9 research outputs found

    Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices

    Get PDF
    We demonstrate the generation of higher-order modulation formats using silicon-based inphase/quadrature (IQ) modulators at symbol rates of up to 100 GBd. Our devices exploit the advantages of silicon-organic hybrid (SOH) integration, which combines silicon-on-insulator waveguides with highly efficient organic electro-optic (EO) cladding materials to enable small drive voltages and sub-millimeter device lengths. In our experiments, we use an SOH IQ modulator with a {\pi}-voltage of 1.6 V to generate 100 GBd 16QAM signals. This is the first time that the 100 GBd mark is reached with an IQ modulator realized on a semiconductor substrate, leading to a single-polarization line rate of 400 Gbit/s. The peak-to-peak drive voltages amount to 1.5 Vpp, corresponding to an electrical energy dissipation in the modulator of only 25 fJ/bit

    Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s On-Off Keying

    Get PDF
    Electro-optic modulators for high-speed on-off keying (OOK) are key components of short- and mediumreach interconnects in data-center networks. Besides small footprint and cost-efficient large-scale production, small drive voltages and ultra-low power consumption are of paramount importance for such devices. Here we demonstrate that the concept of silicon-organic hybrid (SOH) integration is perfectly suited for meeting these challenges. The approach combines the unique processing advantages of large-scale silicon photonics with unrivalled electro-optic (EO) coefficients obtained by molecular engineering of organic materials. In our proof-of-concept experiments, we demonstrate generation and transmission of OOK signals with line rates of up to 100 Gbit/s using a 1.1 mm-long SOH Mach-Zehnder modulator (MZM) which features a {\pi}-voltage of only 0.9 V. This experiment represents not only the first demonstration of 100 Gbit/s OOK on the silicon photonic platform, but also leads to the lowest drive voltage and energy consumption ever demonstrated at this data rate for a semiconductor-based device. We support our experimental results by a theoretical analysis and show that the nonlinear transfer characteristic of the MZM can be exploited to overcome bandwidth limitations of the modulator and of the electric driver circuitry. The devices are fabricated in a commercial silicon photonics line and can hence be combined with the full portfolio of standard silicon photonic devices. We expect that high-speed power-efficient SOH modulators may have transformative impact on short-reach optical networks, enabling compact transceivers with unprecedented energy efficiency that will be at the heart of future Ethernet interfaces at Tbit/s data rates

    Silicon-organic hybrid photonics: Overview of recent advances, electro-optical effects and CMOS-integration concepts

    Get PDF
    In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given

    Silicon-organic hybrid (SOH) electro-optic modulators for high-speed and power-efficient communications

    Get PDF
    Silicon-organic hybrid (SOH) modulators add a highly efficient nonlinear organic electro-optic cladding material to the silicon photonic platform, thereby enabling efficient electro-optic modulation. In this book, the application potential of SOH modulators is investigated. Proof-of-principle experiments show that they can be used for high-speed communications at symbol rates up to 100 GBd and operated directly from a field-programmable gate array (FPGA) without additional driver amplifiers

