The four algorithms were run continuously 

for 30 trials on each function. The best fitness values of each generation have 

been plotted in graphs. 
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Chapter 3 

Particle Swarm Optimizer for the 
Variable Weighting Problem 

In this chapter, we propose a particle swarm optimizer to obtain optimal vari

able weights in soft projected clustering of high-dimensional data. Good clus

tering quality is very dependent on a suitable objective function and an efficient 

search strategy. Our new soft projected clustering algorithm employs a special 

k-means objective weighting function, which takes the sum of the within-cluster 

distances of each cluster along relevant dimensions preferentially to irrelevant 

ones. If a variable is considered insignificant and assigned a small weight, the 

corresponding distance along this dimension will thus tend to be zero because 

the weights are handled exponentially. As a result, the function is more sensitive 

to changes in variable weights. In order to precisely measure the contribution 

of each dimension to each cluster, we assign a weight to each dimension in each 

cluster, following (14; 15; 36). 

The new algorithm also utilizes a non-normalized representation of variable 

weights in the objective function and transforms the constrained search space 

for the variable weighting problem in soft projected clustering into a redundant 

closed space, which greatly facilitates the search process. Instead of employing 

local search strategies, the new algorithm makes full use of a particle swarm 

optimizer to minimize the given objective function. It is simple to implement and 

31 



3.1 Soft Projected Clustering High-dimensional Data 

the results are much less sensitive to the initial cluster centroids than those of 

other soft projected clustering algorithms. Experimental results on both synthetic 

datasets from algorithm generators and real datasets from the UCI database show 

that it can greatly improve cluster quality. 

This chapter is organized as follows. Section 1 reviews some previous related 

work on the variable weighting problem in soft projected clustering. Section 2 

explains the rationale behind using PSO for this problem and utilizes a particle 

swarm optimizer to assign the optimal variable weight vector for each cluster in 

soft projected clustering. Simulations on synthetic data are given in Section 3, 

which contains the description of synthetic datasets with different characteristics, 

the experimental setting for the PSO, and experimental results. In Section 4, 

experimental results on three real datasets are presented. An application of our 

. new soft projected clustering algorithm to handle the problem of text clustering 

is given in Section 5. Section 6 draws conclusions and gives directions for future 

work. 

3.1 Soft Projected Clustering High-dimensional 

Data 

Assuming that the number of clusters k is given and that all of the variables for 

the datasets are comparable, soft projected clustering algorithms (14; 15; 32; 36) 

have been designed to discover clusters in the full dimensional space, by assigning 

a weight to each dimension for each cluster. The variable weighting problem is 

an important issue in data mining (43). Usually, variables that correlate strongly 

with a cluster obtain large weights, which means that these variables contribute 

strongly to the identification of data objects in the cluster. Irrelevant variables 

in a cluster obtain small weights. Thus, the computation of the membership of 

a data object in a cluster depends on the variable weights and the cluster cen

troids. The most relevant variables for each cluster can often be identified by 
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3.1 Soft Projected Clustering High-dimensional Data 

the weights after clustering. The performance of soft projected clustering largely 

depends on the use of a suitable objective function and an efficient search strat

egy. The objective function determines the quality of the partitioning, and the 

search strategy has an impact on whether the optimum of the objective function 

can be reached. Recently, several soft projected clustering algorithms have been 

proposed to perform the task of projected clustering and to select relevant vari

ables for clustering. C. Domeniconi et al. proposed the LAC algorithm, which 

determines the clusters by minimizing the following objective function (14; 15): 

k m 

Fw,u,z(w) = J ^ . S (Wl>j * Xl'j + h* Wl>i * ioSwu) ( 3 > 1 ) 
1=1 3=1 ' 

r E£-i wu = l 0<wli<l,KKk 

' £?=i «i,/ = 1 «i,/ e (0,1), 1 < i < n K ' ' 

where Xij = '̂=1 '̂„*(x^~z'<?> ; w g [0,1], u G 0,1, and z represent the variable 

weight, the cluster membership, and the cluster centroid, respectively, k, n, m are 

the number of clusters, the number of data objects and the number of dimensions, 

respectively. Throughout this chapter, we will adopt the same notation, u^i is 

the membership of data object i in cluster /. Xij is the value of data object i on 

dimension j and zij is the centroid of cluster I on dimension j . d is the distance 

function measuring the similarity between two data objects. Xtj represents the 

squared variance of cluster I along dimension j . wij is a weight assigned to 

cluster I on dimension j . U, Z, and W represent the cluster membership matrix 

of data objects, the cluster centfoids matrix, and the dimensional weights matrix, 

respectively. 

The LAC algorithm is summarized as follows: 
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3.1 Soft Projected Clustering High-dimensional Data 

Input: Select k well-scattered data objects as initial centroids; 
Set Wi i = — for each dimension in each cluster. 

Repeat: Update the cluster memberships of data objects U by equation 3.3; 
Update the cluster centroids Z by equation 3.4; 
Update the dimension weights W by equation 3.11; 

Until: (the objective function obtains its local minimum value) 

The LAC algorithm finds a solution that is a local minimum of the above 

objective function. In the LAC algorithm, U and Z are updated in the same way 

as in the fc-means algorithm. Let q(t) = X}j=i iwt,j * (xi,j ~ zt,j)2]> Q* ~ uamq(t), 

l<t<k; then 

WM = * 0 otherwise ( 3 > 3 ) 

zu = - ^ t^n - , f°rl < I < kandl <3<m (3.4) 
E n 

i = 1 Utii * X. 

E n 
i = l Ul,3 

W is updated according to the following formula: 

wij = TX77 (3.5) 
E m bL 

t=ie h 

where h is a parameter that is used to maximize or minimize the influence of X 

on wij. 

In LAC 2007 (14), the authors employed a new objective function and a 

weight updating schema. Their work is similar to the work described in EWKM 

(2007) (36). In LAC 2007(14), the authors also proposed a method based on 

well-scatter data to initialize the cluster centroids and an ensemble approach to 

overcome the difficulty of tuning the parameter h. However, their initialization 

needs to calculate the distance between high-dimensional data in the whole di

mension space, whereas the very hypothesis of this work is that this distance is 
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3.1 Soft Projected Clustering High-dimensional Data 

not reliable. It is not clear.yet whether LAC is significantly improved by the new 

initialization schema. 

In (32), Joshua Z. Huang et al. proposed another objective function and 

derived an algorithm called the W-fc-means algorithm. 

k n m 

Fw,u,z{w) = J2 J2 ^2 [u'.» * ™? * d(xw Z 'J)] (3-6) 
1=1 i = l j=l 

,{ £ " l i ^ = i o < ̂  < i, i < ; < fc 
1 E t i ^ = l Uijie(0,l),l<i<n { ' 

Here, f3 is a parameter greater than 1. The objective function is designed to 

measure the sum of the within-cluster distances along a subset of variables rather 

than over the entire variable (dimension) space. The variable weights in the W-

k-means need to meet the constraints of the objective function in equation 3.7, 

which is identical to equation 3.2 in LAC. The formula for updating the weights 

is also different and is written as follows: 

0 "if Z?j-= 0 
wi = i h ^ Dj = ZtiEtiKi*d(xiJ,zlJ)} (3-8) 

Em r .7 1 fl — 1 — 

where the weight Wj for the j t h dimension is inversely proportional to the sum 

of all the within-cluster distances along dimension j . A large weight value corre

sponds to a small sum of within-cluster distances in a dimension, indicating that 

the dimension is more important in forming the clusters. The W-fc-means algo

rithm is a direct extension of the fc-means algorithm. The W-A;-means assigns a 

weight to each variable and seeks to minimize the sum of all the within-cluster dis

tances in the same subset of variables. Furthermore, updating of variable weights 

is dependent on the value of the parameter f3. In addition, the W-k-means algo

rithm does not utilize an efficient local search strategy. Consequently, it often has 

difficulty correctly discovering clusters which are embedded .in different subsets 

of variables. Thus, the algorithm is inappropriate in the case of high-dimensional 

data where each cluster has its own relevant subset of variables. 
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Liping Jing et al. in (36) proposed the entropy weighting k-means algorithm 

(EWKM), which employs a similar iterative process to that used by the W-k-

means algorithm. The objective function in the EWKM algorithm takes both 

the within-cluster dispersion and the weight entropy into consideration. The 

function is described as follows: 

km 

Fw,uAw) = ] C £ (^'J * Xl<i + h* Wl>i * toswij) (3-9) 
1=1 .i=i 

r E 7 1 Wl i = 1 0 < Wi i < 1, 1 < I < k , , 
s.t.{ ±^i=1 '3 _ - ?-. ' - . - (3.10) 

The constraints in equation 3.10 of the above function are identical to those 

in the W- k-means algorithm. The formula for updating the weights is written as 

follows: 

wtj = r-rD^,Dij = ^2[^i,i*(xij-zij)2] (3.11) 

This objective function depends heavily on the value of parameter r. If r 

is too small, the entropy section has little effect on the function. On the other 

hand, if r is too big, the entropy section could have too strong an effect on the 

function. Therefore, the value of r is empirically determined and application-

specific. The computational complexity of LAC, the W-&-means and EWKM is 

0(mnkT), where T is the total number of iterations and m, n, k are the number of 

dimensions, the number of data objects and the number of clusters, respectively. 

Their computational complexity is good and increases linearly as the number of 

dimensions, the number of data objects or the number of clusters increases. Thus, 

these three principal algorithms for soft projected clustering can converge to a 

local minimal solution after a finite number of iterations. 

LAC, the W-k-means and EWKM all stem from the k-means algorithm and 

all three share some common problems. First, the constrained objective functions 

they provide have their drawbacks, which have been described above. Second, 
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the cluster quality they yield is highly sensitive to the initial cluster centroids 

(see experiments). These algorithms employ local search strategies to optimize 

the objective functions with constraints. The local search strategies provide good 

convergence speed to the iterative process but greatly decrease the clustering 

quality. 

3.2 Particle Swarm Optimizer for Variable Weight-

ing(PSOVW) 

In this section, we develop a particle swarm optimizer, called PSOVW, to solve 

the variable weighting problem in soft subspace clustering for high-dimensional 

data. We begin by showing how the problem of minimization of a special k-

means function with constraints can be transformed into a nonlinear optimization 

problem with bound constraints, using a non-normalized weight representation 

technique, and how a particle swarm optimizer can be used to control the search 

progress. We then give a detailed description of our PSOVW algorithm, which 

minimizes the transformed problem. Finally, we discuss the computational com

plexity of the proposed algorithm. 

3.2.1 Rationale for using PSO for variable weighting 

Basically, the variable weighting problem in soft projected clustering is a con

tinuous nonlinear optimization problem with many equality constraints. It is a 

difficult problem, and has been researched for decades in the optimization field. 

