143 research outputs found

    Восстановление дискретной временной последовательности сигнала на основе локальной аппроксимации с использованием ряда Фурье по ортогональной системе тригонометрических функций

    Get PDF
    The article considers the development of mathematical and algorithmic support for the sample’s reconstruction in problem sections of a discrete sequence of a continuous signal. The work aimed to ensure the reconstruction of lost samples or sections of samples with a non-constant distorted time grid when sampling a signal with a uniform step and at the same time to reduce the computational complexity of digital reconstruction algorithms. The solution to the stated problem is obtained based on the local approximation method. The specific of this method application was the use of two subsequences of samples located symmetrically concerning the reconstructed section of the sequence. The approximating model is a Fourier series on an orthogonal system of trigonometric functions. The optimal solution to the approximation problem is based on the minimum square error criterion. Mathematical equations are obtained for this type of error. They allow us to estimate its value depending on the model order and the samples number in the subsequences used in the reconstruction process. The peculiarity of the mathematical equations obtained in this paper for signal reconstruction is that they do not require the preliminary calculation of the Fourier series coefficients. They provide a direct calculation of the values of reconstructed samples. At the same time, when the number of samples in the subsequences used for reconstruction will be even, it is not necessary to perform multiplication operations. All this made it possible to reduce the computational complexity of the developed algorithm for signal reconstruction. Experimental studies of the algorithm were carried out based on simulation modeling using a signal model that is an additive sum of harmonic components with a random initial phase. Numerical experiments have shown that the developed algorithm provides the reconstruction result of signal samples with a sufficiently low error. The algorithm is implemented as a software module. The operation of the module is carried out on the basis of asynchronous control of the sampling reconstruction process. It can be used as part of metrologically significant software for digital signal processing systems.В статье рассмотрена разработка математического и алгоритмического обеспечения для восстановления отсчетов на проблемных участках дискретной последовательности непрерывного сигнала. Цель работы состояла в том, чтобы обеспечить восстановление утраченных отсчетов или участков отсчетов с непостоянной искаженной временной сеткой при осуществлении дискретизации сигнала с равномерным шагом и одновременно обеспечить снижение вычислительной сложности цифровых алгоритмов восстановления. Решение поставленной задачи осуществлено на основе метода локальной аппроксимации. Спецификой применения этого метода стало использование двух подпоследовательностей отсчетов, расположенных симметрично по отношению к восстанавливаемому участку последовательности. В качестве аппроксимирующей модели используется ряд Фурье по ортогональной системе тригонометрических функций. Оптимальное решение задачи аппроксимации основано на критерии минимума квадратичной погрешности. Для данного вида погрешности получены математические соотношения. Они позволяют оценить ее значение в зависимости от порядка модели и числа отсчетов подпоследовательностей, по которым осуществляется процедура восстановления. Особенность полученных в настоящей работе математических соотношений для восстановления сигнала заключается в том, что они не требуют предварительного вычисления коэффициентов ряда Фурье. Они обеспечивают непосредственно вычисление значений восстанавливаемых отсчетов. При этом в случае выбора четного числа отсчетов в подпоследовательностях, используемых для восстановления, не требуется выполнять операции умножения. Всё это обеспечило снижение вычислительной сложности разработанного алгоритма для восстановления сигнала. Экспериментальные исследования алгоритма осуществлялись на основе имитационного моделирования с использованием модели сигнала, представляющей собой аддитивную сумму гармонических компонент со случайной начальной фазой. Численные эксперименты показали, что разработанный алгоритм обеспечивает результат восстановления отсчетов сигнала с достаточно низкой погрешностью. Алгоритм реализован в виде программного модуля. Работа модуля осуществляется на основе асинхронного управления процессом восстановления отсчетов. Он может быть применен в составе метрологически значимого программного обеспечения систем цифровой обработки сигналов

    Восстановление дискретной временной последовательности сигнала на основе локальной аппроксимации с использованием ряда Фурье по ортогональной системе тригонометрических функций

