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Abstract We demonstrate a four-channel hybrid multi-chip module comprising InP lasers, silicon-organic 
hybrid (SOH) modulators, and single-mode fibers, all connected via photonic wire bonds. We transmit 56 
GBd QPSK and 16QAM signals at a total data rate of 784 Gbit/s over 75 km.

Introduction 
High-speed coherent transmission is key to over-
come transmission bottlenecks in metro networks 
and data-center interconnects. For cost-efficient and 
compact implementation of coherent transceivers, 
the silicon photonic (SiP) integration platform is 
particularly attractive, exploiting the vast advantages 
of CMOS-based fabrication

1
 and photonic-electronic 

co-integration
2
. However, technical implementation 

of SiP transceivers still suffers from fundamental 
restrictions such as the lack of efficient on-chip light 
sources and the rather low efficiency of SiP in-
phase/quadrature (IQ) modulators. Regarding light 
sources, despite tremendous progress in heteroge-
neous integration of III-V dies on SiP substrates

3
, 

commercial products still use external lasers that are 
coupled to the SiP chip

4,5
. These concepts rely on 

expensive active alignment, thereby spoiling most of 
the scalability advantages of the SiP platform. With 
respect to IQ modulators, the main problem is the 
low efficiency of pn-depletion-type phase shifters

6
, 

leading to rather large UπL products of typically more 
than 10 Vmm. The highest single-polarization line 
rate (net data rate) of a SiP IQ modulator amounts to 
227 Gbit/s (154.1 Gbit/s), generated by a standalone 
device that was fed by a benchtop-type laser

7
. For 

coherent transmitter modules with co-integrated light 
source, the highest line rate (net data rate) amounts 
to

8
 40 Gbit/s (33.3 Gbit/s). 

In this paper we demonstrate that the restrictions of 
the SiP platform can be overcome by merging two 
hybrid integration approaches: We exploit the 
technique of silicon-organic hybrid (SOH) integra-
tion

9
, which is particularly well suited for high-speed 

IQ modulators
10,11,20

, and combine it with the concept 
of hybrid multi-chip integration, which is enabled by 
photonic wire bonding

12,15
, to simultaneously 

overcome the light-source and the modulation-
efficiency challenge in silicon photonics. We demon-
strate a four-channel transmitter enabling 56 GBd 
16-state quadrature amplitude modulation (16QAM) 
transmission on three channels and quadrature 
phase-shift keying (QPSK) on the fourth channel. To 
the best of our knowledge, this is the first demon-
stration of multi-channel coherent transmission from 
a SiP module with hybrid integrated light source. 
The total data rate (line rate) amounts to 784 Gbit/s 
(732.7 Gbit/s), transmitted over 75 km. This is the 

highest data rate demonstrated by a SiP transmitter 
module with co-integrated lasers to date, exceeding 
our own previous record

16
. We believe that our 

experiments mark an important step towards hybrid 
integration of powerful chip-scale wavelength-
division multiplexing (WDM) transceivers that 
overcome the deficiencies of the SiP platform and 
that can handle multi-terabit/s data rates. 

Hybrid integration approaches 
Our hybrid multi-chip module (MCM) is illustrated in 
Fig. 1(a). For chip-chip and fiber-chip coupling, we 
exploit the technique of photonic wire bonding

12-15
, 

which relies on advanced three-dimensional (3D) 
nano-printing of single-mode connections between 
coarsely positioned chips in a fully automated 
process. Photonic wire bonding is particularly well 
suited for connecting SiP circuits to highly efficient 
InP light sources

14,15
. This approach is complement-

ed by SOH integration, which combines the unique 
processing advantages of silicon photonics with the 
wealth of optical properties obtained by theory-
guided molecular design of organic materials

8-11,17-20
. 

The SOH concept enables highly efficient modula-
tors with UπL products down to

17
 0.5 Vmm. The 

devices offer ultra-low energy consumption
17

 and 
enable high-speed coherent

10,11
 and non-

coherent
18,19

 transmission with single-polarization 
line rates of up to

20
 400 Gbit/s (100 GBd 16QAM). 