Computational intelligence-based techniques, such as the genetic algorithm (GA), 

particle swarm optimization (PSO) and ant colony optimization (ACO), have 

been widely used to solve the problem. 

GA is a heuristic search technique used in computing to find exact or approx

imate solutions to optimization problems. Genetic algorithms are a particular 

class of evolutionary computation that use techniques inspired by evolutionary 
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biology, such as inheritance, mutation, selection, and crossover. In GA, the in

dividuals of the population are usually represented by candidate solutions to an 

optimization problem. The population starts from randomly generated individ

uals and evolves towards better solutions over generations. In each generation, 

the fitness of every individual is evaluated; multiple individuals are selected from 

the current population based on their fitness, and recombined and mutated to 

form a new population. The population iterates until the algorithm terminates, 

by which time a satisfactory solution may be reached. 

ACO is a swarm intelligence technique introduced by Marco Dorigo in 1992. 

It is a probabilistic technique for solving computational problems which can be 

reduced to finding good paths through graphs. In ACO, ants initially wander ran

domly and, upon finding food, return to the colony while laying down pheromone 

trails. Other ants follow the trail, returning and reinforcing it if they find food. 

However, the pheromone trail starts to evaporate over time, lest the paths found 

by the first ants should tend to be excessively attractive to the following ones. 

A short path gets marched over comparatively faster, and thus the pheromone 

density remains high as it is laid on the path as fast as it can evaporate. Thus, 

when one ant finds a good (i.e., short) path from the colony to a food source, 

other ants are more likely to follow that path, and positive feedback eventually 

results in all the ants following a single path. 

PSO is another swarm intelligence technique, first developed by James Kennedy 

and Russell C. Eberhart in 1995. It was inspired by the social behavior of bird 

flocking and fish schooling. PSO simulates social behavior. In PSO, each solution 

to a given problem is regarded as a particle in the search space. Each particle 

has a position (usually a solution to the problem) and a velocity. The positions 

are evaluated by a user-defined fitness function. At each iteration, the velocities 

of the particles are adjusted according to the historical best positions of the pop

ulation. The particles fly towards better regions through their own effort and in 

cooperation with other particles. Naturally, the population evolves to an optimal 

or near-optimal solution. 
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PSO can generate a high-quality solution within an acceptable calculation 

time and with a stable convergence characteristic in many problems where most 

other methods fail to converge. It can thus be effectively applied to various 

optimization problems. A number of papers have been published in the past 

few years that focus on the applications of PSO, such as neural network training 

(61), power and voltage control (27), task assignment (5), single machine total 

weighted tardiness problems (45) and automated drilling (24). 

Moreover, PSO has some advantages over other similar computational intelligence-

based techniques such as GA and ACO for solving the variable weighting problem 

for high-dimensional clustering. For instance: 

1. PSO is easier to implement and more computationally efficient than GA 

and ACO. There are fewer parameters to adjust. PSO only deals with two 

simple arithmetic operations (addition and multiplication), while GA needs 

to handle more complex selection and mutation operators. 

2. In PSO, every particle remembers its own historic best position, while every 

ant in ACO needs to track down a series of its own previous positions and 

individuals in GA have no memory at all. Therefore, a particle in PSO 

requires less time to calculate its fitness value than an ant in ACO due to 

the simpler memory mechanism, while sharing the strong memory capability 

of the ant at the same time. PSO has a more effective memory capability 

than GA. 

3. PSO is more efficient in preserving population diversity to avoid the pre

mature convergence problem. In PSO, all the particles improve themselves 

using their own previous best positions and are improved by other particles' 

previous best position by cooperating with each other. In GA, there is "sur

vival of the fittest". The worst individuals are discarded and only the good 

ones survive. Consequently, the population in GA moves around a subset 

of the best individuals. ACO easily loses population diversity because ants 
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are attracted by the largest pheromone trail and there is no direct cooper

ation among ants. As a result, ACO usually converges to a locally optimal 

solution. 

4. PSO has been found to be robust, especially in solving continuous nonlinear 

optimization problems, while GA and ACO are good choices for constrained 

discrete optimization problems. ACO has an advantage over other evolu

tionary approaches when the graph may change dynamically, and can be run 

continuously and adapt to changes in real time. Since the PSO method is 

an excellent optimization methodology for solving complex parameter esti

mation problems, we have developed a PSO-based algorithm for computing 

the optimal variable weights in soft projected clustering. 

3.2.1.1 PSO for variable weighting (PSOVW) 

The objective function 

We minimize the following objective function in PSOVW: 

k n m 

Fm{w) = E E E Ki * ( v J ^ f * d(xid, ZlJ)] (3.12) 
i=i i= i j=i ^ j = i WU 

, 0 < w\ j < 1 . . . 
S'H £ f= i i i = i «(,, e {0,1}, l < i < n (3"13) 

Actually, the objective function in equation 3.12 is a generalization of some 

existing objective functions. 

1. If /3=0, function 3.12 is similar to the objective function used in the k-

means. They differ solely in the representation of variable weights and the 

constraints. 

2. If (3=1, function 3.12 is also similar to the first section of the objective 

function in EWKM, differing only in the representation of variable weights 

and the constraints. 
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3.2 Particle Swarm Optimizer for Variable Weighting(PSOVW) 

3. If Wij = Wj,Vl , function 3.12 is similar to the objective function in the W-

Armeans, which assigns a single variable weight vector, substituting different 

vectors for clusters. Again, the only difference is in the representation of 

variable weights and the constraints. 

In PSOVW, /3 is a user-defined parameter. PSOVW works with all non-

negative values of j3. In practice, we suggest setting /3 to a large value (empirically 

around 10.0). A large value of /3 makes the objective function more sensitive to 

changes in weight values. It tends to magnify the influence of those variables with 

large weights on the within-cluster variance, allowing them to play a strong role 

in discriminating between relevant and irrelevant variables (dimensions). 

In the existing algorithms, a k * m variable weight matrix W, where a weight 

is a real number assigned to each dimension for each cluster, is usually a direct 

solution to the objective function and should simultaneously meet the equality 

constraints that the weights on each row should be normalized to 1. However, 

the greater the number of clusters, the greater the number of constraints and the 

harder it is to optimize the corresponding function. In PSOVW, a non-normalized 

matrix W is employed in the objective function, replacing the normalized ma

trix. Although the non-normalized representation in the constrained objective 

function 3.12 is redundant, the constraints can be loosened without affecting the 

final solution. As a result, the optimization procedure only needs to deal with 

bound constraints instead of many more complicated equality constraints and it 

is greatly simplified. To sum up, the weighting schema is developed in a suitable 

way for the application of PSO. 

Initialization 

In the PSOVW algorithm, we initialize three swarms. 

• The position swarm W of variable weights, which are set to random numbers 

uniformly distributed in a certain range R. 
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3.2 Particle Swarm Optimizer for Variable Weighting(PSOVW) 

• The velocity swarm V of variable weights, which are set to random numbers 

uniformly distributed in the range [—maxv, maxv]. Here, maxv means the 

maximum flying velocity of particles and maxv = 0.25 * R. 

• The swarm of cluster centroids Z, which are k different data objects ran

domly chosen out of all the data objects. In all three swarms, an individual 

is a k * m matrix. Actually, only the velocity swarm V is an extra swarm 

not included in £;-means-type soft projected clustering algorithms. 

Update of cluster centroids and partitioning of data objects 

Given the variable weight matrix and the cluster centroids, the cluster mem

bership of each data object is calculated as follows. 

Let 

Then 

Ui = {l i f
f f ) = ^ (3.14) 

0 otherwise v ' 

Once the cluster membership is obtained, the cluster centroids are updated 

by 

zij= 1^i^l'i*Xi\ fori < I < kandl <j<m (3.15) 
L,t=i uu 

In our implementation, if an empty cluster results from the membership up

date by formula 3.14, we randomly select a data object out of the data set to 

reinitialize the centroid of the cluster. 

Crossover learning 

Given a value for 0, two extra swarms are kept to guide all the particles' 

movement in the search space. One is the personal best position swarm of vari

able weights pBest, which keeps the best position of the weight matrix W; i.e., 

pBest will be replaced by W if F(W) < F(pBest). The other is the crossover 

best position swarm of variable weights CpBest, which guides particles to move 
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towards better regions (30). CpBest is obtained by a crossover operation be

tween its own pBest and one of the other best personal positions in the swarm, 

represented here by spBest. 

The tournament mechanism is employed to select sjpBest, with the consider

ation that a particle learns from a good exemplar. First, two individuals, pBesti 

and pBest2, are randomly selected. Then their objective function values are 

compared: sjpBest = pBesti if F(pBest\) < F(pBest2), sjpBest = pBest2 oth

erwise. The crossover is done as follows. Each element at a position of CpBest is 

assigned the value either from S-pBest or from pBest at the corresponding posi

tion. This assignment is made randomly according to a user-defined probability 

value Pc (see the section Synthetic Data Simulations for further discussion). If, 

despite the random assignment process, all the elements of CpBest take values 

from its own pBest, one element of CpBest will be randomly selected and its 

value will be replaced by the value of the corresponding position from sjpBest. 

The PSOVW algorithm can be summarized as follows: 

Initialization: Randomly initialize the position and velocity swarms, W and V. 
Partition the data objects. 
Evaluate the fitness of W by the function 3.12. 
Record the swarm pBest and the best position gBest. 

Repeat: Produce CpBest from pBest for each particle. 
Update V and W by the equations (2.2) and (4.6) , respectively. 
If W is in the range of [0, 1], evaluate its fitness by 3.12 
and update pBest and gBest. 

Until: (the objective function reaches a global minimum value, 
or the number of function evaluations reaches the maximum threshold.) 

3.2.2 Computational complexity 

The computational complexity can be analyzed as follows. In the PSOVW 

algorithm, the CpBest, position and velocity of a particle are k * m matrices. 
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In the main loop procedure, after initialization of the position and velocity, gen

erating CpBest and updating position and velocity need 0(mk) operations for 

each particle. Given the weight matrix W and the cluster centroids matrix Z, 

the complexity for partitioning the data objects is 0{mnk) for each particle. The 

complexity for updating cluster centers is 0{mk) for each particle. Assuming that 

the PSOVW algorithm needs T iterations to converge, the total computational 

complexity of the PSOVW algorithm is O(smnkT). The swarm size s is usually a 

constant set by the user. So, the computational complexity still increases linearly 

as the number of dimensions, the number of objects or the number of clusters 

increases. 