    Get PDF
    В статье рассмотрена разработка математического и алгоритмического обеспечения для восстановления отсчетов на проблемных участках дискретной последовательности непрерывного сигнала. Цель работы состояла в том, чтобы обеспечить восстановление утраченных отсчетов или участков отсчетов с непостоянной искаженной временной сеткой при осуществлении дискретизации сигнала с равномерным шагом и одновременно обеспечить снижение вычислительной сложности цифровых алгоритмов восстановления. Решение поставленной задачи осуществлено на основе метода локальной аппроксимации. Спецификой применения этого метода стало использование двух подпоследовательностей отсчетов, расположенных симметрично по отношению к восстанавливаемому участку последовательности. В качестве аппроксимирующей модели используется ряд Фурье по ортогональной системе тригонометрических функций. Оптимальное решение задачи аппроксимации основано на критерии минимума квадратичной погрешности. Для данного вида погрешности получены математические соотношения. Они позволяют оценить ее значение в зависимости от порядка модели и числа отсчетов подпоследовательностей, по которым осуществляется процедура восстановления. Особенность полученных в настоящей работе математических соотношений для восстановления сигнала заключается в том, что они не требуют предварительного вычисления коэффициентов ряда Фурье. Они обеспечивают непосредственно вычисление значений восстанавливаемых отсчетов. При этом в случае выбора четного числа отсчетов в подпоследовательностях, используемых для восстановления, не требуется выполнять операции умножения. Всё это обеспечило снижение вычислительной сложности разработанного алгоритма для восстановления сигнала. Экспериментальные исследования алгоритма осуществлялись на основе имитационного моделирования с использованием модели сигнала, представляющей собой аддитивную сумму гармонических компонент со случайной начальной фазой. Численные эксперименты показали, что разработанный алгоритм обеспечивает результат восстановления отсчетов сигнала с достаточно низкой погрешностью. Алгоритм реализован в виде программного модуля. Работа модуля осуществляется на основе асинхронного управления процессом восстановления отсчетов. Он может быть применен в составе метрологически значимого программного обеспечения систем цифровой обработки сигналов

    PROJET - Spatial Audio Separation Using Projections

    Get PDF
    International audienceWe propose a projection-based method for the unmixing of multi-channel audio signals into their different constituent spatial objects. Here, spatial objects are modelled using a unified framework which handles both point sources and diffuse sources. We then propose a novel methodology to estimate and take advantage of the spatial dependencies of an object. Where previous research has processed the original multichannel mixtures directly and has been principally focused on the use of inter-channel covariance structures, here we instead process projections of the multichannel signal on many different spatial directions. These linear combinations consist of observations where some spatial objects are cancelled or enhanced. We then propose an algorithm which takes these projections as the observations, discarding dependencies between them. Since each one contains global information regarding all channels of the original multichannel mixture, this provides an effective means of learning the parameters of the original audio, while avoiding the need for joint-processing of all the channels. We further show how to recover the separated spatial objects and demonstrate the use of the technique on stereophonic music signals

    Восстановление дискретной последовательности сигнала на основе модели скользящего среднего и оценки корреляционной связи отсчетов при прямом и обратном прогнозировании

    Get PDF
    The article discusses the development of mathematical support for the recovery of the values of discrete-time sequence samples obtained as a result of uniform sampling of a continuous signal. The recovery problem of discrete-time sequence samples is solved for a signal that can be considered stationary or stationary at least in a broad sense (quasi-stationary). The development of mathematical support for the recovery of the values of signal samples was carried out on the basis of constructing a moving average model and estimating the correlation of signal samples over time with forward and reverse forecasting. Estimates of the signal correlation function necessary to recover sample sections with lost values are calculated from samples with known values. Correlation function estimates can be calculated regardless of the location of the recovery area when the condition of stationarity of the signal is met. The obtained estimates of the correlation function samples can be used for both forward and reverse forecasting. Moreover, even if it is necessary to recover several problem sections, it is enough to calculate only once the sample of correlation function estimates necessary for their restoration. The resulting mathematical solution to the problem became the basis for the development of algorithmic support. Test tests and functional checks of the algorithmic support were carried out on the basis of simulation using a signal model representing an additive sum of harmonic components with random initial phases. The simulation results showed that the calculation of estimates of the lost sample values is carried out with a fairly low error, both in forward and reverse forecasting, as well as when they are used together. In practice, the choice of a sequence recovery algorithm based on forward or reverse forecasting will be determined based on the actual conditions of its processing. In particular, if previous samples with known values are not enough to carry out forward forecasting, then the reverse forecasting procedure is implemented and vice versa. The developed algorithmic support can be implemented in the form of metrologically significant software for digital signal processing systems.В статье рассмотрена разработка математического обеспечения для восстановления значений отсчетов дискретной последовательности, которая была получена в результате равномерной дискретизации непрерывного во времени сигнала. Задача восстановления решается исходя из того, что сигнал можно рассматривать как стационарный или стационарный хотя бы в широком смысле (квазистационарный). Разработка математического обеспечения для восстановления значений отсчетов сигнала осуществлена на основе построения модели скользящего среднего и оценки корреляционной связи отсчетов сигнала во времени при прямом и обратном прогнозировании. Необходимая для восстановления значений отсчетов выборка оценок корреляционной функции сигнала вычисляется по отсчетам с известными значениями. С учетом выполнения условия стационарности сигнала это можно сделать на любом участке последовательности независимо от места нахождения восстанавливаемого участка. Полученные оценки отсчетов корреляционной функции могут использоваться как для прямого, так и для обратного прогнозирования. При этом даже если необходимо восстановить несколько проблемных участков, достаточно только один раз вычислить необходимую для их восстановления выборку оценок корреляционной функции. На основе полученного математического решения поставленной задачи разработано алгоритмическое обеспечение. Тестовые испытания и функциональные проверки алгоритмического обеспечения были осуществлены на основе имитационного моделирования с использованием модели сигнала, представляющей собой аддитивную сумму гармонических компонент со случайными начальными фазами. Полученные результаты показали, что вычисление оценок значений утраченных отсчетов осуществляется с достаточно низкой погрешностью, как при прямом, так и при обратном прогнозировании, а также при их совместном использовании. На практике выбор алгоритма восстановления последовательности на основе прямого или обратного прогнозирования будет определяться исходя из реальных условий. В частности, если предыдущих отсчетов с известными значениями недостаточно для прямого прогнозирования, то осуществляется процедура обратного прогнозирования и наоборот. Разработанное алгоритмическое обеспечение может быть реализовано в виде метрологически значимого программного обеспечения для многофункциональных систем цифровой обработки сигналов