    Hybrid Silicon-Photonic Circuits with Second-Order Optical Nonlinearities

    Get PDF
    Die integrierte Optik ermöglicht die Miniaturisierung diskreter photonischer oder elektro-optischer (EO) Komponenten und die Kombination dieser Bauelemente in komplexen photonischen integrierten Schaltungen (engl. photonic integrated circuit, PIC) auf kompakten Mikrochips. Die Silizium-Photonik (SiP) ist eine sehr attraktive Plattform für die photonische Integration, da sie ausgereifte Herstellungsprozesse aus der Mikroelektronik nutzen kann. Damit eröffnet die Silizium-Photonik die Möglichkeit zur kostengünstigen Massenproduktion von photonischen Chips mit hoher Ausbeute und Reproduzierbarkeit. Darüber hinaus erlaubt der große Brechungsindexkontrast zwischen dem als Wellenleiterkern dienendem Silizium (Si) und dem als Mantelmaterial verwendeten Siliziumdioxid die Herstellung von Wellenleitern mit kleinen Querschnitten und kleinen Krümmungsradien, was die Integrationsdichte im Vergleich zu anderen Materialplattformen erhöht. Die Silizium-Photonik hat jedoch einen entscheidenden Nachteil: Aufgrund seines inversionssymmetrischen Kristallgitters besitzt Silizium keine Nichtlinearität zweiter Ordnung. Folglich sind Bauelemente wie optische Frequenzkonverter, optische Logikgatter, verschränkte Photonenquellen und vor allem elektro-optische Modulatoren, welche auf dem Pockels-Effekt basieren, auf der SiP-Plattform nicht ohne Weiteres realisierbar. Die hybride Integration von Silzium-Nanowellenleitern mit anderen Materialien, die eine Nichtlinearität zweiter Ordnung aufweisen, ist daher für die Erweiterung des Portfolios von SiP-Bauelementen von entscheidender Bedeutung. In dieser Arbeit werden zwei Ansätze für die hybride Integration in SiP-Schaltungen untersucht. Der erste Ansatz stütz sich auf hocheffiziente organische EO Materialien, die mit siliziumphotonischen Wellenleiterstrukturen in einem Back-End-of-Line-Prozess kombiniert werden, um sogenannte Silicon-Organic Hybrid (SOH) EO Modulatoren zu realisieren. In dieser Arbeit werden SOH-Modulatoren demonstriert, die neue Rekorde in Bezug auf Modulationseffizienz, optische Einfügungsdämpfung und demonstrierte Datenrate definieren. Darüber hinaus wird die thermische Langzeitstabilität dieser Bauelemente bei 85 °C validiert. Der zweite Ansatz beruht auf neuartigen anorganischen Nanolaminat-Dünnfilmen, die durch Atomlagenabscheidung (ALD) gewachsen werden. Aufgrund des frühen Forschungsstadiums wurden diese Materialien nicht direkt auf SiP-Chips, sondern auf Glassubstraten gewachsen und durch die Erzeugung der zweiten Harmonischen (SHG) charakterisiert. In dieser Arbeit werden SHG-Charakterisierungstechniken für Nanolaminate untersucht und ein neues Nanolaminat vorgestellt. Perspektivisch könnte ALD allerdings auch für die Beschichtung von SiP-Chips verwendet werden. Das konforme ALD-Wachstum bietet sich hierbei an, um präzise definierte Schichtfolgen auch auf komplexen Wellenleiterstrukturen mit hoher Reproduzierbarkeit abzuscheiden. Diese beiden Ansätze werden in der vorliegenden Arbeit näher beschrieben. Kapitel 1 gibt eine Einführung in die integrierte Optik