262 research outputs found

    Enhancing the diversity of self-replicating structures using active self-adapting mechanisms

    Get PDF
    Numerous varieties of life forms have filled the earth throughout evolution. Evolution consists of two processes: self-replication and interaction with the physical environment and other living things around it. Initiated by von Neumann et al. studies on self-replication in cellular automata have attracted much attention, which aim to explore the logical mechanism underlying the replication of living things. In nature, competition is a common and spontaneous resource to drive self-replications, whereas most cellular-automaton-based models merely focus on some self-protection mechanisms that may deprive the rights of other artificial life (loops) to live. Especially, Huang et al. designed a self-adaptive, self-replicating model using a greedy selection mechanism, which can increase the ability of loops to survive through an occasionally abandoning part of their own structural information, for the sake of adapting to the restricted environment. Though this passive adaptation can improve diversity, it is always limited by the loop’s original structure and is unable to evolve or mutate new genes in a way that is consistent with the adaptive evolution of natural life. Furthermore, it is essential to implement more complex self-adaptive evolutionary mechanisms not at the cost of increasing the complexity of cellular automata. To this end, this article proposes new self-adaptive mechanisms, which can change the information of structural genes and actively adapt to the environment when the arm of a self-replicating loop encounters obstacles, thereby increasing the chance of replication. Meanwhile, our mechanisms can also actively add a proper orientation to the current construction arm for the sake of breaking through the deadlock situation. Our new mechanisms enable active self-adaptations in comparison with the passive mechanism in the work of Huang et al. which is achieved by including a few rules without increasing the number of cell states as compared to the latter. Experiments demonstrate that this active self-adaptability can bring more diversity than the previous mechanism, whereby it may facilitate the emergence of various levels in self-replicating structures

    Computational Modalities of Belousov-Zhabotinsky Encapsulated Vesicles

    Full text link
    We present both simulated and partial empirical evidence for the computational utility of many connected vesicle analogs of an encapsulated non-linear chemical processing medium. By connecting small vesicles containing a solution of sub-excitable Belousov-Zhabotinsky (BZ) reaction, sustained and propagating wave fragments are modulated by both spatial geometry, network connectivity and their interaction with other waves. The processing ability is demonstrated through the creation of simple Boolean logic gates and then by the combination of those gates to create more complex circuits

    Towards a Holistic CAD Platform for Nanotechnologies

    Get PDF
    Silicon-based CMOS technologies are predicted to reach their ultimate limits by the middle of the next decade. Research on nanotechnologies is actively conducted, in a world-wide effort to develop new technologies able to maintain the Moore's law. They promise revolutionizing the computing systems by integrating tremendous numbers of devices at low cost. These trends will have a profound impact on the architectures of computing systems and will require a new paradigm of CAD. The paper presents a work in progress on this direction. It is aimed at fitting requirements and constraints of nanotechnologies, in an effort to achieve efficient use of the huge computing power promised by them. To achieve this goal we are developing CAD tools able to exploit efficiently these huge computing capabilities promised by nanotechnologies in the domain of simulation of complex systems composed by huge numbers of relatively simple elements.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Artificial Evolution of Arbitrary Self-Replicating Cellular Automata

    Get PDF
    Since John von Neumann's seminal work on developing cellular automata models of self-replication, there have been numerous computational studies that have sought to create self-replicating structures or "machines". Cellular automata (CA) has been the most widely used method in these studies, with manual designs yielding a number of specific self-replicating structures. However, it has been found to be very difficult, in general, to design local state-transition rules that, when they operate concurrently in each cell of the cellular space, produce a desired global behavior such as self-replication. This has greatly limited the number of different self-replicating structures designed and studied to date. In this dissertation, I explore the feasibility of overcoming this difficulty by using genetic programming (GP) to evolve novel CA self-replication models. I first formulate an approach to representing structures and rules in cellular automata spaces that is amenable to manipulation by the genetic operations used in GP. Then, using this representation, I demonstrate that it is possible to create a "replicator factory" that provides an unprecedented ability to automatically generate a whole class of new self-replicating structures and that allows one to systematically investigate the properties of replicating structures as one varies the initial configuration, its size, shape, symmetry, and allowable states. This approach is then extended to incorporate multi-objective fitness criteria, resulting in production of diversified replicators. For example, this allows generation of target structures whose complexity greatly exceeds that of the seed structure itself. Finally, the extended multi-objective replicator factory is further generalized into a structure/rule co-evolution model, such that replicators with unspecified seed structures can also be concurrently evolved, resulting in different structure/rule combinations and having the capability of not only replicating but also carrying out a secondary pre-specified task with different strategies. I conclude that GP provides a powerful method for creating CA models of self-replication