    Classification of Epileptic and Non-Epileptic Electroencephalogram (EEG) Signals Using Fractal Analysis and Support Vector Regression

    Get PDF
    Seizures are a common symptom of this neurological condition, which is caused by the discharge of brain nerve cells at an excessively fast rate. Chaos, nonlinearity, and other nonlinearities are common features of scalp and intracranial Electroencephalogram (EEG) data recorded in clinics. EEG signals that aren't immediately evident are challenging to categories because of their complexity. The Gradient Boost Decision Tree (GBDT) classifier was used to classify the majority of the EEG signal segments automatically. According to this study, the Hurst exponent, in combination with AFA, is an efficient way to identify epileptic signals. As with any fractal analysis approach, there are problems and factors to keep in mind, such as identifying whether or not linear scaling areas are present. These signals were classified as either epileptic or non-epileptic by using a combination of GBDT and a Support Vector Regression (SVR). The combined method's identification accuracy was 98.23%. This study sheds light on the effectiveness of AFA feature extraction and GBDT classifiers in EEG classification. The findings can be utilized to develop theoretical guidance for the clinical identification and prediction of epileptic EEG signals. Doi: 10.28991/ESJ-2022-06-01-011 Full Text: PD

    Principled methods for mixtures processing

    Get PDF
    This document is my thesis for getting the habilitation à diriger des recherches, which is the french diploma that is required to fully supervise Ph.D. students. It summarizes the research I did in the last 15 years and also provides the short­term research directions and applications I want to investigate. Regarding my past research, I first describe the work I did on probabilistic audio modeling, including the separation of Gaussian and α­stable stochastic processes. Then, I mention my work on deep learning applied to audio, which rapidly turned into a large effort for community service. Finally, I present my contributions in machine learning, with some works on hardware compressed sensing and probabilistic generative models.My research programme involves a theoretical part that revolves around probabilistic machine learning, and an applied part that concerns the processing of time series arising in both audio and life sciences