The high modulation efficiency allows to drive SOH 
devices directly from binary CMOS outputs of field-
programmable gate arrays (FPGA) without digital-to-
analogue converters (DAC) or drive amplifiers

21
. 

The MCM used for our experiment consists of a SiP 
die comprising an array of four IQ modulators, each 
built from two nested SOH Mach–Zehnder modula-
tors (MZM), Fig. 1(a). The devices are fed by an 
array of horizontal-cavity surface-emitting lasers 
(HCSEL) containing InGaAsP distributed-feedback 
structures with etched 45° mirrors to deflect the light 
to a surface-normal direction

22
. The HCSEL emit at 

wavelengths near 1550 nm and are placed side by 
side with the SiP die on a common submount. In 
contrast to lasers mounted to the top surface of the 
SiP chip, this configuration allows for thermal 
decoupling and efficient cooling of the laser. The 
basic structure of an SOH MZM is illustrated in 
Fig. 1(b). Each MZM comprises two SOH phase 
modulators (PM) that are driven by a single coplanar 
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ground-signal-ground (GSG) transmission line. Each 
PM consists of a slot waveguide, covered by an 
organic EO material. The slot waveguide leads to a 
strong overlap of the optical mode with the modulat-
ing RF field

9
, Fig. 1(c), and hence high modulation 

efficiency. The basic SiP waveguide structures are 
fabricated by widely available CMOS processes, and 
the organic EO material is deposited in a post-
processing step. In our experiments, the data 
signals are coupled to four single-mode fibers, which 
can be replaced by a WDM multiplexer in the future. 
The photonic MCM is assembled in several steps: 
First, chips and fibers are mounted on a common 
carrier with low precision. Negative-tone resist (IP-
Dip

TM
, Nanoscribe GmbH) is then drop-cast onto the 

assembly. Machine-readable alignment features on 
the optical chips define the photonic wire bond 
(PWB) start and end point. PWB are fabricated 
through two-photon polymerization (TPP)

11
. The 

structures are developed in propylene-glycol-methyl-
ether-acetate (PGMEA). Insets (1) and (2) of Fig. 
1(a) show fabricated PWB, both for the laser and the 
fiber interface. Exploiting the freedom of TPP-written 
3D structures, PWB can be tapered to exactly match 
the mode fields of the connecting waveguides.  
After PWB fabrication, the organic EO material is 
locally deposited on the slot waveguides, Fig. 1(b). 
To avoid contact of the organic EO cladding with the 
PWB, we developed a high-precision dispensing 
technique enabling trace widths of less than 20 µm – 
a key step to combine SOH integration with photonic 
wire bonding. To induce macroscopic EO activity, 
the material is poled by heating it to the glass-
transition temperature while applying a DC voltage 
Upol between the floating ground electrodes of the 
MZM. The resulting poling fields in the slots align

17
 

the dipolar chromophores as indicated by the green 
arrows in Fig. 1(b). While keeping the poling voltage, 
the chip is cooled back to room temperature such 

that the acentric order of the chromophores is 
conserved. The orientation of the RF modulation 
field (blue arrows in Fig. 1(b)) results in efficient 
push-pull operation

9
. The UπL product measured in 

this module is 1.3 Vmm. This is bigger than the 
values published earlier

17
 since the EO material 

(SEO100) was chosen for good thermal stability 
enabling, e.g., operation

22
 at 80 °C, rather than for 

highest EO coefficient
23

. After poling, we estimate 
the losses of the PWB interfaces by measuring the 
power levels Plaunch at the output SMF and compar-
ing it to the emission power Pout of the HCSEL prior 
to photonic wire bonding. Using the measured SOH 
MZM device loss of 8 dB, we find the lowest inser-
tion loss of 3.9 dB for a PWB connecting the HCSEL 
to SiP chip and of 5.4 dB for the PWB connecting 
the SiP to the SMF. These values leave vast room 
for further improvement – PWB between a SiP chip 
and a multi-core fiber

13
 have been demonstrated 

with insertion losses down to 1.7 dB. The increased 
losses in this experiment are due to a slight over-
etch of the inversely tapered SiP waveguides and 
due to the fact that the PWB were not yet overclad, 
as assumed in their design. To estimate the uni-
formity of the PWB, we measure the launch power 
Plaunch in the SMF for maximum transmission of the 
modulators. The highest Plaunch = -11.6 dBm is found 
in channel 4 (Ch4) and the lowest is Ch1 with -
19.9 dBm. The deviation is caused by a dirt particle 
sticking on the PWB on the HCSEL side, leading to 
reduced performance of this channel. 