    An investigation into Cellular Automata: The Self-Modifying Instruction-Based Approach

    Get PDF
    In this thesis we investigate a method for genotype representation in cellular automata. This method is inspired from gene regulation process in biology and is called self-modification. This is then combined with instruction-based approach to form SMIBA. In order to test this new method, SMIBA together with IBA and TT was tested on a number of problems relevant in artificial life. This firstly, being the problems of replication and of development, which are seen as vital for selfreplicating machines. Secondly, these two problems of replication and development are then combined into a new novel problem, which is then subsequently used to test the different methods. SMIBA was seen to perform well, in comparison to the other methods, on all problems tested. SMIBA and IBA were also shown to scale exceptionally well when incrementing maximum possible states of the CA, often even performing better. Further properties in SMIBA of delayed development and hierarchy were also identified

    DEVELOPMENT OF A MIXED-FLOW OPTIMIZATION SYSTEM FOR EMERGENCY EVACUATION IN URBAN NETWORKS

    Get PDF
    In most metropolitan areas, an emergency evacuation may demand a potentially large number of evacuees to use transit systems or to walk over some distance to access their passenger cars. In the process of approaching designated pick-up points for evacuation, the massive number of pedestrians often incurs tremendous burden to vehicles in the roadway network. Hence, one critical issue in a multi-modal evacuation planning is the effective coordination of the vehicle and pedestrian flows by considering their complex interactions. The purpose of this research is to develop an integrated system that is capable of generating the optimal evacuation plan and reflecting the real-world network traffic conditions caused by the conflicts of these two types of flows. The first part of this research is an integer programming model designed to optimize the control plans for massive mixed pedestrian-vehicle flows within the evacuation zone. The proposed model, integrating the pedestrian and vehicle networks, can effectively account for their potential conflicts during the evacuation. The model can generate the optimal routing strategies to guide evacuees moving toward either their pick-up locations or parking areas and can also produce a responsive plan to accommodate the massive pedestrian movements. The second part of this research is a mixed-flow simulation tool that can capture the conflicts between pedestrians, between vehicles, and between pedestrians and vehicles in an evacuation network. The core logic of this simulation model is the Mixed-Cellular Automata (MCA) concept, which, with some embedded components, offers a realistic mechanism to reflect the competing and conflicting interactions between vehicle and pedestrian flows. This study is expected to yield the following contributions * Design of an effective framework for planning a multi-modal evacuation within metropolitan areas; * Development of an integrated mixed-flow optimization model that can overcome various modeling and computing difficulties in capturing the mixed-flow dynamics in urban network evacuation; * Construction and calibration of a new mixed-flow simulation model, based on the Cellular Automaton concept, to reflect various conflicting patterns between vehicle and pedestrian flows in an evacuation network

    Design and Characterisation of a Novel Artificial Life System Incorporating Hierarchical Selection