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques

    Deep learning-based music source separation

    Get PDF
    Diese Dissertation befasst sich mit dem Problem der Trennung von Musikquellen durch den Einsatz von deep learning Methoden. Die auf deep learning basierende Trennung von Musikquellen wird unter drei Gesichtspunkten untersucht. Diese Perspektiven sind: die Signalverarbeitung, die neuronale Architektur und die Signaldarstellung. Aus der ersten Perspektive, soll verstanden werden, welche deep learning Modelle, die auf DNNs basieren, für die Aufgabe der Musikquellentrennung lernen, und ob es einen analogen Signalverarbeitungsoperator gibt, der die Funktionalität dieser Modelle charakterisiert. Zu diesem Zweck wird ein neuartiger Algorithmus vorgestellt. Der Algorithmus wird als NCA bezeichnet und destilliert ein optimiertes Trennungsmodell, das aus nicht-linearen Operatoren besteht, in einen einzigen linearen Operator, der leicht zu interpretieren ist. Aus der zweiten Perspektive, soll eine neuronale Netzarchitektur vorgeschlagen werden, die das zuvor erwähnte Konzept der Filterberechnung und -optimierung beinhaltet. Zu diesem Zweck wird die als Masker and Denoiser (MaD) bezeichnete neuronale Netzarchitektur vorgestellt. Die vorgeschlagene Architektur realisiert die Filteroperation unter Verwendung skip-filtering connections Verbindungen. Zusätzlich werden einige Inferenzstrategien und Optimierungsziele vorgeschlagen und diskutiert. Die Leistungsfähigkeit von MaD bei der Musikquellentrennung wird durch eine Reihe von Experimenten bewertet, die sowohl objektive als auch subjektive Bewertungsverfahren umfassen. Abschließend, der Schwerpunkt der dritten Perspektive liegt auf dem Einsatz von DNNs zum Erlernen von solchen Signaldarstellungen, für die Trennung von Musikquellen hilfreich sind. Zu diesem Zweck wird eine neue Methode vorgeschlagen. Die vorgeschlagene Methode verwendet ein neuartiges Umparametrisierungsschema und eine Kombination von Optimierungszielen. Die Umparametrisierung basiert sich auf sinusförmigen Funktionen, die interpretierbare DNN-Darstellungen fördern. Der durchgeführten Experimente deuten an, dass die vorgeschlagene Methode beim Erlernen interpretierbarer Darstellungen effizient eingesetzt werden kann, wobei der Filterprozess noch auf separate Musikquellen angewendet werden kann. Die Ergebnisse der durchgeführten Experimente deuten an, dass die vorgeschlagene Methode beim Erlernen interpretierbarer Darstellungen effizient eingesetzt werden kann, wobei der Filterprozess noch auf separate Musikquellen angewendet werden kann. Darüber hinaus der Einsatz von optimal transport (OT) Entfernungen als Optimierungsziele sind für die Berechnung additiver und klar strukturierter Signaldarstellungen.This thesis addresses the problem of music source separation using deep learning methods. The deep learning-based separation of music sources is examined from three angles. These angles are: the signal processing, the neural architecture, and the signal representation. From the first angle, it is aimed to understand what deep learning models, using deep neural networks (DNNs), learn for the task of music source separation, and if there is an analogous signal processing operator that characterizes the functionality of these models. To do so, a novel algorithm is presented. The algorithm, referred to as the neural couplings algorithm (NCA), distills an optimized separation model consisting of non-linear operators into a single linear operator that is easy to interpret. Using the NCA, it is shown that DNNs learn data-driven filters for singing voice separation, that can be assessed using signal processing. Moreover, by enabling DNNs to learn how to predict filters for source separation, DNNs capture the structure of the target source and learn robust filters. From the second angle, it is aimed to propose a neural network architecture that incorporates the aforementioned concept of filter prediction and optimization. For this purpose, the neural network architecture referred to as the Masker-and-Denoiser (MaD) is presented. The proposed architecture realizes the filtering operation using skip-filtering connections. Additionally, a few inference strategies and optimization objectives are proposed and discussed. The performance of MaD in music source separation is assessed by conducting a series of experiments that include both objective and subjective evaluation processes. Experimental results suggest that the MaD architecture, with some of the studied strategies, is applicable to realistic music recordings, and the MaD architecture has been considered one of the state-of-the-art approaches in the Signal Separation and Evaluation Campaign (SiSEC) 2018. Finally, the focus of the third angle is to employ DNNs for learning signal representations that are helpful for separating music sources. To that end, a new method is proposed using a novel re-parameterization scheme and a combination of optimization objectives. The re-parameterization is based on sinusoidal functions that promote interpretable DNN representations. Results from the conducted experimental procedure suggest that the proposed method can be efficiently employed in learning interpretable representations, where the filtering process can still be applied to separate music sources. Furthermore, the usage of optimal transport (OT) distances as optimization objectives is useful for computing additive and distinctly structured signal representations for various types of music sources

    Trennung und Schätzung der Anzahl von Audiosignalquellen mit Zeit- und Frequenzüberlappung