Data transmission experiments 
For the transmission experiments, we use the setup 
shown in Fig. 2(a). An arbitrary-waveform generator 
(AWG) provides the RF signals to the IQ modulators 
through GSG probes. Both transmission lines are 
terminated with 50 Ω. We transmit random IQ 
signals with a pre-equalization obtained through the 
measured frequency response of each modulator. 

 
Fig. 1: Concept of hybrid integration on chip and package level. (a) Four-channel multi-chip-module (MCM) comprising InP horizontal-
cavity surface emitting lasers (HCSEL), silicon-organic hybrid (SOH) modulators, and single mode fibers (SMF), all connected with 
photonic wire bonds (PWB). Inset (1) shows a PWB connecting a HCSEL to the SiP chip

13
, Inset (2) refers to a PWB between the SiP 

chip and an SMF. (b) Top view of an SOH MZM after local deposition of the organic EO material (red countour) with a schematic of the 
device cross section. The MZM consists of two slot-waveguide (WG) phase modulators, driven in push-pull operation by a single 
coplanar GSG transmission line. Before and after the modulator sections, the light is split and combined by multimode interference 
couplers (MMI). (c) Cross-sectional view and simulated distribution of the dominant electrical component Ex of the optical quasi-TE 

mode field and the RF mode field for a single phase modulator. Both fields show good overlap, resulting in highly efficient modulation. 



The length of the pseudo-random bit sequence 
(PRBS) amounts to 2

11
-1. The optical signal is sent 

either back-to-back (B2B) or through a 75 km long 
SMF. The signals are coherently received using an 
optical modulation analyzer (Keysight N4391) along 
with pre-amplifier. The summary of recorded 
constellation diagrams is shown in Fig. 2(b). As 
expected, Ch4 shows the cleanest constellation 
diagrams, whereas Ch1 is able to transmit QPSK 
only. We calculate the bit error ratio (BER) for each 
constellation diagram, Fig. 2(c). Note that for Ch2, 
the B2B BER is worse than the one for the 75 km 
transmission – we attribute this to non-optimum 
adjustment of the bias point in the B2B experiment. 
All other BER are below the limit for second-
generation hard-decision forward-error correction 
(FEC) with 7% overhead. This leads to an aggregate 
line rate (net data rate) of 784 Gbit/s (732.7 Gbit/s) – 
the highest values so far demonstrated by a SiP 
transmitter module with hybrid integrated lasers. The 
per-channel line rates (net data rates) amount to 
224 Gbit/s (209 Gbit/s) per polarization – on par with 
(exceeding) the highest line rates (net data rates) 
demonstrated with unpackaged standalone SiP 
depletion-type modulators

7
. 

Summary 
We demonstrate a four-channel coherent transmitter 
module that combines hybrid multi-chip integration 
of SiP circuits and InP lasers with hybrid on-chip 
integration of organic EO materials to overcome the 
two dominant performance restrictions of the SiP 
platform. We demonstrate aggregate line rates of up 
to 784 Gbit/s over 75 km. To the best of our 
knowledge, this is the highest line rate demonstrated 
with a SiP transmitter module with hybrid lasers. 
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Fig. 2: Coherent transmission experiments. (a) Transmission setup for measuring one channel at a time. (b) Constellation diagrams for 
transmission of all channels at 28 GBd, 45 GBd, and 56 GBd. The performance of Ch1 was impeded by a dirt particle on one of the 
PWB, leading to a lower launch power, such that only QPSK transmission was successful. (c) Measured bit error ratio (BER) for all 
channels. All BER values stay below the threshold for 7% FEC except for the 56 GBd back-to-back operation (B2B) of Ch2. Since the 
75 km result is below the FEC limit, we attribute this result to a non-optimum adjustment of the modulator bias. The aggregate module 
line rate amounts to 784 Gbit/s. 


