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A B S T R A C T
Everyday audio recordings involve mixture signals: music contains
a mixture of instruments; in a meeting or conference, there is a mix-
ture of human voices. For these mixtures, automatically separating
or estimating the number of sources is a challenging task. A com-
mon assumption when processing mixtures in the time-frequency
domain is that sources are not fully overlapped. However, in this work
we consider some cases where the overlap is severe — for instance,
when instruments play the same note (unison) or when many people
speak concurrently ("cocktail party") — highlighting the need for new
representations and more powerful models.

To address the problems of source separation and count estimation,
we use conventional signal processing techniques as well as deep neu-
ral networks (DNN). We first address the source separation problem
for unison instrument mixtures, studying the distinct spectro-temporal
modulations caused by vibrato. To exploit these modulations, we de-
veloped a method based on time warping, informed by an estimate
of the fundamental frequency. For cases where such estimates are not
available, we present an unsupervised model, inspired by the way
humans group time-varying sources (common fate). This contribution
comes with a novel representation that improves separation for over-
lapped and modulated sources on unison mixtures but also improves
vocal and accompaniment separation when used as an input for a
DNN model.

Then, we focus on estimating the number of sources in a mixture,
which is important for real-world scenarios. Our work on count esti-
mation was motivated by a study on how humans can address this
task, which lead us to conduct listening experiments, confirming that
humans are only able to estimate the number of up to four sources
correctly. To answer the question of whether machines can perform
similarly, we present a DNN architecture, trained to estimate the num-
ber of concurrent speakers. Our results show improvements compared
to other methods, and the model even outperformed humans on the
same task.

In both the source separation and source count estimation tasks,
the key contribution of this thesis is the concept of “modulation”,
which is important to computationally mimic human performance.
Our proposed Common Fate Transform is an adequate representation
to disentangle overlapping signals for separation, and an inspection
of our DNN count estimation model revealed that it proceeds to find
modulation-like intermediate features.
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Z U S A M M E N FA S S U N G
Im Alltag sind wir von gemischten Signalen umgeben: Musik besteht aus
einer Mischung von Instrumenten; in einem Meeting oder auf einer Konfe-
renz sind wir einer Mischung menschlicher Stimmen ausgesetzt. Für diese
Mischungen ist die automatische Quellentrennung oder die Bestimmung
der Anzahl an Quellen eine anspruchsvolle Aufgabe. Eine häufige Annah-
me bei der Verarbeitung von gemischten Signalen im Zeit-Frequenzbereich
ist, dass die Quellen sich nicht vollständig überlappen. In dieser Arbeit
betrachten wir jedoch einige Fälle, in denen die Überlappung immens ist —
zum Beispiel, wenn Instrumente den gleichen Ton spielen (unisono) oder
wenn viele Menschen gleichzeitig sprechen (Cocktailparty) —, so dass neue
Signal-Repräsentationen und leistungsfähigere Modelle notwendig sind.

Um die zwei genannten Probleme zu bewältigen, verwenden wir sowohl
konventionelle Signalverbeitungsmethoden als auch tiefgehende neuronale
Netze (DNN). Wir gehen zunächst auf das Problem der Quellentrennung für
Unisono-Instrumentenmischungen ein und untersuchen die speziellen, durch
Vibrato ausgelösten, zeitlich-spektralen Modulationen. Um diese Modula-
tionen auszunutzen entwickelten wir eine Methode, die auf Zeitverzerrung
basiert und eine Schätzung der Grundfrequenz als zusätzliche Information
nutzt. Für Fälle, in denen diese Schätzungen nicht verfügbar sind, stellen
wir ein unüberwachtes Modell vor, das inspiriert ist von der Art und Weise,
wie Menschen zeitveränderliche Quellen gruppieren (Common Fate). Dieser
Beitrag enthält eine neuartige Repräsentation, die die Separierbarkeit für
überlappte und modulierte Quellen in Unisono-Mischungen erhöht, aber
auch die Trennung in Gesang und Begleitung verbessert, wenn sie in einem
DNN-Modell verwendet wird.

Im Weiteren beschäftigen wir uns mit der Schätzung der Anzahl von
Quellen in einer Mischung, was für reale Szenarien wichtig ist. Unsere Arbeit
an der Schätzung der Anzahl war motiviert durch eine Studie, die zeigt, wie
wir Menschen diese Aufgabe angehen. Dies hat uns dazu veranlasst, eigene
Hörexperimente durchzuführen, die bestätigten, dass Menschen nur in der
Lage sind, die Anzahl von bis zu vier Quellen korrekt abzuschätzen. Um nun
die Frage zu beantworten, ob Maschinen dies ähnlich gut können, stellen
wir eine DNN-Architektur vor, die erlernt hat, die Anzahl der gleichzeitig
sprechenden Sprecher zu ermitteln. Die Ergebnisse zeigen Verbesserungen
im Vergleich zu anderen Methoden, aber vor allem auch im Vergleich zu
menschlichen Hörern.

Sowohl bei der Quellentrennung als auch bei der Schätzung der Anzahl
an Quellen ist ein Kernbeitrag dieser Arbeit das Konzept der “Modulation”,
welches wichtig ist, um die Strategien von Menschen mittels Computern
nachzuahmen. Unsere vorgeschlagene Common Fate Transformation ist eine
adäquate Darstellung, um die Überlappung von Signalen für die Trennung
zugänglich zu machen und eine Inspektion unseres DNN-Zählmodells ergab
schließlich, dass sich auch hier modulationsähnliche Merkmale finden lassen.
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1 I N T R O D U C T I O N
It is very likely that you know the following situation: you were at a
crowded party and the next day your best friend, who was unable to
join, asked you “How many people were there?”. You then struggled
to find an answer because you had such intense conversations that you
were unable to put your focus on the other guests. This scene includes
many interesting aspects that are relevant to this thesis. Notably, it
reminds us that in our daily life we are exposed to situations where
multiple events overlap in time.

In contrast to our vision, although we might be physically able to
hear all sounds, we deliberately choose to listen to a few sources and
attenuate others. In a noisy environment, we can steer our attention
to one sound source, even without eye contact and using only a
single ear [32]. However, this attention mechanism prevents us from
observing the acoustic scene as a whole. This ability to concentrate
on a single source is not limited to conversations — it also applies to
music. If we imagine attending a music concert, it is likely that we
focus on the lead vocalist and miss out many details of the background
band, demonstrating our ability to separate audio mixtures, at least
cognitively.

In the audio research community, the task of attenuating undesired
speakers when multiple concurrent speakers are present is known
as the “cocktail party problem” [110]. For the past 70 years [47], re-
searchers have been fascinated by this idea to computationally imitate
this ability of humans to separate the sources in a mixture. In the gen-
eral setting, which is not restricted to the cocktail party scenario but
also includes music processing, this problem is called source separation
and is one of the key topics considered in this thesis.

Although most scientific efforts have focused on separation, our
example highlights the fact that even the number of sources is a
valuable information. From a more technical point of view, many
separation methods rely on prior knowledge of the number of sources,
requiring this information to be estimated beforehand, or provided by
a user [168]. As we illustrated, humans are not very good at estimating
the number of sources based on audio which sharply contrasts with
our ability to focus on a single source in a crowded audio scene.

Both scenarios of music and speech mixtures have in common
that estimating the number of sources and separating them becomes
more challenging when the signals are more overlapped. And both
tasks become even more challenging when sources are almost entirely
overlapped such as when multiple instruments are playing the same
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2 introduction
note (in unison). In this unique scenario where sources are overlapped
in time and frequency, observable differences between sources are
difficult to obtain at a short time scale. However, differences do appear
when we consider longer time contexts, for which the variations of
sources over time become important. For instance, speech and the
sound of musical instruments can have distinct modulations such as
vibrato, created by conscious physical manipulation of the sound, to
make a sound more intelligible or pleasant.

In this thesis, we aim to investigate if modulations can be utilized
for analyzing and processing of highly overlapped speech and music
source signals. For this, we first study and develop new representa-
tions that could improve the analysis and processing of such signals,
to address if modulations are automatically detected or extracted from
highly overlapped signals. Second, we develop new methods built
upon such representations to address source separation. These meth-
ods are designed for constrained scenarios where modulation effects
can easily be exploited. Third, to investigate and develop new meth-
ods to address the task of estimating the number of sources in highly
overlapped mixtures. Finally, we want to show how such research may
be transferred from synthetic signals to real-world scenarios.

1.1 summary of contributions
This thesis contains five main contributions:

1. I reviewed scenarios of time and frequency overlapped audio
sources. I studied a scenario where instruments are highly over-
lapped (unison) but I also considered known scenarios for speech
and music. In this unison scenario, I reviewed how slowly-
varying tempo-spectral modulations, caused e.g. by vibrato, can
be utilized for separation and source count estimation of highly
overlapped signals. Furthermore, I showed how these scenarios
can stimulate new research directions to analyze and process such
signals.

2. I designed two novel methods to separate unison instrument
mixtures: one is informed by an estimate of the fundamental
frequency variation. The other is unsupervised, inspired by the
way how humans segregate time-varying sources. Along the
way, I also proposed a post-processing to improve F0 estimates
based on the same principles. Next, I studied how the observa-
tions from the unison scenario can be transferred to real-world
scenarios such as lead accompaniment separation by applying
the deep learning framework.

3. I conducted two detailed experimental studies to assess how
humans perceive highly overlapped mixtures and how they



1.1 summary of contributions 3
perform when asked to estimate the number of sources. In these
studies, I focussed on scenarios of overlapped speech as well as
polyphonic music recordings. Both studies confirmed previous
work, indicating that humans can only correctly estimate the
number of concurrent sources up to three.

4. We designed a method to automatically estimate the maximum
number of concurrent speakers. This method uses deep neural
networks to addresses “cocktail party” like environments. This
model reached state-of-the-art performance when compared to
other models and also supersedes human performance when
compared with the results of my subjective listening experiments.
Finally, I revealed the relation between slow modulations in
speech and the ability of a model of learning to count.

5. As a practical contribution, I developed tools to assess the qual-
ity of the separation system using interactive web applications. I
helped to create publicly available datasets for separation and
F0 estimation. Furthermore, I co-organized the Signal Separa-
tion Evaluation Campaign (SiSEC) to improve sustainability and
reproducibility for the research community.



4 introduction
1.2 structure of this thesis
The thesis and its relevant linked publications are organized into six
main chapters.

chapter 2 explains the fundamental concepts of audio signals (Sec-
tion 2.1), sources and overlapped sounds (Section 2.2), relevant
for the remainder of this thesis. Furthermore, the process of
mixing sound sources as well as its inverse task — sound source
separation — are explained. The chapter also covers basics of
fundamental frequency and its variations (Section 2.1.4) as an
important feature for harmonic audio signals.

chapter 3 introduces relevant tasks and applications in the context
of highly overlapped sounds. Furthermore, the importance of
slow modulations in this context is discussed (Section 3.2).

chapter 4 presents and discusses the importance of data for anal-
ysis and evaluation. In this chapter we present a dataset for
unison instrument mixtures (Section 4.1 [270, 279]) and a dataset
for precise fundamental frequency estimates (Section 4.2 [275,
284]). Furthermore we also present a short overview of relevant
multitrack datasets for music separation [166, 283].

chapter 5 presents separation methods that are developed in this
thesis. This covers techniques that utilize modulation informa-
tion, when available. We present a method based on time warp-
ing using F0 estimates for unison mixtures (Section 5.1 [270])
and show how it can be extended for the scenario of vocal
and accompaniment separation (Section 5.2). Furthermore, we
present a method to improve the precision of F0 estimates (Sec-
tion 5.3 [277]).

chapter 6 presents separation methods utilizing modulation when
prior information is not available. We present the Common Fate
Model based on tensor factorization for unison mixtures (Sec-
tion 6.2 [274]) and also propose an extension based on DNN for
vocal and accompaniment separation (Section 6.3).

chapters 7 presents our listening experiments to find out what the
number of sources is that humans are able to identify in mu-
sic (Section 7.1 [254, 276]) or concurrent speech (Section 7.2 [272,
273]).

chapters 8 presents CountNet, our method to address the source
count estimation problem using a data-driven model in a simu-
lated “cocktail-party” scenario [272].

chapter 9 concludes this thesis and gives an outlook into future
research directions.



2 F U N DA M E N TA L S O FO V E R L A P P E D S O U N D S
In this thesis, the core part is focussed on analysis and processing of
sound recordings of music and speech, commonly referred to as audio
signals. In this chapter, we introduce basic concepts of digital audio
signals which are relevant to apprehend the remaining chapters.

2.1 audio signals
When a sound wave travels through a medium like air, a signal can
be captured using a microphone by measuring the local pressure
deviation over time. Such a signal can be written as a function x(t),
continuous in both time t ∈ R and the amplitude x(t0) ∈ R. An
audio signal is meant to be perceived by the human auditory system
— through our ears. Therefore, we can observe specific properties,
consistent with the limitations of the human hearing, for example
in dynamics as well as in limited signal bandwidth. Many other
signals exist with similar characteristics such as signals from finance,
geophysics, meteorology or medical data. The result is that audio
research is inspired by applications of other fields of signal processing
and vice versa.

2.1.1 Digital Representations of Audio Signals

Today, digital representations are used to store, analyze or process
audio signals conveniently. A digital audio signal can be obtained from
an analog signal using analog-to-digital/digital-to-analog converters
(ADC/DAC) which can be found in almost any every-day device
such as laptops and smartphones. In short, this process includes two
steps: first, the continuous time signal x(t) is converted to a discrete
time series, so that one sample1 xn is sampled with equidistant steps
Γ; second, the amplitude values can be quantized, resulting in a vector
where each element xi ∈ R, thus x represents a one dimensional
time series of amplitudes. An important parameter in the process
of digitization is the sample rate Fs = 1/Γ where Γ is the sampling
period.

To facilitate the full human hearing range of 20 Hz - 20 kHz [192,
329], due to the Nyquist-Shannon sampling theorem, often, sample

1 Please note, that the use of the word sample will have different meanings in the context
of machine learning, where a sample is an instance of a full signal instead of a single
time step.

5
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rates of at least 40 kHz are chosen. However, for many applications, a
lower sampling rate is sufficient, e.g., in speech communication where
intelligibility often is more important than quality. For further details,
we refer the reader to audio signal processing basics such as Chapter
1 in [215] or Chapter 2 in [193].

2.1.2 Time-Frequency Representation

We often analyze sounds in the frequency domain where the reduced
redundancy of the signal improves the computational efficiency of
signal processing methods, especially for speech and music that have
periodicities. It is common to achieve this through the use of discrete
Fourier transform (DFT) and its fast FFT implementation [59] (for
details, the reader is referred to Chapter 4 of [215]). Spectral represen-
tations also relate to our human auditory system [192, 329], allowing
us to process sounds closer to how we perceive them.

The periodicity of real-world sounds, usually only holds for short
durations of several milliseconds, often referred to as quasi-stationarity.
We analyze and process short-time spectra, computed in an over-
lapped fashion, resulting in a time-frequency (TF) representation. The
short-time Fourier transform (STFT) is the most commonly used TF
representation [183]. It encodes the time-varying spectra into a matrix
X with frequencies f and time frames t.

STFT matrices X ∈ CT×F are complex and include phase informa-
tion. When sounds are processed in the time-frequency domain, the
transformation greatly benefits from being invertible to reconstruct
a time domain signal. However, analysis and processing is often fo-
cussed on the magnitude |X | or the spectrogram |X |2.

2.1.3 Fundamental Frequency and Harmonicity

Speech and music signals are characterized by its periodicity. And
it is this property we perceive as pitched. Pitch is defined by Klapuri
in [149] as

“a perceptual attribute which allows the ordering of sounds
on a frequency-related scale extending from low to high.”

It is important to note that pitch is a subjective measure. The ob-
jective equivalent is referred to as the fundamental frequency (F0)2. All
frequencies together formed by the integer multiples of the funda-
mental frequency are named harmonics [250]. F0 can be defined as
the lowest frequency/partial of a harmonic signal. An example of a
harmonic signal can be seen in Figure 2.1 that depicts a single note

2 Pitch and F0 are often used synonymously in audio research. Even though this is
incorrect, we sometimes may refer to other work where pitch instead of F0 is used.



2.1 audio signals 7

0 0.53 1.1 1.6 2.1 2.7 3.2 3.7 4.3

Seconds

1000

2000

3000

4000

5000

164

H
z

Figure 2.1: Spectrogram of single violoncello note (E3) of afundamental frequency F0 of about 164Hz. The vibrato is clearlyvisible in the upper part of the harmonic spectrum. X-axis showstime (in seconds), y-axis depicts frequency (in Hertz). The audiosignal is part of the MUSERC dataset [275].
(E3) played by violoncello. When the fundamental frequency changes,
the frequencies of these harmonics change accordingly. This results in
the typical comb-like structure of harmonic signals when analyzed in
the time-frequency domain. For a detailed overview into the research
field of pitch and F0, the reader is referred to [149].

2.1.4 Time-Variant Audio Signals

Audio signals are considered to be stationary or time-invariant when
their properties such as the amplitude of the fundamental frequency
of the signal do not change over time. The signal becomes time-variant
when an external function changes (modulates) the parameters of a
signal over time. This type of modulation was the basis for many
break-through inventions such as radio transmission [260]. In the case
of audio signals, often, both the modulating function (modulator or
carrier) and the signal being modulated (input) are periodic. Signal
modulations are often created intentionally but also occur naturally in
many real-world audio signals such as speech. In the following, we
will present audio modulation categories and their cause, underlining
the importance of them.

Audio Signal Communication

Audio modulations play an essential role in the transmission of audio
signals such as in radio broadcasting. It is based on the principle of a
modulator/demodulator (modem) where a high-frequency carrier sig-
nal is modulated by a (lower frequency) audio signal to be transmitted.
The modulator varies the amplitude or the frequency of the carrier
signal. Let us imagine a sinusoidal carrier signal x(t) = sin ωct where
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ωc is the carrier frequency. Now, applying a time varying amplitude
a(t) results in amplitude modulation (AM):

sAM(t) = a(t) sin (ωct) .

In comparison to AM, frequency modulation (FM) varies the fre-
quency of the carrier, so that:

sFM(t) = A sin
(

ωct + p0 + M f

∫
f (t)dt

)
where A is the amplitude, ωc is the carrier frequency and M f is

called modulation index. When the modulation function f (t) is a sin-
gle sine wave, cos (ωmt + pm), of frequency ωm, the Fourier spectrum
of sFM(t), in theory, depends on Bessel functions that do not admit
a closed-form expression, being intractable in practice [1]. For audio
communication such as FM radio, the modulation frequency or rate
is the same as the audio signal being transmitted (audio rate modu-
lations). In music signals, the carrier could be a single note, played
by a violin and the modulation signal is the movement of the finger
on the fretboard, producing a vibrato effect. In music or speech, these
modulations are much slower — typically up to 10 Hz (slow) or up to
100 Hz (medium/fast).

Modulations in Music — Vibrato

Both, frequency and amplitude modulations are a recurrent phe-
nomenon in music as well. In traditional instruments, modulations
are known as vibrato, defined by [256] as

“...a periodic pulsation, generally involving pitch, intensity,
and timbre, which produces a pleasing flexibility, mellow-
ness and richness of tone.”

Pitch and intensity vibrato can directly be mapped to AM and
FM, a timbre vibrato, however, is not easily defined and describes a
joint AM/FM modulation [64]. Vibrato is an essential playing style for
string instruments like a violin. For these instruments, that are usually
plucked or bowed, the strings are the primary source of excitation that
is modulated in frequency by the player’s finger on a fretboard [174].
Modulations are also present in woodwind and brass instruments;
however, instead of the excitation signal, the modulations affect the
resonator. Many musicians use similar modulation rates to perform
a vibrato, usually in the range of 4-8Hz. A detailed overview of the
different musical instruments and their modulation characteristics is
presented in [87].

Real instruments are not capable of purely amplitude modulated
sounds (tremolo). Today, however, many instruments are electric or
attached to electronic effects where pure modulations can be applied
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using digital or analog signal processing. For example, popular elec-
tric pianos like the “Fender Rhodes” can include an optional tremolo
effect3. In its most pure form, synthesizers like [34, 208] allow modulat-
ing almost any parameter of a sound using low-frequency oscillators
(LFOs) or envelopes that produce sinusoidal, square or triangle func-
tions. One of the most important sound synthesis methods — FM
Synthesis — became popular in the early days of digital signal pro-
cessing. Chowning found in [54] that the modulation of sinusoids
using audio rate modulators provides a computationally efficient way
of producing fairly complex sounds which mimic, e.g. piano sounds
using just four sinusoidal modulators.

It turns out that instrumental vibrato has similar properties com-
pared to vibrato produced in singing voice. Vocal vibrato mainly de-
pends on frequency modulation even though amplitude fluctuations
are present [288]. Vocal vibrato rates are similar to that of instrumental
vibrato rates with an average of 5 Hz. However, analysis of excep-
tional voices such as from Freddie Mercury, shows peak rates of up to
7 Hz [113].

Modulations in Speech

Unlike singing voice, speech modulations are part of human commu-
nication and therefore part of our language. Modulations in speech
include medium to fast modulations of up to a few hundred Hertz,
perceived as roughness or residue pitch. However, often research is fo-
cussed on slow modulations around 4 Hz [88, 105] that correlate to the
syllable rate [121, 211]. In fact, it was found in [137] that speech is the
reason why our human auditory system is so sensitive to amplitude
modulations and even our brain is capable of processing rhythm-like
envelope fluctuations of the same rate [211, 255].

The importance of Slow Modulations

It is interesting to observe that many modulations have a rate of
around 5 Hz. Zwicker found in [328] that humans are very sensitive at
detecting amplitude modulations at such a low modulation frequency.
This observation can be confirmed when looking at physical mod-
ulations that occur when humans suffer from vocal tremor [224] or
Parkinson [31]: in both cases, muscle contractions are actuated with
the same frequency, indicating that these modulations are natural for
humans.

3 Even though it is labeled as vibrato.
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Instantaneous Convolutive

Time-Invariant x = ∑J
j=1 ajsj x = ∑J

j=1 rj ∗ sj

Time-Variant x = ∑J
j=1 aj(n)sj x = ∑J

j=1 rj(n) ∗ sj

Table 2.2: Overview of linear mixing models for a mixture x,sources sj and a filter response rj.
2.2 sources and mixtures
In the real world, single isolated audio signals are rare. Instead, we are
faced with sets of sound sources that make up an acoustical sound scene.
When multiple sources are active at the same time, the sound that
reaches our ears or is recorded using a microphone is superimposed
or mixed to a single sound. A mixture represents a mapping from a set
of sources s to an output signal x. There exist a variety of different
mixing models that are utilized in literature.

Usually, these are built upon several assumptions to constrain the
scenario and model specific aspects of real-world signals. The most im-
portant assumption is that the mixture is the linear sum of all sources.
Another differentiation is made between instantaneous or convolutive
mixtures. For instantaneous mixtures, all sources are mixed using
fixed mixing parameters aj. This is the typical scenario when sources
are mixed using a mixing console. In convolutive mixtures, each source
sj is convolved by a filter response rj before summation.

Usually, the mixing process is assumed to be time-invariant but for
a variety of signals, such as live recordings with moving sources, it can
also be time-variant. The mathematical notations of different mixing
models are summarized in Table 2.2.

In the remainder of this thesis, we will only consider the linear (in-
stantaneous) case of time-invariant mixing, but many of the methods
could be transferred to other cases.

Specifics of Music Mixtures

In music, the process of mixing is an essential step in the process
of music creation. Mixing sources is a creative task that involves
recording engineers and tonmeisters, and often the artists itself. In
today’s digital mastering processes, professionally produced music
consists of several intermediate mixing steps before the final mixture
is produced:

1) microphone recording: in this step, the analog sources are cap-
tured and analog-to-digital converted. Vocals and other acoustic
instruments are recorded using one or multiple microphones.
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Electric instruments such as electric guitars, keyboards or syn-
thesizers may be amplified and then directly digitized.

2) raw source image: the digital raw source signals are grouped
and mixed into a source image (also stem). This grouping involves
a creative process; hence it is usually done by a recording engi-
neer. The source image is mixed to a specific number of output
channels (e.g., stereo) even though the recording may have used
less (e.g., vocals) or more than two microphones (e.g., drums).
In this stage, a panning is added to position the source images
spatially.

3) mastered source image: for each of the images, an additional
mastering step is being applied. At this stage, effects such as
artificial reverberation are added.

4) raw mix: the linear sum of all source images are mixed.

5: mastered mix: Optionally, further mastering is applied. Often,
this step involves non-linear processing such as dynamic range
compression.

This emphasizes that the definition of a source is subjective and de-
pends on the application and its context. In this thesis, we mainly deal
with tasks where we observe 4) and want to obtain 3) which is a com-
mon restriction made in tasks that are concerned with professionally
produced music [286].

2.3 processing and analysis of mixtures
While in many ways, mixtures are not different to any other audio
signal, two research questions stand out prominently:

• Can we obtain the sources sj from the mixture x?

• Can we find the number of sources J from x?

These two questions are addressed in the scientific fields of sound
source separation and source count estimation.

2.3.1 Sound Source Separation

One of the earliest work on audio source separation started in the mid
70s [190]. Since then a large number of contributions were made in
this field, both, targeted at speech and music separation. Due to this, it
is hardly feasible to give an extensive overview of all existing methods
in the context, and the reader is referred to [58, 218, 302].
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Source separation methods have relevant applications for music

and speech mixtures such as attenuation in hearing aids, karaoke or
music creation due to isolated sample composition. It also indirectly
helps for related tasks such as upmixing/remixing, improved music
transcription or automatic speech recognition (ASR).

In the following, we present three ways to group separation scenar-
ios:

Underdetermined vs. Overdetermined Separation

As mentioned in Section 2.2, generating sound mixtures is closely
related to the process of mixing taken place during recording (speech)
or with the help of professional recording engineers (music). One
assumption which was not mentioned before, is the importance of
the number of sensors or microphones used to create the mixture.
A source separation problem is over-determined when the number of
sources is smaller than the number of sensors; determined when they
are equal. For these two cases, a large number of methods exist and in
a closed form solution is possible. The reader is referred to [57], which
gives a detailed overview of these methods.
Many real-world source separation problems, however, are under-
determined and up to date for a large number of scenarios, the problem
of separating sources is still very challenging.