    Get PDF
    Everyday audio recordings involve mixture signals: music contains a mixture of instruments; in a meeting or conference, there is a mixture of human voices. For these mixtures, automatically separating or estimating the number of sources is a challenging task. A common assumption when processing mixtures in the time-frequency domain is that sources are not fully overlapped. However, in this work we consider some cases where the overlap is severe — for instance, when instruments play the same note (unison) or when many people speak concurrently ("cocktail party") — highlighting the need for new representations and more powerful models. To address the problems of source separation and count estimation, we use conventional signal processing techniques as well as deep neural networks (DNN). We first address the source separation problem for unison instrument mixtures, studying the distinct spectro-temporal modulations caused by vibrato. To exploit these modulations, we developed a method based on time warping, informed by an estimate of the fundamental frequency. For cases where such estimates are not available, we present an unsupervised model, inspired by the way humans group time-varying sources (common fate). This contribution comes with a novel representation that improves separation for overlapped and modulated sources on unison mixtures but also improves vocal and accompaniment separation when used as an input for a DNN model. Then, we focus on estimating the number of sources in a mixture, which is important for real-world scenarios. Our work on count estimation was motivated by a study on how humans can address this task, which lead us to conduct listening experiments, confirming that humans are only able to estimate the number of up to four sources correctly. To answer the question of whether machines can perform similarly, we present a DNN architecture, trained to estimate the number of concurrent speakers. Our results show improvements compared to other methods, and the model even outperformed humans on the same task. In both the source separation and source count estimation tasks, the key contribution of this thesis is the concept of “modulation”, which is important to computationally mimic human performance. Our proposed Common Fate Transform is an adequate representation to disentangle overlapping signals for separation, and an inspection of our DNN count estimation model revealed that it proceeds to find modulation-like intermediate features.Im Alltag sind wir von gemischten Signalen umgeben: Musik besteht aus einer Mischung von Instrumenten; in einem Meeting oder auf einer Konferenz sind wir einer Mischung menschlicher Stimmen ausgesetzt. Für diese Mischungen ist die automatische Quellentrennung oder die Bestimmung der Anzahl an Quellen eine anspruchsvolle Aufgabe. Eine häufige Annahme bei der Verarbeitung von gemischten Signalen im Zeit-Frequenzbereich ist, dass die Quellen sich nicht vollständig überlappen. In dieser Arbeit betrachten wir jedoch einige Fälle, in denen die Überlappung immens ist zum Beispiel, wenn Instrumente den gleichen Ton spielen (unisono) oder wenn viele Menschen gleichzeitig sprechen (Cocktailparty) —, so dass neue Signal-Repräsentationen und leistungsfähigere Modelle notwendig sind. Um die zwei genannten Probleme zu bewältigen, verwenden wir sowohl konventionelle Signalverbeitungsmethoden als auch tiefgehende neuronale Netze (DNN). Wir gehen zunächst auf das Problem der Quellentrennung für Unisono-Instrumentenmischungen ein und untersuchen die speziellen, durch Vibrato ausgelösten, zeitlich-spektralen Modulationen. Um diese Modulationen auszunutzen entwickelten wir eine Methode, die auf Zeitverzerrung basiert und eine Schätzung der Grundfrequenz als zusätzliche Information nutzt. Für Fälle, in denen diese Schätzungen nicht verfügbar sind, stellen wir ein unüberwachtes Modell vor, das inspiriert ist von der Art und Weise, wie Menschen zeitveränderliche Quellen gruppieren (Common Fate). Dieser Beitrag enthält eine neuartige Repräsentation, die die Separierbarkeit für überlappte und modulierte Quellen in Unisono-Mischungen erhöht, aber auch die Trennung in Gesang und Begleitung verbessert, wenn sie in einem DNN-Modell verwendet wird. Im Weiteren beschäftigen wir uns mit der Schätzung der Anzahl von Quellen in einer Mischung, was für reale Szenarien wichtig ist. Unsere Arbeit an der Schätzung der Anzahl war motiviert durch eine Studie, die zeigt, wie wir Menschen diese Aufgabe angehen. Dies hat uns dazu veranlasst, eigene Hörexperimente durchzuführen, die bestätigten, dass Menschen nur in der Lage sind, die Anzahl von bis zu vier Quellen korrekt abzuschätzen. Um nun die Frage zu beantworten, ob Maschinen dies ähnlich gut können, stellen wir eine DNN-Architektur vor, die erlernt hat, die Anzahl der gleichzeitig sprechenden Sprecher zu ermitteln. Die Ergebnisse zeigen Verbesserungen im Vergleich zu anderen Methoden, aber vor allem auch im Vergleich zu menschlichen Hörern. Sowohl bei der Quellentrennung als auch bei der Schätzung der Anzahl an Quellen ist ein Kernbeitrag dieser Arbeit das Konzept der “Modulation”, welches wichtig ist, um die Strategien von Menschen mittels Computern nachzuahmen. Unsere vorgeschlagene Common Fate Transformation ist eine adäquate Darstellung, um die Überlappung von Signalen für die Trennung zugänglich zu machen und eine Inspektion unseres DNN-Zählmodells ergab schließlich, dass sich auch hier modulationsähnliche Merkmale finden lassen