3.3 Synthetic Data Simulations 

A comprehensive performance study has been conducted to evaluate the per

formance of PSOVW on high-dimensional synthetic datasets as well as on real 

datasets. Three of the most widely used soft projected clustering algorithms, 

LAC (14), the W-k-means (32) and EWKM (36), were chosen for comparison, as 

well as the basic fc-means x. The goal of the experiments is to assess the accuracy 

and the efficiency of PSOVW. We compared the clustering accuracy of the five al

gorithms, examined the variance of the cluster results and measured the running 

time spent by these five algorithms. These experiments provide information on 

how well and how fast each algorithm is able to retrieve known clusters in some 

subspaces of a high-dimensional data space and how sensitive each algorithm is 

to the initial centroids. In this section, we describe the synthetic datasets and 

the results. 
: The k-means is included in order to show that projected clustering algorithms are necessary 

on high-dimensional data sets. 
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3.3.1 Synthetic datasets 

We generate high-dimensional datasets with clusters embedded in different sub-

spaces using the synthetic data generator from Zait and Messatfa (67). The 

synthetic data generator has often been used to investigate the performance of 

subspace clustering algorithms. The data generator allows us to take control of 

characteristics of the data set such as cluster structures and the percentage of 

overlapped relevant dimensions among clusters. It also facilitates measuring the 

cluster accuracy of each algorithm by comparing the result of the algorithms to 

the known clusters. 

We conducted experiments using the above four algorithms together with the 

PSOVW algorithm on synthetic datasets. In these synthetic datasets, different 

clusters have their own relevant dimensions, which can overlap (36). The data 

values are normally distributed on the relevant dimensions of a cluster and the 

range of mean values is specified by the range [0, 100]. Random positive numbers 

are on the irrelevant dimensions and random values are uniformly distributed in 

the range [0, 10]. 

Two types of synthetic datasets are generated. They differ in the variance 

of clusters on their relevant dimensions. In type 1, we assign the same variance 

0.9 to each relevant dimension in a cluster. In type 2, each relevant dimension 

is randomly assigned a variance and the cluster variances are randomly selected 

from the range [1, 10]. We generated a total of 16 synthetic datasets with varying 

numbers of dimensions and varying numbers of clusters. For each type of data, 

there are eight datasets, each of which has 4 or 10 clusters, combined with 20, 100, 

1000 or 2000 dimensions. The datasets with 4 clusters have 50 data objects in a 

cluster, the clusters are well-separated and the percentage of overlapped relevant 

dimensions of clusters is low (near 0). The datasets with 10 clusters are more 

complicated: each cluster has 50 data objects and relevant dimensions of clusters 

are heavily overlapped (around 0.8). 
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3.3.2 Parameter settings for algorithms 

The Euclidean distance is used to measure the dissimilarity between two data 

objects for synthetic and real datasets. Here, we set /? = 10. The maximum num

ber of function evaluations is set to 2,000 over all synthetic datasets in PSOVW 

and 500 in the other four algorithms. Given an objective function, LAC, the 

W-fc-means and EWKM quickly converge to local optima after a few iterations, 

while PSOVW needs more iterations to get to its best optima. There are four 

additional parameters in PSOVW that need to be specified. They are the swarm 

size s, the inertia weight w, the acceleration constant cl and the learning prob

ability Pc. Actually, the four extra parameters have been fully studied in the 

particle swarm optimization field and we set the parameters in PSOVW to the 

values used in (30). s is set to 10. w is linearly decreased from 0.9 to 0.7 during 

the iterative procedure, and cl is set to 1.49445. In order to obtain a better pop

ulation diversity, particles in PSOVW are required to have different exploration 
/ ( i ) _ e / ( i ) 

and exploitation ability. So, Pc is empirically set to Pc = 0.5 * e
/ M_ / (1), where 

f(i) = 5 * j^for each particle. The values of learning probability Pc in PSOVW 

range from 0.05 to 0.5 as for CLPSO (30). The parameter r in EWKM is set to . 

1. 

3.3.3 Results for synthetic data 

To test the clustering performance of PSOVW, we first present the clustering 

results of the five algorithms (&-means, LAC1, W-fc-means, EWKM and PSOVW). 

Then we employ the PSO method with different functions and report the clus

tering results yielded by them. This provides further evidence for the superior 

effectiveness of PSOVW in clustering high-dimensional data. Finally, we examine 

1 Since it is difficult to simulate the function combining different weighting vectors in the 

latest LAC algorithm (14), we tested its performance with the values from 1 to 11 for the 

parameter 1/h, as the authors did in (14), and report the best clustering accuracy on each trial. 
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the average clustering accuracy, the variance of the clustering results and the run

ning time of the five algorithms using synthetic data sets, and make an extensive 

comparison between them. The clustering accuracy is calculated as follows: 

Clustering Accuracy = > — 
^—' n 
i=i 

where iVj is the number of data objects that are correctly identified in the genuine 

cluster I and n is the number of data objects in the data set. The clustering 

accuracy is the percentage of the data objects that are correctly recovered by an 

algorithm. 

In order to compare the clustering performance of PSOVW with those of 

the fc-means, LAC, the W-&-means and EWKM, we run these five algorithms on 

datasets of each type. Since PSOVW was randomly initialized and the other 

algorithms are sensitive to the initial cluster centroids to a certain degree, we run 

each algorithm for ten trials on each dataset and record the average clustering 

accuracy that each algorithm achieved in Table 3.1. 

A number of observations can be made by analyzing the results in Table 

3.1. First, PSOVW seems to perform much better than the other algorithms 

tested on both types of generated data sets. On average, it surpasses the W-A;-

means, EWKM and LAC as well as the fc-means on the 16 synthetic subspace 

datasets. It correctly recovers clusters embedded in different variable subspaces 

of high-dimensional data and achieves 100 percent clustering accuracy on most 

of trials. The reason is that the synthetic datasets are not noisy. Noise-free 

datasets are appropriate for the purpose of this experiment. In particular, due to 

the PSO search strategy, PSOVW totally and correctly recovers clusters over the 

datasets with 4 well-separated clusters on each trial regardless of the shapes of 

these clusters and the variances of clusters along relevant dimensions. However, 

PSOVW occasionally misses an entire cluster on the more complicated, 10-cluster 

datasets. It sometimes fails to differentiate between two very close groups, whose 

relevant dimensions overlap considerably, and merges them into one cluster. For 
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Datasets 

Type l 

Type 2 

k 

4 

.10 

4 

10 

m 

20 

100 

1000 

2000 

20 

100 

1000 

2000 

20 

100 

1000 

2000 

20 

100 

1000 

2000 

k-means 

'68 

79.4 

70.5 

73.6 

61.3 

34.4 

33.4 

39.7 

63.1 

59.9 

73.9 

78.2 

34.4 

27.3 

32.4 

24 

LAC 

70.3 

73 

71.1 

85.9 

74.5 

68.4 

70.4 

68.4 

83.4 

78.7 

78.3 

71.9 

66.1 

63 

69.9 

71.1 

W-k-means 

86 

85.8 

89.2 

79.7 

75.1 

72.2 

76.8 

75.8' 

78.2 

79 

81.5 

94.2 

77.7 

73.7 

76.9 

63.6 

EWKM 

77.4 

64.4 

78.8 

84.6 

74.5 

69.4 

67 

69.8 

89.3 

71.9 

76.1 

83.9 

63.9 

67 

72.7 

71 

PSOVW 

100 

100 

100 

100 

90.9 

94 

91.2 

86.8 

100 

100 

100 

100 

92.5 

94 

88.2 

90.3 

Table 3.1: Average clustering accuracy of PSOVW, A;-means, W-fc-means, EWKM 

and LAC over ten trials on each dataset. 

example, the relevant dimensions of one cluster in the Type 1 dataset with 10 

clusters and 20 dimensions are { 1 3 5 8 11} and those of another cluster in the 

same dataset are { 1 3 5 1 1 1 7 } . 

The W-fc-means performs the next best on 12 out of 16 datasets. However, 

from the experimental results in Table 3.1, we cannot see much difference between 

the performance of the W-&-means and those of LAC and EWKM on Type 2 

datasets. 

The fc-means performs the least well on complicated datasets, such as the 

datasets with 10 complicated clusters. We cannot see much difference between 

the results yielded by the /c-means and those of LAC and EWKM on the Type 1 

datasets with 4 clusters. However, the clustering accuracy of the fc-means drops 

quickly as the variances of clusters along relevant dimensions increase. What is 
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more, the fc-means achieved very low clustering accuracy on complicated datasets, 

such as datasets with 10 clusters. The reason is that the A;-means is not a subspace 

clustering algorithm, so that it fails to handle high-dimensional data due to the 

equidistance of such data in the whole dimensional space. The results of the 

A;-means in Table 3.1 confirm that it was inferior to soft projected clustering 

algorithms in complex high-dimensional data clustering. 

In order to further investigate the reasons why PSOVW achieves better per

formance than other algorithms on generated high-dimensional datasets, we also 

implemented the PSO method with different objective functions presented in soft 

projected clustering algorithms, namely formula 3.1 in LAC, formula 3.6 in W-fc-

means, formula 3.9 in EWKM and formula 3.12 in PSOVW. PSO is a heuristic 

global search strategy, so it can be also employed to optimize other objective func

tions. Since PSO was randomly initialized, the PSO method with each function 

was run for 20 trials on each dataset. k and m represent the number of clus

ters and the number of dimensions, respectively. The average clustering accuracy 

yielded by the PSO method with each function is recorded in Table 3.2. 

Datasets 

Type 1 

Type 2 

k 

10 

10 

m 

20 

100 

1000 

2000 

20 

100 

1000 

2000 

Function 3.12 

in PSOVW 

90.3 
93.6 
91.9 

87 ' 

93.2 

92.3 
87.6 
89.4 

Function 3.1 

in LAC 

87.2 

89.5 

90.8 

85.9 

97.4 

84.8 

82.7 

90.8 

Function 3.6 

in W-k-means 

89.4 

85.7 

84.4 

83.6 

92.4 

85.6 

82.9 

84.5 

Function 3.9 

in EWKM 

86.5 

76.7 

70.6 

80.1 

85.9 

82.8 

77 

80.5 

Table 3.2: Average clustering accuracy of the PSO method with different func

tions over 20 trials on datasets with 10 clusters. 

Table 3.2 gives the clustering results of the PSO method with different func

tions on the datasets with 10 clusters. In our experiments, we discovered that the 
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PSO method with each of the four different objective functions performs pretty 

well on the datasets with 4 clusters and achieves 100 percent clustering accuracy 

on each trial. The reason is that clusters in these datasets are well-separated and 

the percentage of overlapped relevant dimensions is relatively low, although the 

clusters are different shapes. Furthermore, we found out that the high clustering 

accuracy yielded by the PSO method with different functions benefits greatly 

from the non-normalized representation of variable weights presented in our ob

jective functions, although we also tried several existing techniques to initialize 

feasible particles. For a fair comparison, we implemented the same representation 

as in Function 3.12 of PSOVW, where variable weights are only required to meet 

bound constraints, in the LAC, W-&-means and EWKM functions. 