In this thesis, we only focus on methods that perform separation on
underdetermined mixtures.

Single Channel vs. Multichannel Separation

Today music recordings are mostly produced in stereo. In many music
recordings certain assumptions can be made (and utilized) of how
sources are balanced between the two channels. E.g., often in popular
music, a fixed panning for the vocals is correctly assumed.

As a large number of recording nowadays is still stored in mono, in
this thesis, we want to focus on single channel separation.

Blind vs. Supervised Separation

A blind source separation system does not require additional informa-
tion about the source signals, the location or acoustical environment
to perform separation [176]. In practice, blind source separation is
ill-posed and it is not generally possible to find a single solution. This
is why many proposed methods rely on additional information such
as the acoustic environment, the musical score or the fundamental
frequency [80, 168].
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2.3.2 Vocal Accompaniment Separation

The separation of music into two parts, the foreground lead (e.g.
vocals or solo guitar) and the background accompaniment (drums,
bass, other), is one of the most relevant scenarios in music separation
with a large number of applications such as creating karaoke or a
capella tracks. Lead and accompaniment separation has specific issues
and assumptions when compared to other separation scenarios like
speech. Many music separation methods often rely on knowledge
about the mixing process as made in Table 2.2. While there exist many
source separation methods that aim to extract the actual raw audio
recording, often it is sufficient to extract the source images from the
raw mixture. In a live recording, this results in inverting the process
of convolution as well. Separation of convoluted mixtures is a very
active field in source separation described in [207]. In the context
of music separation, however, this becomes less relevant as today’s
recording and studio mixing environment are mostly digital. Here,
the last step in creating music mixtures, as described earlier, is a
linear mix. While the source images can yield from a mixing process
undergoing the various assumptions, for the case of a mixture of
source images, we consider only linear mixing in this thesis. For a
more detailed description of this scenario and applications of source
image extraction, see [286].

Another characteristic of music separation is that it is typically
restricted to a well-defined set of musical sources. Often these restric-
tions need to be made because not for all kind of music separation
scenarios, datasets are available. Thus, the most popular task is to
extract the vocals and the background of the music. An extensive
overview of music separation methods can be found in [219]. Even
though the overview is focused on vocal accompaniment separation,
most approaches can be generalized to other sources.

To evaluate separation systems for this scenario, the majority of
publications used the Blind Source Evaluation (BSS Eval) toolbox [36,
301] that provides “different and complementary metrics for evaluat-
ing separation that measure the amount of distortion, artifacts, and
interference in the results” [219].

2.3.3 Estimating the Number of Sources

The number of sources is an important information to be used in
source separation and many other related research fields. In real-
world applications, information about the actual number of concurrent
speakers is often not available.

The number of sources k ∈ Z+
0 appears to be a clearly defined prop-

erty of a mixture. However, the meaning of it can differ, depending
on its application. Let us assume that we have L sources and a mix-
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Figure 2.2: Illustration of three concurrent sources (A, B, C) andtheir respective activity. Bottom plot shows the mixture (input),the number of concurrently active sources and its maximum k.Figure was published in [273] ®2018 IEEE.
ture of duration N. Further, we imagine a latent binary source activity
variable vnl ∈ {0, 1} that indicates the activity of each source l and
for each time instance n. Now, concerning the number of sources, two
definitions of k can be imagined:

a) maximum number of sources, even if not concurrently active. It
is simply the sum of all sources that are active at least once
within N. This definition is more useful when the sources can be
identified or detected first. This definition can also be considered
as “counting by detection”.

b) maximum number of concurrent sources even if the sources be-
long to the same class. Here, it represents the maximum of the
mixtures concurrency. This definition is more useful as a prepro-
cessing for a separation system since such a system would only
require the number of auditory streams and not the number of
(non-concurrent) sources. For such approaches it becomes possi-
ble to apply separation only when its “needed”. This definition
can also be considered as “direct count estimation”4.

At short time scales A) is equal to B) because the instrumentation
usually does not change. In Fig. 2.2, we illustrate a setup featuring L =

3 unique sources. At any given time, one can see — given definition B)
— that at most k = L = 3 sources are active at the same time but k = 2
could be the outcome if a smaller excerpt would be evaluated. In this
thesis, we will pick definition B when concerned about developing
methods to estimate the number of sources.

4 Note the subtle difference between “counting”, which refers to a sequential process
and “count estimation” or “denumerating”, which directly relate to an integer.



3 C H A L L E N G E S O F H I G H LYO V E R L A P P E D S I G N A L S
In the previous chapter, I introduced signal processing fundamentals in
the context of audio mixtures. In this chapter, I focus on the challenges
of highly overlapped signals.

3.1 separability of mixtures
Time-frequency representations such as the STFT have clear benefits
such as the improved interpretability due to its “image-like” two-
dimensional properties. More importantly, however, such a represen-
tation allows to separate mixtures of speech and musical instruments.
The reason for this is that these mixtures may be fully overlapped in
the time domain but are less overlapped in the frequency domain. In
turn, a time-frequency representation allows to apply a filter in a way
that it sufficiently extracts all targets from the mixture. Furthermore,
it allows for the reconstruction of the original waveform and provides
a good trade-off between computational complexity and separation
quality.

Due to these reasons, many source separation methods focus on
extracting individual sources by modeling their respective target in the
time-frequency domain. Further, it is assumed that the STFT provides a
sufficient level of separability. The actual extraction or filtering is done
by synthesizing the magnitude estimate of the model and applying
the originals mixture phase.

In practice, the ability to extract a source from a mixture depends
on the amount of overlap between sources. Without any overlap,
separation is not necessary, and a small amount of overlap can be
tolerated to extract the sources still sufficiently. However, if sources are
fully overlapped in both, time and frequency, a separation in the TF
domain is hardly possible. A metric that is often used for evaluation is
called separability and was found by Rickard in [231] as a useful metric
for both, speech and music [94] signals.

In linear mixtures, separability is defined as a measure that indicates
the percentage of time-frequency bins of a source is disjoint from those of
interfering sources and calculated through the W-disjoint orthogonality
metric WDO in [231].

15
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If M ∈ {0, 1}m×n is an ideal binary mask [314] for a given target

S and its interfering magnitude Y of same dimensions as M , the
W-disjoint orthogonality metric WDO is defined as:

PSRM =
‖M ⊗Sk‖2

‖Sk‖2 (3.1)

SIRM =
‖M ⊗Sk‖2

‖M ⊗ Yk‖2 (3.2)

WDOM = PSRM −
PSRM

SIRM
(3.3)

Where the PSR is the reserved-signal ratio, and SIR is the signal-to-
interference ratio and ⊗ being the element-wise product. A WDO of
one means the sources are entirely disjoint, hence no overlap. A WDO
zero means can be interpreted as sources being fully overlapped.

The ability to separate sources is depending on the scenario and its
applications. Let us consider the following scenarios:

cocktail party where multiple speakers are speaking concurrently,
it results in a partial overlap of speech signals in both time an
frequency.

vocals and accompaniment are often active at the same time in
professionally produced music.

unison instrument mixtures have a severe overlap in almost all
active time-frequency bins.

Now, for these scenarios, the actual overlap depends on additional
parameters like the number of sources, the class of source or the funda-
mental frequency. For instance, the overlap in a cocktail party of two
speakers is smaller than ten concurrent speakers speaking. Also, the
overlap between male and female or brass and string instruments is
smaller than two instruments of the same class. And if two instrumen-
tal notes share the same fundamental frequency (playing in unison),
the sources are almost entirely overlapped.

To illustrate this, we depict the different scenarios in two comple-
mentary figures. Figure 3.1 assigns each time-frequency (TF) entry
to its predominant source. Figure 3.2 depicts the number of active
sources (thresholded) of each TF entry. From these figures, one can see
that the overlap of a typical speech mixture is comparable to a music
recording where the task is to separate vocals and accompaniment.
If we now compare this to the scenario where sources are fully over-
lapped as in the unison scenario, almost all TF bins are overlapped,
and separation would hardly be possible.

While this is an extreme scenario, it still provides a useful example
where common assumptions are violated, and it would facilitate the
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demand to develop new methods that do not rely so much on these
assumptions. By naïvely observing the time-frequency representation
in Figure 3.2 closely, we see that the slow spectro-temporal modu-
lations caused by the vibrato are one of the aspects where the two
sources differ. Here, the classical STFT does not provide sufficient sepa-
rability and representations as in the modulation spectrogram, presented
in [104] may be preferable. Details about this approach are discussed
in Chapter 6.

3.2 exploiting slow modulations
Tempo-spectral modulations occur both in speech and music signals
as detailed in Section 2.1.4. Exploiting modulations is natural for
humans: early research from Zwicker in 1952 focused on the human
ability to detect amplitude modulations [328]. Later, it was shown
by Bregman, McAdams, and Fastl in [32, 182, 329] that humans use
amplitude modulations to group sources; this concept was called
Common Amplitude Modulation (CAM). CAM exploits the fact that
harmonics that share the same amplitude modulation across frequency
bins are perceived integrated as opposed to segregated. Further, it was
shown in [15] that the ability to detect amplitude modulations can be
incorporated into auditory models. It was then found by Dau in [60]
that humans are especially sensitive at low-frequency modulations:

“Slow modulations are associated with the perception of
rhythm. Samples of running speech, for example, show
distributions of modulation frequencies with peaks around
3 Hz to 4 Hz, approximately corresponding to the sequence
rate of syllables [211]. Results from physiological studies
have shown that, at least in mammals, the auditory cortex
seems to be limited in its ability to follow fast temporal
changes.”

Dau proposed a model that mimics the ability to detect modulation
patterns and pointed out applications to improve the perception for
hearing-impaired listener or speech intelligibility.

Previously, research has addressed a variety of tasks of processing
and analysis in the context of modulations. In the following, we give
an overview of existing work focussed on analysis and separation of
modulated sounds.

3.2.1 Analysis

In speech, techniques using modulation patterns improved applica-
tions such as speech discrimination [189] or extract spatial acoustic
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signatures from mixtures [287]. One way of analyzing amplitude mod-
ulations is to use a modulation spectrogram [105] which is a frequency-
frequency representation of a time domain input signal. In practice,
the modulation spectrogram can be computed from a (magnitude)
time-frequency matrix X f ,t by computing f time frequency transforms
over each frequency band of X resulting in a tensor V f ,b,t where b
represents the modulation index. The use of modulation spectra helps
to identify amplitude modulations such as the one (indirectly) caused
by vibrato. The modulation spectrogram has already gathered much
attention in speech recognition [105, 144] and classification [145, 178].

Interestingly, Greenberg in [105] assumed that “the energy in the
modulation spectrum may be derived from syllabic segmentation” and
from “the preservation of the portion of the modulation spectrum of
2 Hz to 10 Hz”. Following this, it was later proved that the detection of
modulations improves speech intelligibility [77] or automatic speech
recognition [144].

The analysis of amplitude modulations were also proposed for mu-
sic tasks. Work by Scheirer in [249] proposed a method that operates by
utilizing common modulation among groups of frequency sub-bands
in the auto correlogram domain. In music, where modulations are
predominantly caused by vibrato, frequency modulation is important.
For frequency modulations, however, the modulation spectrogram is
less effective, as it would only be able to track the modulation through
side-lobes. Here, a common way to explicitly analyze frequency varia-
tions is first to analyze the fundamental frequency and then track the
fundamental frequency over time to smoothen out the contour. An
overview of techniques is summarized in [70]. The authors of this pa-
per also proposed a novel method to directly estimate the parameters
of potential frequency modulations in the time-frequency domain by
matching sinusoidal templates.

Disch and Edler proposed in [66] to decompose an audio signal
into bandpass signals, each of them parametrically modeled by a
sinusoidal carrier and its amplitude and frequency modulation.

3.2.2 Processing

As described in the previous chapter, modulations are used by humans
to group and segregate sounds. Viste et al. describes the impact of
modulation in [308] as:

“harmonic relation, the common onset, offset, AM, and FM.
These are all important cues for grouping.”

It is therefore not surprising that a number of methods exist, that
utilize spectro-temporal modulations to separate mixtures. These meth-
ods were summarized in [218], starting with one of the first concepts
introduced by [32] as the common amplitude modulation “which exploits
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that amplitude envelopes of different harmonics of the same source
tend to be similar.” This was later used in models to separate mixtures
such as in [162, 163].
Furthermore, common amplitude modulation characteristics was in-
cluded in the separation scheme in works such as [39].
Wang proposed a technique in [310, 311] of “. . . instantaneous and
frequency-warped techniques for signal parameterization and source
separation, with application to voice separation in music.”
Yen et al. proposed in [322, 323] to use spectro-temporal modulation
features to decompose “a mixture using a two-stage auditory model
which consists of a cochlear module [50] and cortical module [49].”
(from [218]).
Virtanen made use of sinusoidal modeling [305] to model and separate
sources with spectro-temporal modulation-like vibrato.

In another vein, the source-filter model was deployed to source
separation in [111]. An advantage of the source-filter model, as pointed
out in [218] is that “. . . one can dissociate the pitched content of the
signal, embodied by the position of its harmonics, from its TF envelope
which describes where the energy of the sound lies.”

3.3 summary
Modulations play an essential role in audio signals. However, past
research was mainly focused on single notes and not on overlapped
sounds. It is, therefore, to be investigated if scenarios with severe over-
lap can utilize modulations as well: parameterization of modulation
characteristics of a single source is difficult when only the mixture can
be observed. It is known [241] that the extraction of the fundamental
frequency in a mixture is challenging. The reason is that crossing
partials are a challenging problem for sinusoidal modeling [308]. Also
if tracking of them would work correctly, evaluation of robustness
and accuracy is hardly possible when the reference data is annotated
with human precision. Furthermore, representations like modulation
spectrograms only cover amplitude modulations, whereas general
modulation patterns (AM/FM, timbre modulation) cannot be covered.

In the next two chapters, we address utilizing the modulations of
sources for separation tasks; either via prior knowledge (known) or by
operating blindly (unknown).
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Figure 3.1: Predominant source activity, showing the predomi-nant source for each time frequency entry. Computed using binarymasks of each source entry.



3.3 summary 21

0 0.4 0.8 1.2 1.6 2 2.4

Seconds

0

1000

2000

3000

4000

5000

6000

7000
H

z

k=1 k=2

(a) Speech

0 0.29 0.58 0.87 1.2 1.5

Seconds

0

2500

5000

7500

10000

12500

15000

17500

H
z

k=1 k=2

(b) Vocal/Accompaniment

0 0.15 0.29 0.44 0.58 0.73

Seconds

0

1000

2000

3000

4000

5000

6000

7000

H
z

k=1 k=2

(c) Unison Instruments
Figure 3.2: Source Count Activity showing the number of sources
k for each time frequency entry. Computed using binary masksof each source entry.





4 DATA S E T S
In the previous chapter, we presented the fundamentals of highly
overlapped audio signals. To study these signals in a reproducible
manner, suitable data is of paramount importance since many methods
rely on audio datasets for development and evaluation. However,
suitable audio material is not publicly available, in the case of music,
often because of restrictive copyright laws. Therefore, in the past,
many academic endeavors were focussed on assembling such precious
data. In fact, in the audio community, dataset contributions now are
essential to accelerate many research directions.

In the following sections, we present three datasets which we helped
creating. Each of the three datasets is released in public domain and
aims to fill specific needs and is used in subsequent experiments
throughout this thesis.

4.1 unison mixtures
Parts of this this

section were
previously published
in [278].

In speech, it is common to mix clean speech and noise [297] or differ-
ent clean speech signals such as [91] to generate mixtures. By contrast,
the conversational aspect of human-to-human communication is lost.
Compared to speech, musical content usually does share familiar
orchestration, can hardly be superimposed randomly and the sum-
ming of isolated random notes from musical instrument databases
does not reflect musical performances. On the positive side, there are
use-cases for single note datasets such as for evaluation of fundamen-
tal frequency estimation algorithms or the detection of instruments.
Furthermore, single note datasets allow using the data to synthesize
musical score as long as the recordings have enough variance of ex-
pressions. It also allows to quickly generate a large number of mixtures
using randomly permuted mixtures, fostering applications in machine
learning.

As an exception compared to other music scenarios, when all instru-
ments play in unison, single note datasets are appropriate to approxi-
mate real mixtures:

• A random summation of multiple instruments playing the same
note does not necessarily differ from realistic unison mixture.

• When notes are played with vibrato, having access to the indi-
vidual modulation patterns can help to study the influence of
modulations systematically.

23



24 datasets
Instrument Vibrato MIDI #

Violin yes 40

Viola yes 41

Violon Cello yes 42

Trumpet no 56

Trombone no 57

Horn no 60

Bariton Sax yes 67

Oboe no 68

Clarinet no 71

Flute yes 73

Table 4.1: Selected Instruments from the Unison Source Sepa-
ration Dataset [279] as used in [270, 274].

• Unison mixtures are part of many classical compositions, to
extend the timbre of a note.

One way to assemble a dataset is to create random mixtures of single
notes compiled from existing datasets such as the Univ. of Iowa Musical
Instrument Sample Database1. However, to better study the influence of
vibrato we require extended control over certain parameters such as
note duration, vibrato duration, exact fundamental frequency, vibrato
rate, vibrato extend, reproducibility, loudness or expression.

As mentioned in the previous chapter, vibrato techniques vary
across instruments. Instruments such as violin and saxophone are
known for their distinct frequency modulations [95]. Other instru-
ments such as the English horn and the flute are more close to ampli-
tude modulations.

We generated the notes using a software sampler2 which allows us
to control the parameters such as the vibrato. All our test stimuli have
a duration of three seconds. Items were equalized in loudness by using
an iterative calculation of the loudness algorithm of the time-varying
Zwicker model [329]. We used an implementation released in [93].

We rendered 29 notes of C4, resulting in 841 unique unison instru-
ment mixtures per pitch class. An excerpt of the instruments is listed
in Table 4.1. The dataset is available from [279].

To evaluate the level of overlap, we created a small experiment
where we computed the average W-disjoint orthogonality WDO met-
ric for 1000 random combinations of mixtures for different separa-
tion scenarios. It turned out that for two sources, in speech, we ob-
serve WDO = 0.9 and for the lead and accompaniment scenario

1 https://web.archive.org/web/20191211134945/http://theremin.music.uiowa.
edu/

2 Vienna Symphonic Library: https://web.archive.org/web/20191029200706/
https://www.vsl.co.at/en

https://web.archive.org/web/20191211134945/http://theremin.music.uiowa.edu/
https://web.archive.org/web/20191211134945/http://theremin.music.uiowa.edu/
https://web.archive.org/web/20191029200706/https://www.vsl.co.at/en
https://web.archive.org/web/20191029200706/https://www.vsl.co.at/en
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WDO = 0.87. These numbers are surprisingly similar even though
both scenarios are so fundamentally different. In the case of two in-
struments playing in unison, the average WDO is 0.65, indicating that
a good separation in the time-frequency domain is more challeng-
ing, thus making the dataset a useful addition compared to existing
scenarios.

4.2 high resolution vibrato recordings
Parts of this this

section were
previously published
in [275].

Fundamental frequency F0 estimation of a signal is a common task in
audio signal processing with many applications. If the F0 varies over
time, the complexity increases, and it is also more difficult to provide
ground truth data for evaluation.

Fingerboard position sensor 750 Hz

Potentiometer
12 bit D/A

Microphone
24 bit D/A

Camera motion estimate

Audio

2000 Hz

48 kHz

crop

Figure 4.1: Overview of the multi-modal data recorded for theproposed dataset.
For speech signals, an EGG device (also known as laryngograph)

captures the excitation of the human vocal tract. This signal is then
processed by an F0 estimator to generate the ground truth. Such
a method is accepted in published research because the retrieved
F0-trajectory based on the EGG signal is easier to process and the
generated annotations are considered as a good ground truth [13, 209].
Motivated by this, we proposed a new dataset for musical instruments
where we recorded a violin cello with extra sensors on the fretboard
in addition to audio and video. We made use of multiple sensors to
capture the most relevant processes involved in creating time-varying
output signals as depicted in Figure 4.1. We included sensor recordings
capturing the finger position on the fingerboard which is converted
into an instantaneous frequency estimate. We also included high-speed
video camera data to capture excitations from the string at 2000 fps.
Recording video data was inspired by the work of Davis et. al. in [61]
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presenting a “visual microphone” which is able to observe sound
solely with a camera, pointing to objects in the sound field.

In the proposed dataset we chose the violin cello for the following
reasons: (1) vibrato is used as a common style for expression, (2) there
is an observable physical relationship between frequency modulation
and vibrato, and (3) the instrument is large enough to embed sensors
to capture the vibrato. The properties of the cello are studied by
research in acoustics [316, 317].

To capture significant aspects of the cello while being played by a
musician, we focus on three main observations: (1) Excitation caused
by the moving bow; (2) the vibrating string, and (3) the finger, con-
trolling the string length by rolling it on the fingerboard. The main
focus of the recordings is to analyze vibrato playing style. Since it is
common that vibrato characteristics differ from musician to musician,
all recordings were performed by two musicians. One is a professional
cellist with 30 years of experience in a symphonic orchestra3. The
other recording was done by the author of this thesis, who has less
than 1 hour per week of practice.

Due to the width of fingerboard sensors and the attached cables we
were able to equip two strings (G and A) allowing to record pitches
G2, D3, D]3, E3, A3, B3, C4, C]4 from both musicians (see the middle
part of Figure 4.1).

The dataset includes time synchronous fingerboard positions and
high-speed camera recordings. The derived motion estimates show
similarity to the EGG signals used in speech. The slowest feature rate
of the set is 750 Hz, which enables to evaluate F0 estimators with high
temporal resolution.

In [275], we also showed how to derive high resolution F0 contours
from the data which can be used to improve F0 estimators or help to
analyze playing styles in recordings, usually relying on conventional
F0 estimators based on the audio signal [186]. By using sensor data
samples from our test set, researchers get more robust and detailed
data to compute features like mean vibrato frequency. Further, it can
be used for synthesizers to add a natural vibrato by using the sensor
data as a modulation source.

The resulting test set yields in 148 recorded notes after removal
of some notes due to errors in the sensor recordings. By making
this dataset public domain [284] and including the raw recordings,
we believe other researchers can benefit from the data and possibly
generate their own derived data.

3 https://web.archive.org/web/20170317054701/http://
bambergerstreichquartett.de/de/Das_Quartett/Karlheinz_Busch

https://web.archive.org/web/20170317054701/http://bambergerstreichquartett.de/de/Das_Quartett/Karlheinz_Busch
https://web.archive.org/web/20170317054701/http://bambergerstreichquartett.de/de/Das_Quartett/Karlheinz_Busch
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4.3 multitrack music recordings
One of the core problems for the field of music processing is the
lack of publicly available datasets. Many researchers aim to develop
methods that could be applied to professionally produced music.
However, at the same time access to professionally produced music
recordings is difficult due to the complex copyright laws established
by the music industry. When music is digitally stored and publicly
available, such as on youtube, researchers can more easily use this data
for academic purposes such as in [20]. Unfortunately, these platforms
only host the stereo mixes of produced recordings, whereas the stems
or source tracks that are used to create the master mix are a carefully
guarded secret. In the case of very old recordings, the recordings were
down-mixed (to tape) during the recording sessions, thus making
the original stems unavailable. Now, the lack of available multitrack
datasets prevents research on source separation to advance further.
This is especially true for supervised methods but also affects objective
evaluation where the true sources would need to be available.

The SiSEC is a publicly organized benchmark to assess the perfor-
mance of source separation systems [166, 197, 199, 283]. Through this
campaign, a multitrack dataset was compiled starting with the MASS
dataset [304] that was used in one of the first campaigns in 2009 [299].
Up until the release of MedleyDB [25] in 2014, researchers did not
have access to a large number of full-length multitrack recordings.
Since then we helped to aggregate such data from multiple sources
to compile the DSD100 dataset [166] which was the first dataset that
could successfully be used for data-driven separation methods (See
Table 4.2 for a comparison to other datasets). We compiled DSD100

to include four predefined targets: bass, drums, vocals and other. The
full-length tracks enable to exploit long-term musical structures and
also allow to focus on evaluation of silent parts. Many musical genres
are represented: jazz, electro, metal, etc. and it is split into a training
and a test set for the design of data-driven methods.

Over the years, DSD100 and its successor MUSDB18 [220] became
one of the most used datasets for source separation. The dataset is still
small in comparison to machine learning sets from vision such as [62]
but it proved to be large enough to help DNN-based methods to reach
breakthrough results in source separation [283].

Working with multitrack audio files can be cumbersome due to its
hierarchical structure that needs to be parsed. For that purpose, we de-
veloped a software toolbox for Python that permits the straightforward
processing of the DSD100/MUSDB18 dataset. This software is open
source and was publicly broadcasted so as to allow the participants to
run the evaluation themselves4.

4 github.com/faroit/dsdtools / github.com/sigsep/sigsep-mus-db

github.com/faroit/dsdtools
github.com/sigsep/sigsep-mus-db
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Dataset Year Tracks Track duration (s) Full/stereo?

MASS [304] 2008 9 16± 7 no / yes
MIR-1K [123] 2010 1,000 8± 8 no / no
QUASI [167, 300] 2011 5 206± 21 yes / yes
ccMixter [170] 2014 50 231± 77 yes / yes
MedleyDB [25] 2014 63 206± 121 yes / yes
iKala [45] 2015 206 30 no / no
DSD100 [166] 2015 100 251± 60 yes / yes
MUSDB18 [283] 2017 150 236± 95 yes / yes

Table 4.2: Summary of datasets available music source separa-tion datasets. Tracks without vocals were omitted in the statistics.
This package integrates with existing Python code, thus makes it

easy to participate in SiSEC. The core of this package is calling a user-
provided function that separates the mixtures from the dataset into
several estimated target sources.

All details of this accompanying software tools may be found on its
dedicated website5.