    Improvement of detection and tracking techniques in multistatic passive radar systems. (Mejora de técnicas de detección y seguimiento en sistemas radar pasivos multiestáticos)

    Get PDF
    Esta tesis doctoral es el resultado de una intensa actividad investigadora centrada en los sensores radar pasivos para la mejora de las capacidades de detección y seguimiento en escenarios complejos con blancos terrestres y pequeños drones. El trabajo de investigación se ha llevado a cabo en el grupo de investigación coordinado por la Dra. María Pilar Jarabo Amores, dentro del marco diferentes proyectos: IDEPAR (“Improved DEtection techniques for PAssive Radars”), MASTERSAT (“MultichAnnel paSsive radar receiver exploiting TERrestrial and SATellite Illuminators”) y KRIPTON (“A Knowledge based appRoach to passIve radar detection using wideband sPace adapTive prOcessiNg”) financiados por el Ministerio de Economía y Competitividad de España; MAPIS (Multichannel passive ISAR imaging for military applications) y JAMPAR (“JAMmer-based PAssive Radar”), financiados por la Agencia Europea de Defensa (EDA) . El objetivo principal es la mejora de las técnicas de detección y seguimiento en radares pasivos con configuraciones biestáticas y multiestaticas. En el documento se desarrollan algoritmos para el aprovechamiento de señales procedentes de distintos iluminadores de oportunidad (transmisores DVB-T, satélites DVB-S y señales GPS). Las soluciones propuestas han sido integradas en el demostrador tecnológico IDEPAR, desarrollado y actualizado bajo los proyectos mencionados, y validadas en escenarios reales declarados de interés por potenciales usuarios finales (Direccion general de armamento y material, instituto nacional de tecnología aeroespacial y la armada española). Para el desarrollo y evaluación de cadenas de las cadenas de procesado, se plantean dos casos de estudio: blancos terrestres en escenarios semiurbanos edificios y pequeños blancos aéreos en escenarios rurales y costeros. Las principales contribuciones se pueden resumir en los siguientes puntos: • Diseño de técnicas de seguimiento 2D en el espacio de trabajo rango biestático-frecuencia Doppler: se desarrollan técnicas de seguimiento para los dos casos de estudio, localización de blancos terrestres y pequeños drones. Para es último se implementan técnicas capaces de seguir tanto el movimiento del dron como su firma Doppler, lo que permite implementar técnicas de clasificación de blancos. • Diseño de técnicas de seguimiento de blancos capaces de integrar información en el espacio 3D (rango, Doppler y acimut): se diseñan técnicas basadas en procesado en dos etapas, una primera con seguimiento en 2D para el filtrado de falsas alarmas y la segunda para el seguimiento en 3D y la conversión de coordenadas a un plano local cartesiano. Se comparan soluciones basadas en filtros de Kalman para sistemas tanto lineales como no lineales. • Diseño de cadenas de procesado para sistemas multiestáticos: la información estimada del blanco sobre múltiples geometrías biestáticas es utilizada para incremento de las capacidades de localización del blanco en el plano cartesiano local. Se presentan soluciones basadas en filtros de Kalman para sistemas no lineales explotando diferentes medidas biestáticas en el proceso de transformación de coordenadas, analizando las mejoras de precisión en la localización del blanco. • Diseño de etapas de procesado para radares pasivos basados en señales satelitales de las constelaciones GPS DVB-S. Se estudian las características de las señales satelitales identificando sus inconvenientes y proponiendo cadenas de procesado que permitan su utilización para la detección y seguimiento de blancos terrestres. • Estudio del uso de señales DVB-T multicanal con gaps de transmisión entre los diferentes canales en sistemas radares pasivos. Con ello se incrementa la resolución del sistema, y las capacidades de detección, seguimiento y localización. Se estudia el modelo de señal multicanal, sus efectos sobre el procesado coherente y se proponen cadenas de procesado para paliar los efectos adversos de este tipo de señales
    corecore