From Table 3.2, we can see that on average, except for the Type 2 datasets 

with 20 dimensions and 2000 dimensions, PSO with Function 3.12 always per

forms best on the synthetic datasets with 10 clusters, although PSO with LAC 

Function 3.1 is very close. The fact that Function 3.6 is less efficient than Func

tions 3.1 and 3.12 is understandable because it uses one weight per dimension; 

nevertheless, it performs better than Function 3.9. Obviously, the PSO method 

greatly improves the performances of LAC, the W-k-means and EWKM. The re

sults reported in both Table 3.1 and Table 3.2 suggest that the good performance 

of PSOVW is due partly to the PSO method, and partly to the representation of 

our improved objective function. 

Figure 3.1 illustrates the clustering results achieved by each algorithm on 

each type of dataset, for different numbers of clusters and different numbers of 

dimensions. The horizontal axis represents the datasets. The vertical axis in 

(a) and (b) represents the average clustering accuracy value over ten runs on 

each dataset, while that in (c) and (d) represents the variance of the clustering 

accuracies yielded by each algorithm in ten runs on each dataset. Graphs (a) and 

(b) in Figure 3.1 are a graphic depiction of Table 3.1. 

From Figure 3.1 (a) and (b), we notice that the performance of each algorithm 

drops on the datasets with 10 clusters. However, PSOVW still yields the best 
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Figure 3.1: Average clustering accuracy and corresponding variance of PSOVW, 

fc-means, W-&-means, EWKM and LAC on each dataset. 

results of the five algorithms. The performances of the W-fc-means, EWKM and 

LAC also seem to remain quite high in clustering accuracy as the datasets become 

more complicated. However, we find that their overall clustering abilities are very 

close, and inferior to that of PSOVW. The performance of the &-means deteri

orated considerably on datasets with 10 clusters. The reason is that PSOVW, 

the W-fc-means, EWKM and LAC are soft projected clustering algorithms, which 

calculate the distance between two data objects in the weighted whole dimen

sional space so that the clusters of high-dimensional data can be separated from 
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each other. As a result, they were superior to the &-means in handling complex 

high-dimensional data clustering. 

In order to see how sensitive the clustering results of these five algorithms are 

to the initial cluster centroids, we also examined the variance of ten clustering 

results of each algorithm on each dataset. From graphs (c) and (d), it can be 

readily seen that PSOVW yields the least variance in clustering accuracy on 

most of the datasets. The &-means achieved lower variance in clustering accuracy 

than PSOVW on some datasets with 10 clusters, because the clustering accuracy 

yielded by the &-means on these dataset is always very low. The other three soft 

projected clustering algorithms occasionally work well, achieving low variance in 

clustering accuracy on some datasets, but their variance is often high. What's 

more, it is difficult to tell for which type of datasets they are less sensitive to the 

initial centroids. From graphs (c) and (d) in Figure 3.1, we conclude that PSOVW 

was far less sensitive to the initial centroids than the other four algorithms. 

Table 3.3 presents the average running time of each algorithm on the datasets, 

with varying k and m. All times are in seconds. 

Datasets 

k m 

4 

10 

20 

100 

1000 

2000 

20 

100 

1000 

2000 

Running Time (s) 

fc-means LAC W-fc-means EWKM PSOVW 

0.094 1.531 2.031 1.234 7.828 

0.453 7.500 10.125 6.641 39.156 

4.422 74.437 100.343 60.718 206.140 

8.843 131.327 200.858 122.686 370.529 

0.172 3.000 4.890 2.641 49.172 

0.766 14.875 24.125 13.203 92.358 

7.500 149.249 257.467 132.749 408.451 

14.984 298.826 514.684 264.186 700.902 

Table 3.3: Average running time of PSOVW vs. &-means, LAC, W-A;-means, and 

EWKM. 

From Table 3.3, it is clear that the k-means runs faster than the other four 

soft projected clustering algorithms. Although LAC, EWKM and the W-fc-means 
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all extend the /c-means clustering process by adding an additional step in each 

iteration to compute variable weights for each cluster, LAC and EWKM are much 

faster algorithms than the W-fc-means on datasets. The W-A;-means required 

more time to identify clusters, because its objective function involves a much more 

complicated computation due to the high exponent. Based on the computational 

complexities of the various algorithms and the maximum number of function 

evaluations set in each algorithm, PSOVW was supposed to need 10 40 times 

the running time the W-A;-means requires. In fact, it required only slightly more 

than ten times the running time that the W-A;-means spent on the datasets with 

20 and 100 dimensions, and around two times what the W-A;-means spent on 

those with 1000 and 2000 dimensions. This is because the update of weights is 

simpler in PSOVW than in the other three soft projected clustering algorithms 

and particles are evaluated only if they are in the feasible closed space. We thus 

conclude that the much more complicated search strategy of PSOVW allows it 

to achieve the best clustering accuracy, at an acceptable cost in terms of running 

time. 

Table 3.4 presents the comparison of PSO with the best result of LAC, EWKM 

and the W-k-means on multiple independent trials. 

Since PSOVW uses more resources than LAC, EWKM and the W-fc-means, to 

ensure a very fair comparison of PSOVW with these three soft projected clustering 

algorithms, we independently ran LAC, EWKM and the W-A;-means multiple 

times on each dataset and compared the best result out of the iterative trials 

with that of PSOVW. According to the average running time of each algorithm 

reported in Table 3.3, we ran PSOVW once on each dataset. On the datasets with 

20 and 100 dimensions, LAC and EWKM were run 10 times and the W-fc-means 

was run 4 times. On the datasets with 1000 and 2000 dimensions, LAC and 

EWKM were run 4 times and the W-A;-means was run 2 times. The experimental 

results in Figure 4 still show that PSOVW surpasses the other three algorithms 

on each data set except on the Type 2 datasets with 10 clusters and 20 and 2000 

dimensions. This is because the particles in PSOVW do not work independently 
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Datasets 

Dimensions 

LAC 

W-k-means 

EWKM 

PSOVW 

Datasets 

LAC 

W-k-means 

EWKM 

PSOVW 

20 m 

89 

100 

100 

100 

20 m 

100 

100 

100 

100 

100 m 

93.5 

100 

71.5 

100 

100 m 

100 

100 

100 

100 

4 k 

1000 m 

89.5 

100 

95.5 

100 

4 k 

1000 m 

100 

100 

91 

100 

Type 1 

2000 m 20 m 

100 83 

100 85 

100 81 

100 100 

Type 2 

2000 m 20 m 

83.5 88.5 

100 86.5 

96 76 

100 87 

100 m 

92.5 

85 

86 

100 

100 m 

79 

85 

80 

100 

10 k 

1000 m 

81 

86.5 

76 

100 

10 k 

1000 m 

71.5 

89.5 

100 

86.5 

2000 m 

76 

85.5 

77 

85.5 

2000 m 

88.5 

72.5 

83 

100 

Table 3.4: Comparison of PSOVW vs. LAC, W-£;-means and EWKM. 

but cooperate with each other in order to move to better regions. The quality 

of the clustering is of prime importance and therefore the time taken to obtain 

it is at most secondary in many clustering applications. To sum up, the much 

more complicated search strategy allows PSOVW to achieve the best clustering 

accuracy, at a cost of longer running time, but the running time is acceptable. 

3.4 Test on Real Data 

3.4.1 Real-life datasets 

A comprehensive performance study was conducted to evaluate our method 

on real datasets. For the experiments described in this section, we chose three 

real datasets: the glass identification dataset (19), the Wisconsin breast cancer 

dataset (44) and the insurance company dataset (62), which were obtained from 

the UCI database (2). The glass identification dataset consists of 214 instances. 

Each record has nine numerical variables. The records are classified into two 
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classes: 163 window glass instances and 51 non-window glass instances. Wis

consin breast cancer data has 569 instances with 30 continuous variables. Each 

record is labeled as benign or malignant. The dataset contains 357 benign records 

and 212 malignant records. The insurance company dataset has 4000 instances. 

Each record has 85 numerical variables containing information on customers of an 

insurance company. A classification label indicating whether the customer is or 

is not an insurance policy purchaser is provided with each record. The numbers 

of purchasers and non-purchasers are 3762 and 238, respectively. 

3.4.2 Results for real data 

To study the effect of the initial cluster centroids, we ran each algorithm ten 

times on each dataset. Figure 3.2 presents the average clustering accuracy and 

the corresponding variance of each algorithm on each real dataset. The horizontal 

axis represents real datasets. In the left graph, the vertical axis represents the 

average value of the clustering accuracy for each dataset, and in the right graph 

it represents the variance of the clustering quality. 
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Figure 3.2: Average clustering accuracy and the log variance of the clustering 

accuracy for each algorithm on each real-life dataset. 

From Figure 3.2, we can see that PSOVW outperforms the other algorithms. 

The average clustering accuracy achieved by PSOVW is high on each dataset, 
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while the corresponding variance is very low. PSOVW is a random swarm in

telligent algorithm; however, its outputs are very stable. In our experiments, we 

also observed that other algorithms can achieve good clustering accuracy on the 

first two datasets on some runs. However, the performances of LAC and EWKM 

are very unstable on the glass and breast cancer datasets and the performances 

of the k-means and W-fc-means are unstable on the glass dataset. Their average 

clustering accuracy is not good, because their iterative procedures are derived 

from the k-means and are very sensitive to the initial cluster centroids. To sum 

up, PSOVW shows more capability to cluster these datasets and is more stable 

than other algorithms. 

3.5 PSOVW Application in Text Clustering 

3.5.1 Modifications of PSOVW 

To further demonstrate the efficiency of PSOVW on real data, we apply it to 

the problem of text clustering, called Text Clustering via Particle Swarm Opti

mization (TCPSO). To extend PSOVW to text clustering, a few modifications 

to the algorithm are necessary. In particular, we have adopted the conventional 

tf — idf to represent a text document, and make use of the extended Jaccard 

coefficient, rather than the Euclidean distance, to measure the similarity between 

two text documents. 

Throughout this section, we will use the symbols n, m and k to denote the 

number of text documents, the number of terms and the number of clusters, 

respectively. We will use the symbol L to denote the text set, Li,L2,.,Lk to 

denote each one of the k categories, and ni,n2,,rik to denote the sizes of the 

corresponding clusters. In TCPSO, each document is considered as a vector in 

the term-space. We used the tf — idf term weighting model (55), in which each 

document can be represented as: 

[t/i * log(n/d/i),tf2* log(n/df2), • • •,t/TO * log (n/dfm)] (3.16) 

Sfi 



3.5 PSOVW Application in Text Clustering 

where tfa is the frequency of the ith term in the document and dfx is the number 

of documents that contain the ith term. The extended Jaccard coefficient (57) 

used to measure the similarity between two documents is defined by the following 

equation: 

similarity(x, z) 
\x\\2 + \\z\\2 — x • z 

where x represents one document vector, z represents its cluster centroid vector 

and the symbol '•' represents the inner product of two vectors. This measure 

becomes one if two documents are identical, and zero if there is nothing in common 

between them (i.e., the vectors are orthogonal to each other). 