5 https://sigsep.github.io

https://sigsep.github.io
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For many source separation methods it is common to assume that the
spectral harmonics are not fully overlapped. In turn, this assumption is
exploited in methods such as non-negative matrix factorization (NMF)
to approximate the mixture from a lower-rank decomposition in an
unsupervised way. Still, in order to improve separation quality, re-
searchers imposed additional constraints based on prior information
about the sources in their algorithms [202]. The extent of such meta in-
formation very often depends on the availability of data. One example
of an informed source separation system is described by Ewert and
Müller [79]. They proposed to incorporate the note pitch and onset
information of the musical score, encoded in a MIDI file, synchronized
to the audio, to improve the separation result. In the case of highly
overlapped signals such as unison mixtures, the score is less useful
since unison mixtures share the same note pitch. Instead, in this chap-
ter, we want to evaluate the use of fundamental frequency estimates
of the source to be extracted. There has been extensive research on
separation using the fundamental frequency. The first option is to use
a sinusoidal model which was studied in a large number of meth-
ods. However, sinusoidal synthesis is known to suffer from “a typical
metallic sound”, according to [218]. Alternative approaches, instead,
are “filtering out everything from the mixture that is not located close
to the detected harmonics” in order to exploit harmonicity. In the
past, many related works focused on this paradigm, a procedure as it
turned out to be a common task in source separation systems. Before
we present our proposed method in the next section, the following
paragraphs from [218] (Section III b), give a comprehensive overview
of existing methods in this field:

“E.g. Li and Wang proposed to use a vocal/non-vocal
classifier and a predominant pitch detection algorithm
[161, 162]. They first detected the singing voice by using a
spectral change detector [74] to partition the mixture into
homogeneous portions, and GMMs on MFCCs to classify
the portions as vocal or non-vocal. Then, they used the pre-
dominant pitch detection algorithm in [160] to detect the
pitch contours from the vocal portions, extending the multi-
pitch tracking algorithm in [318]. Finally, they extracted
the singing voice by decomposing the vocal portions into
TF units and labeling them as singing or accompaniment

29
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dominant, extending the speech separation algorithm in
[125].

Han and Raphael proposed an approach for de-soloing
a recording of a soloist with an accompaniment given a
musical score and its time alignment with the recording
[109]. They derived a mask [236] to remove the solo part
after using an EM algorithm to estimate its melody, that
exploits the score as side information.

Hsu et al. proposed an approach which also identifies and
separates the unvoiced singing voice [123, 124]. Instead
of processing in the STFT domain, they use the percep-
tually motivated Gammatone filter-bank as in [125, 162].
They first detected accompaniment, unvoiced, and voiced
segments using an HMM and identified voice-dominant
TF units in the voiced frames by using the singing voice
separation method in [162], using the predominant pitch
detection algorithm in [68]. Unvoiced-dominant TF units
were identified using a GMM classifier with MFCC features
learned from training data. Finally, filtering was achieved
with spectral subtraction [248].

Raphael and Han then proposed a classifier-based ap-
proach to separate a soloist from accompanying instru-
ments using a time-aligned symbolic musical score [226].
They built a tree-structured classifier [33] learned from
labeled training data to classify TF points in the STFT as
belonging to solo or accompaniment. They additionally
constrained their classifier to estimate masks having a con-
nected structure.

Cano et al. proposed approaches for solo and accom-
paniment separation. In [40], they separated saxophone
melodies from mixtures with piano or orchestra by using
a melody line detection algorithm, incorporating infor-
mation about typical saxophone melody lines. In [41, 67,
106], they proposed to use the pitch detection algorithm
in [69]. Then, they refined the fundamental frequency and
the harmonics and created a binary mask for the solo and
accompaniment. They finally used a post-processing stage
to refine the separation. In [42], they included a noise spec-
trum in the harmonic refinement stage to also capture
noise-like sounds in vocals. In [39], they additionally in-
cluded common amplitude modulation characteristics in
the separation scheme.

Bosch et al. proposed to separate the lead instrument us-
ing a musical score [30]. After a preliminary alignment
of the score to the mixture, they estimated a score confi-
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dence measure to deal with local misalignments and used
it to guide the predominant pitch tracking. Finally, they
performed low-latency separation based on the method
in [180], by combining harmonic masks derived from the
estimated pitch.

Vaneph et al. proposed a framework for vocal isolation to
help spectral editing [296]. They first used a voice activity
detection process based on a deep learning technique [157].
Then, they used pitch tracking to detect the melodic line
of the vocal and used it to separate the vocal and back-
ground, allowing a user to provide manual annotations
when necessary.”

5.1 F0 informed separation
Parts of this section

were previously
published in [270]
and were revised for
this thesis.

Frequency modulation caused by vibrato is a very common playing
style for string instruments but also for woodwind and brass instru-
ments. Vibrato is an effect that is well studied especially in musicology,
for more information the reader is referred to the overview given in
the Section 2.1.4. Performers are able to perform a vibrato in the same
way when repeating a performance [87]. For example, vibrato rates
vary across different instruments. In [174] the vibrato width (frequency
deviation) was found to be significantly different between violinists
and violists performers. This can be exploited in source separation
scenarios.

However, in the case of NMF, it lacks the ability to model time-
varying frequencies (See details in Chapter 6). Several extensions
for NMF have been proposed to improve the decomposition quality.
Hennequin et al. proposed in [112] a frequency dependent activa-
tion matrix, whereas Smaragdis et al. developed a variant of the NMF

in [266] which is invariant to frequency shifts. Another approach is to
model the spectral pattern changes by Markov chains [194]. All these
approaches attempt to model the non-stationary effects within the
decomposition model. In this work, instead, we propose a method that
increases the stationarity of the signal in a preprocessing step and then
use standard separation methods such as NMF for the decomposition.

5.1.1 Time Warping

The idea is to make use of time-warping which refers to a mapping of
the linear time scale t to a warped time scale τ via a mapping function
τ = w(t). To ensure a unique mapping, the mapping function needs
to be strictly increasing. For the discrete time case the mapping can
be achieved by a time-varying re-sampling of the linear (i.e. regularly
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Input

Time Warping

Output

Figure 5.1: Example of applying time warping to an input signal(bottom left) by using a frequency variation contour (top left)resulting in a signal of constant fundamental frequency at theoutput (right).
sampled) time signal under consideration. The instantaneous sam-
pling frequency then corresponds to the first derivative of the mapping
function. Although the mapping can be done from any time-span I
on the linear time scale to any time span J on the warped timescale,
in the discrete time case, it is advantageous to have the same number
of samples in the linear and warped time domain. This ensures that
the average sampling frequency is the same in both domains. Such
time-warping approaches have already been proposed for different
purposes such as transform-based audio coding [76]. As in these
applications, we derive the mapping function from the varying instan-
taneous fundamental frequency in such a manner that the variation of
the frequency is reduced or removed. To be more precise the actual
information needed is not the absolute instantaneous fundamental
frequency but only its change over time. The discrete time warp map
w[n] is then simply the scaled sum of the relative frequencies (warp
contour) W[n]:

w[n] = N ∑n
l=0 W[l]

∑N
k=0 W[k]

0 ≤ n < N, (5.1)

where N being the number of samples of the signal under consid-
eration. From the requirements for the mapping function it follows
that the relative frequency W[n] has to be positive at all instants and
preferably should not exhibit large jumps. For the mapping from lin-
ear to warped time, now the linear domain sample points s[ν] for the
regularly spaced samples x[ν] in the warped domain are found by in-
verting w[n]. These sample points are then used to re-sample the linear
time domain samples x[n] to the warped time domain samples x[ν],
in our case by employing 128 times oversampled FIR low-pass filter.
This processing leads to a sampling rate contour which is proportional
to the F0 contour. Or in other words, a fixed number of samples are
obtained in each period of the signal with the varying fundamental
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frequency. Mutatis mutandis the sample points s[ν] can be used for
the re-sampling from the warped time domain to linear time domain.

In this work, the time-warping was done globally over the full
lengths of the signals under consideration. The globally time-warped
sample sequence was then used in the further processing steps. In
Figure 5.1 we show the results of the warping process in the time
domain.

The use of time variable rate sampling was first proposed by [319]
which used this method to analyze FM signals.

A similar approach using frequency modulation to separate a har-
monic source from a mixture was proposed in [311]. Here the individ-
ual lines are demodulated to the baseband using a combined frequency
tracking/demodulation approach. The difference to our approach is
that first the absolute instantaneous frequency for every harmonic line
has to be known instead of a relative frequency that is common to all
harmonic lines of a single source. This relative frequency might be
obtained easier than its absolute value for a mixed signal. Secondly
every harmonic line has to be individually frequency demodulated
while in our approach the full signal is frequency demodulated in one
algorithmic step.

5.1.2 Separation

With the ability to remove the frequency modulation from a signal,
we included time warping in a source separation system to address
the non-stationarity issues of NMF based approaches. Figure 5.2 shows
how this system works on a purely harmonic FM signal mixture. Plots
(a) and (b) show the two input signals which are linearly mixed (c).
For each source, the warp contour needs to be calculated. The mixture
is then warped with F0 variation estimates of source 1 (d) and source 2

(e). The actual separation/filtering of the sources is then done by using
NMF which is not shown here. To separate the components from the
warped mixture we used NMF on a STFT computed with a long DFT
(about 0.5 s). We applied NMF fully unsupervised clustering compo-
nents based on tonality of W by using a spectral flatness measure [103].
The separated signals (f) and (g) then need to be warped back into the
original time domain resulting in (h) and (i).

It is important to clarify that this approach would not be able
to separate two modulating instruments playing in unison without
having prior knowledge about the individual modulation functions.
Although a F0 variation estimate might be difficult to achieve in a
mixture, our approach shows that such a system works if that estimate
is accurate.



34 separation by known modulation

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

(a) Source 1 (b) Source 2

(c) Mixture

(d) Mix. warped by Pitch 1 (e) Mix. warped by Pitch 2

(f) Target 1 warped (g) Target 2 warped

(h) Target 1 unwarped (i) Target 2 unwarped

Figure 4: Example of pitch variation informed NMF in the warped
domain. Time is shown on horizontal axes. Frequency is shown on
vertical axes.

7. REFERENCES

[1] Emmanuel Vincent, Shoko Araki, Fabian Theis, Guido
Nolte, Pau Bofill, Hiroshi Sawada, Alexey Ozerov, Vikrham
Gowreesunker, Dominik Lutter, and Ngoc Q. K. Duong,
“The signal separation evaluation campaign (2007–2010):
Achievements and remaining challenges,” Signal Process-
ing, vol. 92, no. 8, pp. 1928–1936, 2012.

[2] Nobutaka Ono, Zbynek Koldovsky, Shigeki Miyabe, and

Nobutaka Ito, “The 2013 signal separation evaluation cam-
paign,” in Proceedings of the IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), 2013,
pp. 1–6.

[3] Masahiro Nakano, Jonathan Le Roux, Hirokazu Kameoka,
Yu Kitano, Nobutaka Ono, and Shigeki Sagayama, “Non-
negative matrix factorization with markov-chained bases for
modeling time-varying patterns in music spectrograms,” in
Latent Variable Analysis and Signal Separation, pp. 149–
156. Springer, 2010.

[4] Paris Smaragdis and Judith C Brown, “Non-negative ma-
trix factorization for polyphonic music transcription,” in
Proceedings of the IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics (WASPAA), 2003, pp.
177–180.

[5] Tuomas Virtanen, “Monaural sound source separation by
nonnegative matrix factorization with temporal continuity
and sparseness criteria,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 15, no. 3, pp. 1066–
1074, 2007.

[6] Alexey Ozerov, Emmanuel Vincent, and Frédéric Bimbot, “A
general flexible framework for the handling of prior infor-
mation in audio source separation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 20, no. 4, pp.
1118–1133, 2012.

[7] Sebastian Ewert and Meinard Müller, “Using score-informed
constraints for NMF-based source separation,” in Proceed-
ings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2012, pp. 129–
132.

[8] D. Huron, “Voice denumerability in polyphonic music of ho-
mogeneous timbres,” Music Perception, pp. 361–382, 1989.

[9] Fabian-Robert Stöter, Michael Schoeffler, Bernd Edler, and
Jürgen Herre, “Human ability of counting the number of in-
struments in polyphonic music,” in Proceedings of Meetings
on Acoustics. Acoustical Society of America, 2013, vol. 19.

[10] Michael Schoeffler, Fabian-Robert Stöter, Harald Bayerlein,
Bernd Edler, and Jürgen Herre, “An experiment about es-
timating the number of instruments in polyphonic music: a
comparison between internet and laboratory results,” in Pro-
ceedings of the International Society for Music Information
Retrieval Conference (ISMIR), 2013.

[11] Paris Smaragdis, Bhiksha Raj, and Madhusudana VS
Shashanka, “Sparse and shift-invariant feature extraction
from non-negative data.,” in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2008, pp. 2069–2072.

[12] Yiju Lin, Wei-Chen Chang, Tien-Ming Wang, Alvin WY Su,
and Wei-Hsiang Liao, “Timbre-constrained recursive time-
varying analysis for musical note separation,” in Proceedings
of the 16th International Conference on Digital Audio Effects
(DAFx), 2013, pp. 2–6.

[13] Yipeng Li, John Woodruff, and DeLiang Wang, “Monaural
musical sound separation based on pitch and common ampli-
tude modulation,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 17, no. 7, pp. 1361–1371, 2009.

DAFX-6

Figure 5.2: Example of F0 variation informed NMF in the warpeddomain. Time is shown on horizontal axes. Frequency is shownon vertical axes.



5.1 F0 informed separation 35
5.1.3 Evaluation

We use the unison test set [279] as described in Chapter 4 and selected
10 stimuli as noted in Table 4.1.

We evaluated the method in terms of separation quality. Like in [21]
we choose not to address the problem of clustering the components
after the matrix factorization operation. Instead of processing mixtures
in a A− B− AB or A− AB− B paradigm we went for a supervised
learning phase where we had access to the original source individually.
In this oracle supervised approach for each of the sources we then
learned the spectral, temporal components and concatenated them.
The learned coefficients were then used to initialize the final factor-
ization process. This way we can achieve the upper bound separation
result.

The test set was processed by two algorithms: standard NMF and the
proposed F0 variation informed NMF (PVI-NMF). The factorizations for
NMF were computed by minimizing the β = 1 divergence (Kullback-
Leibler divergence). We choose to calculate results with K = 2 and
K = 4. The F0 variation estimator is based on a method that was pro-
posed by Bäckström in 2009 [14] with a subsequent post-processing to
ensure the smoothness of the mapping.

Both algorithms did perform on the same filter bank output and
with the same sample rate. The NMF approach did use a 2048 STFT

with 512 samples hop size. All methods use soft masking/wiener
filtering for the actual synthesis.

The results were evaluated by using commonly used evaluation
measures provided by the PEASS Toolbox [78] and mean values are
provided in Table 5.1. The used enlisted objective metrics are Source to
Distortion Ratio (SDR), Source to Interferences Ratio (SIR) and Sources
to Artifacts Ratio (SAR). Additionally, we also computed metrics with
a strong correlation to auditory perception such as the Overall Per-
ceptual Score (OPS), the Target-related Perceptual Score (TPS), the
Interference-related Perceptual Score (IPS), and the Artifacts-related
Perceptual Score (APS). It can be seen that the SDR values give a
different tendency than the OPS score, showing that the differences
between both measures are substantial. Since unison mixtures are
even very challenging for humans to segregate, we chose to focus
on the psycho-acoustically weighted performance measures only. The
results show a slightly better overall performance for the PVI-NMF.
The results have also been evaluated and confirmed subjectively by
informal listening. Additionally, we provide selected stimuli online on
an accompanying webpage 1. In general, the PEASS scores give a good
indication of quality. However, the artifacts that are introduced by the

1 https://web.archive.org/web/20191211135506/https://www.
audiolabs-erlangen.de/resources/2014-DAFx-Unison/

https://web.archive.org/web/20191211135506/https://www.audiolabs-erlangen.de/resources/2014-DAFx-Unison/
https://web.archive.org/web/20191211135506/https://www.audiolabs-erlangen.de/resources/2014-DAFx-Unison/
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Metric NMF PVI-NMF

SDR 2.96 2.54

SIR 2.31 1.80

SAR 22.87 23.35
OPS 15.76 17.64
TPS 30.17 32.80
IPS 26.07 27.03

APS 46.14 54.74

Table 5.1: Average results from evaluation using PEASS 2.0Toolbox [78]. Best performing algorithm is marked bold.
standard NMF synthesis seem to be not well reflected. One possible
reason is that the PEASS Toolbox has not been tested on artifacts from
unison mixtures.

5.2 extending F0 informed separation
In the previous section, we showed the effectiveness of a F0 variation
informed separation system on our constrained unison source sepa-
ration scenario. In the following section, we show how the method
can be extended to the scenario of separating the vocals/lead from the
accompaniment by using predominant melody estimation as depicted
in Figure 5.3.

In this extension, we want to show how the F0 variation informed
separation system can be used in combination with a predominant
melody estimation algorithm to extract singing voice from music.

In a first step, the “Melodia” algorithm [243] is used to obtain an
estimate of the predominant melody from the mixture. The mixture
is then time warped based on the fundamental frequency of the
melody so that it’s predominant solo part is nearly constant in F0. The
extraction is then carried out in the time domain using efficient comb
filtering.

5.2.1 Predominant Melody Estimation

The first step to extend the F0 variation informed separation system
is to obtain a warp contour that follows the predominant melody by
means of extraction from the mixture (blind) or by human annotation
(informed). In the following, we want to focus on how to obtain such
a warp contour using a predominant melody algorithm.

Estimating the fundamental frequency of one single source from
a mixture of several sources is considered a very difficult task [148].
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Figure 5.3: Block scheme diagram of a harmonic assumption forvocals. In a first analysis step, the fundamental frequency of thelead signal is extracted. From this, a separation is obtained byfiltering the mixture.
However, in the case of vocal and accompaniment separation, we only
consider one single source as the lead source - usually the vocals. This
assumption holds true for many pieces in modern, popular music
where usually the predominant voice is mixed slightly louder than
accompaniment.

Now, extracting the predominant melody is an ongoing field of
research named “melody estimation”. However, compared to pitch or
fundamental frequency, the term “melody” is only loosely defined. A
widely used definition is the one from Poliner et al. in [212]:

“...melody is the single (monophonic) pitch sequence that
a listener might reproduce if asked to whistle or hum
a piece of polyphonic music, and that a listener would
recognize as being the ‘essence‘ of that music when heard
in comparison.”

For a more comprehensive overview of melody extraction methods,
the reader is referred to [242]. In turn, we used the Melodia algo-
rithm, published by Salamon et al. in [243], as the basis to extract the
predominant melody from the mixture.

Melodia consists of four parts: 1): a time-frequency transformation is
applied and spectral peaks are extracted. 2): these form the basis of
a saliency spectrogram that is computed using a weighted sum over
all frequencies. This allows to emphasize the predominant/salient fre-
quencies in the signal and is the core part of the Melodia algorithm. 3):
from the saliency map, again, peaks are extracted and then connected
to a melody line. This already is a good starting point for the melody
estimate but usually contains many false positives due to the noisiness
of the saliency representation. 4): The melody line is post-processed
using a Viterbi algorithm. The purpose of it is to filter the contour by
removing outliers, octave jumps and to improve the smoothness of the
contour using a number of heuristics. Usually, this step is sensitive
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to the overall length of the processed mixture and often, this step is
computed in a semantically meaningful segment of the mixture like a
full track or a refrain.

We applied Melodia using the implementation in Essentia [28] with
the default parameters (sample rate 22 050 Hz, hop size 3 ms and
window size 46 ms).

5.2.2 Source Extraction with Time Warping

Once the predominant melody is obtained, the warp contour can be
computed in the same way as described in Section 5.1.1 above. In the
unison scenario, however, we were globally warping the signal using
a continuous warp contour. In the case of full-length tracks, many
parts are unvoiced and applying time warping on these segments
would degrade the separation quality. Therefore, we only applied the
warping on voiced parts and left the non-vocal parts unaltered. In
order to do this, we used the built-in voice activity detection from
Melodia. The full procedure is depicted in Figure 5.4 and Figure 5.5. For
all continuously voiced segments, from the mixture (a), we compute
the warp contour (c) from the melody segments (b). To reduce the
complexity of the extraction, compared to the NMF mentioned in
Section 5.1, we designed a comb filter that can extract the voice (f) in
the warped time domain (d). Therefore, we used an IIR Filter with the
frequency response

H(z) =
1

1− 0.75z−P , (5.2)

where P refers to the constant (due to the time warping) pitch
period in samples. In order to then extract the vocals, zero-phase
filtering is applied. The extracted vocals were inverse warped to linear
time (e) and the accompaniment signal is created by subtracting the
estimated vocals from the mixture signals. Each excerpt is then linearly
crossfaded into the unaltered, accompaniment/mixture using a 10ms
window. To further reduce the complexity of the separation system,
instead one comb filter for each excerpt, we modified the warping
algorithm so that a user-defined target pitch, rounded to an integer, is
used. Finally, the full signal is inverse warped and resampled to the
same pitch, which then only requires a single comb filter to extract
the signal. A stereo signal is produced by filtering both channels
individually.

5.2.3 Results in SiSEC 2015

The algorithm has been applied to the Mixing Secret Dataset (MSD100)
dataset, consisting of a total of 100 songs of different styles. The
separation results were evaluated using BSSeval [36] and submitted
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Figure 5.4: First steps to for a F0 variation informed separationof the audio track Tamy - Que Pena Tanto Fa from the (MASS)dataset [304]. (a) depicts the input signal, (b) shows the estimatethe MELODIA algorithm [243] and (c) the computed warp contour.
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Figure 5.5: Next steps of a F0 variation informed separation ofthe audio track Tamy - Que Pena Tanto Fa from the (MASS)dataset [304]. (d) shows the mixtures, warped by (c) from Fig-ure 5.4, (e) the extracted vocal signal after comb filtering andinverse warping. For comparison, (e) shows the original vocalreference.
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to the SiSEC 2015 challenge [199]. The system was ranked in the last
third of the participants and scored only slightly better than RPCA
based methods [126]. The reason for this is that our proposed system
highly depends on the melody estimation algorithm which, in turn,
is based on the assumption that there exists a predominant melody
in the mixture. Unfortunately, the newly created MSD100 dataset was
not mixed using professional mastering, resulting in vocals that are
below average in loudness. Due to their small energy, they were not
detected as voiced by Melodia, hence the warping was not applied.
Also, in some cases the estimates were one octave off, producing severe
artifacts due to extreme warping.

On the positive side, the proposed method is of very low complexity.

5.2.4 Improving Voiced/Unvoiced Detection using DNNs

As mentioned in the previous section, voice activity detection is of
paramount importance in the proposed music separation system.
Therefore, we decided to evaluate if the performance of the system
can be improved by using a more robust voice activity detection
method as a separate preprocessing step. Shortly after we submitted
the separation results to the SiSEC 2015 evaluation campaign, the whole
audio community was shaken up by the recent success of deep learn-
ing throughout several audio related tasks that go beyond automatic
speech recognition. Among them are several tasks related to music
information retrieval (MIR) such as singing voice detection which
received major breakthroughs in 2014 and 2015 [157–159, 253].

Therefore, we decided to integrate a state-of-the-art singing voice de-
tection system into the separation pipeline and evaluate the end-to-end
performance. We chose to reimplement the system by Leglaive [157],
since it was a good compromise between complexity (its use of hand-
crafted features instead of large STFT frames) and performance. In fact,
the system reached a state-of-the-art accuracy of 91.5% for classify-
ing frames of singing voice for the annotated Jamendo singing voice
detection dataset [225], which is an improvement of more than 10%
compared to the best performing non-DNN system.

The input of [157] is an 80-dimensional feature vector consisting of
harmonically and percussively enhanced STFT frames of the mixture as
described in [198]. The output of the network is a frame-wise integer,
indicating the presence of voiced or unvoiced frames. We trained the
network using a fixed number of frames from the DSD100 training
dataset. The vocal activity labels were obtained from the dataset by
analyzing the true vocals. The network was created and trained using
the Keras framework [53]. We stacked up to three layers using the
parameters as mentioned in [157] but used unidirectional LSTMs
instead of bi-directional to reduce computational complexity. The
trained network achieves an accuracy of 85% on the test set. While
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Figure 5.6: BSS Eval scores for the vocals and accompanimentestimates on the DSD100 dataset as used in [166]. Results areshown on the test set only. Results indicate the improvementsof the DNN based vocal activity detection system (STOD) incomparison to the baseline system (STO) that was submittedto [199].
the original network proposed in [157] was framed as a classification
task, we modified the sigmoid output activation and replaced it with
a linear activation, then trained using the mean squared error cost
function. The output is then multiplied with the mixture signal so
that segments with less energy are reduced in volume instead of a
boolean decision. In experiments, we found out that this helps the
Melodia algorithm to better detect vocal activity throughout an audio
track and therefore yields in melody estimates with fewer errors. This
DNN-optimized version of the algorithm was then compared (but
not submitted) to the new the SiSEC 2016 dataset which was released
in the meantime [166]. The results, depicted in Figure 5.6 show that
the DNN vocal activity detection improved the vocals SDR by 1.5 dB
which is considered as a significant improvement.
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5.3 improving F0 estimation usingtime warping

Parts of this section
was previously
published in [277]
and was revised for
this thesis.

An informed system like the one we described in the previous section
often has limitations due to the fact that the provided fundamental
frequency variation estimate might not be accurate enough and is
subject to an upper limit. Further, it can be assumed that such an upper
bound is especially relevant for a warping based system that relies on
an instantaneous estimation of the fundamental frequency. While we
developed the framework of a fundamental frequency (F0) variation
informed separation, as presented in Section 5.1 of this chapter, we
found that we can utilize this to also optimize fundamental frequency
estimators themselves.

An estimate of the fundamental frequency of a signal is required in
applications of audio and speech signal processing. Some scenarios
are targeted to extract the fundamental frequency of the predomi-
nant source [243] in a mixture of other sources. In other applications,
algorithms are used to extract fundamental frequencies of multiple
sources simultaneously present in a signal [147]. However, the most
common scenario in many works is to extract the fundamental fre-
quency of a monophonic and harmonic audio signal containing speech
or music [27, 48, 55, 229, 290, 291].