und erläutert die Notwendigkeit der Hybridintegration von optisch-nichtlinearen Materialien zweiter Ordnung in SiP-Schaltungen. Kapitel 2 fasst den theoretischen Hintergrund, führt die für diese Arbeit relevanten Aspekte der nichtlinearen Optik ein und gibt einen Überblick über verschiedene Klassen von nichtlinearen Materialien zweiter Ordnung. Darüber hinaus wird der Stand der Technik von Mach-Zehnder-Modulatoren auf der SiP-Plattform vorgestellt. In Kapitel 3 wird die sehr hohe Modulationseffizienz von SOH-Modulatoren demonstriert. Dabei wird ein Mach-Zehnder-Modulator diskutiert, bei dem das Produkt aus π-Spannung und Länge nur 0,32 Vmm beträgt. Im Vergleich zu modernsten SiP-Modulatoren stellt dieser Wert eine Verbesserung um mehr als eine Größenordnung dar. Diese hohe Effizienz ermöglicht eine optische Signalerzeugung mit einer Datenrate von 40 Gbit/s unter Verwendung sehr kleiner Peak-to-Peak Treiberspannungen von nur 140 mVpp_{\rm{pp}}. Kapitel 4 stellt einen kompakten SOH-Modulator mit einer optischen Dämpfung des Phasenschiebers von unter 1 dB vor – dies entspricht dem niedrigsten Wert der jemals für einen ultra-schnellen SiP-Modulator veröffentlicht wurde. Der Nutzen dieses Bauteils für schnelle und effiziente optische Datenübertragung wird in einem Experiment demonstriert, bei dem vierstufige Pulsamplitudenmodulations-Signale (PAM4) bei 100 GBd erzeugt werden. Die hierfür verwendeten Treiberspannungen sind kompatibel mit typischen Spannungspegeln, die von energieeffizienten und hochgradig skalierbaren Complementary Metal-Oxide-Semiconductor-(CMOS­)Bauteilen erzeugt werden können. Kapitel 5 demonstriert die thermische Langzeitstabilität von SOH-Modulatoren gemäß den Telcordia-Normen für die Lagerung bei hohen Temperaturen. Die Bauelemente werden bei 85 °C für insgesamt 2700 h gelagert, und es zeigt sich, dass die π-Spannung nach einem schnellen anfänglichen Anstieg auf ein konstantes langzeitstabiles Niveau konvergiert. Weiterhin wird gezeigt, dass die Lagerung bei 85 °C keinen negativen Einfluss auf die Leistungsfähigkeit der Bauteile bezüglich der optischen Datenübertragung hat. Dazu wurde eine optische Datenübertragung mit einem SOH-Bauteil durchgeführt, das zuvor für 2700 h bei 85 °C gelagert wurde. Mit dieser Demonstration wird eines der letzten verbleibenden Hindernisse auf dem Weg zum technischen Einsatz von SOH-Bauteilen adressiert: Die Stabilität der zugrundeliegenden organischen Materialien. In Kapitel 6 werden zwei verschiedene Techniken zur Messung von SHG von anorganischen Nanolaminaten und zur Bestimmung der zugehörigen Elemente des χ(2)\chi^{(2)}-Tensors untersucht. Die Vor- und Nachteile der beiden Methoden werden verglichen und die Quellen für Messfehler identifiziert. Kapitel 7 stellt ein neuartiges binäres Nanolaminatmaterial vor, das auf abwechselnden Schichten aus Zinkoxid und Aluminiumoxid basiert. Die ermittelte Nichtlinearität zweiter Ordnung ist mehr als dreimal so groß wie bei zuvor veröffentlichten ternären Nanolaminaten. Kapitel 8 fasst die Themen dieser Arbeit zusammen und gibt einen Ausblick auf zukünftige Arbeiten zu SOH-Modulatoren und Nanolaminat-Dünnfilmen