Based on the extended Jaccard coefficient, the weighted similarity between 

two text documents can be represented as follows: 

(UJP • x) • (VJP • z) 

\\w@ • x\\2 + \\wP • z\\2 — (wP • x) • (wP • z) 

where w is the weight vector for the corresponding cluster whose centroid is 

z. Therefore, the objective function in TCPSO serves to maximize the overall 

similarity of documents in a cluster and can be modified as follows: 

max F(W) = V V [«H • ———%^- 1 

where u is the cluster membership of the text document x. 

3.5.2 Text datasets 

To demonstrate the effectiveness of TCPSO in text clustering, we first extract 

four different structured datasets from 20 newsgroups (2). The vocabulary, the 

documents and their corresponding key terms as well as the dataset are available 

in (3). We used the processed version of the 20 news-by-date data set, which is 

easy to read into Matlab, as a matrix. We also selected four large text datasets 

from the CLUTO clustering toolkit (1). For all datasets, the common words 
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were eliminated using stop-list and all the words were stemmed using Porter's 

suffix-stripping algorithm (50). Moreover, any terms that occur in fewer than 

two documents were removed. 

We chose three famous clustering algorithms (Bisection fc-means, Agglom

eration and Graph) and one soft projected clustering algorithm (EWKM) for 

comparison with TCPSO. For soft projected clustering algorithms, the similarity 

between two documents is measured by the extended Jaccard coefficient, while 

the cosine function is used for the other algorithms, namely Bisection &-means, 

Agglomeration, Graph-based and fc-means. The second group of text datasets 

as well as the three clustering algorithms, Bisection A;-means, Agglomeration and 

Graph, can be downloaded from the website of CLUTO. 

Table 3.5 presents four different structured text datasets extracted from 20 

newsgroups. Each dataset consists of 2 or 4 categories, rii is the number of doc

uments randomly selected from each category, m and k represent the number of 

terms and the number of categories, respectively. The categories in datasets 2 

and 4 are very closely related to each other, i.e., the relevant dimensions of differ

ent categories overlap considerably, while the categories in datasets 1 and 3 are 

highly unrelated, i.e., different categories do not share many relevant dimensions. 

Dataset 2 contains different numbers of documents in each category. 

Table 3.6 summarizes the characteristics of four large text datasets from 

CLUTO. To ensure diversity in the datasets, we selected them from different 

sources, n, m and k are the number of documents, the number of terms and the 

number of categories, respectively. 

Text datasets trAl and £r45 are derived from TREC collections (4). The cat

egories correspond to the documents relevant to particular queries. Text datasets 

wap and klb are from the webACE project (11; 17), where each document corre

sponds to a web page listed in the subject hierarchy of Yahoo. 

5« 



3.5 PSOVW Application in Text Clustering 

Dataset 

1 

2 

3 

4 

Source Category 

comp. graphics 

alt. atheism 

talk.politics.mideast 

talk.politics.misc 

comp. graphics 

rec.sport.hockey 

sci. crypt 

talk.religion.misc 

alt. atheism 

rec. sport. baseball 

t alk. politics. guns 

talk.politics.misc 

Hi 

100 

100 

100 

80 

100 

100 

100 

100 

100 

100 

100 

100 

TO 

341 

690 

434 

387 

k 

2 

2 

4 

4 

Table 3.5: The four text datasets extracted from 20 newsgroups. 

Datasets 

5: tr41 

6: tr45 

7: wap 

8: klb 

Source 

TREC 

TREC 

webACE 

webACE 

n 

878 

927 

1560 

2340 

TO 

7454 

10128 

8460 

13879 

k 

10 

7 

20 

6 

Table 3.6: The four large text datasets selected from CLUTO. 

3.5.3 Experimental metrics 

The quality of a clustering solution is determined by two different metrics 

that examine the class labels of the documents assigned to each cluster. In the 

following definitions, we assume that a data set with k categories is grouped into 

k clusters and n is the total number of documents in the data set. Given a 

particular category Lr of size nr and a particular cluster Si of size m;, nri denotes 

the number of documents belonging to category Lr that are assigned to cluster 

Si. Table 3.7 presents the two evaluation metrics used in this paper. 

The first metric is the FScore (68), which measures the degree to which each 
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FScore 

Entropy 

*Tk Br m a Y , 2-R(Lr,Si)-P(Lr,Si)) 
2^r=\ n m d x l < i < f c R(Lr,Si)+P(Lr,Si) ' 

R(Lr,Si) = ^ , 

P(Lr,Si) = ** 

E
k m± . ( L_ . V , f e ™z± . loa?h±) 

Table 3.7: Experimental metrics 

cluster contain s documents from the original category. In the FScore function, R 

is the recall value and P is the precision value defined for category Lr and cluster 

Si. The second metric is the Entropy (64), which examines how the documents 

in all categories are distributed within each cluster. In general, FScore ranks the 

clustering quality from zero (worst) to one (best), while Entropy measures from 

one (worst) to zero (best). The FScore value will be one when every category has 

a corresponding cluster containing the same set of documents. The Entropy value 

will be zero when every cluster contains only documents from a single category. 

3.5.4 Experimental results 

Evaluations on text datasets 1-4 

Our first set of experiments focused on evaluating the average quality of the 

clustering solutions produced by the various algorithms and the influence of text 

dataset characteristics, such as the number of clusters and the relatedness of 

clusters, on algorithms. On each small-scale structured text dataset built from 

20 newsgroups, we ran the above algorithms 10 times. The average FScore and 

Entropy values are shown in the following bar graphs. The results of the average 

FScore values for the six algorithms on datasets 1-4 are shown in the left graph of 

Figure 3.3, while a similar comparison based on the Entropy measure is presented 

in the right graph. 

A number of observations can be made by analyzing the results in Figure 

3.3. First, TCPSO, Bisection A;-means and Graph-based yield clustering solutions 

that are consistently better than those obtained by the other algorithms in all 

experiments on text datasets 1-4. This is true whether the clustering quality 
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Texl Oaiasets !•< 

Figure 3.3: FScore and Entropy values of each algorithm on datasets 1-4. 

is evaluated using the FScore or the Entropy measure. These three algorithms 

produced solutions that are about 5-40% better in terms of FScore and around 

5-60% better in terms of Entropy. 

Second, TCPSO yielded the best solutions irrespective of the number of clus

ters, the relatedness of clusters and the measure used to evaluate the clustering 

quality. Over the first set of experiments, the solutions achieved by TCPSO 

are always the best. On average, TCPSO outperforms the next best algorithm, 

Graph-based, by around 3-9% in terms of FScore and 9-21% in terms of Entropy. 

In general, it achieves higher FScore values and lower Entropy values than the 

other algorithms. The results in the FScore graph are in agreement with those in 

the Entropy graph. Both of them show that it greatly surpasses other algorithms 

for text clustering. 

In general, the performances of TCPSO, Graph-based and Bisection /c-means 

deteriorate on text datasets where categories are highly related. In such docu

ments, each category has a subset of words and two categories share many of the 

same words. Basically, the probability of finding the true centroid for a document 

varies from one dataset to another, but it decreases as category relatedness in

creases. Thus, we would expect that a document can often fail to yield the right 

centroid regardless of the metric used. 

• i TCPSO 
E3 EWKM 
t I Bisection V mM 

— I Aqg!omtr3!ion 

2 3 
Text 0at««5 1-4 
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Third, except for the Entropy measure on text datasets 1 and 4, Graph-based 

performs the next best for both FScore and Entropy. Bisection fc-means also 

performs quite well when the categories in datasets are highly unrelated. EWKM 

always performs in the middle range, due to its employment of the local search 

strategy. The solutions yielded by the &-means fluctuate in all experiments. 

Agglomeration performs the worst of the six algorithms, yielding small FScore 

and large Entropy values on all datasets. This means the number of documents 

from each cluster yielded by Agglomeration is thus more balanced in one genuine 

category and as a result, the number of documents that are correctly identified 

by Agglomeration in the genuine category is very low. 

Evaluations on text datasets 5-8 

To further investigate the behavior of TCPSO, we performed a second series 

of experiments, focused on evaluating the comprehensive performance of each 

algorithm on large text datasets. Each algorithm was independently run 10 times 

on each of datasets 5-8. The average FScore values for the six algorithms on 

datasets 1-4 are shown in the left graph of Figure 3.4, while a similar comparison 

based on the Entropy measure is presented in the right graph. 

FScore Ertropy 

{"y|7 BiS*t!tor. k-rni»ans 
1773 Graph 
T&zj k-rrw«n-. 

Tert OaUsets S-8 

Figure 3.4: FScore and Entropy values of each algorithm on datasets 5-8. 

Looking at the two graphs of Figure 3.4 and comparing the performance of 

each algorithm on datasets 5-8, we can see that TCPSO outperformed all other 

T«xi Oameis 5-6 
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algorithms, on average, although Graph-based and Bisection A;-means are very 

close. Graph-based and Bisection fc-means are respectively worse than TCPSO 

in terms of FScore by 1%-11% and 6%-10%, on average, while they yield similar 

Entropy values to TCPSO. That means each category of documents is mainly 

distributed within its dominant cluster and TCPSO recovers more documents of 

each cluster primarily from their original categories. 

Although Graph-based and Bisection £;-means performed quite well on the 

datasets tr41 and klb, their performances deteriorate sharply on the datasets tr45 

and wap, where there is considerable overlap between the key words of different 

categories, such as the categories cable and television, multimedia and media 

etc. They failed to perform well on such datasets, while TCPSO still achieved 

relatively high FScore values because it identifies clusters embedded in subspaces 

by iteratively assigning an optimal feature weight vector to each cluster. The 

other three algorithms occasionally work well, achieving FScore values above 0.8 

on the dataset klb, whose categories (business, politics, sports etc.) are highly 

unrelated, but the FScore values are relatively low on other datasets. Moreover, 

their corresponding Entropy values are very high, which means each category of 

documents is more evenly distributed within all the clusters. 