Algorithms for estimating the F0 of a signal vary in stability and
accuracy. In turn, we proposed a method which iteratively improves
the estimates of such algorithms by applying in each step, a time warp
on the input signal based on the previously estimated fundamental
frequency.

proposed system The development of novel methods for F0 esti-
mation, performing as well as earlier methods, such as the popular
correlation based YIN algorithm [48], has proven challenging. In a
study [13] it is stated that YIN still performs best in terms of accu-
racy. Nevertheless, when using YIN or other block-based algorithms,
a frame length and a hop size have to be selected trading temporal
resolution on one side against frequency accuracy and robustness on
the other side.

Especially when the signal is polyphonic, the robustness is the most
crucial aspect of a pitch estimator. In work from Mauch et al. [181],
the robustness of the YIN algorithm is improved by probabilistic post-
processing. However, besides robustness, there is a variety of use cases
requiring high accuracy as well as high temporal resolution. Applica-
tion in parametric audio coding [216] requires the parameterization of
pitch bends and vibratos. Furthermore, source separation algorithms
aiming at the extraction of harmonic sources from the mixture can
make use of an instantaneous F0 estimate [278, 307]. There are already
contributions addressing the improvement of accuracy of F0 estimates
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such as [185] which introduced a non-integer similarity model or [55]
which belongs to the group of parametric pitch estimators.

We propose to improve the output of already existing algorithms
in terms of temporal resolution as well as accuracy by iterative time
warping. Two other contributions already make use of time warping
in the context of pitch estimation. Resch et al. [229] proposed an
instantaneous pitch estimation technique which optimizes a warping
function that would lead to a constant pitch signal. Their optimization
framework minimizes a cost function specifically targeted for speech
signals. Azarov et al. have introduced an improved version of RAPT
(called iRAPT1 and iRAPT2) [12]. Our main contribution is a time
warping based refinement method that is applicable to any F0 estimate.
Our method emphasizes the strengths of different estimators and thus
can even help to improve their robustness.

Depending on the algorithm and application, there are several
reasons why F0 estimators deliver a less than ideal performance. When
the signal tested is not tonal — like in unvoiced parts of speech —
a proper estimation is impossible. If the estimator is optimized on
purely harmonic signals, inharmonicity or frequency jitter of the input
signal will increase the estimation error. Many of these reasons will
lead to errors on the coarse level of the estimate (like octave jumps).
The fine level accuracy is mostly influenced by parameters like time
and/or frequency resolution of the estimator. A signal containing rapid
changes of the frequency or modulations like “vibrato” is, therefore,
more affected regarding fine level error. To obtain a more accurate
estimate, we propose to time warp the signal by using the coarse level
estimate towards a more constant pitch. The underlying assumption
here is that pitch estimators generally perform better the more constant
the pitch is.

Initial F0 estimate

The first step is to calculate an initial F0 estimate by using an existing
pitch estimator. Note that we later require the estimate to be defined
for every input sample, thus F[n] may require interpolation. In our
pipeline, we use linear interpolation for all estimators. F0 estimators,
like YIN [48], also provide a measure of confidence c[n].

In our application, the warp map w(t) is constructed in such a way
that the instantaneous changes in frequency of the signal in the linear
time domain are minimized in the warped time domain. For this, we
derive the map from an estimate of the fundamental frequency F0

using Equation 5.1 from Section 5.1.
In the scope of this work, the warping is applied globally over the

full length of the signals under consideration. Here, in comparison
to Section 5.1, we also consider an optional confidence measure c[n]
which can be incorporated for a processed version of the warping
contour. This ensures that the warp contour has no discontinuities
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that result in additional artifacts after re-sampling. If the estimator
does not provide such a measure, a separate voiced/unvoiced detec-
tion algorithm can be used. To obtain a warp contour f [n] from an
F0 estimate we propose the following steps: (A) initialize the warp
contour with F0 estimate f = F, (B) find contour segments with high
confidence, i.e. c[n] exceeds a given threshold, (C) linearly connect the
high confidence contour segments and (D) set start and end of warp
contour to a constant value if confidence is below threshold. That way
warping according to F0 is applied in the regions of high confidence
without significantly affecting the gaps in-between.

To improve the accuracy of the F0 estimate, time warping is applied
to the input signal x[n] based on W. The input signal is 128-times
oversampled using sinc based interpolation filters. From x̆[n] a new F0

estimate F̆1[ν] is being calculated as in step (A)2. The first step therefore
is similar to [229]. Additionally, a warped confidence measure c̆1[ν]

can be used to convert F̆1[ν] into a warped warp contour W̆1[ν]. It is
possible to linearly add F̆1[ν] to the first estimate for refinement, as
it is done in [12]. However for linear sweeps, the warped estimate
is shifted in time. Thus an error is introduced which is even more
distinct if the first F0 estimate is error prone. We therefore propose a
method to reduce this error:

• Inverse time warping is applied to F̆1[ν] based on the original
warp contour W resulting in F1[n].

• In the case of a perfect F0 estimate, the signal warped with the
resulting contour would have a constant F0 equal to the mean
W̄. Therefore, a refined F0 estimate after one iteration is then
calculated by Fr

1 [n] = F1[n] ·W[n]/W̄ assuming that the warp
contour is initialized as in step (A) above.

• The refinement can be repeated k times to obtain a better esti-
mate. To avoid accumulating errors introduced by the re-sampling
based warping, more iterations benefit from calculating a refined
warp contour/warp map instead of doing a nested warping on
the input signal. The map is obtained by inverse time warping
of the warp contour W̆1[ν] resulting in W1[n]. A refined warp
contour Wr

1 [n] is then obtained in the same way as the refined
F0 estimate is calculated. For the calculation of the kth step, time
warping is based on the Wr

k−1[n] refined warp contour.

An example of the proposed refinement is depicted in Figure 5.7. The
final refined estimate is closer to the reference than the F0 estimator
without refinement. It also shows (right plot) how much “flatter” the
F0 contour becomes after each iteration. Note that compared to [229],
our method does not use a complex optimization scheme but relies on
the performance of the pitch estimator in successive iterations. Hence

2 Note, that ˘ indicates warped time instead of linear time.
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Figure 5.7: F0 refinement for one excerpt of synthesized speechusing YIN [48] with 10 iterations. Left : Estimated F0 in lineartime. Right : estimates after each warping iteration in warpedtime.
our “black box” like post processing simplifies the procedure such
that it can be applied to any pitch estimator. That way the selection of
a pitch estimator which best fits to the signal type can be seen as an
optimization.

5.3.1 Experiments and Evaluation

For the evaluation of the proposed F0 refinement, we test the refine-
ment algorithm with the following F0 estimators:
YIN [48] is used as an FFT based implementation [28]. The confidence
measure is thresholded for values lower than 0.6 on the speech record-
ings. iRAPT1,2 [12] are improved versions of the RAPT framework.
We use the author’s MATLAB implementation of the iRAPT1 and
iRAPT2 algorithms. iRAPT2 is a refinement method that is compara-
ble to our proposed method. To evaluate the results, we apply our
refinement to iRAPT1 and compare it with the refinement produced
by iRAPT2. c[n] < 0.7 is used for thresholding speech recordings.
MELODIA [243] is not designed to be an F0 estimator but is able to
extract the predominant melody in a polyphonic mixture. We increase
the bin resolution to 0.5 semitones, to increase the accuracy. We used
the Essentia implementation. For thresholding, we use the built-in
voiced/unvoiced detection. For YIN and MELODIA, we evaluate on
a frame length of 64 ms and a hop size of 16 ms. For iRAPT1 and
iRAPT2 we use the fixed frame length parameters of the author’s
implementation.

We use the established evaluation measures Gross Pitch Error

(GPE) and Mean Fine Pitch Error (MFPE) [12]. We focus on MFPE
in our results, measuring the absolute deviation between the reference
and the estimated F0 per sample. As mentioned in [229], evaluating
the accuracy of F0 estimates is challenging because of the lack of
ground truth datasets annotated on a time scale with such a high
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resolution. Most of the available audio test datasets are not suitable
because the F0 annotation is only available with low time resolutions.
By using such a dataset there is a risk that the refined F0 estimate is
higher in MFPE. This is because the refined estimates show more of
the fine structure deviating from the coarse annotation which then is
considered as piecewise constant. To address this issue, we first present
the evaluation results on synthetic data. To verify our synthetic results,
we present the results of speech data annotated on 10 ms frames
derived from laryngograph signals. We did only evaluate and process
the voiced parts of the signals as indicated in the provided annotation
labels. Also note that since we focus on the MFPE, all segments
where one of the estimators results in a GPE > 0 are excluded from
the results, hence the GPE for all of our results is 0. The proposed
refinement has been processed with one iteration (k = 1). Experiments
showed that more iterations only marginally improve the results.

Since the proposed refinement algorithm repeatedly applies pitch
estimation, the performance of these estimators on the time-warped
(nearly constant) signal is of interest. Therefore, we included the results
of an oracle refinement where the first estimate is set to a ground truth
pitch. Additionally, this also does reveal information about the quality
of the ground truth annotation itself.

Synthetic Data

To generate synthetic test data we use pitch label annotations of the
PTDB-TUG speech dataset [209]. We synthesize the melody or voice
using a simple sinusoidal signal model. To get accurate ground truth
data, the pitch annotations were up-sampled to audio rate by using
linear interpolation. Similar to [181], we then synthesized the data
using cosine based oscillators adding 10 harmonics to each signal
output. The test set has been rendered at 16 kHz. The complete PTDB-
TUG set results in almost 10 hours of input signal data. We present
the results of the synthetic data as box plots in Figure 5.8 grouped by
the estimator. It shows that all estimators benefit from the refinement
in terms of MFPE. The iRAPT1 estimator shows the best improvement
of 68% in MFPE. As expected, oracle refinement yields almost perfect
results in terms of MFPE.

Speech Data

For the results of the algorithm on real data we first used the same
PTDB-TUG items as in the synthetic data but processed the accompa-
nying speech recordings. The MFPE values were then calculated by
averaging the sample-wise F0 estimates from our proposed method
over frame lengths of 10 ms to match the annotation data. The results
are shown in Figure 5.9. The mean values indicate that the MELO-
DIA algorithm performs best overall. We can see that the refinement
does not show a clear effect on the iRAPT estimator. The oracle re-
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Figure 5.8: Results from the synthesized PTDB-TUG dataset.MFPE grouped by estimator. Solid/dotted lines represent medi-ans/means. Outliers are not shown.
finement results indicate that even if a ground truth is known, the
refinement based on the warped (constant) signal cannot get much
lower in MFPE. As also seen on synthetic data, iRAPT2 does not show
significant improvements compared to our proposed refinements.

Polyphonic Mixtures

Pitch estimation of polyphonic mixture input signals, in general, is
known to be more difficult than on monophonic signals. To show
that our proposed refinement is not bound to the optimization on
specific signals we processed the MedleyDB [24] which consists of
108 professionally recorded music mixes where the main melody has
been annotated by humans. We only evaluate the MELODIA [242]
estimator in this scenario. Frame lengths and hop sizes were increased
to 92 ms and 23 ms, respectively. The set is processed at 44.1 kHz. To
further back up the results of the fine pitch error in this scenario,
we additionally evaluated the results of a correlation-based measure
as introduced in [229] (See Equation (19)). Instead of computing the
correlation coefficients on the mixture, we used the accompanying
multi-tracks. The track which most predominantly contributed to the
main melody has been chosen for the correlation coefficient measure.
The results of the experiment are shown in Figure 5.10.

5.4 summary and discussion
In this chapter, we highlighted the time-varying aspects of musical
sources such as vibrato to be utilized for the application of source
separation. To address this task, we developed a method that utilizes
time warping to extract a source from the mixture. More specifically,
the mixture is warped, based on the fundamental frequency estimate
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Figure 5.10: Results from the real recordings MedleyDBdataset. MFPE and Correlation Coefficient grouped by esti-mator. Solid/dotted lines represent medians/means. Outliers arenot shown.
of the source to be extracted. In the warped time domain the frequency
modulation of the desired source is removed. In our first study, we
evaluated this method of separating single note from instruments
playing in unison. For the actual separation, we used a “standard” NMF

separation approach. The results of 45 mixtures have been evaluated
by using the PEASS toolbox and the scores indicated an improvement
in favor of the F0 variation informed NMF compared to the “standard”
NMF.

In order to evaluate if our method can be applied on a more realistic
scenario, we proposed an extension of the method for the scenario
of vocal and accompaniment separation. We used a state-of-the-art
melody estimation technique to extract the F0 variation of the vocal
source to apply warping to the mixture. We performed separation in
the time domain using a comb filter to further reduce artifacts. The
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method relies on a robust and accurate estimate of the fundamental
frequency as well as vocal activity estimate.

To address the latter, the method was extended to include a deep
neural network based vocal activity detector. This helped to exclude
non-vocal parts from the warping and in turn, improved the vocal
separation performance by 1.5 dB SDR.

In order to improve the accuracy of F0 estimates, we proposed a
method, based on the same time warping principle, in the last section
of this chapter. The proposed method applies time warping itera-
tively based on an initial F0 estimate, assuming that more iterations
remove more variation, thus supports the F0 estimation process in
the next iteration. This idea can be applied to any F0 estimator as
a post-processing step. Future work could include an optimization
criterion to control the number of iterations, however, we have to
emphasize that improvements in accuracy are difficult to evaluate on
real datasets [275].

To conclude, time warping based separation can work well on some
signals but requires further handcrafted tuning to yield good results.
In the next chapter, we want to investigate if separation can still benefit
from spectro-temporal modulations if they are not known or estimated
a priori.



6 S E PA R AT I O N B Y U N K N O W NM O D U L AT I O N
In the previous chapter, methods were proposed to separate highly
overlapped signals, informed by an estimate of fundamental frequency
(F0) variation of the source to be separated. Even though we showed
that F0 variation could be estimated from the mixture, often, it is not
easy to obtain in practice. In contrast, in this chapter, we will introduce
separation methods which do not incorporate prior knowledge about
the modulation. In fact, some of the methods operate blindly, meaning
they do not require any further information about the sources except
for the number of sources to be separated.

In blind source separation research, many contributions were based
on NMF [153, 154]. NMF quickly became one of the main scientific
frameworks in the field of audio source separation with a large number
of contributions. The popularity of NMF algorithms can be explained
by the intuitive way in which they work on (non-negative) time-
frequency representations of the mixture signal. Let us consider the
magnitude STFT X ∈ RF×T

+ with F being the number of frequency
bins and T the number of time frames. Now, the NMF incorporates
non-negative constraints to perform the separation into the sum of K
latent components which are all factored into two matrices (referred
to as frequency basis W ∈ RF×K

+ and temporal activations H ∈ RT×K
+ ):

X ≈WHT =
K

∑
k=1
wk ◦ hk (6.1)

As it can also be seen in Figure 6.1, the factorization can also be
written as the sum of K outer products between two rank-one matrices
wk ∈ RF and hk ∈ RT.

Figure 6.1: Visualization of the product of two rank-one matricesas being used in NMF.
The NMF provides a rank reduction which allows decomposing

mixtures into K source components. At the same time, the factorization
inherently follows specifics of music, observable in time-frequency

51
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Figure 6.2: Example of spectrogram based source separationusing NMF.
representations: the fact that harmonic sources can be described using
a pitch/tone (represented in W ) and its duration (represented in H).
It is this property that also allowed to use NMF for the purpose of
transcriptions [267].

To obtain the factorization, an optimization problem needs to be
solved, resulting in a non-unique solution. Each factorization is calcu-
lated by minimizing the error between X and WHT with respect to
some cost function

min
W ,HT

D(X |WH) subject to W ≥ 0, H ≥ 0. (6.2)

In most source separation methods the beta-divergence cost function

Dβ(x|y) = 1
β(β− 1)

(
xβ + (β− 1)yβ − βxyβ−1

)
β ∈ R\{0, 1}

(6.3)
is being used [85]. For the special cases of β = 0 and β = 1, D corre-

spond to the Itakura-Saito (IS) and Kullback-Leibler (KL) divergence
and the euclidean distance equals to β = 2. To efficiently compute the
optimization, an algorithm was proposed in [154] which makes use
of simple to use multiplicative update rules, derived from the cost
function. For further details, we refer to [56].

After factorizingX into K components, one can obtain K magnitude
spectra. However, K is usually selected to be larger or equal to the total
number of sources. When it is larger than the number of sources, the
components can be clustered into the number of desired sources. Often
this can be achieved by some similarity metric that allows to calculate
pairwise distances between the K components and the desired sources
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and apply k-means clustering algorithm [268]. A separation example
is depicted in Figure 6.2. Here the number of components K is six
per source, resulting in a total number of K = 12. Each component is
clustered into one of two sources to generate two estimates.

It is this step that transforms the NMF into a supervised algorithm.
As for other separation methods, performed in the time-frequency
domain, separation is achieved using Wiener filters or ratio masks to
extract the sources from the mixture [169].

Since NMF first appeared to the source separation community in [267]
and in [298], a large variety of NMF “flavors” were introduced to im-
prove certain aspects of the NMF in the application of music. In [302,
Chapter 16], the authors describe one of the main problems of NMF

which is that “standard NMF is shown to be effective when the notes
of the analyzed music signal are nearly stationary”. As we described
in Chapter 3, this is especially problematic for pitches that incorporate
vibrato. Here, NMF-based processing suffers from its simplified model
and its magnitude STFT representation makes it harder to model these
time-varying sources.

To underpin this issue, we depict this problem in Figure 6.3 which
shows the factorization of a simple amplitude modulated input sig-
nal. The signal consists of two sinusoids which are linearly mixed.
Both share the same carrier frequency but have different amplitude
modulation rates. When we apply a factorization with K = 2, one can
see that NMF has difficulties to separate the two signals sufficiently
and instead activates both sources in an alternating pattern. One way
towards better separation is to increase the number of components per
source, however, this introduces difficulties in the clustering. Another
method is proposed in [86, 133, 233, 264] which use convolutions
to model shifts in components. This leads to factorizations that are
able to also model vibrato events. However as stated in [112], it does
“not permit any variation between different occurrences of the same
event (atom), its duration and spectral content evolution being fixed”.
Instead, they proposed a frequency-dependent activation matrices by
using a source/filter-based model. The model is based on an Auto-
Regressive Moving Average (ARMA) time-varying model that allows
single spectral components to be modeled along with their spectral
variations. The model, as reported by the authors, however, does only
allow for small frequency variations and fitting the ARMA model is a
time-consuming process.
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Figure 6.3: Example of separating a mixture of two amplitudemodulated sinusoids using NMF
(a) Mixture of two sinusoids at 440 Hz with AM of 4.7 Hz and
12.6 Hz, (b) STFT (FFTlength = 256), (c) Non-negative matrixfactorization results in W and H , after 100 iterations (β = 1).

6.1 tensor factorizations for modulationspectrograms
Parts of this

subsection is also
based on the work

published in [270].

Another way to improve separation of modulated sources is the use of
higher-dimensional tensor representations as a signal representation
as introduced in Section 3.2.1. A variety of models exist to factorize
a tensor into three components and apply a similar rank reduction
as in the NMF case. Tensor factorizations are useful for applications
of data with more than two dimensions. In audio separation, tensor
factorization was originally proposed to address multichannel sepa-
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Figure 6.4: PARAFAC decomposition in an example for a three-dimensional tensor V into the sum of K outer products of threerank-one matrices.
ration as in [83, 84, 201]. Barker and Virtanen [21] were the first to
propose modulation tensor representations for single-channel source
separation.

As proposed by [21], the non-negative tensor factorization approxi-
mates a modulation tensor V f ,b,t by a product of three matrices con-
taining the frequency/basis W , time/activation H signals, and the
modulation gain for each component M . The product of this factor-
ization is generally referred to as PARAFAC product1.

In the vein of the NMF factorization mentioned in Equation 6.1, a
3-way non-negative tensor factorization (NTF) can simply be extended
to:

V ≈
K

∑
k=1

wk( f ) ◦mk(b) ◦ hk(t). (6.4)

This notation is commonly used in many tensor factorization appli-
cations [151]. However, we found that it is easier to follow when the
individual tensor elements are used, which is also the recommended
notation proposed in [142], for f = 1, . . . , F; b = 1, . . . , B; t = 1, . . . , T:

v f bt ≈
K

∑
k=1

w f kmbkhtk. (6.5)

A visualization of the three-way PARAFAC product is depicted in
Figure 6.4.

Compared to Barker and Virtanen in [21], we chose to generate the
modulation tensor in a way that is simpler and easier to invert. They
used a Gammatone filter bank and rectification to model the charac-
teristics of the human auditory system. We simplified the processing
and used a two-stage DFT filter bank where the modulation domain is
based on magnitude STFT. Although this can give perceptually less op-
timal results, each step can be directly inverted by using the complex
representation. Barker already showed that the NTF based approach
gives good results on speech signals compared to the “standard” NMF.

1 Also known as “Polyadic form of a tensor”, PARAFAC (parallel factors), CANDE-
COMP or CAND (canonical decomposition) or CP (CANDECOMP/PARAFAC) [151].
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Motivated by these results, we wondered if the modulation NTF can
be used to separate two instrument mixtures by their amplitude mod-
ulation characteristics, as it is the case in the unison scenario.

Thus, let us return to the example from Figure 6.3 of two harmonic
signals having the same fundamental frequency of 440 Hz, with a
stationary amplitude of 4 Hz and 10 Hz respectively. These differences
now turn out to be latent in a non-negative modulation tensor repre-
sentation. In contrast to NMF, Figure 6.5 shows valid factorizations of
a unison signal using NTF. It gives a smoother activation matrix and is
able to generate the output with the separated amplitude modulations
on each sinusoid. The modulation frequency gain matrix shows the
two modulation frequency templates and the DC-component.
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Figure 6.5: (a) Modulation tensor slice of a mixture of two sinu-soids at 440 Hz with AM of 4.7 Hz and 12.6 Hz (FFTlength =
256), (b) V ≈WMH Result of Non-Negative Tensor Factor-ization (β = 1) after 100 iterations.

A comparison of the modulation tensor approach compared to the
F0 variation informed method on the unison separation scenario has
been carried out in our work published in [270]. Results indicated
that the modulation tensor factorization generally performs worse
than informed methods. This is because it only considers amplitude
modulations even though frequency modulations are the actual source
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of the modulation. In the next section, we investigated how more
complex modulation patterns can be utilized for separation.

6.2 common fate model for unison mixtures
This section was
previously published
in [274] and was
revised for this thesis
with permission
(®2016 IEEE).

In this work, a novel tensor signal representation is introduced which
additionally exploits similarities in the frequency direction. We, there-
fore, make use of dependencies between modulations of neighboring
bins. This is similar to the proposed high-resolution non-negative
Matrix Factorization model that accounts for dependencies in the
time-frequency plane (HR-NMF [16]). In short, HR-NMF models each
complex entry of a time-frequency transform of an audio signal as a
linear combination of its neighbors, enabling the modeling of damped
sinusoids, along with an independent innovation. This model was
generalized to multichannel mixtures in [18, 19] and was shown to
provide considerably better oracle performance for source separation
than alternative models in [175]. Indeed, even though some varia-
tional approximations were introduced in [17] to strongly reduce
their complexity, those algorithms are often demanding for practical
applications. In this work, we proposed to relax some assumptions
of HR-NMF in the interest of simplifying the estimation procedure.
The core idea is to divide the complex spectrogram into modulation
patches in order to group common modulation in time and frequency
direction. We call this the Common Fate Model (CFM), borrowing from
the Gestalt theory, which describes how human perception merges
objects that move together over time (from [32]):

“the Gestalt psychologists discovered that when different
parts of the perceptual field were changing in the same way
at the same time, they tended to be grouped together and
seen to be changing as a group because of their common
fate.”

Bregman introduced the Common Fate theory for auditory scene
analysis as the ability to group sound objects based on their common
motion over time, as occurs with frequency modulations of harmonic
partials. As outlined by Bregman, the human ability to detect and
group sound sources by small differences in FM and AM is outstand-
ing. Also, it turns out, as mentioned in Section 3.2, that humans are
especially sensitive to modulation frequencies around 5 Hz, which is
the typical vibrato frequency that many musicians produce naturally.

6.2.1 The Common Fate Transform

Let x̃ denote a single channel audio signal. Its STFT is computed by
splitting it into overlapping frames and then taking the discrete Fourier
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transform (DFT) of each one. Since the waveform x̃ is real, the Fourier
transform of each frame is Hermitian. In the following, we assume that
the redundant information has been discarded to yield the STFT. The
resulting information is gathered into an Nω × Nτ matrix written X ,
where Nω is the number of frequency bands and Nτ the total number
of frames. In this study, we will consider the properties of another
object, built from X , which we call the Common Fate Transform (CFT).

It is constructed as illustrated in Figure 6.6. We split the STFT X into
overlapping rectangular Na × Nb patches, regularly spaced over both
time and frequency. For reference, later in this thesis, we will call this
representation the Grid STFT (GFT). Then, the 2D-DFT of each patch is
computed2. This yields an Na× Nb× N f × Nt tensor where N f and Nt

are the vertical and horizontal positions for the patches, respectively.
As can be seen, the CFT is basically a further short-term 2D-DFT

taken over the “standard” STFT X . One of the main differences com-
pared to modulation spectrograms is that the CFT is computed using
the complex STFT X , and not a magnitude representation such as |X |.
As we will show, this simple difference has many interesting conse-
quences, notably that the CFT is invertible: the original waveform x̃
can be exactly recovered by cascading two classical overlap-add proce-
dures. Another difference is that the patches span several frequency
bins, i.e. we may have Na > 1. This contrasts with the conventional
modulation spectrogram, that is defined using one frequency band
only.

A Probabilistic Model for the CFT

When processing an audio signal x̃ for source separation, it is very
common to assume that all time-frequency (TF) bins of its STFT are
independent [72, 82, 165, 202]. This is often the consequence of two
different assumptions. The first one is to consider that all frames are
independent, thus leading to the independence of all entries of the
STFT that do not belong to the same column. The second one is related
to the notion of stationarity: roughly speaking, the Fourier transform is
known to decompose stationary signals into independent components.
As a consequence, when the signals are assumed to be locally stationary,
it is theoretically sound to assume that all the entries of their STFT are
independent.