    Fotónica sustentável: circuitos de ótica integrada para comunicações óticas e sensores baseados em híbridos orgânico-inorgânicos

    Get PDF
    The present work aims the production and characterization of cost-effective photonic integrated circuits (PICs) to encounter green photonics goals, namely in the optical communications and sensing fields. Therefore, organic-inorganic hybrids (di-ureasil and tri-ureasil), doped with zirconium propoxide stabilized with methacrylic acid, were synthesized by the versatile sol-gel methodology, at room temperature, as planar waveguides processed in the form of monoliths, with controlled shape and size, and films with variable thickness (10−5-10−6 m) in vitreous or silicon oxide substrates. They exhibit stable and tunable properties, mechanical and thermal stability resulting from the synergy between the organic and inorganic counterparts. Their main feature is the heavily facilitated control of the surface optical properties by the inherent flexibility offered by these materials that are easily self-patterned by direct UV laser writing, and the refractive index tuning through chemical doping. The influence of different concentrations of zirconia-based clusters (20-60 mol%) in the local structure of di-ureasils and tri-ureasils was studied through X-ray diffraction, nuclear magnetic resonance of 13C and 29Si atoms, infrared spectroscopy by Fourier transform, Raman spectroscopy by Fourier transform and thermogravimetry analysis. The relevant optical features for applications in PICs were determined, showing acceptable attenuation values (∼1-5 dB·cm−1) for low dimension circuits, and reduced insertion losses arising from the fibre-device similar refractive index (1.49-1.52). Taking advantage of the material photosensibility, direct UV laser writing was used to pattern the desired optical architecture on the surface of organic-inorganic hybrids. In what concerns optical communications, passive and active devices were produced: a thermo-optic integrated variable wave plate device to control the state of polarization of an optical signal, showing a linear retardation coefficient of 17±1 °/°C; a 90° hybrid coupler to demodulate a 20 Gb/s quadrature phase shift keying transmission over 40 km of fibre, yielding a 2.5 dB power penalty, relatively to back-to-back; an electro-optic phase modulator based on a Mach-Zehnder interferometer (MZI) with a voltage shift required for a π phase change of 2.9±0.3 V; an optical amplifier in the blue spectral region for visible light communications with a maximum optical gain efficiency of 1.62±0.02 cm∙μJ−1. In the sensing field, the development of portable low-cost PICs based biosensors for lab-on-a-chip devices are of great interest. Thus, a biosensor based on an MZI was produced to monitor the growing concentration of bacteria in a liquid medium, presenting a sensitivity of 2×10−4 RIU and limit of detection of 2.0 pg·mm−3.O presente trabalho tem como objetivos a produção e caracterização de circuitos de ótica integrada (OI) eficientes e de baixo custo, no contexto dos requisitos de fotónica sustentável, nomeadamente na área das comunicações óticas e dos sensores. Para isso, híbridos orgânico-inorgânicos (di-ureiasil e tri-ureiasil), dopados com propóxido de zircónio estabilizado com ácido metracrílico, foram sintetizados pela metodologia sol-gel, à temperatura ambiente, como guias de onda planares processados na forma de monólitos, com forma e tamanho controlados, ou filmes de espessura variável (10−5-10−6 m), em substratos vítreos e de silício oxidado. Estes materiais exibem propriedades óticas estáveis e ajustáveis, estabilidade mecânica e térmica resultantes da sinergia entre os componentes orgânicos e inorgânicos. A sua principal propriedade é o fácil controlo das propriedades óticas devido à inerente flexibilidade dos materiais que são auto-padronizados pela escrita direta por radiação ultravioleta (UV), e o controlo do índice de refração por dopagem química. A influência de diferentes concentrações de aglomerados de zircónio (20-60 mol%) na estrutura local dos di-ureails e tri-ureasils foi analisada através de difração de raio-X, ressonância magnética nuclear dos átomos de 13C e 29Si, espectroscopia de infravermelho por transformada de Fourier, espectroscopia Raman por transformada de Fourier e análise termogravimétrica. As características óticas relevantes para aplicações em OI foram determinadas, revelando coeficientes de atenuação aceitáveis (∼1-5 dB·cm−1) para circuitos de baixas dimensões, e baixas perdas de inserção devido à similaridade entre os índices de refração do dispositivo-fibra (1,49-1,52). Tomando partido da fotossensibilidade do material, foi utilizada a escrita direta por radiação UV para padronizar a arquitetura ótica desejada na superfície de híbridos orgânico-inorgânicos. No que respeita às comunicações óticas, foram produzidos dispositivos passivos e ativos: controlador de polarização termo-ótico para monitorizar o estado de polarização de um sinal ótico, apresentando um coeficiente de retardamento linear de 17±1 °/°C; um acoplador híbrido de 90° para demodular uma transmissão de quadratura de chaveamento de fase com 20 Gb/s em 40 km de fibra, resultando numa penalidade de potência de 2,5 dB comparativamente à configuração sem fibra; um modulador de fase eletro-ótico baseado num interferómetro Mach-Zehnder (MZI) com uma diferença de potencial para uma variação de fase de π de 2,9±0,3 V; amplificador ótico na região espectral do azul para comunicações óticas no visível com uma eficiência máxima de ganho ótico de 1,62±0,02 cm∙μJ–1. Na área dos sensores, o desenvolvimento de biosensores portáteis de baixo custo baseados em OI para dispositivos é de grande interesse. Sendo assim, um biosensor baseado na arquitetura de um MZI foi produzido para monitorizar a concentração de bactérias num meio líquido, apresentando uma sensibilidade de 2×10−4 RIU e um limite de deteção de 2,0 pg·mm−3.Programa Doutoral em Telecomunicaçõe
    corecore