3.6 Conclusions 

In response to the needs arising from the emergence of high-dimensional datasets 

in data mining applications and the low cluster quality of projected clustering al

gorithms, this paper proposed a particle swarm optimizer for the variable weight

ing problem, called PSOVW. The selection of the objective function and the 

search strategy is very important in soft projected clustering algorithms. PSOVW 

employs a A;-means weighting function, which calculates the sum of the within-

cluster distance for each cluster along relevant dimensions preferentially to irrel

evant ones. It also proposes a non-normalized representation of variable weights 

in the objective function, which greatly facilities the search process. Finally, 
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the new algorithm makes use of particle swarm optimization to get near-optimal 

variable weights for the given objective function. Although PSOVW runs more 

slowly than other algorithms, its deficiency in running time is acceptable. Ex

perimental results on synthetic and real-life datasets, including an application 

to document clustering, show that it can greatly improve clustering accuracy 

for high-dimensional data and is much less sensitive to the initial cluster cen-

troids. Moreover, the application to text clustering shows that the effectiveness 

of PSOVW is not confined to Euclidean distance. The reason is that the weights 

are only affected by the values of the objective function and weight updating in 

PSOVW is independent of the similarity measure. Other similarity measures can 

thus be used for different applications: the extended Jaccard coefficient for text 

data, for instance. 

Two issues need to be addressed by the PSOVW algorithm. PSOVW is still 

not able to recover the relevant dimensions totally, similar to other soft pro

jected clustering algorithms. The final weights obtained under the guidance of 

the objective function cannot totally capture the effect of the variances along 

each dimension. Some large weights do not adequately reflect the importance of 

the corresponding dimensions, although they do not have a significant negative 

impact on cluster quality. The other major issue in PSOVW is that usually the 

structure of the data is completely unknown in real-world data mining applica

tions and it is thus very difficult to provide the number of clusters k. Although a 

number of different approaches for determining the number of clusters automat

ically have been proposed (28; 53), no reliable method exists to date, especially 

for high-dimensional clustering. 
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Chapter 4 

PSO Clustering with 
Auto-determination of k 

In this chapter, our aim is to develop another particle swarm optimizer, called 

autoPSO, for the problem of clustering high-dimensional data. As well as identi

fying clusters, the aim here is to automatically determine the correct appropriate 

number of clusters. The objective function employed is the Davies-Bouldin (DB) 

index, which is based on the ratio of within-cluster scatter to between-cluster 

separation. The DB index makes it possible to directly compare partitions with 

similar or different numbers of clusters, in the same generation or between adja

cent generations. 

Given the objective function, clustering is formulated as a continuous func

tion optimization problem with bound constraints. In order to encode a vari

able number of clusters, autoPSO also utilizes a real-number matrix and a bi

nary vector representation for a particle. Then, a new crossover matrix learning 

procedure, derived from (30) and governed by the associated binary vector, is 

proposed to maintain the population diversity, making autoPSO immune to the 

premature convergence problem. Experimental results on both synthetic high-

dimensional data sets from a data generator and handcrafted low-dimensional 

data sets from Handl (28; 31) show that it is able to correctly identify clusters of 

high-dimensional data without needing to rely on a given number of clusters k. 
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This chapter is organized as follows. Section 1 reviews some previous re

lated work on automatically determining the number of clusters k. Section 2 

presents our enhanced PSO algorithm for clustering high-dimensional data and 

determining the number of clusters. Simulations on synthetic high-dimensional 

data produced by a generator and handcrafted low-dimensional data from Handl 

(31) are given in Section 3, which contains the description of data sets with differ

ent characteristics, the experimental setting for autoPSO, and the experimental 

results. The conclusions and directions for future work are given in Section 4. 

4.1 Automatically Determination of k in Clus

tering 

A fundamental difficulty in cluster analysis is the determination of the number 

of clusters. Most popular clustering algorithms require the number of clusters to 

be provided as an input parameter, which is difficult to set when the structure 

of the data is not completely known a priori. In this situation, automatically 

estimating the number of clusters and simultaneously finding the clusters becomes 

a challenge. 

Due to good performance of stochastic search procedures, one way to automat

ically determine the number of clusters is to make use of evolutionary techniques. 

In this regard, genetic algorithms (GA) have been the most frequently proposed 

for automatically clustering data sets. Basically, two types of GA representations 

for clustering solutions have been explored in the literatures: partition-based and 

centroid-based representations. Partition-based encodings directly represent the 

cluster membership of the ith data object by the ith gene. Although this is a 

straightforward encoding, it does not reduce the size of the search space and 

makes it difficult to design effective search operators. For this reason, many re

searchers have chosen to use centroid-based encodings, which borrow the idea 

of the popular fc-means algorithm. The representation is encoded as the cluster 
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centroids (7; 8; 25; 39; 59) and each data object is subsequently assigned to the 

closest cluster centroid. 

In (7), Bandyopadhyay and Maulik proposed a genetic algorithm in which 

a variable-length real-number string representation is used to encode the coordi

nates of the cluster centroids in the clustering problem. Chromosome i is encoded 

as be m * ki, where m denotes the number of data features and ki denotes the 

number of clusters of the ith individual. New crossover and mutation operators 

are denned for tackling variable string lengths and real numbers. In (8), they 

also presented a fixed string representation composed of real numbers and the 

do-not care symbol 'jf to encode a variable number of clusters. These two genetic 

algorithms have been demonstrated to evolve the number of clusters as well as 

to providing a correct clustering. However, their experiments were based on data 

sets which tend to be low-dimensional and spherical in shape. 

Tseng and Yang (59) proposed a scheme in which the data set is first split 

and then the smaller clusters are merged using a genetic algorithm. The pro

posed method has two stages, the nearest-neighbor clustering stage and a genetic 

clustering stage. In the first stage, small clusters are obtained, while the second 

one groups the small clusters into larger ones. Their GA-based clustering algo

rithm, called CLUSTERING, can automatically search for the correct number 

of clusters and it is suitable for clustering data with compact spherical clusters. 

It was also applied to a large data set which has 20,000 features. However, the 

algorithm failed to identify clusters which are confined partially or fully within 

another cluster. 

For one general clustering problem, Lai (39) employed another algorithm 

based on a hierarchical genetic algorithm, in which an individual is composed 

of two types of genes, the control and parameter genes. The control gene is 

encoded in binary digits, where the number of "Is" represents the number of 

clusters. The parameter gene is encoded in real numbers, which represent the 

coordinates of the cluster centroids. The parameter gene is governed by the con-
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trol gene. Where the control gene is " 1 " , the corresponding parameter gene is 

activated; otherwise, the associated parameter gene is disabled. 

Lin et. al. in (25) utilized a genetic algorithm with binary rather than string 

representation to encode a variable number of cluster centroids. The proposed 

method selects cluster centroids directly from the data set and speeds up the 

fitness evaluation by constructing a look-up table in advance and saving the 

distances between all pairs of data points. Suitable operators are introduced. 

The proposed algorithm has been demonstrated by the authors to provide stable 

performance in terms of number of clusters and clustering results. 

In (38), Liu et al employed a genetic algorithm with the same encoding m*ki as 

(7) to represent the coordinates of ki cluster centroids. They designed two special 

operators, noising selection and division-absorption mutation, for the clustering 

problem. The proposed method can automatically provide the number of clusters 

and find the clustering partition. 

In (28; 31), Handl et al employed a multiobjective genetic algorithm called 

MOCK to solve the clustering problem. For the encoding, they employed the 

locus-based adjacency representation introduced in (48), where each individual 

consists of n genes, in which n is the size of the data set and each gene can take 

integer values j in the range of [1, n]. Thus, a value j assigned to gene i is meant as 

a link between two data objects i and j . In the result, they will be assigned to the 

same cluster. MOCK optimizes two complementary clustering objectives, within-

cluster compactness and connectivity, and attempts to automatically estimate the 

number of clusters in the data set. MOCK has achieved high quality clustering 

results on the authors' data sets, which have complex cluster shapes, such as 

spherical, ellipsoidal, or long datasets and overlapped clusters. However, it is not 

readily applicable on high-dimensional datasets where clusters are embedded in 

subspaces. 
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4.2 PSO Clustering with Auto-determination of 
k 

In this section, we propose a particle swarm optimizer, called autoPSO, to 

automatically determine the number of clusters k and simultaneously identify 

clusters. 

4.2.1 Encoding 

To apply PSO to the clustering problem, one needs to choose an objective 

function and a suitable encoding of a partition. 

For the encoding, the position of each particle consists of two components, a 

real-number matrix Mkmax*m and a binary column vector Conkmax • Here, kmax is 

the maximal number of clusters, which can be set by the user and m is the number 

of dimensions. Each row in the matrix is coded as real numbers representing the 

coordinates of a cluster centroid. A " 1" in the binary vector signifies that there 

is a row of cluster centroid in the corresponding row of the matrix, while "0" 

signifies there is no center centroid in the corresponding row. Thus, the matrix is 

"supervised" by the vector. Where the binary vector value is " 1 " , the associated 

row of the matrix is activated; otherwise the associated row is disabled. 

In the autoPSO algorithm, we need to initialize three swarms. 

• In the position swarm, a position is a real-number matrix M. For a position 

% in the population, a random integer k in the range of [2, kmax] is generated. 

Then, k different data objects are randomly chosen from the data set as k 

initial center centroids. These data objects are randomly distributed in 

rows of the matrix. 

For example, assume that D = 4, kmax = 6, and random number ki = 4 for 

particle i. Then 4 data objects are randomly chosen as 4 cluster centroids. 

Assume that these 4 cluster centroids are randomly distributed in rows 

1,5,3,6 of the position matrix, respectively. 
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Let 4 data objects selected from the data set be 

(2.4 4.3 5 0.1), (10.7 8.2 3.1 2.9), 

(2 1.9 8.2 4.4), (12.9 13.1 5.3 2.8) 

Then, the position matrix Mi for particle i will look like this: 

2.4 4.3 5 0.1 
* * * 

2 1.9 8.2 4.4 
* * * 

10.7 8.2 3.1 2.9 
12.9 13.1 5.3 2.8 

• In the velocity swarm, a velocity is also a kmax * D matrix, which is set to 

random numbers uniformly distributed in the range [—Vmax, Vmax\. Here, 

Vmax means the maximum flying velocity of particles and Vmax = 0.25 * 

(xu — Xi), where xu and X[ are the upper bound and the lower bound of the 

search space, respectively. 

• In the control parameter swarm, a control parameter is binary vector Con. 

In each Corii, if the ith element is 1, it indicates the presence of the asso

ciated cluster in the position matrix Mj. If the corresponding element is 0, 

it denotes the absence of the cluster. 

The binary vector for the above example is: 

1 
0 
1 
0 
1 
1 

This encoding scheme has several major advantages for our application. Most 

importantly, there is no need to set the number of clusters in advance. Hence, 

we can evolve and compare solutions with different numbers of clusters in one 
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generation or adjacent generations of PSO. Furthermore, this real-number rep

resentation is well suited for the use of arithmetic operators in the original PSO 

and a complex crossover operator which will be introduced later into PSO. 