Still, both assumptions can only be considered as approximations.
First, adjacent frames are obviously not independent, notably because
of the overlap between them. Second, the stationarity assumption is
only approximate in practice, especially when percussive elements
are found in the audio, leading to strong dependencies among the
different frequency bins. Let {X f t} f ,t denote all the Na × Nb patches
taken on the STFT to compute the CFT, as depicted in Figure 6.6. The

2 Note that since each patch is complex, its 2D-DFT is not Hermitian, thus all its entries
are kept.
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v
Figure 6.6: Common Fate Transform. For convenience, the split-ting of the STFT into patches has been depicted without overlap,but overlapping patches are used in practice. ®2016 IEEE.

probabilistic model we choose is the combination of three different
assumptions made on the distribution of these patches3.

1. All patches are independent. Just as the classical locally stationary
model [165] assumes independence of overlapping frames, we assume
here independence of overlapping patches. Due to the overlap between
them, this assumption is an approximation, and one may wonder what
the advantage is of dropping independent frames for independent
patches. The answer lies in the fact that the latter permits us to model
phase dependencies between neighboring STFT entries, and also to
model much longer-term dependencies, as required for instance by
deterministic damped or frequency-modulated sinusoidal signals.

3 A forth assumption made in [274] refers to the joint distribution of all entries of each
patch which are α-stable [246].
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2. Each patch is stationary: its distribution is assumed invariant un-
der translations in the TF plane. This is where we do not assume
independence, but on the contrary, expect dependencies among neigh-
boring STFT entries. Our approach assumes this happens in a way
that only depends on the relative positions in the TF plane. It can
easily be shown that mixtures of damped sinusoids have this prop-
erty. Assuming stationarity not only over time but over both time
and frequency also permits us to naturally account for mixtures of
frequency-modulated sounds. In short, we assume that throughout
each patch, we observe one coherent STFT “texture”. The difference
with the HR-NMF model is that we have independent and identically
distributed (i.i.d.) innovations for one given patch, whereas HR-NMF
model has more variability. However, taking overlapping patches
somehow compensates for this limitation.

3. All entries of the Fourier transform of each patch are assumed to
be asymptotically independent, as the size of the patch gets larger.
This rather technical condition, often tacitly made in signal processing
studies, permits efficient processing in the frequency domain.

Under those assumptions, all entries of the CFT are independent
(assumptions 1 and 2)4 where P (a, b, f , t) is a non-negative Tensor
with dimensions Na × Nb × N f × Nt that we call the modulation density.
In the general case, it can basically be understood as the energy found
at (a, b) for patch ( f , t), just like more classical power spectral densities
describe the spectro-temporal energy content of the STFT of a locally
stationary signal.

Interpretation of the CFT as Filterbank

An alternative interpretation of the CFT can be obtained by regarding
the 2D-DFT as two subsequent 1D-DFTs. If the transform in frequency
direction (DFT-F) is applied first, it is equivalent to a partial inverse
DFT plus time reversal. If the time reversal would be undone and
an overlap-add would be applied, the output would correspond to a
subband representation with a frequency resolution of Nω/Na. Each of
the Na final transformations (DFT-T) in one patch takes output values
from Nb DFT-Ts with equal indices. This corresponds to a splitting
into poly-phase components with downsampling factor Na of the time
signal obtained by placing the output frames from the DFT-Ts in a row.
Thus, the outputs of the DFT-Fs have a very high frequency resolution
of Nω Nb but contain aliasing components from the downsampling.

This interpretation of the CFT gives some indications for its benefits
in the separation of modulated sources. Due to the poly-phase repre-
sentation, it has a relatively high temporal resolution. The periodicities

4 This result is the direct generalization of [246, th. 6.5.1] to multi-dimensional stationary
processes.
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in the spectra caused by downsampling make the CFT relatively inde-
pendent of frequency shifts, so that, for example, the output patch of
a single sinusoidal sweep is mainly influenced by the sweep rate.

6.2.2 Signal Separation

Now, let us assume that the observed waveform is actually the sum
of K underlying components {s̃k}k=1,...,K. Due to the linearity of the
CFT, this can be expressed in the CFT domain as:

∀ (a, b, f , t) , x (a, b, f , t) = ∑k sk (a, b, f , t) .

If we adopt the model presented above for each source and use the
stability property, we have:

V (a, b, f , t) ∼∑k Pk (a, b, f , t) ,

where Pk is the modulation density for component k. The resulting
waveforms are readily obtained by inverting the CFT. As can be seen,
we now need to estimate the modulation densities {Pk}k based on the
observation of the mixture CFT x, similarly to the estimation of the
sources’ Power Spectral Densities (PSD) in source separation studies.

Factorization Model and Parameter Estimation

In order to estimate the sources’ modulation densities, we first im-
pose a factorization model over them, so as to reduce the number of
parameters to be estimated. In this study, we set:

Pab f t ≈
K

∑
k=1

aab f khtk, (6.6)

for a = 1, . . . , Na; b = 1, . . . , Nb; f = 1, . . . , N f ; t = 1, . . . , Nt; k =

1, . . . , K non-negative tensors, respectively. We call this a Common
Fate Model. Intuitively, A , {aab f k}a,b, f ,k is a modulation density tem-
plate that is different for each frequency band f , and that captures the
long term modulation profile of each source around that frequency.
Then, h , {htk}t,k is an activation vector that indicates the strength of
source on the patches located at temporal position t. The factorization
model is depicted in Figure 6.7. We also experimented with other two
and three-factor combinations but never got any promising results,
suggesting that our proposed NMF-like model is a good choice.

Learning those parameters can be achieved using the non-negative
tensor factorization (see e.g. [56, 202, 265] for an overview), except
that it is applied to the CFT instead of the STFT, and that the particular
factorization to be used is equation 6.6. In essence, it amounts to
estimating the parameters {Ak, Hk} so that the modulus of the CFT is
as close as possible to ∑k Pk, with some particular cost function as a
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Figure 6.7: Visualization of the Common Fate factorization model(CFM).
Algorithm 1 Fitting parameters of the non-negative CFM equation 6.6.
With v = |x| ∀a, b, f , tv(a, b, f , t) = |x(a, b, f , t)| and always us-
ing the latest parameters available for computing P̂ (a, b, f , t) =

K
∑

k=1
Ak (a, b, f ) Hk (t), iterate:

Ak (a, b, f )← Ak (a, b, f ) ∑t v(a,b, f ,t)P̂(a,b, f ,t)·(β−2)Hk(t)

∑t P̂(a,b, f ,t)·(β−1)Hk(t)

Hk (t)← Hk (t)
∑a,b, f v(a,b, f ,t)P̂(a,b, f ,t)·(β−2)Ak(a,b, f )

∑a,b, f P̂(a,b, f ,t)·(β−1)Ak(a,b, f )
.

data-fit criterion called a β-divergence and which includes Euclidean,
Kullback-Leibler and Itakura-Saito as special cases [85]. As usual
in non-negative models, each parameter is updated in turn, while
the others are kept fixed. We provide the multiplicative updates in
Algorithm 1. After a few iterations, the parameters can be used to
separate the sources using the Wiener filter as described in [164].

6.2.3 Experiments

In this section, we present separation experiments utilizing CFM and
compare it with other methods.

Method Signal Representation Factorization Model

CFM [282] STFT→ Grid Slicing→ 2D-DFT V(a, b, f , t) = P(a, b, f )× H(t)

NMF [306] STFT V( f , t) = W( f )× H(t)

HR-NMF [17] Output of any filterbank (STFT, MDCT, . . . ) AR filtering of NMF excitation

MOD [21] STFT→ | . . . | → STFT along each bin V( f , m, t) = W( f )× A(m)× H(t)

CFMM STFT→ | . . . | → Grid Slicing→ 2D-DFT V(a, b, f , t) = P(a, b, f ) · H(t)

CFMMOD STFT→ | . . . | → Grid Slicing→ 2D-DFT V(a, b, f , t) = P(a, b, f ) · H(t)

Table 6.1: Overview of the evaluated algorithms.
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Synthetic Example

To illustrate the CFT representation, we processed a mixture consisting
of two sinusoidal sources. One source is a pure sine wave of funda-
mental frequency 440 Hz whereas the other is frequency modulated
by a sinusoid of 6.3 Hz. In the first step, a STFT with a DFT-length
of 1024 samples and a hop-size of 256 samples was processed at a
sample rate of 22.05 kHz. Patches of size (Na, Nb) = (32, 48) (not re-
specting overlaps) were then taken from the STFT output. Figure 6.6 in
Section 6.2.1 then shows the Common Fate Transform for the mixture.
One can see that the CFT representation shows distinct patterns across
time, suggesting that the factorization is able to separate the sources.
Furthermore, if we now look at a smaller excerpt of the same synthetic
example, depicted in Figure 6.8, we can also observe the additivity
property of the common fate representations.
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Figure 6.8: Examples of patches of size (Na, Nb) = (32, 48). Theupper row shows the STFT output, the lower row the correspondingCommon Fate Transform (CFT).
Objective Evaluation on Unison Instrument Mixtures

To evaluate the proposed method, five musical instrument samples
were selected from the Unison Separation Dataset [279] — all of them
feature vibrato: violin, cello, tenor sax, English horn, and flute. It is
important to note that vibrato techniques differ between these instru-
ments: whereas the English horn and the flute only produce a very
subtle modulation, the violin and tenor sax have powerful frequency
modulations with a higher modulation frequency as well as a higher
modulation index. All samples last about three seconds. We then gen-
erated a combination of ten mixtures of two instruments, each one
generated with a simple SourceA — SourceB — (SourceA + SourceB)
scheme. Data were encoded in 44.1 kHz / 16 bit. We compared the
separation performance of six different methods, summarized in Ta-
ble 6.1:
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cfm For the CFM model, we took an STFT with frames of 1024 samples
and a hop-size of 512 samples. The resulting complex STFT was then
split into a grid of patches of size (Na, Nb) = (4, 64), each having a
half-window overlap in both dimensions.

mod We implemented a modified version of [21] where for the sake
of comparability, we used a STFT instead of a gammatone filterbank. A
DFT length of 1024 and a hop-size of 512 samples were chosen. After
taking the magnitude value, a second STFT of size 32 and hop-size 16

samples was computed for each frequency.

cfmmod We selected patch sizes of (Na, Nb) = (1, 64) and modified
the representation so that the magnitude was applied before com-
puting the 2D-DFT. This permits to compare the advantage of our
proposed factorization model (6.6) over MOD, when using the same
kind of energy-modulation representation in both cases.

cfmm For comparing the influence of computing modulations over
complex STFT or magnitude STFT, we tried our factorization model
when the magnitude of the STFT is taken before 2D-DFT, with patches
of the same size as for the CFM method.

nmf We took a “standard” NMF based method [306]. We highlight
that taking a STFT with frames of length 1024 would not make a
fair comparison, because the CFM model actually results in a larger
frequency resolution. Therefore a comparable NMF is based on an STFT

of DFT-length 32768.

hr-nmf See description in [175].

All factorizations ran for 100 iterations and were repeated five times.
We chose k = (2, . . . , 6) components for each factorization. For k > 2
we used oracle clustering to show the upper limit of SDR which can be
achieved.

We ran the performance evaluation by using BSSeval [301]. The
results of SDR, SIR, and SAR are depicted in Figure 6.9. Results indicate
that the CFM model performs well in all measures. However, in terms
of SIR, the results of HR-NMF are better than CFM method. The results
for CFMMOD and CFMM indicate the positive influence of the CFM
factorization compared to [21]. The results of CFMM indicate that
the complex CFT lead to better results. NMF did perform surprisingly
well, which may only hold for our test set, where each source is active
for a long period. This results in a cyclic stationary vibrato, revealing
spectral side lobes at such a high resolution. With more than one
component per source, the results of CFM do improve, but it can be
seen that more than two components (k = 4) will not increase the SDR

values as indicated in Figure 6.10. The separation results and a full
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Python implementation of the CFM algorithm can be found on the
companion website 5.
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Figure 6.9: Boxplots of BSS-Eval results of the unison dataset.Solid/dotted lines represent medians/means. ®2016 IEEE.
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6.3 common fate transformfor music separation
In the previous section, we showed that the Common Fate Model is
suitable to separate highly overlapped signals based on their spatial-
temporal modulation texture. In this section, we want to show how this
method can be extended for the application of vocal and accompani-
ment separation [218]. This scenario is significantly more complex than
the separation of instrument mixtures, hence the separation model
needs to be flexible enough to handle many of the critical edge cases
which make music separation challenging. With the recent success of
machine learning models [117], it became likely that an unsupervised
model such as NTF or CFM may not be flexible enough to enforce the
significant amount of domain knowledge that is present in this sce-
nario to improve performance. Rafii et. al describe the current machine
learning situation in [218]:

5 github.com/aliutkus/commonfate

github.com/aliutkus/commonfate
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“Taking advantage of the recent availability of sufficiently
large databases of isolated vocals along with their accompa-
niment, several researchers investigated the use of machine
learning methods to directly estimate a mapping between
the mixture and the sources [128, 293]. However, most
systems today still use classical time-frequency representa-
tions.

The common structure of deep learning methods for lead
and accompaniment separation usually corresponds to the
one depicted in Figure 6.11. Most methods mainly differ
in the architecture picked for the network, its input, and
output representation as well as in the way the network is
trained.

For the understanding of this section, it is sufficient to
mention that DNNs consist of a cascade of several, pos-
sibly non-linear transformations of the input, which are
learned during a training stage. They were shown to ef-
fectively learn representations and mappings, provided,
enough data is available for estimating their parameters [63,
96, 152]. Different architectures for neural networks may
be combined/cascaded together, and many architectures
were proposed in the past, such as fully-connected neu-
ral network (FNN), (convolutional neural network (CNN)),
or recurrent neural network (RNN) and variants thereof
such as the long short-term memory network (LSTM) and
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the gated-recurrent units (GRU). Training of such func-
tions is achieved by stochastic gradient descent [232] and
associated algorithms, such as backpropagation [238] or
backpropagation through time [237] (BTT) for the case of
RNNs.

Huang et al. were the first to propose RNNs [114, 204]
for singing voice separation in [128, 129]. They adapted
their framework from [127] to model all sources simultane-
ously through masking. Input and target functions were
the mixture magnitude and a joint representation of the
individual sources. The objective was to estimate jointly
either singing voice and accompaniment music, or speech
and background noise from the corresponding mixtures.

Modeling the temporal structures of both the lead and
the accompaniment is a considerable challenge. As an
alternative to the RNN approach proposed by Huang et al.
in [128], Uhlich et al. proposed the usage of simpler FNNs
[293] whose input consists of supervectors stacked of few
consecutive frames from the mixture.”

We decided to reimplement Uhlich’s model [293] to evaluate the
separation quality. The aim of this work was not to exactly reproduce
the results, but instead, to evaluate one main research questions: does
a DNN-based model benefit from the common fate representation
being able to better capture the modulation texture? For the implemen-
tation of the model, we used the Keras [53] deep learning framework
to systematically assess different combinations of input-and-output
representation of the system.

The network, as proposed in [293] consists of three fully connected
layers, where each of the hidden layers has the same number of hidden
nodes as the targeted output representation. This method can be
described as a variant of a stacked denoising autoencoder [303], where
the noisy input is mapped to a clean output of the same dimensionality.
The architecture is depicted in Figure 6.12.

6.3.1 Inputs and Outputs

The purpose of the model is to create a non-linear mapping function
from the magnitude of the input mixture X to the magnitude of
the target source Yj. The optimal parameters (weights) θj of such a
mapping function Yj = fθj(X) are learned via supervised training.
FNN networks, such as the one used here, can only deal with temporal
structure by reshaping the time-frequency input to a super vector to
be processed by the FNN. However, this drawback is compensated by
a large number of parameters in an FNN layer.
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Figure 6.12: Simplified block diagram of fully connected denois-ing autoencoder network as proposed by [293] for time-frequencybased separation.
Since the STFT, GFT and CFT are lapped transforms, different sce-

narios for the input and output representation of the FNN can be
envisioned:

stft-stft : for the input, we computed the STFT (N = 1024, Hop =

512) of each the audio track and selected excerpts of size, X ∈ R2C+1
+ ,

where C is the number of preceding and succeeding frames around
the central frame Xi+C. For the output, only a single central frame Yi+C
is selected. We used C = 2, reflecting the setting in [293]. This results
in an input sample size of X ∈ R5×513

+ and Y ∈ R1×513
+ .

gft-gft/gft-stft : instead of taking excerpts from the STFT, like
in STFT-STFT, we computed overlapping patches, as described in
Section 6.2.1. Each patch is of size (5, 8), which means that the same
number of time frames are used compared to STFT-STFT but addi-
tional redundancy has been added because of the overlap between
neighboring patches. For the output, we chose the GFT of Y. This
results in an input sample size of X ∈ R128×5×8

+ and Y ∈ R128×5×8
+ .

Furthermore, to reduce the number of parameters, we also evaluated
a setting where just the output is the central frame of the STFT.

cft-cft/cft-stft : in the first step, a processing as in GFT-GFT
was applied and then the 2D-DFT transform was applied (see Sec-
tion 6.2.1). This results in identical shapes as in the GFT-GFT but
with added benefits of this representation that can model neighboring
phase dependencies.

We used the DSD100 dataset [199] for training and test. For each
sample fed into the network, we randomly selected mixtures (without
replacement) from the DSD100 dataset.
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Figure 6.13: BSSEval separation results of the DSD100 datasetresults for vocals and accompaniment sources. Several combina-tions of ‘input-output‘ were tested, as indicated by the x-axis.
6.3.2 Training

We then sample from the DSD100 tracks and form single samples as
input for the FNN. Therefore, we first compute the input representation
of an audio track from the DSD100 set and then randomly sampling
without replacement from these tracks. The actual training has been
done using mini-batches of size 32. Each architecture is trained using
the ADAM optimizer [143] (learning rate: 1 · 10−3, β1 = 0.9, β2 = 0.999,
ε = 1 · 10−8). The model was trained for a fixed number of 30 epochs
and, in contrast to [293], greedy layerwise pre-training was not applied.

6.3.3 Results

For evaluation, the BSSEval metrics of all representations for the
DSD100 test set were computed. The results are depicted in Figure 6.13.
They indicate that the common fate representation is indeed improv-
ing the baseline STFT-STFT results. Overall, we can report a mean
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difference of 0.4 dB for CFT-CFT and 0.5dB for GFT-GFT, compared to
the STFT-STFT representation. However, it is worth mentioning that
both, the GFT and the CFT representation lead to a significant increase
in redundancy in the representation, thus increasing the number of
trainable parameters per network layer (26 million for CFT vs 0.26

million for STFT). Since we could not observe a large increase in differ-
ence of training (Dev) vs. test (Test) performance, we assume that the
increasing number of parameters does not lead to large overfitting.

6.3.4 Submission to SiSEC 2016

The results have been submitted to the 2016 SiSEC [172]. This enables
to relate the work compared to 22 other source separation methods,
all evaluated on the same test data, as part of the task for separating
professionally-produced music recordings at SiSEC 2016. Table 6.2 lists
the participating systems.

Acronym Ref. Summary

STO1 Proposed FNN on GFT representation

STO2 Proposed FNN on CFT representation

HUA [126] RPCA standard version

RAF1 [222] REPET standard version

RAF2 [171] REPET with time-varying period

RAF3 [221] REPET with similarity matrix

KAM1-2 [164] KAM with different configurations

CHA [45] RPCA with vocal activation information

JEO1-2 [134] l1-RPCA with vocal activation information

DUR [73] Source-filter NMF

OZE [244] Structured NMF with learned dictionaries

KON [129] RNN

GRA2-3 [100] DNN ensemble

UHL1 [293] FNN with context

NUG1-4 [196] FNN with multichannel information

UHL2-3 [294] LSTM with multichannel information

IBM ideal binary mask

Table 6.2: Methods evaluated in SiSEC 2016.
The objective scores for our proposed methods were obtained using

BSSEval and are given in Figure 6.14.
An obvious observation in Figure 6.14 is the difference in perfor-

mance between data-driven methods and “classical” unsupervised
methods. Further, it shows that exploiting learning data does help
separation compared to only relying on a priori assumptions such as
the harmonicity or redundancy. Additionally, dynamic models such as
LSTM from UHL2-3 appear more adapted to music than FNN. These
good performances in audio source separation go in line with the suc-
cess of DNNs in fields as varied as computer vision, speech recognition,
and natural language processing [152].
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Relating our results of STO1 and STO2 to the other methods, we

observe that the performance was only slightly below the two state-of-
the-art performances of UHL and NUG. Furthermore, the difference
between test and validation dataset indicates, that our CFT DNN model
even has better generalization as the one in NUG. While our STO
model shares the same network architecture with UHL1, we were
unable to reproduce the results, as we are approximately 1 dB below
UHL1. One reason is in the difference in initialization of the model
as well as the fact that NUG and UHL models exploit multichannel
information.

6.3.5 Evaluation Website

For more details and the ability for playback of the estimates, we
refer to the dedicated interactive website that we built as part of my
organizational help for SiSEC6. In fact, for the first time, interested
researchers are now able to listen to over 10000 stimuli from all partic-
ipating systems. This was made possible through modern JavaScript
technologies like the Web Audio API to interactively assess source
separation results in the browser. For each track, separation results
are provided as well as the objective BSSeval scores, all of the data
is reproducible and was made available in [285]. Figure 6.15 depicts
a screenshot of the website. The objective scores are depicted as an
interactive matrix where users are able to sort the results for each track
and each system interactively by the source of interest. Clicking on
one rectangle in the heatmap opens the interactive player that allows
to simultaneously playback the separated sources including changing
the volume of each source.

6.4 summary and discussion
In this chapter, we presented methods that exploit modulations for
source separation without knowing them a priori. In the first part
of this chapter, we presented a study where we demonstrated the
use of the modulation spectrogram tensors for separating unison
instrument mixtures, comparing the results with those presented in
the previous chapter. In a next step, we proposed a complex tensor
representation, the Common Fate Transform (CFT), computed from
rectangular patches of the complex STFT using two-dimensional DFTs.
This novel representation exposes joint modulation characteristics
of amplitude and frequency modulated signals while being fully
invertible. We demonstrated the usefulness of this representation using
our Common Fate Model that factorizes patches from the CFT into
two components, a modulation pattern and its activation. The model

6 http://www.sisec17.audiolabs-erlangen.de

http://www.sisec17.audiolabs-erlangen.de
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Figure 6.15: Screenshot of the SiSEC 2016 Website http://
sisec17.audiolabs-erlangen.de

is inspired by the human’s ability to group common modulations into
single sources. We presented results on unison musical instrument
mixtures, indicating that it outperforms existing methods.

In the second part of this chapter, we combined the CFT with an
existing deep learning based separation model [293]. We showed that
the CFT improved separation quality compared to STFT in a fully
connected deep neural network. Even though the CFT significantly
increases the input size (due to its redundancy) and the number
of trainable network parameters (due to its stacked auto-encoder
architecture), generalization performance did not suffer.

The results of the best performing model were submitted to SiSEC

2016, where we scored among the top three participating research
teams. Finally, we presented interactive evaluation tools, developed for
SiSEC, allowing to interactively assess the performance of separation
systems both objectively and subjectively.

http://sisec17.audiolabs-erlangen.de
http://sisec17.audiolabs-erlangen.de
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The separation of mixtures into its original audio sources, as presented
in the previous chapters, is a challenging task. Furthermore, source
separation is difficult to evaluate, and researchers compare to a known
reference even though this does not reflect how humans separate
mixtures. It has long been a research topic to answer the question if
humans can separate by fully extracting the desired source or if we can
focus our attention on one source — segregate them [32]. Moreover,
despite recent progress in auditory science [43, 150, 217], research still
is investigating how separation takes place in the auditory cortex or
other parts of the human brain. One thing, however, we can assess
directly is if humans can reliably detect the number of sources in a
mixture of several sources.

In order to address this question, it helps to understand how hu-
mans infer counts and if our strategy is depending on the count.
When we look at vision, these are questions that have already been
discussed over a hundred years ago in scientific research; an early
study in the field of psychology of vision was published by Jevons in
1871 [135]. Jenvons presented an experiment to quickly infer the num-
ber of objects (beans) and came up with the hypothesis that humans
can instantly estimate the number of objects without actually counting
and therefore identifying them. Jenvons mentioned in [135]:

“It is well known that the mind is unable through the eye
to estimate any large number of objects without counting
them successively. A small number, for instance, three or
four, it can certainly comprehend and count by an instan-
taneous and apparently single act of mental attention.”

This “one-two-three-many” hypothesis was a fundamental obser-
vation. The fact that we can directly infer the numerosity of small
numbers of objects, up to about four, is also known as subitizing [35,
139]. We refer to this strategy as “direct count estimation”. Concerning
our hearing, there are indications that the auditory system is capable
of subitizing audio sources [120]. And surprisingly, as shown in [138,
140], humans share the same limitations of correctly estimate up to
three simultaneously active speakers.

In this chapter, we present two experiments contributing to this in-
teresting field of research. The first experiment (Section 7.1) addresses

75
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the question if the number of instruments in polyphonic music is
subject to the same limitations. In the second contribution (Section 7.2)
the aim is to verify the findings of an earlier experiment focussed on
speech and increase the number of stimuli to be used for comparison
of machine learning based count estimations methods

7.1 instrument count estimation
This chapter was

previously published
in [276] and has

been revised for this
thesis.

While source separation methods can be objectively evaluated given a
true reference, a human versus machine comparison is cumbersome be-
cause measuring the human’s ability to perform separation is difficult.
However, one can easily evaluate if humans can detect the number of
sources in a mixture of several sources. In this Section, we take a first
step towards designing an experiment where we focus on polyphonic
music of inhomogeneous timbre, where the question is: What is the
number of instruments humans can estimate correctly? Such knowl-
edge can be used in auditory modeling or as a pre-processing step for
source separation algorithms.