    Get PDF
    In this thesis, a minimal artificial chemistry system is presented, which is inspired by the RNA World hypothesis and is loosely based on Holland's Learning Classier Systems. The Molecular Classier System (MCS) takes a bottom-up, individual-based approach to building artificial bio-chemical networks. The MCS has been developed to demonstrate the effects of hierarchical selection. Hierarchical selection appears to have been critical for the evolution of complexity in life as we know it yet, to date, no computational artificial life system has investigated the viability of using hierarchical selection as a mechanism for achieving qualitatively similar results. Hierarchy in MCS is enforced by constraining artificial molecules, which are modeled as individuals, to exist within externally provided containers - protocells. This research is focused on the period of time surrounding the conjectured first Major Transition - from individual replicating molecules to populations of molecules existing within cells. Protocells can be thought of as simplified versions of contemporary biological cells. Molecular replication within these protocells causes them to grow until they undergo a process of binary fission. Darwinian selection is continuously and independently applied at both the molecular level and the protocell level. Experimental results are presented which display the phenomenon of selectional stalemate where the selectional pressures are applied in opposite directions such that they meet in the middle. The work culminates with the presentation of a stable artificial protocell system which is capable of demonstrating ongoing evolution at the protocell level via hierarchical selection of molecular species. Supplementary results are presented in the Appendix material as a set of experiments where selectional pressure is applied at the protocell level in a manner that indirectly favours particular artificial bio-chemical networks at the molecular level. It is shown that a molecular trait which serves no useful purpose to the molecules when they are not contained within protocells is exploited for the benefit of the collective once the molecules are constrained to live together. It is further shown that through the mechanism of hierarchical selection, the second-order effects of this molecular trait can be used by evolution to distinguish between protocells which contain desirable networks, and those that do not. A treatment of the computational potential of such a mechanism is presented with special attention given to the idea that such computation may indeed form the basis for the later evolution of the complicated Cell Signaling Pathways that are exhibited by modern cells

    Common metrics for cellular automata models of complex systems

    Get PDF
    The creation and use of models is critical not only to the scientific process, but also to life in general. Selected features of a system are abstracted into a model that can then be used to gain knowledge of the workings of the observed system and even anticipate its future behaviour. A key feature of the modelling process is the identification of commonality. This allows previous experience of one model to be used in a new or unfamiliar situation. This recognition of commonality between models allows standards to be formed, especially in areas such as measurement. How everyday physical objects are measured is built on an ingrained acceptance of their underlying commonality. Complex systems, often with their layers of interwoven interactions, are harder to model and, therefore, to measure and predict. Indeed, the inability to compute and model a complex system, except at a localised and temporal level, can be seen as one of its defining attributes. The establishing of commonality between complex systems provides the opportunity to find common metrics. This work looks at two dimensional cellular automata, which are widely used as a simple modelling tool for a variety of systems. This has led to a very diverse range of systems using a common modelling environment based on a lattice of cells. This provides a possible common link between systems using cellular automata that could be exploited to find a common metric that provided information on a diverse range of systems. An enhancement of a categorisation of cellular automata model types used for biological studies is proposed and expanded to include other disciplines. The thesis outlines a new metric, the C-Value, created by the author. This metric, based on the connectedness of the active elements on the cellular automata grid, is then tested with three models built to represent three of the four categories of cellular automata model types. The results show that the new C-Value provides a good indicator of the gathering of active cells on a grid into a single, compact cluster and of indicating, when correlated with the mean density of active cells on the lattice, that their distribution is random. This provides a range to define the disordered and ordered state of a grid. The use of the C-Value in a localised context shows potential for identifying patterns of clusters on the grid

    Modelling Early Transitions Toward Autonomous Protocells

    Get PDF
    This thesis broadly concerns the origins of life problem, pursuing a joint approach that combines general philosophical/conceptual reflection on the problem along with more detailed and formal scientific modelling work oriented in the conceptual perspective developed. The central subject matter addressed is the emergence and maintenance of compartmentalised chemistries as precursors of more complex systems with a proper cellular organization. Whereas an evolutionary conception of life dominates prebiotic chemistry research and overflows into the protocells field, this thesis defends that the 'autonomous systems perspective' of living phenomena is a suitable - arguably the most suitable - conceptual framework to serve as a backdrop for protocell research. The autonomy approach allows a careful and thorough reformulation of the origins of cellular life problem as the problem of how integrated autopoietic chemical organisation, present in all full-fledged cells, originated and developed from more simple far-from-equilibrium chemical aggregate systems.Comment: 205 Pages, 27 Figures, PhD Thesis Defended Feb 201
    corecore