4.2.2 The Objective Function 

The Davies-Bouldin (DB) index (13) is a popular internal validation index 

which captures both within-cluster scatter and between-cluster separation in a 

nonlinear combination. It is defined as: 

k 

^ ' 1=1 

where 

is the ratio of the sum of within-cluster scatter 

to between-cluster separation 

Bijiz) = d(z{, Zj) (4.3) 

Here, x is the data object and Zi denotes the cluster centroid of cluster Cj, usually 

defined as Z{ = Jrr ]CxeC; xi w n e r e \C%\ is the number of data objects belonging to 

cluster Cj. d is the distance function which measures the dissimilarity between two 

data objects. DB takes values in the interval [0, oo) and needs to be minimized. 

The use of the DB index has some major advantages. First, it is unbiased 

with respect to the number of clusters. It can measure the quality of partitions 

with similar or different numbers of clusters. Hence, we can compare solutions 

with different numbers of clusters. Second, values returned by the DB index are 

easier to interpret. The smaller the value of the DB index, the more compactness 

in individual clusters and the more separation between clusters. 
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Given a previous set of cluster centroids, the cluster membership of each data 

object is calculated by the following formula. 

Let q(t) = E 7 = 1 [(Xij - Ztj)% q* = mmq(t), \<t<k 

Then, 
1, if q(t) = <f , } 

Ul'1 X 0, otherwise l > 
Once the cluster membership is obtained, the cluster centroids are updated 

by 

ZlJ = E " = C ^ * XiJ, for \<l<k and 1 < j < m (4.5) 
Z^=i ui,j 

In our implementation, if membership update by formula 4.4 results in an 

empty cluster, we randomly select a data object from the data set to reinitialize 

the centroid of the cluster. Then we can calculate the fitness values, namely the 

values of the DB index, for the positions in the swarm. 

4.2.3 Operators 

In order to maintain population diversity and prevent premature convergence, 

autoPSO borrows the idea of using CpBest instead of gBest and pBests from 

(30). The use of gBest causes the original PSO to converge prematurely to local 

minima. In autoPSO, the position swarm and the control parameter swarm both 

need the crossover operation, which governs the behavior of the position swarm. 

The velocity update is defined as: 

Vf(t + l) = w* Vf(t) + cl * r l * (CpBest* - Xf{t)) (4.6) 

where CpBest rather than gBest guides particles to move towards better regions. 

Each component of CpBest is obtained by a crossover operation between the 

individual's own pBest and one of the other best personal positions in the swarm, 

represented here by spBest-

The tournament mechanism is employed to select spBest, with the considera

tion that a particle learns from a good exemplar. First, two individuals, pBest\ 
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4.2 PSO Clustering with Auto-determination of k 

and pBest2, are randomly selected. Then their objective function values are com

pared: sPBest = pBesti if F{pBest\) < F(pBest2), sPBest — pBest2 otherwise. 

The crossover is done as follows: Each element at a position of CpBest is as

signed the value either from spBest or from pBest at the corresponding position. 

This assignment is made randomly according to a user-defined probability value 

Pc. If, despite the random assignment process, all the elements of CpBest take 

values from the position's own pBest, one element of CpBest will be randomly 

selected and its value will be replaced by the value of the corresponding position 

f r o m SpBest-

The arithmetic operators provided by the original PSO are very effective for 

continuous function optimization. However, the arithmetic operators, such as the 

"-" operator between CpBest and X, needs special treatment in autoPSO because 

of the incorporation of the control parameter swarm. There are two values in 

control parameter vectors, namely "0" and " 1 " . There are four combinations of 

the control parameter values between CpBest and X, as follows: 

The control parameter of CpBest - X = result 
0 0 = 0 
0 1 = 0 
1 0 = 1 
1 1 = 1 

Consequently, the result has the same control parameter vector as CpBest. 

However, the number of " Is" in the control parameter vector of the result some

times happens to be less than 2 after the crossover operator, i.e., there are less 

than two cluster centroids in the corresponding result. In this situation, we keep 

the control parameter of X as the result, in order to guarantee that there exist 

at least two clusters in the data set. 

4.2.4 Pseudo Codes for AutoPSO 

The autoPSO algorithm is summarized as follows: 
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Initialization: Set the maximal number of clusters, kmax = 10. 
Set the parameters in PSO, namely w, cl, Pc. 
For each particle i, 

Randomly choose ki data objects from the data; 
set as the initial cluster centroids; 
Place these cluster centroids in ki random rows 
to construct the position matrix pos; 
Construct the velocity matrix vel, randomly uniformly 
distributed in the range [—mv,mv], where 
mv — 0.25 * (xu — xt), and xu, xi are the 
upper and lower bounds of the dimension space. 
Evaluate the fitness value for each position 
matrix by 4.1. 
Generate CpBest and its associated control parameter. 
Vector Con for each position matrix. 

Repeat: For each particle i, 

If the fitness value of a position matrix isn't improved within 
5 iterations, 

Update its associated CpBest and Con. 
Update the velocity and position matrix, pos and vel. 
Confine vel in the range of [—mv, mv}. 
Confine pos in the range of [xi, xu]. 
Evaluate the fitness value of each position. 
Update pBest, gBest, and Con. 

Until Find the global fitness value 0, 
or reach the maximal number of fitness evaluations. 

4.3 Experimental Results 

4.3.1 Contestant Algorithms 

In this section, we study the performance of autoPSO by comparing the algo

rithm to: 

1. three traditional clustering algorithms: &-means, Bisection A;-means, and 

Graph-based clustering. 
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2. PSOVW 

3. GA-based clustering (8) 

The four clustering algorithms in the first two points require the number of 

clusters, k, to be provided by the user, while GA-based clustering allows us to au

tomatically estimate the correct number of clusters as well as finding the clusters. 

The fc-means is a conceptually simple and well-proven algorithm. The reason we 

have selected the Bisection A>means and Graph-based clustering algorithms for 

comparison is that both of them perform well on high-dimensional data sets, such 

as text data, as shown in Chapter 3. PSOVW is an effective soft projected algo

rithm for clustering high-dimensional data based on variable weighting, already 

introduced in Chapter 3. Finally, the choice of GA-based clustering (8) reflects 

our wish to demonstrate that autoPSO achieves a high level of performance not 

because it employs new objective functions, but rather because autoPSO intro

duces a more effective search strategy. 

k -means 

The fc-means algorithm starts with a random partitioning and loops the fol

lowing steps: 1) Computes current cluster centroids and the average vector of 

each cluster in a data set in some cases; 2) Assign each data object to the cluster 

whose cluster centroid is closest to it. The algorithm terminates when there is no 

further change in the cluster centroids. By this means, A;-means locally maximizes 

compactness by minimizing the within-cluster scatter, namely the sum of squares 

of the differences between data objects and their corresponding cluster centroids. 

In our implementations, an empty cluster sometimes occurs, so we reassign one 

data object randomly selected from the data set to it. 

Bisection k-means 

In order to generate k desired clustering solutions, Bisection fc-means performs 

a series of fc-means. Bisection /c-means is initiated with the universal cluster con

taining all data objects. Then it loops: it selects the cluster with the largest vari

ance and calls k-means, which optimizes a particular clustering criterion function 
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in order to split this cluster into exactly two subclusters. The loop is repeated a 

certain number of times such that k non-overlapping clusters are generated. Note 

that this approach ensures that the criterion function is locally optimized within 

each bisection, but in general it is not globally optimized. 

Graph-based 

In the Graph-based clustering algorithm, the desired k clustering solutions 

are computed by first modeling the objects using a nearest-neighbor graph. Each 

data object becomes a vertex, and each data object is connected to the other 

objects most similar to it. Then, the graph is split into k clusters using a min-cut 

graph partitioning algorithm. 

PSOVW 

See Chapter 3. 

GA-based 

Finally, we compared against the genetic algorithm proposed by Bandyopad-

hyay (8). It starts with a randomly initialized population with fixed-length strings 

representing the centers of a number of clusters, whose value may vary. The ge

netic clustering algorithm employs a conventional proportional selection, a mod

ified single-point crossover and a special mutation. A cluster validity index such 

as the Davies-Bouldin (DB) index is utilized for computing the fitness of chro

mosomes. Experiments on four data sets, three artificial and one real-life, have 

demonstrated that GA-based clustering can automatically estimate the appropri

ate clustering of a data set. 

4.3.2 Data Sets 

The clustering performance of the autoPSO algorithm was evaluated on the 

following two groups of synthetic data sets: 

1. High-dimensional data: 
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4.3 Experimental Results 

High-dimensional data sets contain clusters embedded in different dimen

sional subspaces and have often been used to investigate algorihtms' perfor

mance in clustering high-dimensional data. The number of clusters and the 

size of the individual clusters are manually fixed, while the mean and the 

standard deviation vectors are randomly generated in a certain range. The 

method for producing these high-dimensional data sets is given in Chapter 

3, which provides a detailed description of the data sets. These data sets 

consist of 4 or 10 clusters, combined with different dimensions, such as 20, 

100, 1000 and 2000 dimensions. We selected a total of 8 type 2 synthetic 

high-dimensional data sets, from Chapter 3. 

2. Complex 2-dimensional data: 

We selected 6 2-dimensional data sets with square, long, smile and spiral 

shapes from (31). These 2-dimensional data sets were used to analyze the 

algorithms' 

performance with respect to specific data characteristics, such as cluster 

shape. The data sets, except for the smile data set, are described by 2-

dimensional normal distributions N((j,i,ai),i = 1,2. The number of clus

ters, the sizes of individual clusters, the mean and the standard variance 

for each normally distributed set are manually fixed. 

The 2-dimensional data are summarized in Table 4.1. m is the number of 

dimensions, k denotes the number of clusters, and n; gives the number of 

data objects for cluster i. The test sets are generated by either Normal 

or Uniform distributions, i.e., N(fi,a) or £/(/x,<r), where /i and a are the 

mean and the standard deviation, respectively. For the Smile data set, 

circles C(u,r, start ~ end) are additionally used, where u is the center of 

the circle, r is its radius, and start ~ end describes the part of the circle 

that is actually drawn. 
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Datasets 

Squarel 

Square2 

Square3 

Long 

Smile 

Spiral 

k 

4 

4 

4 

2 

4 

2 

Tli 

4*125 

4*125 

200, 100 

100, 100 

2*250 

4*125 

2*250 

rn 

2 

2 

2 

2 

2 

2 

Normal Distribution 

N([0, 0] [2, 2]), N([10, 10], [2, 2]), 

N([0, 10], [2, 2]), N([10, 0], [2, 2]) 

N([0, 0] [2, 2]), N([6, 6], [2, 2]), 

N([0, 6], [2, 2]), N([6, 0], [2, 2]) 

N([0, 0] [2, 2]), N([10, 10], [2, 2]), 

N([0, 10], [2, 2]), N([10, 0], [2, 2]) 

N([0.3, 0.7], [0.01, 0.01]), 

N([0.7, 0.7], [0.01, 0.01]) 

N([0, 0], [1, 0.1]), N([0, 1], [1, 0.1]), 

CQ0.5, 0.5], 0.5, 0 ~ 2 T T ) , 

C([0.5, 0.5], 0.3, 1.25TT ~ 1.75TT), 

+U([0, 0], [0.1, 0.1]) 

Table 4.1: 2-dimensional datasets. 