In previous work, the perception of concurrent sound sources has
been analyzed on different scales so far. Bregman’s and McAdams’
auditory stream theory [182] can be seen as an analytical way of
describing how sound events are perceived by the human auditory
system. Unfortunately, it is difficult to model professionally produced
music by auditory stream models because of its high complexity. Also,
none of these models is motivated to predict the perceived number of
musical sources. There are indications that for this task, humans tend
to fail if more than three sources are present at the same time [131].
Kashino et. al [138] addresses the questions for concurrent speakers
in a “cocktail party” like environment and found an upper limit of
three voices humans can perceive. When the focus shifted to musical
instruments as sources, research took concepts from musicology into
account. Huron [131] was the first who addressed this question in 1989

at a musically meaningful level. Huron asked for the number of voices
within a piece of music, whereby voices in musicology one can define
it as a line of sound or note events (See [38] for further definitions).
Huron determined by experimental results that the number of correctly
identified voices is up to three.

Several results are addressed in this section, including a possible
upper limit of the number of perceived instruments but also if one can
see significant differences in the performance of musicians compared
to non-musicians.
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7.1.1 Experiment

For the purpose of gaining more knowledge in understanding the
human perception of multiple present instruments, an experiment was
conducted. Huron selected voices from organ pieces only. We wanted
to address the more general case where voices are played by different
instruments. As we set our focus on comparison between musicians
and non-musicians, our experiment was designed so that it respects
the fact that the latter have only limited musical background.

Although it might be interesting to have direct comparison with
Huron’s experiment, we agree that expanding the methods to an
inhomogeneous timbre case is error prone. One reason is that there is
reasonable doubt about the non-musicians understandings in terms of
how a voice is defined. This is why we choose a trade-off with a more
simplified experiment where we asked for the number of instruments
instead of voices. Also whereas Huron [131] excluded subjects from
his experiment because of their lower performance, we compared the
results of both groups.

7.1.2 Stimuli

The selection of music items is crucial for our experimental setup.
Usually music recordings have no ground truth metadata available to
determine the actual number of instruments. Using annotated music
like that from the RWC database [98] fulfills this requirement but
lacks the possibility to remix, attenuate or suppress specific sources.
This is important so that the experiment consists of equally grouped
stimuli. Instead of the original RWC recordings, the annotated MIDI
data itself was used as prototypes for the stimuli. To make the count
estimation task less ambiguous for the subjects, the instrumentation
was chosen to be mostly constant during the music piece. Therefore we
calculated an “instrumental stationarity” metric. The annotated MIDI
files from [98] were converted into piano roll representations for each
instrument channel. This representation was then converted into a
binary instrumentation activity matrix IAM[k1|k2|...|kN ] ∈ {0, 1}, where
at each discrete time instance i a vector ki indicates which instruments
are active. The aim is then to select frames of length N which are
stationary by means of changes in instrumentation and activity. To get
many items with a high instruments count, the maximum number of
instruments within a frame was stored in a binary mask kmax which
was compared with all ki=1...N so that (|ki ⊕ kmax| ≤ 1) ∨ (ki = 0).
The resulting binary vector was smoothed with an averaging kernel
of size N. By peak picking we got a list of possible candidates which
contained a high stationarity in instrumentation. Further the RWC
files were filtered a priori to exclude items dominated by electronic
instruments or singing voice. Table 7.1 presents the selected 12 items
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representing pairs of one to six simultaneously present instruments.
Each item is around seven seconds long. By cutting at note offsets
we varied the lengths of the items to make it semantically more
meaningful. Six items (notated as RM-C***) belong to the classical
western music genre whereas the other items are of mixed genre.

The MIDI files were humanized randomly and rendered in a profes-
sional sequencer software utilizing state-of-the-art commercial sam-
pling products. The process is similar to the dataset creation mentioned
in Section 4.1. The rendered files were processed with convolutive
reverb to match the original recordings. Additionally a loudness nor-
malization was applied according to EBU-R128[75]. To avoid spatial
cues every item was rendered to mono at 16 bit/44.1 kHz.

RWC ID Start [s] Dur. [s] Instrumentation k

J021 46.5 6.6 Piano, Contrabass (pizz.) and Trumpet 3

C001 0.0 9.0 Bassoon 1

G047 35.3 8.3 Violoncello 1

C016 0.9 7.6 Viola and Violoncello 2

G068 132.4 6.6 Violin and Flute 2

C018 240.4 5.4 French Horn, Piano and Violin 3

G046 0.3 7.9 Contrabass, Piano and Violoncello 3

C013 5.6 6.0 Flute, Viola, Violin and Violoncello 4

G036 0.0 6.5 Acoustic Guitar, Electric Bass, Piano and Violin 4

C012 112.0 6.0 Contrabass, Flute, Viola, Violin and Violoncello 5

G037 67.1 7.0 Acoustic Guitar, Contrabass (pizz.), Flute, Piano
and Tenor Sax

5

C001 147.8 6.0 Bassoon, Clarinet, Contrabass, French Horn,
Oboe and Violin

6

G028 17.5 6.5 Electric Bass, Electric Guitar, Flute, Piano, Trom-
bone and Trumpet

6

Table 7.1: Selected items from the RWC Music Database [98].Item J021 is used as training item.
7.1.3 Methods and Participants

The experiment was attended by 62 participants, where half of them
regularly play a musical instrument. They were asked to count how
many different instruments they can hear. 12 items from the test set
(Table 7.1) were played back in random order. The experiment was
presented by a user interface depicted in Figure 7.1. Except for the
training item, every subject could play back each stimulus up to three
times. Additionally they were asked to estimate how certain they were
in their decision (ranged from uncertain to very certain). Instead of a
slider UI-element, the interface only features plus and minus buttons
so that the subjects were not biased about the maximum number of
instruments. Item J021** had been selected as a training item and was
presented to the subjects during the introduction phase to make them
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Figure 7.1: Experiment User Interface
familiar with the user interface. This trial also unveiled the number
and name of the instruments within that piece. After they had read
the introduction page, the subjects were asked to adjust the volume
during the training example to their preference and leave the volume
at that level for the duration of the experiment. The stimuli were
presented on Beyerdynamics DT770 headphones connected to a RME
Babyface. The complete test took about 20 minutes on average for
every participant.

7.1.4 Results: A gap of one instrument

The independent variable I(i) is the number of instruments of one
music item i where in this case I(i) ∈ {1, 2, ..., 6}. R(i, s) is defined as
the number of instruments that are perceived and counted by subject
s for music item i. The dependent variable is then derived from the
main subject response as ∆(i, s) = I(i)− R(i, s) transformed into a
binary scale:

E(i, s) =

0 if |∆| = 0

1 if |∆| > 0 .
(7.1)

The primary statistical null hypothesis (H1) is stated in that the
means of ∆ and E1, grouped by the number of instruments, do not
differ significantly. As we also want to test the between-groups per-
formance of musicians versus non-musicians, we introduce another
dependent variable M(s) ∈ {0, 1} of binary scale. This is stated in
a secondary null hypothesis (H2) where the means of ∆ and E are
not significantly different between musicians and non-musicians. No
subjects were screened from the results, although there are two cases

1 The fact that E is dichotomous will lead to a mean value that equals to a probability
of a binary distribution.
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Figure 7.2: Error probability (top) and Mean of ∆ = I − R(right) categorized by the number of instruments.
where no valid response had been made. Results are grouped by items
of I instruments.

In general, participants tended to perform worse for items with
more than two instruments. The probability of correctly estimating
one instrument was 90.0% whereas only one person out of 62 gave a
correct response for an item with six instruments. In some cases, the
number of instruments does not correspond to the number of voices
for every item. Items where an instrument plays more than one voice
and voices which are played by more than one instrument. However,
most of the chosen instruments are monophonic so in our case, this
occurred only for items where piano or guitar is present. Also, we
made sure that the number of total voices did not exceed the maximum
number of instruments in that item. Voices being played by more than
one instrument (unison), present in G068, showed surprisingly good
results.
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Underestimation

We confirmed the results in [131] that the most common error is
underestimation of one instrument, although this accounts only for 43

% of the responses in our experiment. Only in one case ∆ is negative
(overestimation) which is item C016, a “Clarinet Quintet in A major
by Wolfgang Amadeus Mozart (K.581. 1st movement)” where we have
excluded the solo clarinet part and two strings. Still, the remaining
sound seems to be so similar to that of a quartet that musicians tended
to hear “phantom” instruments.

Self-Evaluation

Figure 7.3 shows the results of the subjects certainty grouped by
instrument count. Although the rate of “very certain” responses drops
down to 11.3% for items with six instruments the rate of “certain”
responses is still as high as 43.5%. When we take ∆ into account we
find a significant linear correlation between ∆ and certainty where 0 is
uncertain and 2 is very certain (Pearson’s r = −0.227 at the p = 0.05
level).
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Figure 7.3: Responses for certainty of subjects by number ofinstruments
Main Effects

To test the null hypotheses (H1 and H2), statistical tools are required.
The first tests focus on ∆ which is an interval-scaled variable. To show
differences between means of two or more groups, usually, One-Way-
ANOVA tests are applied. ANOVA tests expect independent normally
distributed variables and homogeneity of the variances in each group.
However both the Kolmogorov–Smirnov test of normal distribution
and Levene’s test to determine the homogeneity of group variances
fail. Although ANOVA is known to be robust enough to run the
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tests against non-normal distributed cases and unequal variances, the
significance levels of the results are doubtful. Therefore we choose to
run a non-parametric test. The Kruskal–Wallis test can be applied even
if the data is not normally distributed. However, it has to be run on a
slightly modified hypothesis which compares the medians of groups
instead of the means. The Kruskal–Wallis test allows to reject both
modified hypotheses (asymptotic p = 0.000, χ2 = 499636, d f = 5).

Concerning E which is a categorical variable, linear models such
as ANOVA cannot be used. As described in [132], instead, a binary
regression model that turns the mean of E into a binomial distributed
probability can be used. Similar to ANOVA, the output variable will
be modeled by a binary logit regression that models the output using
log linear values.

By including the main factors I and M we set up a Generalized Linear
Model (GLM)

logit(E) = Intercept + x1I + x2M. (7.2)

A test of the main effects is statistically significant (χ2 = 437418, p <

0.000, d f = 6) so that both null hypotheses (H1 and H2) can be rejected.
The significance of both effects as well as parameter estimates and
Wald values of the calculated model are shown in [276].

The results indicate that there is a significant difference in the error
probability for groups of instrumentation counts but also for musi-
cians versus non-musicians. A pairwise comparison test based on the
mean differences reveals where these differences are located. Regard-
ing the error probability of different instrument counts, the pairwise
comparison test reveals that nearly all groups show significant mean
differences between each other, which was the expected result. How-
ever, by calculation using the logit GLM model shown in equation 7.2
we found that there are two groups of items of five and six instru-
ments (mean difference 0.04, std. error = 0.019, d f = 1, p = 0.055) that
did not show any significant difference. For both groups, the error
probability is close to 100%.

To investigate the difference in performance between musicians and
non-musicians a pairwise comparison between those two groups was
run. Overall musicians perform about 20% better throughout the test
(mean difference = 0.18, std. error = 0.0044, d f = 1, p = 0.000). We do
not know what caused these differences as the level of professionalism
had not been surveyed. Also, 37 % of the musicians additionally had
experience in audio engineering due to their profession.

Further, to look at possible interaction effects between the number
of instruments and the groups of musicians and non-musicians we
adapted our logit equation to

logit(E) = Intercept + x1I + x2M + x3M× I. (7.3)
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We then reran the GLM analysis selecting only items of three and
four instruments. This avoids quasi-complete separation in the logit
regression model which is caused by low variances in the error proba-
bility for items of I ∈ {1, 2, 5, 6}. The model effects of the subset can
be found in [276].
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Figure 7.4: Pairwise comparison between the interaction ofMusician/Non-Musician and the number of instruments (labeledin nodes). The costs between nodes indicate the mean differencesbetween groups. The red/bold line indicates that is there is nosignificant difference at the p = 0.005 level.
The results indicate that the interaction of Musician×Instruments

is not significant on a p = 0.05 level in general and a pairwise com-
parison test reveals two groups of equal probability. The pairwise
comparisons are depicted in Figure 7.4. The red vertex indicates there
is no significant difference in the error probability for the group of
musicians in items with four instruments compared to non-musicians
in items of three instruments. Therefore a gap in the error probability
of one instrument between those two groups becomes apparent.

This experiment shows that instrument count estimation tasks in
music is a difficult task for humans. Our experiment with 62 partici-
pants was conducted to address the question of how many instruments
one can estimate correctly. The focus was set on stimuli of inhomo-
geneous timbre and also mixed genre. By comparing musicians to
non-musicians, we revealed that there is a significant difference in
performance. Particularly this gap is most prominent for items of three
and four instruments. Furthermore, for all stimuli (ranging from one
to six instruments) we see that musicians performed about 20% better
than non-musicians. The experiment shows an assumed upper limit
for items with more than three instruments.
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7.1.5 Experiment at Larger Scale

Many tasks in auditory experiments such as quality assessment [227],
are not suitable for untrained participants, limited resources (low qual-
ity headphones, noisy environments) or time constraints. We found
that an experimental design such as count estimation, where only a
single number is asked to the participant, is an ideal experimental
environment to evaluate scale in an uncontrolled environment such
as on the web. We therefore designed a follow up study, published
in [254] that compares a large scale web experiment to our laboratory
results, similar to previous comparisons for other auditory tasks [155,
228, 245, 315].

We used the same stimuli as in the laboratory experiment, however,
the training phase was slightly shortened. The experiment took place
between February 2013 and April 2013 where participants visited the
experimental website2. After a screening procedure, described in [254],
a total of 1168 valid participants remained.

The main results of the web based experiment in comparison to the
previous (lab-bases) experiment is depicted in Figure 7.5. The figure
shows the mean probability of correct responses for both environments.
The result indicate that there a only very small differences between
both experiments. In fact, a detailed analysis in [254] revealed that
there are no statistically significant differences between the results of
the two experiments.

Further analysis in [254] revealed that “the participants in the labora-
tory experiment were about 4.6% better in average for all stimuli than

2 http://www.audiolabs-erlangen.com/experiments/wice/

http://www.audiolabs-erlangen.com/experiments/wice/
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the participants of the Internet experiment. When looking into the
differences between musicians and non-musicians, the outcome for the
Internet experiment and laboratory experiment differ slightly. In the
laboratory experiment musicians performed about 31.6% better than
non-musicians and in the Internet experiment musicians performed
about 20.85% better.” Given a hypothesis that musicians are generally
better at performing certain musical related tasks, it indicates that
in the (non-anonymous) laboratory experiment, participants that an-
swered to be a musician were, on average, more professional than in
the web based experiment.

Finally, the experiment also showed that humans are able to cor-
rectly estimate a count even in a very challenging scenario such as
unison mixtures and when asked in a not optimal environment. In
fact, the results showed that “76% of the participants correctly iden-
tified two instruments. Only 18% of the participants underestimated
by one instrument, 6% overestimated by one instrument.” This sur-
prising outcome then triggered the idea to deepen research on unison
instrumental recordings as presented in Chapter 5.

7.2 speaker count estimation
This section was
previously published
in [272, 273] and is
reprinted, with
minor modifications,
with permission.

Humans are excellent in segregating one source from a mixture [32]
and tend to use this skill to perceptually segregate speakers before
they can estimate a count, as highlighted, e.g. in [140]. As shown
in [138, 140] with extensive experiments using Japanese speech sam-
ples, humans are able to correctly estimate up to three simultaneously
active speakers without using any spatial cues. In this experiment,
we reproduced the experiments conducted in [138, 140] using stimuli
of English speakers. Designed to address source separation research,
we also modified the question to ask participants for “the maximum
number of concurrent speakers” in a short excerpt of speech.

7.2.1 Stimuli

To date, many available speech datasets contain recordings where only
a single speaker is active. Datasets that include overlapped speech
segments either lack accurate annotations because the annotation of
speech onsets and offsets in mixtures is cumbersome for humans or
lack a controlled auditory environment such as in TV/broadcasting
scenarios [102]. Since a realistic dataset of fully overlapped speakers is
not available, we chose to generate synthetic mixtures. We recognize
that in a simulated “cocktail-party” environment, mixtures lack the
conversational aspect of human communication but provide a con-
trolled environment which helps to understand how a DNN solves the
count estimation problem. As we aim for a speaker independent solu-
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tion, we selected a speech corpus with preference to a high number of
different speakers instead of the number of utterances, thus increasing
the number of unique mixtures. We selected LibriSpeech clean-360 [203]
which includes 363 hours of clean speech of English utterances from
921 speakers (439 female and 482 male speakers) sampled at 16 kHz.

To compute the maximum number of concurrent speakers k, annota-
tion of the activity of each individual speaker is required. Even though
many corpora come with word and phonemes annotation, they often
are not consistent across different corpora. We, therefore, generated
annotations based on a voice activity detection algorithm (VAD). As
we rely on a robust VAD estimate, we found the implementation from
the Chromium Web Browser as part of the WebRTC Standard3 to yield
good results.

To generate a single example, a tuple of a speech mixture and its
ground truth speaker count k, we draw a unique set of k speakers
from the corpus. For each of the speakers, we then select a random
utterance, resampled to 16 kHz sampling rate and apply VAD. The
VAD method was configured using default parameters using a hop
size of 10 ms. Further, the VAD estimate was used to remove silence
from the beginning and the end of an utterance recording. In the
next step, more utterances from the same speaker are drawn from the
corpus until the desired duration is reached. We removed silence in the
beginning and end of each utterance to increase the overlap within one
segment. Both, the audio recording and the VAD annotation of each
utterance is concatenated. The procedure is repeated for all speakers
such that k time domain signals are created. Signals are linearly mixed
and peak normalized to avoid clipping. The ground truth output k
for each sample is then computed from the VAD matrix using the
maximum of the sum over all speakers.

In fact, our method to generate synthetic samples results in an
average overlap of 85% for k = 2 and of 55% for k = 10 (based on 5s
segments). This procedure is similar to [188] used to label the data.
The dataset is available for download [281].

7.2.2 Experimental Setup

We conducted a study using the simulated data from the LIBRI Count
Dataset as mentioned in the previous subsection. In turn, we randomly
selected 10 samples for each k ∈ 1, . . . , 10, resulting in 100 mixtures
of 5 seconds duration each. The stimuli were presented in random
order using a custom web-based interface (depicted in Figure 7.6) con-
nected to a database API that saved the anonymized count responses
and additional information about the participant session such as the
response time. The experiment was done using between-group design,

3 WebRTC 1.0: Real-time Communication Between Browsers W3C Editor’s Draft 05

June 2017
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Figure 7.6: Speaker count estimation experiment user interface.
where one group (blind experiment) did not get any prior informa-
tion about the maximum number of speakers in the test set (similar
to [140]). However, the maximum number of speakers was revealed to
the other group (informed experiment). Further, none of the partici-
pants received any feedback about the error made during the trials.
The participants were able to pause and resume the experiment at
any time to reduce fatigue. Similarly to [140], lab-based experiments
were conducted with ten participants for each group (n = 20) using a
custom designed web-based software. None of the participants were
native English speakers. The experiment and its results from all par-
ticipants is made available through [280]. A simplified version of the
experiment is made available through a web application4.

7.2.3 Experiment Results

To reveal over- and underestimation errors, we decided to report the
average response for each k. As a reference, we also included the aver-
age results from [140, Experiment 1, 5 seconds duration] which shows
similar (with slightly higher error probability) results compared to our
blind experiment. Also, in [140] the maximum number of speakers
to test was six whereas we evaluated stimuli with up to ten speakers.
The results of our lab-based experiments are shown in Figure 7.7 and
Figure 7.8. Results indicate that underestimation becomes apparent for
k > 3. First and foremost, we can confirm the “one-two-three-many”
paradigm on our experiment with English utterances. When we asked
participants about the strategy they pursued, many reported that with
more than three speakers it is not possible to identify (and count) the
speakers but rather compare the density of the speech to that of 1-3

4 https://denumerate.app

https://denumerate.app
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speakers. For higher speaker counts, participants reported that the
phoneme density was a relevant cue that allowed them to extrapolate
a source count estimate. Interestingly, our results of the informed
experiment reveal that they performed significantly better than those
that participated blindly. This is especially obvious for six and more
speakers where the informed group performed better by more than
one speaker in mean absolute deviation.
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7.3 summary and discussion
In this chapter, we presented two experiments that we conducted
to get a better understanding of the human ability to estimate the
number of sources in overlapped mixtures.

First, we showed that estimating the number of instruments in mu-
sic mixtures is a challenging task for humans. We presented the results
of a controlled experiment with 62 participants. Our experiment indi-
cated that the upper limit is reached with more than three instruments,
related to an earlier experiment [131] focused on voices instead of
instruments. In Chapter 2, two different questions were introduced
how to frame the count estimation problem. In an experiment, we
explicitly used an open question of “How many instruments can you
hear” to gather more knowledge into the strategies being applied by
the participants. Another reason was that the stimuli durations were
too long to ask for the maximum number of concurrent stimuli, thus
promoting “counting by detection” as a good strategy to approach the
problem.

By comparing musicians to non-musicians, we showed that there is a
significant difference in performance for count estimation, confirming
similar findings in other auditory tasks [146]. Particularly, we found
out that this gap is most prominent for stimuli of three and four
instruments. Furthermore, for all stimuli (ranging from one to six
instruments) we revealed that musicians performed about 20% better
than non-musicians, hence revealing a “gap of one instrument” in
mean absolute error.

We then repeated this experiment in an open, uncontrolled envi-
ronment with more than 1000 participants. To our knowledge, this
was the first larger crowdsourced auditory experiment within the
Signal Processing or MIR community. In comparison to audio quality
experiments like MUSHRA [227], we can, therefore, conclude that
count estimation tasks are suitable for highly scalable crowd sourced
listening experiments.

In our second experiment, we reproduced an earlier study presented
in [140] to estimate the maximum number of concurrent speakers in
short audio mixtures, simulating a “cocktail-party” environment. Our
experiment went a step further with respect to the maximum amount
of speakers to be estimated (up to k = 10). The results indicated almost
no person was able to correctly estimate up to ten speakers. However,
we also observed that even for more than seven speakers the mean
response did further (but not linearly) increase. This indicates that
humans are possibly interpolating some sort of a speech density to
make up their decision.

We conclude that all of our count experiments share a common
outcome: A) humans are unable to correctly estimate more than four
sources and B), underestimation is the main cause of error.
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In a “cocktail-party” scenario, one or more microphones capture the
signal from many concurrent speakers. In this setting, different ap-
plications may be envisioned such as localization, crowd monitoring,
surveillance, speech recognition, speaker separation, etc. When devis-
ing a system for such a task, it is typically assumed that the actual
number of concurrent speakers is known. This assumption turns out
to be of paramount importance for the effectiveness of subsequent
processing. Notably, for separation algorithms [57], real-world systems
do not straightforwardly provide information about the actual number
of concurrent speakers. It, therefore, is desirable to close the gap be-
tween theory and practice by devising reliable methods to estimate the
number of sound sources in realistic environments. Surprisingly, very
few methods exist for this purpose in an audio context, in particular
from a single microphone recording.

From a theoretical perspective, estimating the number of concurrent
speakers is closely related to the more difficult problem of identifying
them, which is the topic of speaker diarization [7, 223, 234, 235]. In-
tuitively, if a system is able to tell who speaks when, it is naturally
also able to tell how many speakers are actually active in a mixture.
We call this strategy “counting by detection”. A good working diariza-
tion system would be able to sufficiently address the speaker count
estimation problem using this strategy. However, it appears to be a
very complex problem to tackle when one is only interested in the
number of concurrent speakers. Furthermore, as current diarization
systems only work when a clear segmentation is possible, the first
step of such a system often is to find homogeneous segments in the
audio where only one speaker is active. The segment borders can be
found by speaker change detection [324]. These homogeneous seg-
ments are used to discriminate and temporally locate the speakers
within a given recording. When sources are simultaneously active, as
in real cocktail party environments, existing segmentation strategies
fail. In fact, overlapping speech segments typically are a major source
of error in speaker diarization [7].

To improve the robustness of these detection-based methods, a num-
ber of approaches attempt to detect and possibly reject the overlapping
speech segments to improve performance [26, 130]. Overlap detec-
tion has since evolved into its own line of research with many recent
publications such as [5, 92, 261]. Overlap detection can be seen as a
binarized version of the count estimation problem where the num-
ber of speakers equals to one (no overlap) or more than one (overlap).

91



92 data-driven speaker count estimation
It is, therefore, possible to apply a count estimation system for the
overlap detection problem but not vice versa. Also, an overlap detec-
tion system cannot be easily utilized in a source separation system.
In fact, it should be noted that before the arrival of deep learning
based separation systems, models required long context and in such
a case, for methods like NMF, the number of concurrent speakers
could be introduced as a regularization term [156]. In recent years,
however, large improvements were achieved by deep learning based
methods [116, 325] at shorter segment duration (often 1-5 seconds). In
such approaches, it becomes possible to apply separation only when
its “needed”. In this scenario, a method of estimating the maximum
number of concurrent speakers becomes useful and in some cases
essential.

When speaker overlap is as prevalent as in a “cocktail-party” sce-
nario, developing an algorithm to detect the number of speakers is
challenging. Since there are indications that the auditory system is
capable of subitizing sources [120], we transfer this fact to the audio
domain and directly attempt in this study to estimate the number of
audio sources through “direct count estimation” (see also Chapter 7).
The question if machines could outperform humans, or if they are
subject to similar limitations, remains to be answered and is also part
of this work.

Directly estimating the number of sources in audio mixtures has
many applications and appears as a reasonable objective that mimics
the process of human perception. Since humans do have two ears
that provide spatial diversity, a first natural idea to imitate human
performance is to exploit binaural information to proceed to source
count estimation. In terms of signal processing, this is achieved by
estimating directions of arrival (DoA) and clustering them [9, 10, 71,
173, 191, 205, 206, 309]. However, many audio devices are equipped
with only a single microphone, and being able to also count sources,
in that case, is desirable. Consequently, the single-channel scenario
has been considered in many studies.

One of the first single-channel methods was proposed in 2003 by
Arai [8]. It is based on the assumption that speech mixed from more
than one speaker has a more complex amplitude modulation pattern
than a single speaker. The modulation pattern is aggregated and used
as a decision function to distinguish between different numbers of
speakers. In [247], the authors propose an energy feature based on
temporally averaged mel filter outputs. The number of concurrent
speakers was determined by manually determining thresholds that
best match individual speaker counts. In a more recent work, Xu
et.al. [320] estimate the number of speakers by applying hierarchical
clustering to fixed-length audio segments using mel frequency cep-
stral coefficients (MFCCs) and additional pitch features. The method
assumes the presence of at least some non-overlapped speech and
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was evaluated on real-world data of 20 hours duration. An average
count estimation error of one speaker is reported using excerpts of
eight-minutes duration and featuring up to eight speakers. In another
vein, Andrei et.al. [4, 6] proposed an algorithm which correlates single
frames of multi-speaker mixtures with a set of single-speaker utter-
ances. The resulting score was then used to estimate the number of
speakers using thresholds.

In all the aforementioned methods, the speaker count estimation
problem was devised. The different strategies undertaken there rely
on classical and grounded signal processing strategies and exhibit fair
performance in a controlled setup. However, our experience shows (see
Section 8.4) that they leave much room for improvement when applied
to more diverse and challenging signals than those corresponding to
their targeted applications, notably in the case of many different and
constantly overlapping speakers. This is due to their main common
weakness, which is to rely on the assumption that there are segments
where only one speaker is active, in a way that is similar to the
classical speaker diarization studies mentioned before. In [271] we
presented a first data-driven approach based on a recurrent network,
motivated by the recent and impressive successes of deep learning
approaches in audio tasks such as speech separation [99, 116, 325] and
speaker diarization [89, 122, 321]. The methods proposed in [271] to
address speaker count estimation were built upon recent methods to
count objects in images, which is a popular application with many
contributions from the deep learning community [11, 29, 46, 141, 179,
258, 312, 326, 327]. In [271] two main paradigms were evaluated: a)
count estimation as regression problem, where the systems are directly
trained to output the number of objects as a point estimate, and b)
classification, where every possible number of objects is encoded as a
different class and the output of a predicting system corresponds to a
probability distribution over these classes. The results of the proposed
method indicated that a classification based neural network performed
better than one based on regression. One drawback, however, is that
the maximum number of speakers (the number of classes) is known
in advance.

In this study, we build upon [271] and focus on the network ar-
chitecture design, as well as on finding limitations for different test
scenarios. This work makes the following contributions: i) we general-
ize the problem formulation by fusing classification and regression,
which allows estimating discrete outputs while controlling the error
term. This is done by picking a point estimate from a full posterior
distribution provided by the deep architectures; ii) in addition to the
recurrent network introduced in [271], we propose alternative speaker-
independent neural network architectures based on the convolution
operation to improve count estimation. Each of the proposed networks
is adjusted to estimate the number of speakers from audio segments
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of 5 seconds; iii) we test the performance of these networks in multiple
experiments and compare them to several baseline methods, pointing
out possible limitations. Furthermore, we present a statistical analysis
of the results to determine whether classification outperforms regres-
sion for all architectures; iv) we conducted a listening experiment
to relate the best-performing machine to human performance. We
describe one of the strategies taken by the data-driven approach that
might explain its superior performance. Finally, for the sake of repro-
ducibility, the trained networks (models), as well as the test dataset,
are made available on the accompanying website1.

8.1 problem formulation
We consider the task of estimating the maximum number of concurrent
speakers k ∈ Z+

0 in a single-channel audio mixture x. This is achieved
by applying a mapping from x to k. We now provide details on the
notations, the general structure of the method, and ways to exploit the
deep learning framework to estimate k.

8.1.1 Signal Model

Let x be a time domain vector with N samples, representing a lin-
ear mixture of L single speaker speech signal vectors sl . The value
observed at time instant n for the mixture is given by xn and for the
individual speech segments by snl . The mixture then results in

xn =
L

∑
l=1

snl n ∈ {1, . . . , N}. (8.1)

Naturally, each speaker l = 1, . . . , L is not active at every time instant.
On the contrary, we assume there is a latent binary speech activity vari-
able vnl ∈ {0, 1} that is either provided by a ground truth annotation
or computed using a voice activity detection method.

Our objective of estimating the maximum number of concurrent
speakers can now be formulated as

k = max
n

(
L

∑
l=1

vnl

)
n ∈ {1, . . . , N}. (8.2)

As can be seen, our proposed task of estimating k ≤ L, is more
closely related to source separation whereas the estimation of L is
more useful for tasks where speakers do not overlap (see Section 2.3.3).
For instance, three non-overlapping speakers would result in L = 3
and k = 1. It should be noted that at short time scales both task

1 https://www.audiolabs-erlangen.de/resources/2017-CountNet.

https://www.audiolabs-erlangen.de/resources/2017-CountNet
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definitions provide the same outcome because on such a time scale
the speaker configuration usually does not change. The problem arises
for long-term recordings (e.g. larger than ten seconds) which are not
considered in this work. In any case, we want to emphasize that in
all experiments presented in this Chapter, we made sure that for all
audio segments k = L.

In the remainder of this chapter, we assume that no additional prior
information about the speakers is given to the system except possibly
the maximum number of concurrent speakers kmax, that is application-
dependent and represents an upper bound for the estimation.

While speaker diarization would mean estimating the whole speech
activity matrix vnl , our problem of estimating only k in (8.2) is more
abstract as it requires a direct estimation of the count.

By processing such excerpts in a sliding-window fashion, our pro-
posed solution can be applied straightforwardly to context sizes com-
monly used in source separation. Furthermore, our proposed system
can be used also to detect overlap (k > 1), which can be useful as a
pre-processing step for diarization.

Now, the system we propose is actually not inputting the signal vec-
tor x, but rather a Time-Frequency (TF) representation as the absolute
value of the short-time Fourier transform of x that is denoted by X. In
the following, X is the non-negative input for the system.

8.1.2 Probabilistic Formulation

In a supervised scenario, let {Xt, kt}t be all of our learning examples,
where t ∈ 1, . . . , T denotes the t-th training item from the training
database. For the purpose of learning a mapping between X and k,
we adopt a probabilistic viewpoint and introduce a flexible generative
model that explains how a particular source count k corresponds to
some given input X.

First, we consider that all training samples {Xt, kt}t are independent.
For each sample, we consider that kt is drawn from a probability
distribution of a known parametric family, parameterized by some
latent and unobserved parameters yt

P (kt | Xt) = L (kt | yt) , (8.3)

the distribution L (· | yt) is called the output distribution in the fol-
lowing. We further assume that there is some deterministic mapping
between Xt and yt, embodied as

yt = fθ (Xt) , (8.4)
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where θ are the parameters for this deterministic mapping, that is in-
dependent of the training item t. This results in an output distribution
given by

P (kt | Xt) = L (kt | fθ (Xt)) . (8.5)

Assume for the rest of this section that these parameters θ are known.
Given a previously unseen input X, expression (8.5) means we can
compute the distribution of the source count k. The objective of our
count estimation system is to produce a point estimate k̂ rather than
a whole output distribution P (k | X). A first option is to pick as an
estimate the most likely outcome for the output distribution, thus
resorting to Maximum A Posteriori (MAP) estimation:

k̂ = argmax
k

L (k | fθ (X)) . (8.6)

However, MAP is not the only option and a broad range of point
estimation techniques may be obtained when resorting to decision
theory [22]. We may for example also choose k̂ as the value that
minimizes the marginal average cost of choosing an estimate k̂ instead
of the true value k, when k is distributed with respect to the output
distribution

k̂ = argmin
u

∫
k

d (k, u)L (k | fθ (X))dk, (8.7)

where d (k, u) is the cost of picking u as an estimate when the true
value is k. It may be any function that seems appropriate, and does not
necessarily need to be differentiable. However, we retain the more gen-
eral formulation (8.7) because other choices will sometimes prove more
effective, as we show later. For notational convenience, we write (8.7)
as

k̂ = q ( fθ (X)) , (8.8)

and q (·) is called the decision function. Using this strategy, we have
everything to produce a single source count estimate k̂ from input
features X, provided the parametric family L and the mapping fθ as
well as its parameters θ are known. In this study, we choose a deep
neural network for the mapping fθ, whose weights θ are trained in a
supervised manner (compare Figure 8.1). Once a particular network
architecture has been chosen, learning its parameters is achieved
through classical stochastic gradient descent. If we assume that the
particular family L of output distributions has been chosen, it appears
natural to learn the parameters θ that maximize the likelihood of
the learning data. More specifically, the total cost to be minimized
becomes

C =
T

∑
t=1
− logL (kt | fθ (Xt)) . (8.9)
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Figure 8.1: Block diagram of the proposes supervised learningmodel. Training is realised using tuples of spectro-temporal inputs
X and the true number of concurrent speakers k. For inferencethe output y is post-processed using a decision function q togenerate estimates k̂. ®2019 IEEE.

The derivative of this cost (8.9) with respect to the parameters can be
used to learn the network parameters.

Three different choices for the family of output distributions (classi-
fication, Gaussian regression and Poisson regression) are summarized
below.

Classification

In a classification setting, the output distribution is directly taken
as discrete, discarding any meaning concerning the ordering of the
different possible values. Given some particular input X, the network
generates the posterior output probability for (kmax + 1) classes (in-
cluding k = 0) and a maximum a posteriori (MAP) decision function
is chosen that simply picks the most likely class q = arg max(·). Clas-
sification based approaches have successfully been applied in deep
neural networks for estimating counts in objects [141, 258, 327] in
images.

Gaussian Regression

In regression, k is derived from an output distribution defined on
the real line. However, this comes with the additional difficulty of
handling the fact that k is integer.

The output distribution in this setting is assumed to be Gaussian
and the associated cost function is the classical squared error. During
inference and given the output fθ (X) of the network, the best discrete
value that is consistent with the model is simply the rounding operator
q = [·].

Gaussian regression has achieved state-of-the-art count estimation
performance in computer vision using deep learning frameworks [29,
179, 326].
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Discrete Poisson modeling

When it comes to modeling count data, it is often shown effective
to adopt the Poisson distribution [81]. First, this strategy retains the
advantage of the classification approach to directly pick a probabilistic
model over the actual discrete observations, avoiding the somewhat
artificial trick of introducing a latent variable that would be rounded to
yield the observation. Second, the model avoids the inconvenience of
the classification approach to completely drop dependencies between
classes.

Due to these advantages, the Poisson distribution has been used in
studies devising deep architectures for count estimation systems [230].
For instance in [44, 81, 230], it is shown that the number of objects in
images can be well modeled by the Poisson distribution. Inspired by
these previous works, we also consider the Poisson output distribution
P (k | fθ (X)) where P (· | λ) denotes the Poisson distribution with
scale parameter λ.

In that setup, the cost function at learning time is the Poisson
negative log-likelihood and the deep architecture at test time provides
the predicted scale parameter fθ (X) ∈ R+, which summarizes the
whole output distribution.

As a decision function q in this setting, we considered several alter-
natives. A first option is to again resort to MAP estimation and pick
the mode [ fθ (X)] of the distribution as a point estimate. However,
experiments showed that the posterior median yields better estimates,
and is given by

q ( fθ (X)) = argmin
k̂

∞

∑
k=0

∣∣∣k̂− k
∣∣∣P (k | fθ (X)) (8.10a)

= median (k ∼ P ( fθ (X))) (8.10b)

≈
⌊

fθ (X) +
1
3
− 0.02

fθ (X)

⌋
, (8.10c)

where the last expression is an approximation of the median of a
Poisson distributed random variable of scale parameter fθ (X) [51].

8.2 dnns for count estimation
Applying deep learning to an existing task often is a matter of choos-
ing a suitable network architecture. Typically an architecture describes
the overall structure of the network including (but not limited to)
the type and number of layers in the network and how these layers
are connected to each other. In turn, designing such an architecture
requires deep knowledge about input and output representations
and their required level of abstraction. Many audio-related applica-
tions like speech recognition [117] or speaker diarization share similar
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architectural structures, often found by incorporating domain knowl-
edge and through extensive hyper-parameter searches. For our task
of source count estimation, however, domain knowledge is difficult
to incorporate, as our studies aim at revealing the best strategy to
address the problem. This is why we chose architectures that already
have shown a good level of generalizability for audio applications.

8.2.1 Network Architectures

The input of all networks is a batch of samples, represented as time-
frequency representations X ∈ RD×F×C, where D refers to the time
dimension, F to the frequency dimension and C to the channel di-
mension (in the single-channel case, C = 1). In the following, we
discuss several commonly used DNN architectures and their benefits
in using them for the task of estimating the number of speakers. All
architectures under investigation are summarized in Fig. 8.2.

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a variant of standard
fully-connected neural networks, where the architecture generally con-
sists of one or more “convolution layers” followed by fully-connected
layers leading to the output.

A convolutional layer consists of a convolution operation, followed
by feature pooling. The convolution operation applies a set of filters to
local regions of the input, and the application of each such filter out-
puts a feature map. It should be noted that the convolution operation,
generally, also constitutes the application of a point-wise non-linear
activation function on each feature map. This is followed by feature
pooling, that aims to reduce the feature space dimensions by combin-
ing the filter activations over a specified region. Since the individual
elements of the filters (weights) are learned during the training stage,
convolutional layers can also be interpreted as feature extractors. By
stacking up additional layers, CNNs can extract more abstract features
in higher level layers [263].

The sizes of the filter kernels are crucial, and it was shown in [214]
that many audio applications can benefit if domain knowledge is put
into the design of the filter kernel size. The use of small filter kernels, as
often used in image classification tasks, does not necessarily decrease
performance, when combined with many layers. Also larger kernels
increase the number of parameters and therefore the computational
complexity. It was shown in [252] that 3× 3 kernels resulted in state-of-
the-art results in singing voice detection tasks. Due to its hierarchical
architecture, CNNs with small filters have the benefit that they can
model time and frequency invariances regardless of the scaling of the
frequency axis.
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Our proposed architecture is similar to the ones proposed by [251]

used for singing voice activity detection. In our proposed CNN, we
consider local filters of size 3× 3. In the first layer, 2D convolution
is performed by moving the filter across both dimensions of the in-
put in steps of 1 element (striding s = 1 to generate C = 64 feature
maps/channels resulting in an output volume of 64× (D− 3 + 1)×
(F− 3+ 1). In the subsequent convolution layers, a similar operation is
applied but for each convolutional layer, we consider a different num-
ber of feature maps. Note, that the convolution operation is performed
independently for every input channel, and then summed up along
the dimension C for each output element. In preliminary experiments
we found that by using max-pooling we received significantly better
performance when used after CNN layers.

Recurrent Neural Networks (RNN)

A recurrent neural network (RNN) layer is very similar to a fully
connected network, except that RNN applies the same set of weights
A recursively over an input sequence. While convolutional layers excel
in capturing local structures, RNNs can detect structure in sequential
data of arbitrary length. This makes it ideal to model time series,
however, in practice, the temporal context learnt is limited to only a
few time instances, because of the vanishing gradient problem [118].

To alleviate this problem, forgetting factors (also called gating)
were proposed. One of the most popular gated recurrent cells is the
Long Short-Term Memory (LSTM) [119] cell. Its effectiveness has been
proven in applications and LSTMs are the state-of-the-art approach
for speech recognition [101] and singing voice detection [157] 2. For a
given input of dimensions D× F×C, the output of a recurrent layer is
either only the last step of dimension 1× A or the full sequence D× A.
The latter is useful to stack multiple LSTMs or to apply temporal max
pooling of the sequence. In [271] such an architecture based on three
bi-directional LSTM cells, was proposed. The architecture is similar to
the one employed in [157].

Convolutional Recurrent Neural Networks (CRNN)

Recently, a combination of convolutional and recurrent layers were
proposed for audio-related tasks [3, 37, 52, 240].

The main motivation to stack these layers is to combine the benefits
of convolutional layers with those of recurrent architectures, namely
the benefit of convolutional layers in aggregating local features with
the ability of recurrent layers to model long-term temporal data.

There are different ways to stack CNNs and RNNs to form a CRNN
architecture. In our application the motivation is to aggregate local

2 For a deeper mathematical background of LSTMs, due to space constraints, the reader
is referred to the aforementioned papers.
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Layer Parameters Value Range

CNN 1 Feature Maps {16, 32, 64}
CNN 1 Filter Length {3, 5, 7}
Pooling 1 Pooling Length {1, 2, 4}
CNN2 Feature Maps {16, 32, 64}
CNN2 Filter Length {3, 5, 7}
Pooling 2 Pooling Length {1, 2, 4}

CNN 3 Presence of Layer {Yes, No}
CNN 3 Feature Maps {16, 32, 64, 128}
CNN 3 Filter Length {3, 5, 7}
Pooling 3 Pooling Length {1, 2, 4}

Fully Connected 1 Hidden Unit {64, 128}
Dropout 1 Dropout Percentage [0.1, 0.2, 0.5]

Fully Connected 2 Hidden Unit {32, 48}
Dropout 2 Dropout Percentage [0.1, 0.2, 0.5]

Table 8.1: Parameter optimization of F-CNN model throughhyper-parameter search. Bold hyper-parameters were found op-timal.
time-frequency features coming from the output convolutional neural
network and use the LSTM layer to model long temporal structures.
As the output of a CNN layer is a 3D volume D× F× C and the input
of a recurrent layer only takes a 2D sequence, the dimension would
need to be reduced. Naturally, the time dimension would need to be
kept, therefore the channel dimension C is stacked with the frequency
dimension F resulting in a D× F · C output.

Full-band Convolutional Neural Networks (F-CNN)

Architectures where filters span the full frequency range and therefore
apply convolution in temporal direction only, have already been suc-
cessfully deployed in speech [3] and music application [52, 65, 213]).
Our motivation here is that the activity of speakers happen over wide
frequency ranges and a count (unlike in counting objects in images)
cannot be split into sub counts. The full-band kernel configuration
only affects the first hidden layer, as in consecutive outputs all fre-
quency bands are squashed down to one single frequency band using
“valid” convolutions. This is computationally very efficient, because it
reduces the middle layer’s dimensionality of the network significantly
due to this aggregation. To further optimize the performance of the
network, we applied a hyper-parameter optimization technique using
Tree-structured Parzen Estimator (TPE) [23]. We used a search space of
several hyper-parameters as shown in Table 8.1 and set the maximum
number of evaluations to 200.

The results are in agreement with the findings in [251] where small
filter kernels of size 3 outperformed larger kernels. Also, it can be seen
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from the results, that increasing the number of feature maps of the
convolutional layers does not necessarily increase the performance.

Full-Band Convolutional Recurrent Neural Networks (F-CRNN)

Similarly to CRNN and to the Deep Speech 2 implementation [3], we
added an LSTM recurrent layer to the output of the last convolutional
layer. Since each filter output is only of dimension one, an additional
flattening as in CRNN is not required.

8.2.2 Output Activation Functions for Count Estimation

For each of the decision functions a suitable output activation and loss
is used.

Classification

For classification, the output is required to be one-hot-encoded so that
the output is of dimension y ∈ BL+1, where L is the maximum number
of concurrent speakers to be expected. In the final layer of the network,
a softmax activation function is used with the cross-entropy function
as the loss.

Gaussian Regression

For the Gaussian regression model, the final output layer is of dimen-
sion y ∈ R1. The output layer nodes have linear activation, and mean
squared error is used as the loss function.

Poisson Regression

For the Poisson regression, the likelihood of parameter λ given the
true count k is computed by the negative log-likelihood loss E =

∑ λ− k ∗ log(λ + eps). The output layer activation is the exponential
function.

8.2.3 Speech Corpora and Annotations

To date, many available speech datasets contain recordings where only
a single speaker is active. Datasets that include overlapped speech
segments, either lack accurate annotations because the annotation of
speech onsets and offsets in mixtures is cumbersome for humans or
lack a controlled auditory environment such as in TV/broadcasting
scenarios [102]. Since a realistic dataset of fully overlapped speakers is
not available, we chose to generate synthetic mixtures. We recognize
that in a simulated “cocktail-party” environment, mixtures lack the
conversational aspect of human communication but provide a con-
trolled environment which helps to understand how a DNN solves the
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Figure 8.2: Overview of the proposed Architectures. ®2019 IEEE.
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Table 8.2: Overview of speech corpora used in this work.

Number of Speakers

Name Language Train Valid. Test

LibriSpeech [203] English 921 40 40

TIMIT [90] English 462 24 168

THCHS [313] Mandarin 30 10 10

count estimation problem. As we aim for a speaker independent solu-
tion, we selected a speech corpus with preference to a high number of
different speakers instead of the number of utterances, thus increasing
the number of unique mixtures. We selected LibriSpeech clean-360 [203]
which includes 363 hours of clean speech of English utterances from
921 speakers (439 female and 482 male speakers) sampled at 16 kHz.

In the further course of this work (see Section 8.4), we also present
the results from test sets of two other datasets as listed in Table 8.2.
Furthermore, we included non-speech examples from the TUT Acous-
tic Scenes dataset [187] in our training data to avoid using zero input
samples for k = 0 to increase the robustness against noise.

A single training tuple {X, k} is generated by a synthetic speech
mixture and their ground truth speaker count k. The mixtures were
generated as described in Section 7.2.1. In fact, our method to generate
synthetic samples results in an average overlap for k = 2 of 85%
and for k = 10 of 55% (based on 5s segments). This procedure is
similar to [188] used to label the data. Signals are mixed according
to (8.1), peak normalized and then transformed to a time-frequency
matrix X ∈ D× F. Based the voice activity detection algorithm (VAD),
we computed the ground truth output k via (8.2). All samples are
normalized to the average Euclidean norm of duration frames to be
robust against gain variations as proposed by [293]. Furthermore, the
data was scaled to zero mean and unit standard deviation across the
frequency dimension F over the full training data. Scaling parameters
were saved for validation and test. For a more detailed description of
the dataset, the reader is referred to [271].

8.2.4 Training Procedure

For all experiments we chose a medium sized training dataset of
k ∈ {0, . . . , 10} forming a total of Ttrain = 20.020 mixtures (1820 per
k), each containing 10 seconds of audio, resulting in 55.55 hours of
training material. For each sample fed into the network, we select
a random excerpt of duration D from each mixture. If not stated
otherwise, D = 5 seconds. That way, for each epoch, the network is
seeing slightly different samples, reducing the number of redundant
samples and thus helping to speed up the stochastic gradient based
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References Task Representation

[92, 108] Overlap Detection/VAD MFCC

[101, 177, 240] ASR MEL

[3] ASR STFT

[251, 252] Singing Voice AD log(1 + X)

Table 8.3: Speech related input representations in related work.
training process3. A similar training procedure is detailed in [251, 271].
Each architecture is trained using the ADAM optimizer [143] (learning
rate: 1 · 10−3, β1 = 0.9, β2 = 0.999, ε = 1 · 10−8) using mini-batches
of size 32. Our training procedure verifies that all samples within a
batch are from a different set of speakers. In addition to the training
dataset, we created a fully separated validation dataset of Tvalid = 5720
samples using a different set of speakers from LibriSpeech dev-clean.
Early stopping (patience = 10) is applied by monitoring the validation
loss to reduce the effect of overfitting. Training never exceeded more
than 50 epochs.

We used the Keras [53] framework and trained on multiple instances
of Nvidia GTX 1080 GPUs.

8.3 model selection
In this section, we evaluate three configurations of our proposed ar-
chitectures, introduced in Section 8.2. Besides the architecture, we
investigate different input representations as well as the three pro-
posed output distributions (see Section 8.1). The goal of this is to
determine the effect of these parameters and fix them to select a final
trained network (model) based on these parameters.

To allow for a controlled test environment and at the same time limit
the number of training iterations, we fix certain parameters: In this
experiment, the level of the speakers was adjusted before mixing such
that they have equal power. Furthermore, the input duration D was
fixed to five seconds. For all experimental parameters, we repeated
the training three times with different random seeds for each run
and report averaged results to minimize random effects caused by
early stopping. We used the LibriSpeech dataset for both training and
validation and performed evaluation of all models on Ttest = 5720
unique and unseen speaker mixtures from LibriSpeech test-clean set
with kmax = 10.

Several well-established input representations were evaluated in [271]
such as (linear or logarithmically scaled) STFT, Mel filter bank outputs
(MEL), Mel Frequency Cepstral Coefficients (MFCC) representations,
typically chosen for speech applications (compare Table 8.3)

3 Note that for the validation and testing, excerpts are fixed.
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Even though MFCCs are used in related tasks and are included in

our baseline evaluations, they are known to perform poorly when
used in CNNs [259]. This is why we decided to not to use the MFCCs
as an input for the proposed architectures. The remaining input repre-
sentations are identical to those listed in [271]:
1) STFT: magnitude of the short-time Fourier transform computed
using Hann-windows. A frame length of 25 ms has been used. The
resulting input is X ∈ R500×201.
2) STFTLOG: logarithmically scaled magnitudes from STFT represen-
tation using log(1 + STFT). The resulting input is X ∈ R500×201.
3) MEL: compute mapping from the STFT output directly onto Mel
basis using 40 triangular filters. The resulting input is X ∈ R500×40.

Before feature transformation, all input files were re-sampled to
16 kHz sampling rate. All features are computed using a hop size of
10 ms.