Figure 4.1 gives a visual depiction of the 2-dimensional synthetic data sets. 

In Squarel, Square2 and Squared, the degree of overlap and the size of in

dividual clusters are varied. Long contains elongated cluster shapes. Three 

clusters in Smile are contained within another one, while Spiral consists 

of interlaced clusters. 

The synthetic data requires no processing and the distance computation is 

done using the Euclidean distance. 

4.3.3 Experimental Metric 

The clustering performances of all of the above six algorithms, including au-

toPSO, were compared using the FScore evaluation measure. Basically, this 

measure is based on the ideas of precision and recall from information retrieval. 

This function is an external function that compares the clustering solutions to 

the original class labels. Assume that a data set with k categories is grouped 
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into k clusters and n is the total number of documents in the data set. Given a 

particular category Lr of size nr and a particular cluster Si of size m,, nri denotes 

the number of documents belonging to category Lr that are assigned to cluster 

Si. The FScore measure is defined as follows: 

P C O T P - r ' nr 2-R(Lr,SiyP(Lr,Si)) 

t bcore - 2^ r = 1 n max!<t<fc H ^ S ^ + P ^ , . , ^ ) 

R(LT,Si) = % (4.7) 

P(L r ,S,) = ^ 

where P and i? are the precision and recall for each class i and cluster j . FScore 

is limited to the interval [0,1] and should be maximized for the optimal clustering. 

4.3.4 Experimental Results 

Since fc-means, Bisection fc-means, PSOVW, GA-based and autoPSO are ran

domly initialized algorithms, we performed 20 runs of each algorithm on each data 

set and averaged the results obtained. We compare the different approaches in 

terms of the measure described in formula 4.7. For /c-means, Bisection fc-means, 

Graph-based and PSOVW, we set the proper number of clusters for each dataset. 

GA-based and autoPSO do not require advance setting of this parameter. 

Our first set of experiments is focused on evaluating the ability of each algo

rithm to cluster high-dimensional data with clusters embedded in different dimen

sional subspaces, namely with clusters having different relevant dimensions. The 

average quality of the clustering solutions produced by the various algorithms is 

reported in Table 4.2. Figure 4.2 illustrates the distribution of the FScore values 

in Table 4.2. 

In table 4.2, the reported results for PSOVW do not correspond with the 

results presented in Chapter 3. The reason is that different experimental measures 

are used in these two series of experiments. In Chapter 3, we employ the precision 

measure, while we use the FScore measure, which is a combination of precision 

and recall, in Chapter 4. Actually, FScore is more appropriate to measure the 
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performances of clustering algorithms than precision used in Chapter 3. However, 

the performances of LAC, EWKM, W-k-means and k-means work badly on high-

dimensional datasets, it is therefore very difficult to calculate the FScore values 

for their results. 

High-dimensional 

Data Sets 

4fc20ra 

4A:100ra 

4£;1000m 

4A;2000ra 

10£;20m 

lOHOOra 

KMOOOm 

10fc2000m 

autoPSO 

100 

100 

100 

100 

100 

100 

100 

100 

GA-based 

100 

100 

100 

100 

90.5 

87.8 

91.3 

88.9 

PSOVW 

100 

100 

100 

100 

93.2 

92.4 

92.6 

94.8 

A;-means 

64.9 

62.1 

76.3 

72.4 

35.1 

33.4 

31.9 

36.2 

Bisection 

A;-means 

100 

100 

100 

100 

92 

92.5 

87 

86.2 

Graph 

based 

88.7 

85.6 

78.5 

87.3 

86.4 

85.5 

88.9 

81 

Table 4.2: The FScore values of each algorithm on eight high-dimensional 

datasets. 

From Table 4.2 and Figure 4.2, we note that autoPSO, GA-based, PSOVW 

and Bisection A;-means attain comparable clustering results and all of them achieve 

100 percent clustering accuracy on each trial over the data sets with 4 well-

separated clusters. In our experiments on the data sets with 10 overlapped 

clusters, autoPSO performs most robustly compared to its contestants. It re

liably generates solutions that are comparable to or better than those of the 

other algorithms, showing that it explores high-quality clustering results on high-

dimensional data sets. Evidently, it manages to cope with the complicated data 

sets where the relevant dimensions of individual clusters overlap considerably, 

while all of the other clustering methods fail on certain of these data sets. 

As can be expected, fc-means performs very poorly in the absence of over

lapped clusters, as in the data sets with 10 clusters. The clustering performance 

of the Graph-based algorithm is little affected by the number of dimensions, be-
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cause it employs the graph idea to find clusters. Bisection fc-means produces a 

hierarchy by random binary splits, resulting in higher variance. 

On all of the high-dimensional data sets, autoPSO reliably identifies the cor

rect number of clusters. One should note that the obvious difficulty of determin

ing the number of clusters in high-dimensional data sets. In our experiments, 

the GA-based clustering algorithm is able to find the correct number of clusters 

as well as identifying clusters on the data sets with 4 clusters. However, its per

formance is inferior to that of autoPSO on the data sets with 10 clusters. The 

good performance of autoPSO in clustering high-dimensional data does not result 

from the objective function which is not new, but from its more effective search 

strategy. 

To further investigate the behavior of autoPSO on low-dimensional data sets, 

we performed a second series of experiments, focusing on evaluating the perfor

mance of each algorithm on 2-dimensional data sets with different cluster shapes. 

Each algorithm was independently run 10 times on each 2-dimensional data set. 

The average FScore value for each algorithm is shown in Figure 4.3. 

Figure 4.3 shows the results in terms of FScore over 2-dimensional data sets 

for all of the clustering approaches. As can be seen from Figure 4.3, in our 

experiments, autoPSO and GA-based do not work well on the data sets with 

overlapped and interlaced clusters, Squarel and Spiral, because they optimize 

compactness and spatial separation, not connectedness. PSOVW achieves poor 

performances on all the 2-dimensional data sets except for Long. The main reason 

is that PSOVW identifies clusters by variable weighting. Usually, it is able to 

get to a set of variable weights, which make the data set separable. However, 

2-dimensional data sets are usually inseparable, so it cannot perform well on the 

2-dimensional data sets with inseparable clusters. 

A;-means performs well on the data sets Squarel, Square2 and Square3, as 

they contain spherical clusters, while it fails for the data sets with Long, Smile 

or Spiral shapes. The main reason for this is that it optimizes compactness, 
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not connectedness or spatial separation. Bisection fc-means leads to better clus

ters than those obtained by A;-means on most of runs. Graph-based can detect 

clusters of any arbitrary, and it achieves about the same performances on all 

the 2-dimensional data sets. However, it tends to show a poor performance on 

overlapped clusters. 

4.4 Conclusions 

AutoPSO has shown very good performance in terms of providing the correct 

number of clusters and identifying clusters over high-dimensional data sets with 

clusters embedded in different dimensional subsets. AutoPSO is a fc-means type 

of clustering algorithm. It aims to optimize a set of cluster centroids, utilizing a 

cluster validity index, the DB index, as the objective function to be optimized. 

In autoPSO, each individual is encoded as a position matrix and a control vector 

which governs the associated matrix. Finally, it utilizes an advanced particle 

swarm optimizer instead of local search strategies to optimize the given objective 

function. The encoding makes it easier for autoPSO to search in the dimension 

space. Compared with the other clustering algorithms considered in this chapter, 

the more effective search strategy explains the superior performance of autoPSO. 

Despite its promising performance on high-dimensional data sets, autoPSO 

has some inherent limitations. Due to the objective scheme which optimizes com

pactness and separation, not connectivity, autoPSO can not differentiate heavily 

overlapped and interlaced clusters, such as those in Square2. Therefore, a more 

effective objective function that grasps the definition of clustering should be pro

posed. To sum up, although autoPSO is not simply the best optimizer, it can be 

a useful alternative for providing the number of clusters and identifying clusters 

in high-dimensional data sets. 
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Figure 4.1: Visual depiction of the 2-dimensional synthetic data sets. 
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Chapter 5 

Conclusion and Future Work 

This thesis has explored the advantages of particle swarm optimization in 

the context of clustering high-dimensional data. Particle swarm optimization 

techniques for two specific tasks have been developed and their performance has 

been analyzed in comparison to that of existing clustering approaches and several 

related projected clustering algorithms. The analysis has shown that particle 

swarm optimization can overcome some of the fundamental limitations of local 

search methods and may yield significant performance gains. On the other hand, 

the proposed particle swarm optimizers are computationally more expensive than 

standard approaches such as A;-means-type of clustering algorithms. 

Despite their promising performances, PSOVW and autoPSO have some lim

itations. Due to its heuristic nature of the algorithm, PSOVW is not guaranteed 

to obtain the most optimal weight vectors where large ones reflect the impor

tance of the corresponding dimensions. Therefore, PSOVW is unable to recover 

the relevant dimensions totally, although the final weights it reaches do not have 

a significant negative impact on cluster quality. More effective methods for the 

selection of feature subsets for each cluster should thus be considered. It should 

also be noted that autoPSO fails to perform well on low-dimensional data sets, 

due to its use of the simple objective function, the DB index. Therefore, more ef

fective objective schemes should be proposed for clustering low-dimensional data. 

In addition, these two approaches are very computationally expensive for some 
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applications with heavy time or memory constraints. 

To sum up, the research discussed in this thesis opens up a number of direc

tions for future work. First, there is room to improve on the objective functions 

described in this thesis. The objective functions employed in our PSO algorithms 

are appropriate for clustering high-dimensional data where clusters are embed

ded in subspaces, due to their sparsity and separation. However, low-dimensional 

data sets such as 2-dimensional data sets are usually inseparable. This calls for 

the design of special objective schemes that will enable a more effective represen

tation of clustering, in particular in the context of the problem of automatically 

determining the number of clusters k. 

Second, there is also definitely room to use more efficient global optimiza

tion algorithms. In this thesis, global optimization methods are used as ba

sic algorithms. The advanced particle swarm optimization algorithms PSOVW 

and autoPSO have been applied to high-dimensional data throughout this the

sis. However, there is no reason to assume that our PSOs are superior to other 

variants of meta-heuristics. A comparison of implementations based on differ

ent clustering validity measures and different optimization techniques is therefore 

worth investigating. 

Finally, since particle swarm optimization is an effective global search tech

nique, it would be interesting to develop particle swarm approaches to unsuper

vised feature selection and feature subspace selection for subspace clustering. 
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