8.3.1 Metric

Whereas the intermediate output y is treated as either a classification
or a regression problem (see Section 8.1) we evaluate the final output
k as a discrete regression problem. We, therefore, employ the mean
absolute error (MAE) which is also commonly used for other count
related tasks (c.f. [230, 326]). Since the MAE depends on the true count
k, we also present the MAE per class as:

MAE(k) =
1

Ttest

Ttest

∑
t=1

∣∣∣k̂− k
∣∣∣ . (8.11)

which is then averaged across the classes, i.e.,

MAE =
1

kmax

kmax

∑
k=0

MAE(k). (8.12)

8.3.2 Model Comparison

To find the best parameters we performed training and evaluation for
different input representations and output distributions (c.f. [271]) as
well as all proposed architectures resulting in 135 models. On average
each model was trained for 25 epochs before early stopping was en-
gaged. We present the results filtered by the three factors (Architecture,
Input and Output) in Fig. 8.3. One can see that the overall trend of
the count error in MAE is similar regardless of the parametrization:
all models are able to reliably distinguish between k = 0 and k = 1,
followed by a nearly linear increase in MAE for k = {1, 2, . . . , 7}. For
k > 7 it can be seen that the classification type models have learned
the maximum of k across the dataset, hence the prediction error de-
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Figure 8.3: Figure shows results of average mean absolute error(MAE) on mixtures of speakers with equal power as described inSection 8.3.2 per ground truth count k = [0 . . . 10]. Error barsshow the 95% confidence intervals. Results in (a) are averagedover factors shown in (b) and (c) and similarly for (b) and (c).®2019 IEEE.
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creases when k reaches its maximum. This is because classification
based models intrinsically have access to the maximum number of
sources determined by the output vector dimensionality. Furthermore,
one can see that all three factors have only little effect on the overall
performance of the model, which is especially the case for small k. As
indicated by Fig. 8.3a, choosing linear STFT as input representation
generally results in a better performance compared to MEL and even
STFTLOG. Concerning the output distribution, a similar observation
can be made about classification which outperforms Poisson regres-
sion and Gaussian regression, as indicated by Fig. 8.3b. In Fig. 8.3c
the performance of our proposed architectures are compared: while
CNN and CRNN are close, both of them perform better than full
frequency band F-CNN and F-CRNN models as well as the recurrent
based architecture, proposed in [271]. However, it is interesting that,
despite its simplicity, the F-CNN and F-CRNN, perform similarly to
the Bi-LSTM architecture.

The results are supported by a statistical evaluation based on mixed
effect linear model (see Table 8.4) where k is modeled as a random
effect (for further details we refer to [184]). For a fair comparison (i.e.
reducing the bias towards classification type network) of all models
we only evaluate results for k = {1, 2 . . . 7}; however, all networks
were trained on k = {0, . . . , 10}. These results indicate that CRNN
performs statistically significantly better than the CNN. Concerning
the input representation, we can report that using STFT representation
outperforms the log-scaled STFT as well as the MEL representation.
Interestingly, we did not find any significant differences between MEL
and STFTLOG in MAE performance. With respect to the output distri-
butions, we can report that Classification outperforms the other two
distributions while Poisson regression performs better than Gaussian
regression which confirms the findings made in [271] based on the
RNN model. Therefore, we select the CRNN classification model with
STFT features for subsequent experiments.

Figure 8.4 gives an indication of the efficiency of each model and the
trade-off between performance and complexity in terms of parameters
and floating point multiplications. It can be seen that the CRNN is
not only the one that performs best but also has significantly fewer
parameters than the CNN model. In contrast, the F-CRNN model does
only have a fraction of the number of parameters of the other models,
which makes it the most suitable model for mobile applications.

8.4 evaluation results
In this section, we perform several experiments on the proposed
CRNN model that has been selected in the previous section. We
assess the performance of this model by showing the results of three
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Factor Coef. Std.Err. z P > |z|

Intercept 0.305 0.091 3.360 0.001

architecture = CRNN -0.028 0.011 -2.419 0.016

architecture = F-CNN 0.102 0.011 8.976 0.000

architecture = F-CRNN 0.102 0.011 8.947 0.000

architecture = RNN 0.094 0.011 8.240 0.000

feature = STFT -0.079 0.009 -8.946 0.000

feature = STFTLOG -0.001 0.009 -0.117 0.907

objective = P-Regression 0.040 0.009 4.555 0.000

objective = G-Regression 0.067 0.009 7.651 0.000

Random Effect k 0.057 0.297

Table 8.4: Mixed Effects Linear Model for k = {1, 2 . . . 7}. Model:
MAE ∼ architecture + f eature + objective + (1|k).
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Figure 8.4: Complexity in number of floating point multiplicationsand number of weight parameters (in brackets) over performancein MAE of our five proposed models. ®2019 IEEE.
experiments that augment the test data by choosing a different dataset,
varying amplitude gain levels and introduce reverberation. These
results also include several baseline methods. Furthermore, we present
the effect of training sample duration and compare the results from
the DNN to human performance gathered in a listening experiment.

8.4.1 Baselines

In order to make a meaningful comparison to the CRNN model
we propose several baseline methods. Since we are dealing with a
novel task description, related speaker count estimation techniques
can hardly be used as baselines. Specifically, [320] would not work
on fully overlapped speech, [4] does not scale to the size of our
dataset, since it requires to cross-correlate the full database against
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another. Finally, [247] proposes a feature but does not employ a fully
automated system that can be used in a data-driven context. We,
therefore, decided to propose our own baseline methods.

vq This method uses a feature proposed by Sayoud [247] based
on 7th MEL filter coefficient (MFCC7) which was shown to encode
sufficiently important speaker-related information. The temporal di-
mension of X is squashed down by subtracting the mean and standard
deviation as X = MFCC7− STD(MFCC7) ∈ R1. In [247] the mapping
from X ⇒ k is done by manually thresholding X. To translate this
into a data-driven approach, we employed a vector quantizer (using k-
means) to get an optimal mapping with respect to the sum of squares
criterion. Further, as preprocessing, we added the same normalization
as for our proposed CRNN which in turn decreases the performance
of the method significantly as it is highly gain dependent.

svm, svr We found that the information encoded in the 7th MFCC
coefficient as used in the VQ baseline, may not suffice to explain
the high variability in our dataset. This is especially important for
larger speaker counts. We therefore extended VQ by including all
20 MFCCs but using the same temporal dimensionality reduction,
resulting in X = MFCC − STD(MFCC) ∈ R20. To deal with sig-
nificantly increased dimensionality of X, we used a support vector
machine (SVM) with a radial basis function (RBF) kernel. Similarly
to our proposed DNN based methods, we treat the output as either
a classification problem or a regression problem through the use of
support vector regression (SVR).

8.4.2 Results on Gain Variations

In our parameter optimization in Section 8.3 we evaluated mixtures
with speakers having equal power. In a more realistic scenario, speak-
ers often differ in volume between utterances. We simulate this by
introducing gain factors between 0.5 and 2.0, randomly applied to the
sources, hence resulting in a deviation of 6 dB compared to the refer-
ence where all speakers are mixed to have equal power. We applied
this variation only to the test data to evaluate how models generalize
to this updated condition. The results of this experiment are presented
in Table 8.5. MEAN corresponds to a “dummy” estimator always pre-
dicting k = 5 for all test samples. Our results indicate that augmenting
the mixture gains does have an impact on performance, for both, our
proposed CRNN model as well as the baseline methods. For example,
for the CRNN model the performance drops by 60% from 0.27 MAE to
0.43 MAE on the LIBRI Speech test set, which is still about 40% better
than the second best-performing method SVR which drops from 0.58

MAE to 0.61 MAE.



8.4 evaluation results 111
Trained on LIBRI LIBRI-Rev

Test Set LIBRI THCS10 TIMIT LIBRI-Rev

Variation – ±6 dB Rev – ±6 dB – ±6 dB –

CRNN 0.27 0.43 1.63 0.36 0.50 0.31 0.52 0.48

RNN [271] 0.38 0.57 1.41 0.58 0.76 0.48 0.72 0.59

SVR 0.58 0.61 0.76 0.69 0.73 0.70 0.62 0.71

SVC 0.63 0.66 0.85 0.77 0.77 0.89 0.76 0.78

VQ [247] 2.41 2.41 2.41 2.98 2.98 2.13 2.15 2.41

MEAN 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73

Table 8.5: Averaged MAE results of different methods on severaldatasets for k = [0 . . . 10] with equal power and random gains(up to ±6 dB)) as well as reverberation (rev). Bold face indicatesthe best-performing method. Standard deviation values are listedin [272].
8.4.3 Results on Different Datasets

We also present results on two additional datasets. Again, we only
changed the test data; all networks were trained on LIBRI Speech. Com-
pared to LIBRI Speech, the TIMIT database has an overall lower record-
ing quality. This is reflected by our results where the performance in
MAE drops only slightly between these two datasets. Interestingly,
even when we look at the results of the Mandarin language THCS10
dataset, performance drops only slightly. More precisely, for our pro-
posed CRNN model, test performance on THCS10 is even better than
on its own LIBRI dataset with gain variations. These results suggest
that the trained model is speaker and language independent.

8.4.4 Effect of Reverberant Signals

Different acoustical conditions such as increased reverberation time
were shown to have a large effect in speaker count estimation [205].
To analyze this effect, different acoustic conditions were simulated by
generating the room impulse responses using the image method [2,
107]. For this experiment we set up an acoustical room with dimen-
sion (3.5 m× 4.5 m× 2.5 m) The microphone was positioned at (1m,
1m, 1m). For the mentioned room, 350 different reverberation times
were selected uniformly sampled between 0.1 and 0.5 seconds. For
each of these reverberation times, we generated unique room impulse
responses that correspond to individual source positions which have
minimum distance 0.1 m to the walls and are otherwise positioned
randomly on the (X, Y, 1m) plane. Each speaker’s signal was convolved
with a randomly selected room impulse response before mixing. Re-
sults, again, are shown in Table 8.5. For the first time, we can see
that the CRNN model significantly drops in performance from 0.27



112 data-driven speaker count estimation
MAE to 1.64 MAE, whereas the SVR and SVM baselines are only af-
fected slightly. This is expected as these baselines are using a temporal
aggregation of all frames, whereas the CRNN is based on smaller
(3× 3) convolutional filter operations that are able to capture the room
acoustics as well. If we assume that our trained deep learning model
is fully speaker independent, a mixture of two utterances from the
same speaker would get the same count estimate as two different
speakers. Hence, reverberation tends to result in overestimation and
we observed this even for k = 1 where it, in turn, resulted in an
increase in MAE.

To further investigate whether the overestimation can be reduced
via training with reverberant samples, we created a separate set of
room impulse responses for the training dataset with different room
dimensions so that the model cannot learn the acoustical conditions
from the training dataset. From the results shown in the last column
of Table 8.5 we can see that the retrained CRNN is able to outper-
form the baselines again. Therefore, when retrained with reverberant
samples, the proposed model is able to better discriminate between a
reverberant component of the same speaker and contributions from
different speakers. For robustness against different acoustic conditions,
it is essential to include reverberant samples in the training dataset.

8.4.5 Effect of Duration and Overlap Detection Error
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Figure 8.5: Evaluation of trained CRNN networks over differentinput duration length D. Error bars show 95% confidence intervals.®2019 IEEE.
In our last experiment we want to address the influence of the input

duration length D. In a real-world application this parameter would
be chosen as small as a possible, because a longer input duration adds
both algorithmic and computational delay to a real-time system. In
a small experiment, we took the proposed CRNN and retrained it
using a different number of input frames ranging from 100 to 900

frames (corresponding to one to nine seconds of audio). For each
input duration, we trained the CRNN with three different initial seeds.
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Figure 8.6: Average responses from humans ( EXP and
Kawashima [140]) compared to our proposed CRNN. Errorbars show 95% confidence intervals. ®2019 IEEE.

Results are shown in Fig. 8.5. It can be seen that five second duration is
a good trade-off between performance and delay. If latency is critical,
keeping D above 2 seconds is recommended for good results. For
segments as short as 1 second the MAE of around 0.6 is almost twice
as high as for segments of 5 seconds duration. However, if instead
of the count estimation MAE we compute the accuracy to detect
overlap k > 1 vs. non-overlap k ∈ 0, 1, we still achieve 98.7% accuracy
(precision: 99.7%, recall: 98.7%). This shows that our system can be
effectively used to address overlap detection.

8.4.6 Listening Experiment

We chose to compare our trained CRNN against human performance
using the experiments made in [138, 140] and our own as described
in Section 7.2. The results are shown in Figure 8.6. The results for up
to three speakers indicate that humans perform similarly (or better
in terms of variance) compared to our proposed CRNN model. For
larger speaker counts, the gap between humans and algorithm is
almost three speakers on average. Interestingly, the results of the
informed experiment reveal that this gap closes down to an average
difference of one speaker. Finally, we can report that the machine
model reached superhuman performance. Unlike humans, the CRNN
is subject to over-estimations for 4 < k ≤ 9. However, with extensive
training, humans might be able to perform on par.
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8.5 understanding countnet
In this section, we focus on the problem of interpreting the strategy
undergone by this system for successfully estimating counts.

8.5.1 Saliency Maps

We first conducted a visual analysis based on salience map repre-
sentations [262]. In the deep learning context, saliency maps are vi-
sualizations that are able to show which specific input elements are
important given a specific output prediction. In vision, this allows to
show which pixels were most relevant to make up the decision to acti-
vate a specific output class. In the case of audio it can highlight which
time-frequency bins in a spectrogram are most relevant. The common
idea is to compute the gradient of the model’s prediction with respect
to the input, holding the weights fixed. This determines which input
elements need to be changed the least to affect the prediction the most.

In this work, we used guided backpropagation, first introduced
in [269] and successfully deployed in [251] to compute a saliency
map for singing voice detection. For a given input of a three-speaker
mixture, we depicted the saliency map in Fig. 8.7. The saliency map in-
dicates that our proposed model does not rely much on the overlapped
parts but instead utilize many of the single speaker time-frequency
bins as well as many high-frequency components such as plosives and
fricative phonemes.

While the saliency map confirms that the network does exploit
both low and high-frequency content from the input signal, it is not
sufficient to conjecture about the strategy implemented in the network.

8.5.2 Ablation Analysis

To provide further insight, we propose another layer-wise analysis,
that provides information concerning the behavior of the model at
different successive layers. While we cannot show all filter outputs
(e.g. 64, for the first layer), instead, for each filter, we compute its loss
with respect to the input of the model using gradient update and sort
the filters according to their loss behavior.

Figure 8.7 depicts the nine highest loss outputs per convolutional
layer. We can observe that while the first layer shows only low-level
variations of the input, already the second layer seems to be more
abstract and emphasizes phoneme segmentations based on mid and
high frequency content. While filter outputs of layer 3 and 4 also show
more low-frequency content such as the harmonic signals, the overall
visual impression is that the proposed CRNN focuses on the temporal
segmentation of phonemes.
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The conducted analysis suggests that the network is doing count

estimation based on the detection of phonemes. To assess the validity
of this interpretation, we directly verified the performance of the
method as a function of the phoneme activity. In the following, we
verify whether count estimates are affected by the pronunciation
speed.

We assume that the CRNN model learned the aggregated phoneme
or syllable activity of all speakers in a fixed, given excerpt.

If that is the case, it would mean that the speaker count estimate
would be affected if the speakers would speak slower or faster in
relation to the fixed input window (speaking rate). We therefore want
to see if very slow or very fast speakers significantly increase the error
of our proposed CRNN model. In turn we define a null hypothesis
that there is no association between the speaker count error probability
and the value of the speaking rate.

To verify our hypothesis, we created another experiment based on
the TIMIT dataset. It comes with phoneme and word level annotations,
from which the speaking rate (defined as syllables per second) can be
computed for each input sample [136]. To reduce the influence of the
different acoustical environment in TIMIT compared to Libri Speech,
we retrained the CRNN classification model on the TIMIT training
dataset, using the same parameters as described in Section 8.2.4. At
test time we randomly generated 5 seconds excerpts of k = 6 from the
TIMIT test subset and predicted the error E(k) = k̂− k for each CRNN
output. We grouped the estimates into three classes: E(k) = 0 (correct
response), E(k) > 0 (overestimation), E(k) < 0 (underestimation). For
k = 6 we ended up with two groups of results because overestimation
did not take place. From the remaining two groups underestimation and
correct responses we randomly selected 1000 samples each, resulting
in an total sample size of n = 2000. For these samples we computed
an average speaking rate of 3.40 syllables per second and a standard
deviation of 0.2.

We chose a Generalized Linear Model (GLM) for the statistical
test, as described in [132]. This allows us model the results with a
binary logit regression model that turns the mean of E into a binomi-
ally distributed probability modeled by log linear values: logit(E) ∼
Intercept + β · Speaking Rate. The results of our test are shown in
Table 8.6 and indicate the speaking rate has statistically significant
influence on the error p < 0.05, d f = 1, Pseudo R2 = 0.0111. To better
understand the effect of our predictor, we computed an odds ratio
exp(speaking rate) = 0.28.

This indicates that a decrease in speaking rate of 1 syllable per
second will increase the likeliness of an underestimation error by 28

percent. Even though this is considered as a small effect size, it gives
an interesting hint for the strategy taken of our proposed model and
also suggests that for improved robustness, training would benefit
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coef std err z P>|z|

speaking rate -1.2697 0.232 -5.477 0.000

intercept 4.3213 0.790 5.468 0.000

Table 8.6: Results of a binary logit regression test for the de-pendent variable correct response over the independent variable
speaking rate. The results are based on n = 2000 randomlydrawn results of the CRNN model trained and evaluated on theTIMIT dataset.

from a large variety of speaking rates. Furthermore, it still remains
unclear if the model would suffer from languages with a speaking rate
which is naturally higher or lower than English or Chinese (see [200]).

8.6 summary and discussion
We introduced the task of estimating the maximum number of con-
current speakers in a simulated “cocktail-party” environment using
a data-driven approach, discussing how to frame this task in a deep
learning context. Building upon earlier work, we investigated what
method is best to output integer source count estimates and also
defined suitable cost functions for optimization. In a comprehensive
study, we performed experiments to evaluate different network archi-
tectures. Furthermore, we investigated and evaluated other important
parameters such as input representations or the input duration. Our
final proposed model uses a convolutional recurrent (CRNN) archi-
tecture, based on classification at the network’s output. Compared to
several baselines, our proposed model has a significantly lower error
rate; it achieves error rates of less than 0.3 speakers in mean absolute
error for classifying zero to ten speakers—a decrease of 28.95% com-
pared to [271]. In further simulations, we revealed that our model is
robust to unseen languages (such as Chinese), as well as varying acous-
tical conditions (except for reverberation, where the error increased
significantly). However, including reverberated samples in the training
reduces the error. Additionally, we conducted a perceptual experiment
showing that these results clearly outperform humans. We hope our
research stimulates future research on data-driven count estimation, a
task that currently lacks real-world datasets. Future methods could
also work on further reducing the duration of excerpts to improve the
conceptual latency.

Lastly, in an ablation study, we found that the CRNN uses a strategy
to segment phonemes/syllables to estimate the count. Hence, we
hypothesize that a speaker count estimate is influenced by the average
speaking rates of certain languages. To underpin this hypothesis, we
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showed that the speaking rate has a significant effect on the error
of our model. Interestingly, the speaking rate is an important source
of modulations in speech [211] and this discovery establishes a link
between speech analysis in humans and machines.
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Figure 8.7: Illustration of intermediate outputs from the proposedCRNN for each convolutional layer for a given input with k =
3 speakers. Saliency map shows positive saliency of guidedbackpropagation [269]. For each convolutional layer the ninemost relevant filters were selected based on their loss withrespect to the input. ®2019 IEEE.



9 C O N C L U S I O N
Note that additional
conclusions can be
found at the end of
the respective
chapters.

9.1 discussion
This thesis built on and contributed to work in the research field
of separation and source count estimation of audio mixtures. The
methods that were developed throughout this thesis share a common
concept: when signals are mixed, we focussed on the overlapping
part instead of the non-overlapping part. This approach allowed us
to better observe the characteristics for the task of separation and
source-count estimation:

• In our proposed unison source separation scenario, signals al-
most entirely overlap in time and frequency which reflect a
natural property of many real-world audio signals.

• For the task of source count estimation, we focused on the
overlap to learn a model that directly infers counts, i.e. proposed
counting without detection. The motivation is in the tradition
of [249], who proposed techniques for understanding without
separation.

The combination of separation and count estimation is important
since it allows to build a real-world separation system, where the
number of sources is not known in advance. On this way, we were
faced with several limitations and challenges:

When we developed time warping (Chapter 5) to separate audio
signals based on their estimated F0 trajectory, we optimized and tuned
the method on a handful of music tracks, since a large test dataset
was not available. When we then applied it on the (back then) new
DSD100 [166] dataset, several limitations became apparent which is
why the overall performance was not satisfying. One limitation of the
method is that it relies too much on a precise and robust estimate of
the F0 trajectory and its voice activity. When we included a data-driven
activity method in the system, the performance improved.

When it comes to source separation, at the time our research was
conducted and we proposed the Common Fate Model (Section 6.2), fac-
torization models were the state-of-the-art. However, for the scenario
of music separation, it turned out that the Common Fate Model still
required a significant amount of additional handcrafted engineering.
By 2016, other researchers showed in [195, 293] that supervised learn-
ing methods for separation led to huge improvements. This induced

119
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us to successfully evaluate such a system in combination with our pro-
posed Common Fate Representation (Section 6.3). It shows that such
specialized representation, designed to capture general modulation
patterns, is still useful in data-driven methods. Our research marks a
step towards multidimensional representations, inspired by human
perception, when it comes to highly overlapped, modulated mixtures.
Work by other researchers built upon our first findings and further
increased the perceptual aspect of the representation by introducing a
multi-resolution version of the CFT [210, 257].

In our count estimation studies on speech and music (Chapter 7), we
showed that humans follow a “one-two-three-many” strategy: we can
correctly infer small quantities up to three, but we have problems to
extrapolate to higher numbers. We showed that our proposed Count-
Net model (Chapter 8) improved state-of-the-art and even reached
super-human performance by shifting the performance boundary be-
yond four sources. In the ablations studies (Section 8.5), we revealed
that modulations also played an essential role in CountNet when
estimating the number of speakers. The network showed a signifi-
cant dependency on variations of syllable rates. This indicates that
CountNet may not have learned the actual difference between two and
three speakers but instead took a “shortcut” and learned the distinct
modulation patterns of our language. This achievement, however, does
not mean that CountNet can generalize to examples outside of the
used datasets or languages. Such generalization properties should be
properly investigated further.

This work covers many different techniques ranging from advanced
audio signal processing, tensor factorization, up to recent supervised
machine learning methods such as deep learning. When I started
this thesis, the research landscape for source separation methods was
built upon the expertise from a decade of signal processing. With the
success of deep learning, a paradigm shift took place that enabled
many improvements with respect to the state-of-the-art in the audio
domain. However, adapting deep learning techniques to work in the
audio domain is far from trivial. First, it requires a significant amount
of work in creating suitable datasets. Second, it still takes expertise
in so-called “classical” signal processing for such models to work
correctly.

9.2 perspectives
In the following, I will present a few potential research ideas, based
on the findings and limitations raised in this thesis.
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Generative Modulation Models for Style Transfer

Imagine, generating contours to add instead of remove vibrato by use
of the time warping (Section 5) to improve the naturalness of synthesis
models. Recent progress on generative models such as GANs [97]
show powerful models can extract domain properties from data. We
can imagine that generative models could explore a modulation space,
e.g. to generate artificial vibrato that could enable applications such
as musical style transfer to apply modulations on other “flat” voices
or instruments.

New Representations for Source Separation

Recall that the Common Fate Transform proposed in Section 6.2.1,
led to increased redundancy, introduced by its aliasing components,
which in turn, increases the complexity of the training. Interestingly,
preliminary studies suggested that removal of the (redundant) compo-
nents did not improve the performance. Future work could reduce the
redundancy of the transform, making it more compact, while at the
same time yielding similar separation results. In the context of deep
learning, it remains unclear if redundancy helps or hinders supervised
learning based separation systems. Taking the raw waveform as input
features [65, 295] is a promising direction of research (as opposed to
phase aware representations) but it requires large amounts of data
since the DNN needs first to learn a filterbank representation. Such
large amounts are not yet publicly available for music processing.

Deep Common Fate

The combination of more powerful DNN architectures such as convolu-
tional neural networks (CNN) with Common Fate Transform (CFT) is a
promising route for future work. This is especially interesting because
it would require network architectures to be specifically designed to
deal with higher dimensional data such as the four-dimensional CFT. I
can imagine applying recent architecture designs such as multidimen-
sional convolutional networks or capsule networks [239]. Furthermore,
it is to be seen if learning based methods can directly utilize modula-
tions from raw data.

Applications for Crowd Sources Count Estimation

In our experiments to study the human ability to estimate the number
of sources (Section 7), we made use of recent web technologies such
as the Web Audio API to enable crowdsourced listening experiments.
As current web audio technologies mature we will see many more
web-based experiment and evaluation tools coming. With more data
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being annotated on human source count estimates, we can imagine
using this data to build an auditory model that approximates the
perception of estimating counts. With such a model one may further
improve lossy compression for object-based music recordings such as
audio coding [115] by only transmitting a “perceivable” number of
sources.

Count Estimation as an Evaluation Measure for Separation

The recent results on SiSEC 2018 [283]1 indicated that for the first time
since the advent of source separation, methods were proposed that
perform comparably to the oracle separation methods. This success
was made possible with better deep learning models such as [289] and
the availability of data. The future of how to improve music source
separation is unclear. Possible directions are to enhance the efficiency
of the learning architectures or to develop new cost functions which
better reflect human perception. Furthermore, improving the evalua-
tion metrics is another driving force for better separation algorithms.
Unfortunately for separation, humans cannot easily evaluate the audio
quality without a reference, which makes annotations cumbersome
and expensive. Therefore a simpler task such as count estimation
could serve as an intermediate evaluation metric to quantify overlap,
which is easier to annotate and does not require a reference. Then, a
model such as CountNet could approximate the human results and in
turn, be used (hence differentiable) inside the cost function of other
separation models.

Teaching CountNet to Extrapolate

CountNet was developed to address the count estimation task in
both, a classification or a regression framework. However, counts are
often not bounded to a maximum number, which would require to
extrapolate and not just interpolate. CountNet, as it was proposed,
is unable to estimate more than ten speakers when trained using the
same maximum number. This is related to learning the summation of
two random numbers, known as the “adding problem” [119] which
is a challenging benchmark in machine learning. Only very recently,
the machine learning community proposed a solution to this problem
(See [292]). With these advances, extrapolating counts seems like a
natural follow-up to the work presented here.

1 See https://sisec18.unmix.app

https://sisec18.unmix.app
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